Connect public, paid and private patent data with Google Patents Public Datasets

Improved PIR motion sensor

Info

Publication number
CN101167110A
CN101167110A CN 200680011420 CN200680011420A CN101167110A CN 101167110 A CN101167110 A CN 101167110A CN 200680011420 CN200680011420 CN 200680011420 CN 200680011420 A CN200680011420 A CN 200680011420A CN 101167110 A CN101167110 A CN 101167110A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
improved
pir
motion
sensor
improved pir
Prior art date
Application number
CN 200680011420
Other languages
Chinese (zh)
Other versions
CN101167110B (en )
Inventor
埃里克·斯科特·米科
Original Assignee
西荣科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

一种无源红外传感器具有两个探测部分(302/306,304/308,316,318,320,322,324,328,330,332,334,336,338),其由各自的探测器和光学元件建立,每一探测部分监控交替的空间体积。 A passive infrared sensor having two detection section (302/306, 304 / 308,316,318,320,322,324,328,330,332,334,336,338), and that the respective detectors establishing optical element, each of the detecting part of the monitoring alternating volumes of space. 将探测部分配置为使得移动目标引起所述探测部分输出不同的频率,而非移动刺激引起两个探测部分输出同样的频率。 The detecting portion is configured such that a moving target due to different portions of the frequency detection output, rather than moving the same stimulation frequency detecting section outputs two. 另一方面,PIR移动传感器(200)包括产生各自第一和第二信号的第一和第二部分(202/208,204/206),该第一和第二信号可加到一起形成总信号并可彼此相减形成差分信号。 On the other hand, the PIR motion sensor (200) comprises generating a first and a respective first and second portions (202/208, 204/206) a second signal, the first and second signals can be added together form the total signal subtracted from each other and may form a differential signal. 只有当所述总信号的频率与所述差分信号的频率不同时显示移动目标。 Only when the frequency of the frequency difference signal with said total display signal is not the same moving object.

Description

改进的PIR移动传感器技术领域本发明一般涉及移动传感器。 Improved PIR movement sensor Technical Field The present invention generally relates to a movement sensor. 背景技术在先申请公布的简单PIR移动传感器具有低错误警报率和最小处理要求,其能够区分例如人的大目标和例如动物的小的移动目标,以使得仅当存在未经许可的人、而非宠物时发出警报。 BACKGROUND prior published applications simple PIR movement sensor with a low false alarm rate and minimal processing requirements, such as a human which is able to distinguish between small and large targets moving object such as an animal, such that only when the unauthorized person is present, and alerts you when a non-pet. 在通过参考合并于此的USPN第5,923,250号专利中公布了一种移动传感系统,其利用所监控空间的体积之间的盲区来减少由小动物引起的错误警报。 Discloses a sensing system in a mobile USPN Patent No. 5,923,250 incorporated herein by reference, the blind spot between the volume of the space which is monitored using a reducing false alarms caused by small animals. 移动目标不由探测器间信号的同步差异显示(例如不同的频率),而是当移动目标穿过该体积时,简单地由记录探测器交替产生的信号时间顺序来显示。 The difference between the movement target synchronous detector signal to display help (e.g., a different frequency), but when the moving object passes through the volume, simply in chronological order by the recording signal generated by the detector are alternately displayed. 本发明发现在先申请的原理可经创造性的修改应用于第5,923,250号专利公布的系统,以消除对盲区的需要并维持功能。 Found that the principles of the present invention may be applied to systems of the prior application Patent Publication No. 5,923,250 inventive modified to eliminate the need for blind and maintain function. 发明内容在本发明的第一方面中,改进传感器的光电系统响应于人类移动产生两个频率不同的信号。 SUMMARY OF THE INVENTION In a first aspect of the present invention, an improved response of the photoelectric sensor system generates two different frequency signals to a human movement. 然而,对于例如白光、振动、温度变化、 射频电磁辐射等的探测器干扰刺激,所述系统只产生单频信号。 However, for example white light, vibration, temperature, electromagnetic radiation, such as radio frequency interference detector stimulation, the system generates only a single frequency signal. 信号被送入所述传感器的处理系统,其利用是否存在两个频率来区分移动目标和非移动干扰刺激。 Signal is sent to the sensor processing system, which uses two frequencies to distinguish whether there is a moving target and non-mobile interference stimulation. 因此,改进的传感器对于干扰刺激而不是移动目标显示移动的可能性更低。 Thus, improved sensor for stimulation rather than interfering less likely to display moving object moves. 在移动传感器用于探测人类入侵者时这被称为错误警报。 When movement sensor for detecting human intruders This is called a false alarm. 此外,所述传感器能够通过评测所述两个不同频率信号间的波峰并列来确定移动的方向,这样该传感器可以用于例如, 只在人类从特定的方向接近门时开门。 In addition, the sensor can be determined by the direction of movement parallel between the peak frequencies of the two different evaluation signals, such that the sensor may be used, for example, is only open when the access door from a human specific direction. 在本发明的第二方面中,所述改进传感器的光电系统产生多个信 In a second aspect of the present invention, the improved sensor system generates a plurality of photoelectric channels

号,所述多个信号来自所述传感器监控的空间内子体积的二维阵列。 Number, said plurality of signals from the sensor to monitor the spatial volume of the two-dimensional array of the sub. 所述传感器的信号处理系统将所述信号用作关于移动目标大小的信息,以使得拒绝源于非人类(如小动物)移动的信号。 The signal processing system of the sensor signals as information on the size of the moving object, so that the reject signal from a non-human (e.g., small animal) movement. 如果需要的话, 两个方面可以结合以生产在所述所有三个领域均得以改进的传感器。 If desired, two aspects may be combined to produce all three areas of the sensor are improved. 因此,在第一方面中无源红外(IR)移动传感器包括第一IRJ果测器,其当移动目标进入第一探测器的探测体积时输出具有第一频率的第一信号;第二IR探测器,其当移动目标进入第二探测器的探测体积时输出具有第二频率的第二信号;以及处理系统,其接收该第一和第二信号并输出表示移动目标的探测信号。 Thus, in a first aspect, a passive infrared (IR) sensor comprising a first movement detector IRJ fruit, a first output signal having a first frequency when a moving object enters the probe volume its first detector; second detecting IR which outputs a second signal having a second frequency when the moving object enters the probe volume of the second detector; and a processing system that receives the first and second signals and outputting a detection signal of the moving object. 在优选的实施方案中,每一探测器包括两个元件,第一探测器的元件在彼此之间限定了第一中心至中心间距,第二探测器的元件在彼此之间限定了第二中心至中心间距。 In a preferred embodiment, each detector comprising two elements, a first detector elements between one another defining a first center-to-center spacing, the second detector element defining between each other a second central to-center spacing. 这可以通过将第一探测器的元件与第二探测器的元件制造为不同大小来实现,和/或通过配置第一探测器与第二探测器具有不同的元件数量来实现。 This element of the first detector element and the second detector by manufacturing different sizes implemented to achieve and / or with a different number of elements by configuring the first detector and the second detector. 在非限制性的实施方案中,第一和第二探测器布置在单一外壳中的同一基底上。 In a non-limiting embodiment, the first and second detectors disposed on the same substrate in a single housing. 在另一实施方案中,第一和第二探测器布置在彼此分开的外壳中,并且第一探测器监控的第一空间体积与第二探测器监控的第二空间体积至少部分光学重叠。 In another embodiment the volume of the second space, the first and second detectors are arranged separated from each other in the housing, and the first detector monitoring a first spatial volume of the second optical detector to monitor at least partially overlap. 在优选的实施方案中,第一探测器可具有至少两排元件且每排至少两个元件,并且第二探测器可具有至少两排元件且每排至少两个元件。 