CN101168352A - 多电机轮边独立驱动的电动车动力控制系统及方法 - Google Patents

多电机轮边独立驱动的电动车动力控制系统及方法 Download PDF

Info

Publication number
CN101168352A
CN101168352A CNA200610117435XA CN200610117435A CN101168352A CN 101168352 A CN101168352 A CN 101168352A CN A200610117435X A CNA200610117435X A CN A200610117435XA CN 200610117435 A CN200610117435 A CN 200610117435A CN 101168352 A CN101168352 A CN 101168352A
Authority
CN
China
Prior art keywords
fuzzy
wheel
motor
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200610117435XA
Other languages
English (en)
Other versions
CN101168352B (zh
Inventor
万钢
陈慧
杜志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI FUEL CELL VEHICLE POWERTRAIN CO Ltd
Original Assignee
SHANGHAI FUEL CELL VEHICLE POWERTRAIN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI FUEL CELL VEHICLE POWERTRAIN CO Ltd filed Critical SHANGHAI FUEL CELL VEHICLE POWERTRAIN CO Ltd
Priority to CN200610117435XA priority Critical patent/CN101168352B/zh
Publication of CN101168352A publication Critical patent/CN101168352A/zh
Application granted granted Critical
Publication of CN101168352B publication Critical patent/CN101168352B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种多电机轮边独立驱动的电动车动力控制系统及方法,包括电子油门,电机及其驱动器,光电编码器,力矩传感器,模糊控制器,模糊计算器。电子油门发出的力矩指令给车辆的轮毂电机及其驱动器,力矩传感器通过驱动器的电流信号得到电机的力矩值,并和轮毂电机的转速信号一起进入光电编码器,经计算光电编码器的脉冲频率分别得出路面驱动力对电机力矩的导数信号以及该导数值对时间的一阶微分信号,并分别通过模糊计算器输入模糊控制器,模糊控制器产生控制输出信号,并输入至模糊计算器,模糊计算器确定实际工作所需的数值后发出控制信号给电子油门,同时输出信号作为下一采样时刻模糊控制器的一个输入,用于确定该时刻的控制输出。