In a preferred embodiment, the first detector element may have at least two rows and at least two elements per row, and the second detector element may have at least two rows and at least two elements per row. 第一探测器监控的子体积与第二探测器监控的子体积至少部分光学重叠。 Monitoring a first sub-volume of the second detector sub-volume detector monitoring at least partially optically overlap. 本发明的另一方面提供了一种用于在监控空间内区分移动目标和具有非连续辐射特征的非移动目标的方法,包括接收来自第一无源IR 探测器的第一频率和来自第二无源IR探测器的第二频率,并且第一和第二频率不相等。 Another aspect the present invention provides a method for distinguishing the moving object and have a discontinuous characteristic radiation in the monitored space of a non-moving object, comprising receiving a first frequency from a first passive IR detector, and from a second second frequency passive IR detector, and the first and second frequencies are not equal. 所述方法还包括仅当基本同时接收到第一和第二频率时才输出表示移动目标存在的信号。 The method further comprises substantially simultaneously only when receiving the first and second frequency outputs a signal indicating the presence of a moving target. 否则,不会输出表示移动目标存在的信号。 Otherwise, no output signal indicating the presence of a moving target. 在又一方面,将处理系统连接到第一和第二PIR探测器,该处理系统用于仅当来自两个探测器的信号频率彼此不同时才输出探测信号。 In yet another aspect, the processing system is connected to the first and second PIR detectors, the processing system is used only when the signal frequency from the two sensor outputs a detection signal different from each other. 在另一方面,移动传感器包括第一无源IR探测器,其具有至少两排元件且每排至少两个元件。 In another aspect, the movement sensor comprises a first passive IR detector element having at least two rows and at least two elements per row. 第一无源IR探测器监控第一空间子体积。 The first passive IR detector monitoring a first sub-volume of space. 第二无源IR探测器,其具有至少两排元件且每排至少两个元件。 A second passive IR detector element having at least two rows and at least two elements per row. 第二无源IR探测器监控第二空间子体积。 A second passive IR detector monitoring the second sub-space volume. 光学系统使第一和第二子体积至少部分光学重叠。 A first optical system and second optical sub-volumes at least partially overlap. 在所述方面的优选实施方案中,第一IR探测器输出表示第一维中一点或多点的第一信号,而第二IR探测器输出表示第二维中一点或多点的第二信号。 In a preferred embodiment of the aspect, the first IR detector outputs a first signal point or points in a first dimension, and a second IR detector outputs a second signal of a second dimension of the point or points . 所述第一维可以是笛卡尔坐标系中的x方向而第二维可以是笛卡尔坐标系中的y方向。 The first dimension may be a Cartesian coordinate system x-direction and the y direction of the second dimension may be a Cartesian coordinate system. 或者,所述维度可以是极坐标系中的"r"和W。 Alternatively, the dimensional polar coordinate system may be the "r" and W. 所述信号可以表示正负极性,并且处理器可以利用所述极性来区分目标移动的方向。 The signal may represent positive and negative polarity, the polarity and the processor may be utilized to distinguish the direction of movement of an object. 同样,所述处理器可以利用所述信号来确定^t活的坐标,从而至少确定移动目标的大小。 Also, the processor may utilize the signals to determine the coordinates of live ^ t to determine at least the size of the moving object. 特别地是,所述处理器可以确定被同时激活的坐标数量是否等于阈值并基于此确定是否激活警报。 In particular, the processor may determine the number of coordinates are simultaneously activated is equal to a threshold value, and based thereon determines whether to activate alarm. 在另一方面,PIR传感器包括第一探测器,其配置为用于输出至少表示沿第一维的两个点之一的信号。 In another aspect, the PIR sensor comprises a first detector configured to output a signal representing at least one of the two points along the first dimension. 所述第一探测器从第一空间监控子体积接收IR辐射。 The first detector receives IR radiation from a first sub-volume space monitoring. 第二探测器配置为用于输出至少表示沿不同于第一维的第二维两个点之一的信号,所述第二探测器从第二空间监控子体积接收IR辐射,且第一空间监控子体积与第二空间监控子体积至少部分重叠。 A second detector configured to output a signal of one of at least two points along the first dimension is different from the second dimension, the second detector receives the IR radiation from the second space monitoring sub-volume, and the first space monitoring sub-volume and the second space overlap at least partially monitored sub-volumes. 在一种替代实施方案中,无源红外(IR)移动传感器具有输出第一信号的第一IR探测器,当移动目标穿过第一探测器的探测体积时所述第一信号具有第一频率;以及输出第二信号的第二IR探测器,当移动目标穿过第二探测器的探测体积时所述第二信号具有不同于第一频率的第二频率。 In an alternative embodiment, the passive infrared (IR) motion sensor having a first IR detector outputs a first signal, when the moving object passes through the detection volume of the detector a first signal having a first frequency of the first ; and a second signal of the second frequency of the output of the second IR detector, when the moving object passes through the detection volume of the second detector the second signal having a frequency different from the first. 处理系统接收所述第一和第二信号并基于此输出表示移动目标的探测信号。 Processing system receiving said first and second signals and outputs a detection signal based on this moving target. 所述探测器彼此大小相同,并且第一探测器设置有具有第一焦距的第一光学系统,第二探测器设置有第二光学系统, 所述第二光学系统具有不同于第一焦距的第二焦距。 The probe of the same size to each other, and the first detector is provided with a first optical system having a first focal length, a second detector is provided with a second optical system, the second optical system having a first focal length is different from the first two focal length.

如果需要的话,所述第一和第二探测器可安装在彼此分开的外壳内。 If desired, the first and second detectors may be mounted within the housing separated from each other. 在非限定性的实施方案中,每一探测器各具有且只具有两个元件, 所述元件彼此大小相等且第一探测器元件间的间距与第二探测器元件间的间距相等。 In a non-limiting embodiment, each detector and each having only two elements, the elements are equal to each other and the size of the spacing between the spacing between the first detector element and second detector element are equal. 根据上述最后一个方案的另一方面,提供了一种用于在监控空间收来自第一无源IR探测器的第一频率和接收来自第二无源IR探测器的第二频率,并且第一和第二频率不相等。 According to another aspect of this last embodiment, there is provided a method for receiving a first frequency from a first passive IR detector and receiving a second frequency from a second passive IR detector in a monitored space, and the first and the second frequency are not equal. 所述探测器的大小和配置均相同但是具有各自焦距不同的光学系统。 The detectors are the same size and configuration but have different respective focal lengths of the optical system. 所述方法还包括仅当基本同时接收到第一和第二频率时才输出表示存在移动目标的信号。 The method further comprises substantially simultaneously only when receiving the first and second frequency output signal indicates the presence of a moving object. 否则, 不会输出表示存在移动目标的信号。 Otherwise, not output a signal indicative of the presence of moving objects. 在另一方面,移动传感器包括具有且只具有两个元件的第一无源IR探测器,定义所述元件间的间距为第一间距。 On the other hand, comprising a first movement sensor and a passive IR detector having only two elements, the spacing between the elements defining the first pitch. 所述第一无源IR探测器监控第一空间子体积。 The first passive IR detector monitoring a first sub-volume of space. 第二无源IR探测器具有且只具有两个元件,定义所述元件间的间距为第二间距。 And a second passive IR detector having only two elements, the spacing between the elements defining the second spacing. 所述第二间距与所述第一间距相等且所有四个元件的大小彼此相同。 The second pitch is equal to the first pitch and the size of all four elements identical to each other. 所述第二无源IR探测器监控第二空间子体积。 The second passive IR detector monitoring the second sub-space volume. 光学系统使第一和第二空间子体积至少部分光学重叠。 The optical system of the first and second sub-space volume of at least partially optically superimposed. 所述光学系统限定了与第一探测器相关的第一焦距以及与第二探测器相关的第二焦距。 The optical system defines a first focal length associated with a first detector and a second detector associated with a second focal length. 所述第一和第二焦距彼此不相等。 Said first and second focal lengths are not equal to each other. 在另一实施方案中,PIR移动传感器包括红外探测器,所述红外探测器具有分别产生第一和第二信号的第一和第二元件。 In another embodiment, the PIR motion sensor includes an infrared detector, said infrared detector elements having first and second generating first and second signals, respectively. 每一元件包括第一部件和第二部件。 Each element comprises a first member and a second member. 系统将所述第一和第二信号加到一起以形成总信号。 The system of the first and second signals are added together to form a total signal. 系统还将一个信号从另一个信号减去以形成差分信号。 The system also subtracts one signal from the other signal to form a difference signal. 当所述总信号的频率与所述差分信号的频率不同时,该系统输出表示移动目标的探测信号,否则不会输出探测信号。 When the frequency of the frequency difference signal with said total signal is not the same, the system outputs a detection signal of the moving object, or does not output a detection signal. 所述第一元件可监控第一空间体积,其可与所述第二元件监控的第二空间体积光学重叠或交叉。 The first element may monitor a first volume of space, which can be monitored with the second volume of the optical element of the second spatial overlap or intersect. 每一探测器可分别具有且只具有两个大小相等的正负部件。 Each detector may have only a positive or negative, and two equal sized parts. 如果需要的话,所述正部件可彼此物理靠近且没有任何负部件插入,并且所述负部件可彼此物理靠近且没有任何正部件插入。 If desired, the components may be physically near each positive and negative no member is inserted, and the negative part may be physically close to each other without any positive insertion member. 在非限定性的实施方案中,所述部件在基底上以下述顺序 In a non-limiting embodiment, the component on the substrate in the following order

成一直线地布置:所述第一元件的正部件,所述第二元件的正部件, 所述第二元件的负部件,所述第一元件的负部件。 Arranged in line: a positive part of the first element, a positive part of the second element, the second element of the negative component of the negative component of the first element. 一个元件的所述部件彼此电连接。 A member of the element electrically connected to each other. 在后一实施方案的另一方面,提供了一种用于在监控空间内区分移动目标和具有非连续辐射特征的非移动目标的方法包括:提供第一和第二探测器元件,该第一和第二元件分别产生第一和第二信号。 In another aspect of the latter embodiment, there is provided a method for distinguishing the moving object and have a discontinuous characteristic radiation in the non-monitored space moving target comprising: providing a first and a second detector element, the first and a second element generating first and second signals, respectively. 该方法还包括将所述第一和第二信号加到一起以形成总信号,以及将一个信号从另一个信号减去形成差分信号。 The method further comprises the first and second signals are added together to form a total signal, and a signal is formed by subtracting the difference signal from the other signals. 当所述总信号的频率与所述差分信号的频率不同时,显示移动目标,否则不显示移动目标。 When the frequency of the frequency of the differential signal while the total signal does not display a moving target, or do not display a moving target. 在后一实施方案的又一方面,移动传感器包括具有且只具有两个部件的第一无源IR探测器元件,其监控第一空间子体积,以及类似地具有且只具有两个部件的第二无源IR探测器元件,其监控第二空间子体积。 In yet another aspect of the latter embodiment, and only the movement sensor includes a first passive IR detector element having two components, which monitors a first subvolume of space, and similarly has a first and only two members two passive IR detector element, which monitors a second subvolume of space. 光学系统可使得第一和第二空间子体积至少部分重叠。 The optical system may be such that the volume of the first and second sub-spaces at least partially overlap. 所述移动传感器具有系统,其仅当所述元件产生的信号之差的频率与信号之和的频率不同时显示移动目标。 The mobile system has a sensor, which is not displayed while the moving object only when the frequency of the signal and the difference between the signals generated by the frequency element. 在另一实施方案中,PIR移动传感器至少包括第一和第二探测部分,每一探测部分包括至少一个光学元件和至少一个探测器,所述探测器至少具有正极和负极探测器元件。 In another embodiment, the PIR movement sensor comprises at least first and second detecting sections, each detecting portion comprises at least one optical element and at least one detector, the detector having at least positive and negative detector elements. 光学元件组合以建立四个或更多的监控空间体积,在任意两个相邻的体积之间基本上不存在任何没有监控的盲区。 The optical element are combined to establish four or more monitored spatial volume, substantially without any blind spots in the monitoring does not exist between any two adjacent volumes. 所述第一探测部分监控第一体积而第二探测部分监控第二体积,并且所述第一和第二体积空间依次交替。 Monitoring the first detection portion detecting a first volume and a second volume of a second part of the monitoring, and the first and second spaces are alternately volume. 移动目标引起所述探测器的所述第一部分输出信号,其频率与所述探测器的所述第二部分输出的信号频率不同,并且非移动刺激引起两个探测器输出同样的频率。 Moving object causes the first portion of the detector output signal, different signal frequencies the frequency of the second portion of the detector output, and two non-moving stimuli detector output at the same frequency. 为了产生区分移动目标和非移动刺激的频率,第一探测部分的探测器元件与第二探测部分的探测器元件大小可以不同。 In order to distinguish between moving and non-generation mobile stimulation frequency, the first detector element detecting portion and the detector element size of the second detecting section may be different. 另外地或可选地,所述第一探测部分相邻探测器元件间的间距与所述第二纟笨测部分相邻探测器元件间的间距可以不同。 Additionally or alternatively, the first detection portion pitch between adjacent detector element and the second sensing portion stupid Si spacing between adjacent detector elements may be different. 或者,所述第一探测部分的光学元件的焦距与所述第二探测部分的光学元件的焦距可以不同。 Alternatively, the focal length of the first optical element and the focal length of the optical detecting element portion of the second detection portion may be different. 作为另一种基于频率地区分移动目标和非移动刺激的方法,所述第一探测部 As another method to distinguish the moving object and the frequency of non-moving stimuli based on the first detection portion

分的光学元件的透镜元件数量,与所述第二探测部分的光学元件的透镜元件数量可以不同。 The number of lens elements of the optical element of the points, with the number of optical elements of the lens element of the second detection portion may be different. 在附加实施方案的另一方面,移动传感器至少包括交替地监控空间体积的第一和第二探测部分,在任意两个监控体积之间基本不存在没有监控的竖直盲区。 In another aspect, the movement sensor comprises at least alternately a first and a second detection portion monitoring a volume of space of an additional embodiment, substantially no blind spot monitoring vertical exists between any two monitored volumes. 每一探测部分至少包括一个光学元件和至少一个探测器,该探测器具有至少正极和负极探测器元件,并且移动目标引起所述探测部分输出的频率彼此不同,而非移动刺激引起两个探测器输出同样的频率。 Each probe portion comprises at least one optical element and at least one detector, the detector having at least positive and negative detector elements, and the moving object detecting section outputs a frequency different from each other due to, not the mobile stimulation two detectors output the same frequency. 在又一方面,移动传感器至少包括交替地监控空间体积的第一和第二探测部分。 In yet another aspect, the motion sensor including monitoring a volume of space at least first and second alternately detecting section. 