Description

多电机轮边独立驱动的电动车动力控制系统及方法
技术领域
本发明涉及一种电动汽车动力控制系统及方法,尤其是一种具有多电机驱动的电动车动力控制系统及方法。
背景技术
现代汽车动力系统主要包括驱动系统和制动系统,对于现已成熟的内燃机汽车而言,动力系统的控制主要是牵引力控制系统(TCS)和制动防抱死系统(ABS),它们的目标都是保持轮胎与路面接触的某种状态(滑转(移)率与附着率正向变化区间中适合驾驶要求的理想点,如图1),以使车辆能够充分利用路面附着条件行驶并保持稳定。
牵引力控制系统一般由车轮转速传感器、电子控制单元(ECU)、执行机构(驱动力传动系统)组成,ECU通过驱动轮和非驱动轮的转速计算出驱动轮的滑转率,然后与事先设定好的滑转率门限值(大多数路面上对应的最优滑转率)比较,如果超出该值,即控制动力传动系统减小驱动力,以达到控制目标。控制途径有多种,可以控制发动机输出转矩,可以控制变速器传动比,可以控制差速器锁紧装置使不同驱动轮获得不同的驱动力,还可以控制制动力以抵消多余的驱动力。
制动防抱死系统的组成与牵引力控制系统相似,二者可共用车轮转速传感器,其执行机构就是制动力传动系统,控制方式同样采用门限值控制。但是,由于一般不存在非制动轮,不能精确获取车轮平移速度,直接计算滑移率较困难,所以,制动防抱死系统一般采用车轮角加(减)速度门限控制,门限值的确定主要依靠车辆最常行驶路面上的大量试验。制动过程中,ECU通过车轮转速计算出车轮角减速度,然后与事先设定的角减速度门限值比较,如果超出该值,即控制制动力减小,防止车轮被抱死。控制途径主要是通过控制安装于制动管路上的调压器(各种电磁阀)实现的。
对于电动汽车而言,由于电动机力矩易测量、易控制,牵引力控制系统和制动防抱死系统应用在电动汽车上可获得更好的控制效果。除了内燃机汽车上常用的门限值控制外,目前已有针对电动汽车的模型跟踪控制(MFC)方法,这种方法以车轮纯滚动时车辆运行的动力学模型为参考,通过控制使实际车辆运行情况跟踪理想模型的运行情况。由于理想模型中车轮做纯滚动,这种控制方法可以很好的抑制车轮滑转(移)。
从以上可以看出,动力控制系统已经在内燃机汽车上成熟应用,并且逐步向电动汽车延伸,针对电动汽车特殊性的动力控制系统也在不断的研究当中。但是,现有的技术都无法实现精确控制,即无法使车辆运行在图1曲线中的理想点,因为路面附着条件没有实时获取,在四轮作动(制动或四轮驱动)的情况下也没有实时得出滑转(移)率。现有动力控制技术仅仅是按照经验确定控制参数及其门限值,并不能适应汽车运行的多种路面及路面实时变化,所以在某些特殊情况下,牵引力控制系统和制动防抱死系统会失效。应用于电动汽车动力系统的模型跟踪控制虽然可以适应不同的路面,但是它的目标不是最优滑转(移)率,而是滑转(移)率为零,由图1可知,目标附着率也为零,所以在实际使用时严重削弱了汽车的驱(制)动性能。
发明内容
本发明要解决的技术问题是提供一种能够不需要直接利用实时路面状况信息和车速信号的多电机轮边独立驱动的电动车动力控制系统及方法。
本发明解决其技术问题所采用的技术方案是:一种多电机轮边独立驱动的电动车动力控制系统,包括电子油门,车辆的四个轮毂电机及其驱动器,光电编码器,力矩传感器,模糊控制器,模糊计算器。电子油门发出的力矩指令给车辆的轮毂电机及其驱动器,力矩传感器通过驱动器的电流信号得到电机的力矩值,并和轮毂电机的转速信号一起进入光电编码器,经计算光电编码器的脉冲频率分别得出路面驱动力对电机力矩的导数信号1以及该导数值对时间的一阶微分信号2,并分别通过模糊计算器输入模糊控制器,模糊控制器通过模糊逻辑推理产生控制输出信号Tout,并输入至模糊计算器,模糊计算器确定实际工作所需的数值后发出控制信号给电子油门,同时输出信号Tout作为下一采样时刻模糊控制器的一个输入,用于确定该时刻的控制输出。
四个轮毂电机的电子油门接受来自同一电子油门的指令,整个车上设有一个动力电子控制单元(ECU)。
一种多电机轮边独立驱动的电动车动力控制系统的建立方法,具体步骤是:
1.建立判断车轮滑转(移)的数学模型,即路面驱动力,车轮驱动(电机)力矩,之间的数学关系式;
2.根据车轮动力学可得:电机力矩,车轮转速,车轮转动惯量和半径的数学关系式;
3.设计模糊控制器:(1)确定控制器输入输出变量,(2)确定各变量的模糊值及隶属度函数,将输入输出变量模糊化,(3)制定模糊规则,(4)建立单轮车辆动力学模型,按照多电机轮边独立驱动电动汽车的动力控制结构进行计算机仿真,分析仿真结果,然后重复上述(1)、(3)步,直到获得轮胎的附着率与滑转(移)率关系曲线要求的理想控制效果。
本项发明与传统汽车动力控制系统不同之处在于:
1、利用了电机力矩易测量、响应快的特点,在防滑控制中规避了车速和路面信息不易获取的不利因素,通过车轮力矩和转速信号实现了对路面信息的精确观测。
2、把防滑控制的评价目标——滑转(移)率-附着率关系曲线的稳定区间直接作为控制目标,既实现了防滑控制,又能充分利用路面附着条件,实现了控制结果的最优化。
3、在汽车动力控制系统中完全应用了智能控制方法——模糊控制。