每一探测部分包括至少一个光学元件和至少具有正负探测器元件的至少一个探测器,并且移动目标引起所述探测部分输出的频率彼此不同,而非移动刺激引起两个探测部分输出同样的频率。 Each probe portion comprises at least one optical element and at least one probe having at least positive and negative detector elements, and the moving object detecting section outputs a frequency different from each other causes, rather than moving the same stimulation frequency detecting section outputs two . 在另一方面,移动传感器至少包括交替地监控空间体积的第一和第二探测部分,在任意两个监控体积之间不存在没有监控的竖直盲区。 In another aspect, the movement sensor comprises at least alternately a first and a second detection portion monitoring a volume of space, there is no monitoring of the vertical blind exists between any two monitored volumes. 每一探测部分包括至少一个光学元件和至少具有正负探测器元件的至少一个PIR探测器。 Each probe portion comprises at least one optical element PIR detectors and at least one detector element having at least positive and negative. 参考附图可很好地理解本发明结构和操作的细节,在附图中相同的参考数字对应相同的部件。 With reference to the drawings it may be well understood the details of construction and operation of the present invention, in the drawings in which like reference numerals correspond to the same member. 附图说明图1是本系统的结构框图;图2是传感器第一实施方案的示意图,其中在一个外壳中的同一基底上具有不同大小的探测器,图2示出了探测器的俯视图以及传感器的符号图和功能图;图3是传感器第二实施方案的示意图,其中两个探测器放置在分开的外壳中,图3示出了探测器的俯视图以及传感器的符号图和功能图;图3a是图3中示出的传感器第二实施方案的替代实施方案示意图,其具有与图3相同的功能图,但具有包括不同焦距光学系统的同样大小的探测器,图3a示出了探测器的俯视图以及传感器的符号图; 图4是图2和图3中传感器产生的信号图;图5是传感器第三实施方案的示意图,其中探测器放置在分开的以正交维数布线的外壳中,图5示出了探测器的俯视图以及传感器的符号图和功能图;图6是传感器第三实施方案又一实施方式的示意图,其中探 BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a block diagram of the present system; FIG. 2 is a schematic view of a first embodiment of the sensor, the detector having different sizes on the same substrate in a housing, FIG. 2 shows a plan view and a sensor probe FIGS symbols and function map; FIG. 3 is a schematic view of a second embodiment of a sensor in which two detectors are placed in a separate housing, FIG. 3 shows a top view of FIG symbol and a sensor probe and a functional diagram; FIG. 3a is an alternative embodiment of the sensor shown a schematic view of a second embodiment in FIG. 3 having the same function as in FIG. 3, but with different focal lengths of the optical system including the same size detector, Figure 3a shows a detector and a sensor reference numerals plan view; Figure 4 is a signal diagram in FIGS. 2 and 3 produced by the sensor; FIG. 5 is a schematic view of a third sensor embodiment, wherein the detector is placed in an orthogonal dimension of a wiring in a separate housing, Figure 5 shows a plan view of the detector of FIG symbol and a sensor and a functional diagram; FIG. 6 is a schematic view of a third embodiment of a sensor according to another embodiment, wherein the probe 器放置在分开的以正交维数布线的外壳中,图6示出了探测器的俯视图以及传感器的符号图和功能图;图7是传感器第四实施方案的示意图,其中不同大小的探测器放置在分开的以正交维数布线的外壳中,图7示出了探测器的俯视图以及传感器的符号图和功能图;图8是传感器第四实施方案又一实施方式的示意图,其中不同大小的探测器放置在分开的以正交维数布线的外壳中,图8示出了探测器的俯视图以及传感器的符号图和功能图;图9是传感器第四实施方案又一实施方式的示意图,其中不同大小的探测器放置在分开的以正交维数布线的外壳中,图9示出了探测器的俯视图以及传感器的符号图和功能图;图10是用于利用复数频率以得到代表移动目标的输出的逻辑流程图;图ll是用于利用图5至图9的二维传感器以得到代表移动目标的输出的逻辑流程图;图12 Is placed orthogonally to the dimension of the wiring in separate housing, FIG. 6 shows a plan view of the detector of FIG symbol and a sensor and a functional diagram; FIG. 7 is a schematic view of a fourth embodiment of a sensor, wherein detectors of different sizes placed in an orthogonal dimension of a wiring in a separate housing, FIG. 7 shows a plan view of the detector of FIG symbol and a sensor and a functional diagram; FIG. 8 is a schematic view of a fourth embodiment of a sensor according to another embodiment, wherein different sizes detectors placed in an orthogonal dimension of a wiring in a separate housing, FIG 8 shows a plan view of the detector of FIG symbol and a sensor and a functional diagram; FIG. 9 is a schematic view of a fourth embodiment of a sensor according to another embodiment, wherein detectors of different sizes disposed in an orthogonal dimension of a wiring in a separate housing, FIG. 9 shows a plan view of the detector of FIG symbol and a sensor and a functional diagram; FIG. 10 is a frequency to be represented using a plurality of mobile target output logic flow diagram; FIG. ll is a two-dimensional sensor using Figures 5 to 9 to obtain an output logic flow diagram representing the moving object; FIG. 12 传感器又一实施方案的示意图,其示出探测器的俯视图以及传感器的符号图和功能图,并且示意性地示出了人物形体;图13是图12中传感器产生的信号图;图14是一种可选的移动传感器系统的框图;图15是示出监控空间体积侧一见图的示意图,且图16至图21是图14中示出系统的多种实施方案的示意图,每一图均示出多种探测器各自的功能图(每一图均源自之前附图中的探测器元件的俯视图)和符号图。 A further embodiment of a schematic embodiment of the sensor, which shows a plan view of the probe and the symbol and function map of FIG sensor, and schematically shows a molded figure; FIG. 13 is a signal diagram of FIG. 12 generated by the sensor; FIG. 14 is a selectable block diagram of a mobile sensor system; FIG. 15 is a diagram showing a side of the volume space shown in Figure monitoring, and FIG. 16 to FIG. 21 is a schematic diagram illustrating various embodiments of system 14, each figure are illustrate various features of each of the probe of FIG. (a plan view of the detector elements prior to each of the drawings from FIG average) and symbols in FIG. 优选实施方案首先参照图1,其中示出了由标号IO表示的、用于探测例如人的移动目标12的系统。 Preferred embodiments Referring first to FIG 1, there is shown, represented by reference numeral IO system for detecting a moving object such as a human of 12. 系统10包括光学系统14,其用于将目标12的像聚焦于无源红外(PIR)探测系统16上,可包括适当的镜子、透镜和本领域7>知的其它元件。 The system 10 includes an optical system 14 for the other elements of the target 12 is focused on the image (PIR) PIR detection system 16 may include appropriate mirrors, lenses, and the present art 7> art. 下文将讨论PIIU罙测系统16的各种实施方案。 Various embodiments discussed below PIIU Mi measurement system 16. 根据所示的流程图,PIR探测系统16响应移动目标12产生信号, 该信号可经信号处理电路18过滤、放大并数字化,然后由处理系统20 (例如计算机或者专用集成电路)接收并确定是否激活声音或视觉警报22或其它输出装置,例如对门等的激活系统。 According to the flowchart shown in, the PIR detector system 16 generates a signal in response to movement of the target 12, the signal may be filtered through a signal processing circuit 18, amplified and digitized is then received by 20 (e.g., a computer or application specific integrated circuit) and the processing system determines whether to activate audio or visual alarm 22 or other output devices, like for example the door activation system. 在描述了整体系统结构之后参考图2,其示出了本发明PIR传感器的第一个示例性实施方案。 Having described the overall structure of the system with reference to FIG. 2, which shows a first exemplary embodiment of the present invention, the PIR sensor. 如图所示,用于PIR传感器24的IR探测装置可包括单个的、优选为陶瓷的基底26,在其上形成第一和第二PIR探测器28、 30。 As shown, IR detection means for a PIR sensor 24 may include a single, preferably a ceramic substrate 26, on which the first and second PIR detectors 28, 30 are formed. 在图2中示出的实施方案中,第一探测器28具有四个元件32 (两对电连接在一起的正极元件和负极元件),第二探测器30具有两个元件34 ( —对正极元件和负极元件),每对通过电连接结合的元件32、 34均基本呈"H"形。 In the embodiment shown in FIG. 2, the first detector 28 has four elements 32 (two pairs of the positive electrode and the negative electrode member elements connected together), the second detector 30 has two elements 34 (- cathode element and a negative element), each bound by an electrical connection element 32, 34 are substantially "H" shape. 可以理解在与基底26所示一侧相反的一侧上,探测器28, 30包括补充组件(例如下面说明的板),其与示出的元件一起构成元件32、 34。 It will be appreciated on the side of the substrate 26 opposite to the side shown, the detector 28, 30 comprises a supplemental component (e.g., plate described below), which together form the elements shown in element 32, 34. 所述相反一侧的板之间的连接用虚线表示。 The connection between the opposite side of the plate indicated by dotted lines. 探测器28, 30可以是测量远红外辐射变化的热电探测器。 Detectors 28, 30 can be measured far-infrared radiation changes the pyroelectric detector. 热电探测器通过压电效应工作,当存在机械压力时压电效应引起电荷迁移。 Pyroelectric detectors work by the piezoelectric effect, when there is a mechanical stress caused by the piezoelectric effect charge transport. 热电探测器采用电容器的形式——由电介质隔开的两块导电板。 Pyroelectric detector in the form of a capacitor - two conductive plates separated by a dielectric. 该电介质通常为压电陶瓷并且在本文中被称为基底。 The dielectric is usually a piezoelectric ceramic and is referred to herein as the substrate. 当远红外辐射在陶瓷中引起温度变化(并因此引起一定的机械压力)时,电荷由一块板向另一块转移。 When far infrared radiation causes a temperature change in the ceramic (and thus cause a certain mechanical pressure), a charge transfer from one plate to the other. 如果没有外电路连接到探测器,则当"电容器"充电时将产生电压。 If no external circuit is connected to the probe, when the "capacitor" charging voltage is generated. 如果板间有外电路连接,则有电流流动。 If there is a connection between an external circuit board, the current flows. 根据这一原理,第一探测器28的相邻元件32间中心至中心的间距"d,"小于第二^t笨测器30的相邻元件34间中心至中心的间距"d2,,。 如图2所示,此差别可通过将第二探测器30的元件34制造得比第一探测器28的相邻元件32更大而实现。也可以通过使第二探测器元件34比第一探测器元件32间隔开得更远,并且/或者通过提供比第一探 According to this principle, the first detector element 28 adjacent to the center 32 of the center spacing "d," is less than a second adjacent element t ^ stupid measuring 30 34 center to center distance "d2 ,,. 2, this difference may be achieved by the second member 34 of the detector 30 for producing a greater than 32 adjacent first detector element 28 is achieved also by the second detector element than the first 34 detector element 32 spaced farther apart, and / or by providing a first probe than

测器元件32少的第二探测器元件34而实现。 A second detector elements is achieved detector element 3432 less. 图2还示出了根据上述热电探测器原理的、具有元件32、 34的探测器28、 30的功能图,图中显示了由传感器监控的子体积(sub-volume ) 的相对大小、形状和极性(即元件大小、形状和极性的投影),并说明了两个探测器28、 30可安装在单一的外壳35中。 2 also shows a principle of the thermoelectric detector, elements 32, 34 of the detector 28, the function of FIG. 30, showing the relative sizes of the sub-volume sensor monitoring (sub-volume), shape and polarity (i.e., element size, shape and polarity of the projection), and illustrates two detectors 28, 30 may be mounted in a single housing 35. 图2还示出了符号示意图,其中电容器表示探测器28、 30的元件32、 34,点表示极性。 2 also shows a schematic symbols, wherein the capacitor represents the detector 28, 32 of elements 30, 34, represented by dot polarity. 图3示出了用于PIR传感器35的IR探测器装置,其具有第一和第二探测器36、 38,除了每一探测器36、 38均安装在其各自的基底40、 42上之外,二者所有主要方面的配置均与图2所示的4笨测器28、 30基本相同。 Figure 3 shows IR detector means for PIR sensor 35 having first and second detectors 36, 38, 36 in addition to each of the detectors 38 are mounted on their respective substrates 40, 42 , the two major aspects of the configuration are all the 28, 30 is substantially the same as the measuring device shown in FIG. 4. 2 stupid. 基底40、 42可包含在各自的外壳44、 46中。 Substrate 40, 42 may be included in the respective housings 44, 46. 根据图3 示出的实施方案,将光学系统14(图1 )放置为使得两个优选为不同的空间子体积分别由探测器36、 38监控,并使得两个子体积在相似的光组件后彼此光学叠加。 According to the embodiment shown in FIG. 3, the optical system 14 (FIG. 1) is preferably positioned such that two different spatial sub-volumes are respectively 36, 38 is monitored by the detector, and that the two sub-volumes similar to each other in the optical module optical superposition. 基本上,选择复合光学光组件的组合,以使得两个探测器监控的子体积占据相同空间的至少一部分。 Basically, a combination of the composite optical light assembly, so that the two sub-detectors to monitor the volume of the space occupies at least part of the same. 相比图2示出的实施方案,由于不同大小的元件完全地功能重叠, 所以不管图像大小图3的传感器均产生两个信号频率。 Compared to the embodiment shown in FIG. 2, since the member functions completely different size overlap, regardless of the image size sensor 3 produces two signal frequencies are. 因此该传感器比图2示出的传感器更少地依靠目标大小而产生探测,后者要求足够大的目标在两个监控的子体积中均出现。 Thus the sensor relies ratio sensor shown in FIG. 2 less to produce a detection target size, which requires a sufficiently large target are present in the monitoring of two sub-volumes. 图3还包括功能图,其说明了两组监控的子体积纵向截面的长宽比和并列。 3 also includes a functional diagram which illustrates a longitudinal cross-sectional aspect ratio parallel and two sub-volumes monitored. 如果需要的话,两组探测器可接线到一起以提供组合信号, 这样可减少传感器所需的放大器数量,但需要额外的信号处理以分开两个频率。 If desired, two detectors can be wired together to provide a combined signal, thus reducing the number of amplifiers required sensors, but require additional signal processing to separate the two frequencies. 图3a示出了另一探测器布置,其功能图与图3所示的功能图相同。 Figure 3a shows a further detector arrangement, and function of the function shown in FIG. 3 the same as in FIG. PIR传感器35a具有在大小和配置的所有主要方面均彼此相同的第一和第二探测器36a、 38a, 二者安装在各自的基底40a、 42a上。 PIR sensor 35a has a size and configuration of all major aspects are identical to each other first and second detectors 36a, 38a, both mounted on a respective base 40a, 42a. 基底40a、42a可分别包含在外壳44a、 46a中。 Substrate 40a, 42a may be respectively contained in a housing 44a, 46a in. 如图3a所示每一探测器36a、 38a均有两个且只有两个元件(正和负),且所有元件大小都相等,第一探测器36a和第二探测器38a元件间的间距相等。 Figure 3a each detector 36a, 38a are two and only two elements (positive and negative), and all elements equal in size, equally spaced between the first detector element 36a and the second detector 38a. 根据图3a所示的实施方案,探测器36a、 38a在光学系统14中各自具有不同焦距的光学系统。 According to the embodiment shown in Figure 3a, the probe 36a, 38a in the optical system 14 each having different focal lengths of the optical system. 例如在复合光学的焦距比为2:1的情况 For example, in the optical focal length of the composite ratio of 2: 1, where