4、实现了驱制动控制功能集成化和部件一体化。
本发明的有益效果是:在驾驶员驾驶需求和路面附着条件的双重限制下,自动实现了多电机轮边独立驱动的电动车驱制动力学特性的最优化(当驾驶员驾驶需求超过路面附着条件时,车轮既无过度滑转(移),又能充分利用路面附着条件)。
附图说明
图1是轮胎的附着率与滑转(移)率关系曲线图;
图2是多电机轮边独立驱动电动汽车的动力控制系统框图;
图3是模糊变量的隶属函数图;
图4是附着系数0.367路面上无控制和有控制时车速比较图;
图5是附着系数0.367路面上有控制行驶时驱动轮轮速与车速的比较以及力矩曲线图。
具体实施方式
下面结合附图与实施例对本发明作进一步的描述。
如图2所示,本发明系统构成及工作原理:
力矩指令(Torque Command)是驾驶员通过电子油门10发出的力矩指令;车辆部分包括轮毂电机及其驱动器7以及用于测量车轮转速的光电编码器8;力矩传感器3(Torque Sensor)是电机工作中实时的力矩值,通过驱动器的电流信号得到;车轮转速4(Wheel Velocity)是车轮(也即电机)转速信号,通过计算光电编码器8的脉冲频率得出;信号1和2分别为路面驱动力对电机力矩的导数以及该导数值对时间的一阶微分,它们由观测(Observer)根据力矩指令(Torque Sensor)和车轮转速(WheelVelocity)计算得到,然后通过模糊计算器5,6(Fuzzy Factor)确定控制器工作所需的数值后输入控制器9(Controller);控制器9(Controller)是模糊控制器,它通过模糊逻辑推理产生控制输出Tout;输出Tout通过模糊计算器11(Defuzzy Factor)确定实际工作所需的数值后控制力矩指令(Torque Command)(与之进行差的运算),产生电机力矩指令输给电机,同时信号Tout作为下一采样时刻模糊控制器9(Controller)的一个输入,用于确定该时刻的控制输出。
由于各轮分别由一轮毂电机驱动,彼此独立,所以在整个车上有图2所示的四个系统。但是,四个力矩指令(Torque Command)接受来自同一电子油门10的指令,整个车上也只有一个动力电子控制单元(ECU),除电机及驱动器7、光电编码器8等硬件外,四个系统的软件部分彼此独立的集成于一个动力电子控制单元(ECU)中。
本发明的系统具体建立方法是:
一、鉴于“背景技术”中提到的该项技术在实际应用中的缺陷,经过大量驾驶经验总结和计算机仿真研究,得出如下判断车轮滑转(移)的定义(Fd表示路面驱动力,Tm表示车轮驱动力矩,对于轮毂电机驱动电动车来说,Tm即为电机力矩):
dF d dT m > 0 , d ( dF d / dT m ) dt > 0 , 稳定状态,趋向更加稳定;
dF d dT m > 0 , d ( dF d / dT m ) dt = 0 , 稳定状态,趋向滑转(移);
dF d dT m > 0 , d ( dF d / dT m ) dt < 0 , 滑转(移)临界状态;
dF d dT m < 0 , 滑转(移)状态。
二、根据车轮动力学可得下式:
Figure A20061011743500098
电机力矩Tm可以通过电机电流直接测得,车轮转速ω可方便的由传感器测得,车轮转动惯量Iω和半径r为常数。为了便于实现,应用时间常数为τ1的滤波器于上式,得
Figure A20061011743500099
然后计算出dFd/dTm和d(dFd/dTm)/dt,这样就建立了图2中的Observer。
三、设计模糊控制器。
(一)确定控制器输入输出变量。控制器有三个输入d|Fd|/d|Tm|、d(d|Fd|/d|Tm|)/dt和Tfor,一个输出Tout,Tfor是控制器前一个时刻的输出,输入控制器用作当前时刻的输出基准,Tout作为指令力矩的调节量。第一步中的定义可以全面反映前进驱动、前进制动、倒车驱动和倒车制动四种工况下的车轮滑转(移),而这里定义前进驱动时Fd和Tm为正,所以利用d|Fd|/d|Tm|可判断各种工况下的车轮滑转(移)状况,Tout符号与指令力矩相反即可,
(二)确定各变量的模糊值及隶属度函数,将输入输出变量模糊化。图3为四个模糊变量的隶属度函数曲线,其中(a)、(b)、(c)分别为输入变量d|Fd|/d|Tm|、d(d|Fd|/d|Tm|)/dt和Tfor的隶属函数,(d)为输出变量Tout的隶属函数。d|Fd|/d|Tm|有四个模糊值,分别是n、z、p1和p2;d(d|Fd|/d|Tm|)/dt有五个模糊值,分别是n2、n1、z、p1和p2;Tout和Tfor各有六个模糊值,分别是z、p1、p2、p3、p4和p5。其中Tout和Tfor的模糊值选取、隶属函数的确定基于与方法一同样的考虑,既保证响应快,又保证控制作用较强时保持一定的精度。由于d|Fd|/d|Tm|<0时即判断为发生滑转(移),而d|Fd|/d|Tm|>0还需要根据d(d|Fd|/d|Tm|)/dt来进行控制,为了保证控制精度和稳定性,d|Fd|/d|Tm|>0的论域取得较大,并相应地取两个模糊变量。