下,探测器36a对应的光学系统具有光学元件的数量可为探测器38a 对应的光学系统具有光学元件数量的二倍。 The number of the detector 36a corresponding to an optical system having an optical element may have twice the number of optical elements of an optical system corresponding to the probe 38a. 放置探测器36a、 38a的光学系统以使两个探测器监控的子体积至少占据相同空间的一部分。 Placing an optical detector system 36a, 38a so that the two sub-detectors to monitor the volume of the space occupies at least part of the same. 相比图2示出的实施方案,由于不同大小元件的完全功能重叠, 所以不管图像大小图3的传感器均产生两个信号频率。 Compared to the embodiment shown in FIG. 2, since the size of the different functional elements completely overlap, the sensor regardless of the size of the image of FIG. 3 produces two signal frequencies are. 因此该传感器比图2示出的传感器更少地依靠目标大小而产生探测,后者要求足够大的目标在两个子体积中均出现。 Thus the sensor relies ratio sensor shown in FIG. 2 less to produce a detection target size, which requires a sufficiently large target occurs in both sub-volumes. 图4说明图2和图3中所示传感器输出的信号。 4 illustrates the sensor output signal of FIG. 2 and 3 shown in FIG. 为了简化,将参照图3示出的探测器36、 38。 For simplicity, reference to FIG. 3 shows the probe 36, 38. 信号集(a)上部两个信号48、 50是当存在人移动穿过探测器监视的子体积时,由第一探测器36的分开元件输出的,而信号集(a)中两个信号52、 54是当存在移动的人时,由第二探测器38的分开元件输出的。 Signal set (a) the upper two signals 48, 50 when the presence of a person moving through the sub-volumes monitored by the detector, the first detector 36 by the separating element output and the signal current (a), two signals 52 54 when the presence of a person is moved by the second detector element 38 separate outputs. 如图所示,探测器元件输出的汇总信号49和53的频率不同(在示出的实施例中49高于53)。 , Summarizes the frequency signal output from detector elements 49 and 53 shown in FIG different (in the illustrated embodiment 49 is higher than 53). 当中心至中心的间距比例为2:1时,各探测器输出信号的频率比同样为2:1。 When the center to center spacing ratio of 2: 1, the detector output signal frequency of each of the same ratio of 2: 1. 此外,在存在移动目标的情况下,第一探测器高频信号49的第一峰值与第二探测器低频信号52的最大正坡度基本同时发生。 Further, in the presence of the moving object, a first high-frequency signal of the first peak detector and a second maximum positive slope detector 49 low frequency signals 52 substantially simultaneously. 当存在移动目标时,通过识别这些特征(以及不同的峰值/坡度极性的类似后续特征) 可识别移动目标。 When there is a moving target, by identifying these features (and similar subsequent features different peak / slope polarity) may identify the moving object. 相反,信号集(b)表示响应于发自固定源的、亮度变化的非聚焦白光的探测器输出。 Instead, the set of signals (b) shows the detector output in response to the sent from stationary sources, change in luminance of the non-focused white light. 由于"相同"和相反元件的响应基本上仅彼此消除,所以出现了所示信号。 Since the response to the "same" and only the opposite element substantially cancel each other, so there are shown signals. 如参考图4可理解的,在所述情况下,分别由探测器36、 38输出的元件汇总信号57、 61的频率相等,并且能够轻易地从信号集(a)的双频信号区別出来,因此降低了源于亮度变化的非聚焦白光的错误警报可能性。 As appreciated with reference to FIG. 4, in which case, respectively, by the detector 36, the output of element 38 is equal to the frequency of the summarized signal 57, 61, and can easily set up a dual signal difference signal (a) from thus reducing the possibility of false alarms due to change in brightness non-focused white light. 此外,从探测器36、 38产生的信号图案中,通过信号波形峰值极性图案可识别人类目标12的移动方向。 Further, the signal pattern generated from the detectors 36, 38, the signal waveform peak polarity pattern may identify a moving direction of the human target 12. 例如,如上文参考图3的功能图所提到的,当移动目标12从左侧进入较大的(+ )监控子体积时, 其同时引起相应探测器元件的(+ )信号坡度,以及左手边(+ )较小的重叠子体积所对应元件的(+ )信号峰值。 For example, the function described above with reference to FIG. 3 to FIG mentioned, when the target 12 moves into the larger (+) monitored sub-volume from the left, which simultaneously causes a corresponding detector element (+) signal slope, and left (+) signal peak element side (+) smaller overlapping sub-volume corresponding. 该目标如果在较大的(+ ) 监控子体积内相同方向上继续移动,则会引起相应的探测器元件的(+ ) If the target continues to move in the same direction in the larger (+) monitored sub-volume, will cause the respective detector elements (+)

信号峰值。 Signal peaks. 所述目标如果在较大的(+ )监控子体积内仍然继续,则会同时引起相应探测器元件的(-)信号坡度,以及右手边(-)较小的重叠子体积所对应元件的(-)信号峰值。 If the target continues in a larger (+) monitored sub-volume, it will simultaneously cause the respective detector element (-) slope signal, and the right hand side (-) smaller overlapping sub-volume corresponding to the element ( -) signal peak. 在上述情况下,匹配极性的同步信号坡度和峰值显示了一个移动方向,而非匹配极性的坡度和峰值显示了相反的移动方向。 In the above case, the matching polarity of the synchronization signal slope and the peak display a moving direction, rather than matching the polarity of the slope and the peak display opposite direction of movement. 利用上述信号次序原理可确定目标的移动方向。 Principle may determine the moving direction using the signal sequence. 现在参考图5,可看到本发明改进的PIR移动传感器的另一实施方案。 Referring now to Figure 5, another embodiment can be seen that the present invention is an improved PIR movement sensor. 如图所示,用于PIR传感器64的IR探测装置包括第一和第二探测器66、 68。 As shown, IR detection means for a PIR sensor 64 comprises first and second detectors 66, 68. 探测器66、 68可安装在各自的外壳中。 Detectors 66, 68 may be mounted in the respective housing. 如探测器俯视图和符号示意图所示,第一探测器66具有沿x轴布线的两对双极性元件70、 72,而第二纟笨测器68具有沿y轴布线的两对双^L性元件74、 76。 A detector as shown in a plan view and a schematic symbols, the first detector 66 has two pairs of bipolar elements along the x-axis wirings 70, 72, and the second measuring device 68 having a stupid Si y-axis of the two pairs of double wiring ^ L elements 74, 76. 每对双极性元件70至74建立元件排。 Each pair of bipolar elements 70 to 74 to establish element row. 以此配置,第一探测器66 输出表示第一维(例如笛卡尔坐标系中的y轴或者极坐标系中的极径) 移动的信号,且第二探测器6 8输出表示与第一维垂直的第二维(例如笛卡尔坐标系中的x轴或者极坐标系中的极角)移动的信号。 In this configuration, the first detector 66 outputs an output 68 of the first dimension (e.g. Cartesian coordinates or y-axis of the polar radius of the polar coordinate system) signals movement of the first and the second detector represents the dimension a second vertical dimension (e.g., the polar angle x-axis of a Cartesian coordinate system or a polar coordinate system) signals movement. 根据图5示出的发明,适当地配置光学系统14 (图1)以使探测器66、 68监控的空间子体积光学叠加。 According to the invention shown in FIG. 5, optical system 14 is suitably arranged (FIG. 1) to the probe 66, 68 to monitor the volume of the sub-space optical superposition. 图5示出的传感器64的布置建立了热电探测器监控的子体积的二维阵列,该子体积由安装探测器66、 68产生的监控空间子体积的光学叠加形成,探测器被安装为在相似光学组件后以正交方式进行元件布线。 The sensor arrangement shown in FIG. 564 to establish a two-dimensional array of pyroelectric detectors to monitor sub-volumes, sub-volumes monitored by the installation space of the detector 66, 68 generates an optical superposition of the sub-volume is formed, it is mounted on the probe after the optical assembly is similar to the wiring member in an orthogonal manner. 换句话说,如虚拟合成纟采测器78的功能图所示,光学系统14使两个探测器的监控子体积占据同样空间。 In other words, as shown in the virtual synthesized FIG Si sampling measurement function 78, an optical system 14 makes the volume of the sub-monitor occupies the same space of two detectors. 可将移动目标与亮度变化的白光区别开,因为移动将引起一连串穿过坐标系的信号产生,而变化的白光不会。 The difference between the target white light can be moved apart and the brightness change, because the movement will cause a series of signals through the coordinates of generating white light is not changed. 换言之,二维空间中的位置由探测器66、 68发出的同步信号限定,当随着时间的变化, 该信号显示坐标改变时,便表明了目标的移动。 In other words, the two-dimensional position in space by the detector 66, the synchronization signal 68 defines issued, when over time, the display coordinate signal changes, it indicates that the moving target. 处理系统则简单地将坐标改变与移动相联系,以当探测到移动时例如激活警报。 The processing system is simply change coordinate contact with the mobile phase, for example, to activate an alarm when the motion is detected when. 如参看图5中虚拟合成探测器78的功能图可理解的,通过检查从才罙测器66、 68同步接收的信号极性可确定目标12的位置,在此情况下,作为对来自具体坐标的同步信号提供的坐标位置的确认。 The function of the virtual combined detector appreciated with reference to FIG. 78, FIG. 5, the polarity of the signal received from the synchronization detector 66 only Mi, 68 can be determined by checking the position of the target 12, in this case, as from a specific coordinate confirm the coordinate position of a synchronization signal. 具体来说,两个正极信号表示目标在重叠子体积的左上象限,而两个负极信号表示目标在重叠子体积的右下象限。 Specifically, two positive overlapping sub-signals represents a target volume in the upper left quadrant, while the two lower right quadrant represents a negative target signals overlapping sub-volumes. 另一方面,第一探测器66发出负极信号而第二探测器68发出正极信号则表示目标在重叠子体积的右上象限等等。 On the other hand, the detector 66 emits a first signal and a second negative electrode detector 68 emits a positive signal indicates the target in the upper right quadrant of the overlapping sub-volume and the like. 容易理解本文所提出的原理可应用于大于2x2的阵列。 Readily appreciated that the principles presented herein may be applied to greater than 2x2 array. 例如,图6示出用于PIR传感器80的IR探测装置包括第一和第二8元件探测器82、 84,该传感器除了元件数以外基本与图5示出的传感器64相同。 For example, FIG. 6 shows an IR detection device 8 comprises a first and a second detector element 80 of the PIR sensor 82, 84, the same except for the number of the sensor element of FIG. 5 shows a basic sensor 64. 与传感器64的情况一样,对于图6示出的传感器80, 探测器82、 84的子体积光学重叠以使得各自监控的子体积占据相同空间,以形成功能图中示出的虚拟合成探测器86。 As with the sensor 64, the sensor shown in FIG. 6 to 80, the detector 82, the sub-volume 84 overlap so that the optical monitoring of the respective sub-volumes occupy the same space to form a functional diagram of the virtual combined detector 86 shown . 当移动目标12穿过监控的子体积时,图5和图6示出的传感器64、 80提供两个同步信号(笛卡尔坐标系的x和y)。 When the sensor 12 through the moving object monitoring sub-volume, 5 and 6 shown in FIG. 64, 80 provides two synchronization signal (x Cartesian coordinate system and y). 目标12每次在每一探测器中激活一个坐标,以使可通过结合"x"和"y"信号确定目标12的位置。 Each activation of the target 12 in a coordinate of each detector, so that the target 12 can be determined by combining the "x" and "y" position signal. 容易理解图6示出的传感器80比图5的传感器64 具有更高的分辨率。 Readily understood that the sensor 6 illustrated in FIG. 80 to FIG. 5, the sensor 64 has a higher resolution. 此外,如果考虑信号的极性,根据上述原理可得到额外的位置分辨率。 Further, in consideration of the polarity signal, in accordance with the principles described above can be obtained additional location resolution. 图5和图6示出的传感器64、 80均可使用光学系统14,其光学地衡量人形图像,从而当目标12为人时,在阵列中会立刻产生两个或更多(x,y)位置的信号,而例如动物的小目标则会引起更少(x,y) 位置的同步信号。 5 and the sensor 64 shown in FIG. 6, 80 optical system 14 can be used, optically measure human form images, so that when a human target 12, the array will produce two or more (x, y) position immediately signal, such as a small target animal but will cause less (x, y) position of a synchronization signal. 这样,可使同步接收信号的阵列位置数与目标的大小相关联,以区别例如宠物和人,并且只在后者存在的情况下才激活警报或者开门等等。 This will enable the size of the array positions of the target number of received synchronization signals associated with, for example, to distinguish between pets and humans, and only open only activate an alarm or the like in the presence of the latter case. 图7显示了在图2和图3中示出传感器的双频概念可与图5和图6中示出传感器的二维阵列概念结合,以基于接收到的频率数量而区分移动的目标和不移动的目标,确定移动方向,并且基于大小(被同步激活的阵列点数量)在移动的目标中进行区分。 Figure 7 shows the sensor shown in FIGS. 2 and 3 with dual-band concept is shown in FIGS. 5 and 6 show the concept of a two-dimensional array of sensors in combination in order to distinguish moving targets and not the number of frequencies based on the received moving target, determine the moving direction, and based on the size (the number of dot arrays to be activated simultaneously) for distinguishing moving targets. 特别地,用于传感器88的IR探测装置可包括,具有同样大小元件91的第一探测器卯和具有不同大小(在本方案中为较大)元件93的第二探测器92,以使第一探测器90对于移动目标产生的信号频率与第二探测器92对于移动目标产生的信号频率不同。 In particular, a sensor for IR detection means 88 may include a first detector element having the same size d 91 having different sizes (larger in the present embodiment) 93 of the second detector element 92, so that the first a second detector signal frequency detector 90 and the moving target generator 92 for different signal frequencies generated by the moving object. 基本上,如功能图中虚拟合成探测器94所示,传感器88建立了被监控子体积的2x2阵列,该阵列由探测器90、 92监控的子体积的光学重叠而产生。 Basically, the function as the virtual combined detector in FIG. 94, the sensor 88 is monitoring the establishment of a 2x2 array of sub-volumes, which is generated by the array 90, the optical monitor 92 overlapping sub-volume of the probe. 大探测器元件93通过极 Large detector element 93 through a pole

性建立X坐标,即如图所示来自负极元件的信号显示向右的"X"坐标而来自正极元件93的信号显示向左的"x"坐标。 X coordinate of the establishment, i.e. the signal from the negative electrode as shown in FIG right display element "X" coordinate and the signal from the positive electrode of the display element 93 to the left of the "x" coordinate. 当同步出现来自x 轴元件的波峰连同来自y轴元件的二倍的波峰(即以二倍频率出现) 时,由移动引起的、来自阵列各个元件信号即为可辨识的。 When the sync presence of peaks from an x-axis element together with twice the peak from the y-axis component (i.e., at twice the frequency of occurrence), caused by the movement, from the respective array element signal that is recognizable. 图8示出了又一用于传感器96的IR探测装置,包括第一探测器98,其具有两排沿x轴布线以产生表示"y"坐标的信号的两个双极元件对100,以及第二探测器102,其具有两排沿y轴布线以产生表示"x" 坐标的信号的单个双才及元件对104。 FIG 8 shows IR detection means for a sensor 96 further comprising a first detector 98 having two rows along the x-axis represents the wiring to produce "y" coordinates of two bipolar elements of the signal 100, and a second detector 102, which has two rows along the y-axis represents the wiring to produce only a single dual element and "x" coordinate of the signal 104. 第一#:测器98的元件对100小于第二探测器102的元件对104,以使得对于移动目标第一探测器98产生的信号频率和第二探测器102产生的信号频率不同。 First #: 98 element detector elements 102 of the detector 100 is less than the second pair 104, so that different frequency signal to the signal detector and the second detector 98 generates a first moving object 102 is generated. 使被监控的子体积光学重叠以建立功能图中示出的虚拟合成探测器106。 So that the optical sub-volume being monitored to establish the functional overlap in FIG virtual combined detector 106 shown. 该二维探测器阵列比图7中示出的传感器88提供更高的位置分辨率。 The ratio of the two-dimensional detector array is shown in FIG. 7 position sensor 88 provides higher resolution. 图9示出了用于传感器108的IR探测装置,除了图9中示出的传感器108的每一探测器均具有八个双极元件对之外,其在所有基本方面均与图5中示出的探测器64相同,具有第一和第二探测器110、 112, 第一和第二探测器110、112分别具有大小相同且正交布线的元件114、 116。 Figure 9 shows IR detection means for a sensor 108, in addition to the sensor shown in FIG. 9 each probe 108 has eight bipolar element pairs, which are shown in FIG. 5 in all fundamental aspects the same detector 64, having first and second detectors 110, 112, first and second detectors 110, 112 have the same magnitude and perpendicular to the wiring member 114, 116. 第一探测器IIO的元件114布置在两竖直行中,通过将一对中的负极元件连接到紧接的下面一对中的正极元件而以y方向布线。 IIO first detector element 114 arranged in two vertical rows, and the wiring is connected by a pair of negative elements of the positive electrode to the underlying element of the pair immediately to the y-direction. 另一方面,第二探测器112的元件116布置在两水平行中,通过将一对中的负极元件连接到紧接的左面一对中的正极元件而以x方向布线。 On the other hand, the second element 116 of detector 112 are arranged in two horizontal rows, and the wiring to the x-direction by the pair of elements are connected to the negative electrode of the pair of left cathode element immediately. 