(三)制定模糊规则。根据第一步中的定义,采用“IF……THEN……”的格式制定对应于上述隶属函数的模糊规则,每条规则前提中各输入变量的连接关系均为“与(AND)”。所有规则列如下:
1、IF d|Fd|/d|Tm|is p2,THEN Tout is z;
2、IF d|Fd|/d|Tm|is p1 AND d(d|Fd|/d|Tm|)/dt is not n2,THENTout is z;
3、IF d|Fd|/d|Tm|is p1 AND d(d|Fd|/d|Tm|)/dt is n2 AND Tfor isz,THEN Tout is z;
4、IF d|Fd|/d|Tm|is p1 AND d(d|Fd|/d|Tm|)/dt is n2 AND Tfor isp1,THEN Tout is p1;
5、IF d|Fd|/d|Tm|is p1 AND d(d|Fd|/d|Tm|)/dt is n2 AND Tfor isp2,THEN Tout is p2;
6、IF d|Fd|/d|Tm|is p1 AND d(d|Fd|/d|Tm|)/dt is n2 AND Tfor isp3,THEN Tout is p3;
7、IF d|Fd|/d|Tm|is p1 AND d(d|Fd|/d|Tm|)/dt is n2 AND Tfor isp4,THEN Tout is p4;
8、IF d|Fd|/d|Tm|is p1 AND d(d|Fd|/d|Tm|)/dt is n2 AND Tfor isp5,THEN Tout is p5;
9、IF d|Fd|/d|Tm|is z AND Tfor is z,THEN Tout is z;
10、IF d|Fd|/d|Tm|is z AND Tfor is p1,THEN Tout is p1;
11、IF d|Fd|/d|Tm|is z AND Tfor is p2,THEN Tout is p2;
12、IF d|Fd|/d|Tm|is z AND Tfor is p3,THEN Tout is p3;
13、IF d|Fd|/d|Tm|is z AND Tfor is p4,THEN Tour is p4;
14、IF d|Fd|/d|Tm|is z AND Tfor is p5,THEN Tout is p5;
15、IF d|Fd|/d|Tm|is n AND d(d|Fd|/d|Tm|)/dt is not p2,THENTout is p5;
16、IF d|Fd|/d|Tm|is n AND d(d|Fd|/d|Tm|)/dt is p2 AND Tfor isp5,THEN Tout is p5;
17、IF d|Fd|/d|Tm|is n AND d(d|Fd|/d|Tm|)/dt is p2 AND Tfor isp4,THEN Tout is p4;
18、IF d|Fd|/d|Tm|is n AND d(d|Fd|/d|Tm|)/dt is p2 AND Tfor isp3,THEN Tout is p3;
19、IF d|Fd|/d|Tm|is n AND d(d|Fd|/d|Tm|)/dt is p2 AND Tfor isp2,THEN Tout is p2;
20、IF d|Fd|/d|Tm|is n AND d(d|Fd|/d|Tm|)/dt is p2 AND Tfor isp1,THEN Tout is p1;
21、IF d|Fd|/d|Tm|is n AND d(d|Fd|/d|Tm|)/dt is p2 AND Tfor isz,THEN Tout is z。
(四)建立单轮车辆动力学模型,按照图2结构进行计算机仿真,分析仿真结果,然后重复上述(二)、(三)步,直到获得图1所要求的理想控制效果。
四、应用于轮边独立驱动电动车上(对应修改第二步中各参数),在模拟低附着系数路面上行驶,通过调整图2中的Fuzzy Factor和DefuzzyFactor,直至最终达到较理想的动力效果。
本发明在驾驶员驾驶需求和路面附着条件的双重限制下,能自动实现多电机轮边独立驱动的电动车驱制动力学特性的最优化(当驾驶员驾驶需求超过路面附着条件时,车轮既无过度滑转(移),又能充分利用路面附着条件)。
例如,在如图4所示的某一行驶过程(路面附着系数为0.367,仅用两前轮驱动)车速曲线中,无控制时,加速度为
( 3.28 3.6 m / s - 1.19 3.6 m / s ) / 1 s = 0.58 m / s 2
由牛顿第二定律可得
Fx-Gx=0.58m/s2*(152+127+122+104)kg
由此求得此时附着力Fx=658.3N,附着率为
&mu; = 658.3 N ( 143 + 114 ) kg * 9.8 N / kg = 0.261
同理可以计算得到,有控制时附着率为0.350,已经非常接近路面附着系数。而驱动轮轮速与车速的比较以及力矩如图5所示,从轮速与车速的比较中可以看出,车轮滑转程度完全处在图1曲线的左半部分,即无过度滑转。

Claims (3)

1.一种多电机轮边独立驱动的电动车动力控制系统,包括电子油门(10),车辆的四个轮毂电机及其驱动器(7),光电编码器(8),力矩传感器(3),模糊控制器(9),模糊计算器(5,6,11),其特征在于,所述电子油门(10)发出的力矩指令给车辆的轮毂电机及其驱动器(7),力矩传感器(3)通过驱动器(7)的电流信号得到电机的力矩值,并和轮毂电机的转速信号(4)一起进入光电编码器(8),经计算光电编码器(8)的脉冲频率分别得出路面驱动力对电机力矩的导数信号(1)以及该导数值对时间的一阶微分信号(2),并分别通过模糊计算器(5,6)输入模糊控制器(9),模糊控制器(9)通过模糊逻辑推理产生控制输出信号(Tout),并输入至模糊计算器(11),模糊计算器(11)确定实际工作所需的数值后发出控制信号给电子油门(10),同时输出信号(Tout)作为下一采样时刻模糊控制器(9)的一个输入,用于确定该时刻的控制输出。
2.根据权利要求1所述的多电机轮边独立驱动的电动车动力控制系统,其特征在于,所述四个轮毂电机的电子油门(10)接受来自同一电子油门(10)的指令,整个车上设有一个动力电子控制单元(ECU)。
3.一种建立权利要求1所述控制系统的方法,具体步骤是:
一.建立判断车轮滑转(移)的数学模型,即路面驱动力,车轮驱动(电机)力矩之间的数学关系式;
二.根据车轮动力学可得:电机力矩,车轮转速,车轮转动惯量和半径的数学关系式;
三.设计模糊控制器:(A)确定控制器输入输出变量,(B)确定各变量的模糊值及隶属度函数,将输入输出变量模糊化,(C)制定模糊规则,(D)建立单轮车辆动力学模型,按照多电机轮边独立驱动电动汽车的动力控制结构进行计算机仿真,分析仿真结果,然后重复上述(A)、(C)步,直到获得轮胎的附着率与滑转(移)率关系曲线要求的理想控制效果。
CN200610117435XA 2006-10-23 2006-10-23 多电机轮边独立驱动的电动车动力控制系统及方法 Expired - Fee Related CN101168352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200610117435XA CN101168352B (zh) 2006-10-23 2006-10-23 多电机轮边独立驱动的电动车动力控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610117435XA CN101168352B (zh) 2006-10-23 2006-10-23 多电机轮边独立驱动的电动车动力控制系统及方法

Publications (2)

Publication Number Publication Date
CN101168352A true CN101168352A (zh) 2008-04-30
CN101168352B CN101168352B (zh) 2012-01-11

Family

ID=39389160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610117435XA Expired - Fee Related CN101168352B (zh) 2006-10-23 2006-10-23 多电机轮边独立驱动的电动车动力控制系统及方法

Country Status (1)

Country Link
CN (1) CN101168352B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358288A (zh) * 2011-09-07 2012-02-22 北京理工大学 一种车辆acc驱动工况路面峰值附着系数识别方法
CN103701390A (zh) * 2013-12-13 2014-04-02 青岛大学 考虑铁损的电动汽车异步电机模糊反步控制方法
WO2016095106A1 (zh) * 2014-12-16 2016-06-23 中国科学院深圳先进技术研究院 一种判断牵引状态下的车辆工作状态的方法和系统
CN106080770A (zh) * 2016-07-15 2016-11-09 黄力 一种电动轮电子差速的分析与控制系统
CN106137585A (zh) * 2016-08-12 2016-11-23 高宏 一种能上下台阶楼梯和平地行驶的电动轮椅
CN108275144A (zh) * 2017-01-05 2018-07-13 通用汽车环球科技运作有限责任公司 用于推进系统控制的系统和方法
US10566919B2 (en) 2015-09-24 2020-02-18 Siemens Aktiengesellschaft Electric motor control system, driver, inverter and control method, and computer software and storage medium
CN112537307A (zh) * 2020-12-04 2021-03-23 北京理工大学 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
CN113325808A (zh) * 2020-02-28 2021-08-31 上海诺基亚贝尔股份有限公司 控制方法、设备、装置、系统以及计算机可读介质
CN117521229A (zh) * 2023-12-27 2024-02-06 石家庄铁道大学 一种路面位移响应检测方法、系统及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316351A (zh) * 2000-04-03 2001-10-10 王天顺 电动车辆的电动轮毂
JP4205972B2 (ja) * 2003-03-07 2009-01-07 ヤマハ発動機株式会社 電動二輪車の駆動装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358288A (zh) * 2011-09-07 2012-02-22 北京理工大学 一种车辆acc驱动工况路面峰值附着系数识别方法
CN103701390A (zh) * 2013-12-13 2014-04-02 青岛大学 考虑铁损的电动汽车异步电机模糊反步控制方法
CN103701390B (zh) * 2013-12-13 2016-01-13 青岛大学 考虑铁损的电动汽车异步电机模糊反步控制方法
WO2016095106A1 (zh) * 2014-12-16 2016-06-23 中国科学院深圳先进技术研究院 一种判断牵引状态下的车辆工作状态的方法和系统
US10566919B2 (en) 2015-09-24 2020-02-18 Siemens Aktiengesellschaft Electric motor control system, driver, inverter and control method, and computer software and storage medium
CN106080770A (zh) * 2016-07-15 2016-11-09 黄力 一种电动轮电子差速的分析与控制系统
CN106137585A (zh) * 2016-08-12 2016-11-23 高宏 一种能上下台阶楼梯和平地行驶的电动轮椅
CN108275144A (zh) * 2017-01-05 2018-07-13 通用汽车环球科技运作有限责任公司 用于推进系统控制的系统和方法
CN108275144B (zh) * 2017-01-05 2021-06-04 通用汽车环球科技运作有限责任公司 用于推进系统控制的系统和方法
CN113325808A (zh) * 2020-02-28 2021-08-31 上海诺基亚贝尔股份有限公司 控制方法、设备、装置、系统以及计算机可读介质
CN112537307A (zh) * 2020-12-04 2021-03-23 北京理工大学 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
CN112537307B (zh) * 2020-12-04 2022-04-01 北京理工大学 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
CN117521229A (zh) * 2023-12-27 2024-02-06 石家庄铁道大学 一种路面位移响应检测方法、系统及存储介质
CN117521229B (zh) * 2023-12-27 2024-03-19 石家庄铁道大学 一种路面位移响应检测方法、系统及存储介质

Also Published As

Publication number Publication date
CN101168352B (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
CN101168352B (zh) 多电机轮边独立驱动的电动车动力控制系统及方法
US7583036B2 (en) Electrically driven vehicle
CN104943691B (zh) 用于车辆控制的电子驱动扭矩感测车辆状态估计方法
CN112218777B (zh) 滑移控制装置
CN105835721B (zh) 一种四轮轮毂电动汽车车速控制方法
US5164903A (en) Electronic control of tractive force proportioning for a class of four wheel drive vehicles
CN102267459B (zh) 一种电机驱动车辆的驱动防滑调节控制方法
Zhou et al. Motor torque fault diagnosis for four wheel independent motor-drive vehicle based on unscented Kalman filter
EP1447255A2 (en) Control apparatus and method for hybrid vehicle
CN112537307B (zh) 一种四轮轮毂电机自寻优驱动防滑控制方法和系统
CN106004520B (zh) 一种车速控制方法、控制系统及电动汽车
Savitski et al. Experimental investigations on continuous regenerative anti-lock braking system of full electric vehicle
CN106042976A (zh) 一种分布式驱动电动汽车在线实时转矩优化分配控制方法
CN104627024B (zh) 提高纯电动车驾驶性的控制方法
CN100364803C (zh) 路面状态变化推定装置、方法及具有该装置的汽车
CN102862559A (zh) 一种基于can总线的线控abs制动系统、控制方法
EP2556990A2 (en) A wheel drive architecture for electric vehicles
CN109765485B (zh) 基于转矩控制模式下的电机制动测试系统及方法
US6994652B2 (en) Hybrid type vehicle drive control device, hybrid type vehicle drive control method, and program therefor
Hartani et al. A robust wheel slip control design with radius dynamics observer for EV
JP4936552B2 (ja) スリップ率推定装置及びスリップ率制御装置
Cai et al. Acceleration-to-torque ratio based anti-skid control for electric vehicles
CN103661001B (zh) 双轮驱动系统差速控制方法及系统
US11912136B2 (en) Control method for electric vehicle and control device for electric vehicle
Marignetti et al. Design and experiments of a test equipment for hybrid and electric vehicle drivetrains

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

Termination date: 20141023

EXPY Termination of patent right or utility model