如示意符号图所示,第一探测器110的y方向布线元件对114提供x方向位置信息,而第二探测器112的x方向布线元件对116提供y方向位置信息。 As shown schematically in FIG symbol, the y-direction wirings 110 of the first detector elements of the x-direction position information 114, and the second detector element x-direction wirings 112 to 116 to provide position information in the y direction. 如功能图中的虚拟合成探测器118所示,为得到位置信息将目标位置显示在二维空间(x=l, y=2)的象限119中,信号从二维空间同步接收,并且通过信号极性(x=+, y--)显示为点120。 The functional synthetic FIG virtual detector 118, the location information to obtain the target position of the display quadrant 119 in two-dimensional space (x = l, y = 2), the synchronizing signal received from the two-dimensional space, and the signal polarity (x = +, y--) shown as point 120. 同样, 通过观察虚拟合成探测器118中点的有序激活可区别移动目标和非移动干扰光。 Similarly, by observing the virtual combined detector 118 can distinguish orderly activation midpoint moving and non-moving disturbance light. 现在参考图10,可看到利用图2、图3、图7和图8所示传感器的不同频率的示例性逻辑流程图。 Referring now to Figure 10, use can be seen in FIG. 2, FIG. 3, an exemplary logic flow diagram shown in different frequency sensor 8 in FIG. 7 and FIG. 从块122开始,以例如时钟周期接收两个探测器发出的信号。 From start block 122, for example, two clock cycles received signal sent detector. 前进到判断菱形块124,其决定两个信号频率是否不同以及,如果需要的话,第一探测器的第一信号峰值是否在时间上与第二探测器的信号最大坡度相符。 Proceeds to decision diamond 124, which determines whether the two signals of different frequencies and, if desired, the first peak of the first signal detector is consistent with the maximum gradient of the second detector signal in time. 如果需要的话,也可将峰值与坡度进行对比以与自定义标准相匹配。 If desired, the slope of the peak can also be compared with the custom criteria match. 如果探测到两个频率并且,如果需要的话,峰值/坡度在时间上相符和/或峰值和坡度与自定义标准匹配,则在126输出"移动目标"。 If the two frequencies is detected and, if desired, the peak / slope matching and / or peak and slope to match the custom criteria, then the output 126 "moving target" in time. 否则,在128输出"无移动目标"。 Otherwise, the output of the 128 "no moving target." 可以理解频率不仅指正弦形信号频率(其通常在目标在单方向等速穿过监控的子体积时产生),还指非正弦形或半正弦形信号的频率, 其基本在例如人随机地在多方向不等速穿过监控的子体积时作为脉沖出现。 It will be appreciated not only the frequency-shaped to sinusoidal signal frequency (which is typically generated when the target in one direction through the constant monitoring of the sub-volumes), also refers to the frequency of non-sinusoidal or semi-sinusoidal signal, which substantially random in the human e.g. multi-direction is not constant when a pulse passes through the monitored sub-volumes. 在后一种情形下,具有更小中心至中心元件间距的探测器每单位时间产生的不管正弦形与否的脉沖数,大于具有更大中心至中心元件间距的探测器每单位时间产生的脉沖数。 In the latter case, the detector having a smaller center to center spacing element per unit time regardless of whether or not the number of pulses of sinusoidal, greater than a pulse detector having a larger center to center spacing element per unit time number. 因此"频率"包括了每单位时间的脉沖或峰值。 Thus "frequency" include pulses per unit time or peak. 图11为逻辑图,通过该逻辑可利用图5至图9中示出的二维传感器发出的信号来确定目标是否在移动。 FIG 11 is a logic diagram, through which the logic signal can be used in two-dimensional sensor 9 shown in FIG. 5 to FIG issued to determine whether the moving target. 传感器的两个探测器发出的信号由块130接收,然后,如果在判断菱形块132处确定目标的坐标在例如预定的时段内改变,则块136显示移动。 Two detector signals emitted by the sensor is received by block 130, and then, if it is determined at diamond 132 determines the coordinates of the target changed within a predetermined period of time, for example, then block 136 displays moving. 否则,块134显示无移动且逻辑返回块130。 Otherwise, block 134 displays no movement of block 130 and the logic returns. 除了确定移动之外,对于本文公开的某些传感器,该逻辑可以进入判断菱形块130以确定至少为阈值数量的坐标是否被立刻激活。 In addition to determining a mobile, for certain sensors disclosed herein, the logic may enter the decision diamond 130 to determine whether at least a threshold number of coordinates are immediately activated. 换句话说,该逻辑确定从探测器的多个元件同步接收到的信号数量是否达到阈值,其表示移动目标等于或者超过预定尺寸。 In other words, the logic determines the number of synchronization signals received from a plurality of detector elements has reached the threshold value, which indicates the moving object is equal to or more than a predetermined size. 一般地,大的移动目标为人,对于人通常需要激活警报、开门或者采取其它的行动, 而小的移动目标通常为宠物,对于宠物通常不需要采取行动。 In general, a large moving target man, who usually need to activate the alarm, open the door or take other actions, while small moving objects are usually for pets, pet usually do not need to take action. 因此, 对于由判断菱形块13 8确定为大的目标,该逻辑移到块14 0以显示"目标对象"并例如激活警报22。 Thus, for the diamond 138 is determined by a large target is determined, the logic moves to block 140 to display the "target object" and the alarm is activated, for example, 22. 另一方面,如果目标不够大则不采取行动。 On the other hand, if the target is not big enough to take no action. 块142进一步显示可如上所述地利用信号的极性确定移动方向, 如果需要的话可不考虑目标大小。 Block 142 further shows the use of the polarity signal may determine the moving direction as described above, if desired, may be considered the target size. 在某些情况下,不只是在大移动目标存在的情况下需要采取行动(如激活警报22或开门),还要在预定方向上移动的大移动目标存在。 In some cases, not just in the case of large moving objects exist need to take action (such as activating an alarm or 22 to open the door), but also to move in a predetermined direction of the large moving target exists. 在这些情形下,只在块142的确定结果显示了大移动目标确实是在预定方向上移动之后,才可产生指示某种预定行动的信号。 In these cases, only the determination result of block 142 is shown after a large moving object is really moved before generating a signal indicative of some predetermined action in a predetermined direction. 现在可以理解上述传感器可区别移动目标和干扰白光,在某些实施方案中,该传感器也基本基于目标大小将移动目标彼此区别。 It can now be appreciated that the sensor may be a moving target and the difference between the white light interference, in some embodiments, the sensor is basically based on a target size of the moving object distinguished from each other. 同样, 一个或多个上述传感器可以大体确定目标移动的方向。 Similarly, one or more of the sensors may substantially determine the direction of movement of an object. 现在参考图12和图13,其示出的一般指定为200的传感器可用作图1中示出的PIRJ罙测系统16。 Referring now to FIGS. 12 and 13, which is shown generally designated PIRJ Mi measuring system 1 shown in FIG. 16 may be used as the sensor 200. 如图所示,传感器200至少包括两个且在某些实施方案中只有两个探测器元件,在某些实施方案中每一才笨测器元件可具有两个且只有两个部件,即正部件和负部件。 As illustrated, sensor 200 comprises at least two and in certain embodiments, only two detector elements, in some embodiments each be stupid sensing element may have two and only two members, i.e., n member and negative member. 如果需要的话,所有四个部件的大小和形状可彼此相同。 If desired, the size and shape of all four members may be identical to each other. 每一元件产生各自的信号。 Each element generates a respective signal. 更具体地,在所示的非限定性实施方案中,上述探测器元件部件在基底上从左到右以下述顺序布置:第一元件的正部件202,第二元件的正部件204,第二元件的负部件206,第一元件的负部件208,元件的所有部件彼此电连接并且放置在基底210上。 More specifically, in a non-limiting embodiment shown in the detector element in the following order from left to right member arranged on the substrate: a first n-member element 202, a second positive element member 204, a second negative element member 206, the negative component of the first member 208, all electrically connected to each component element and disposed on the substrate 210. 即最右面的正部件204和最左面的负部件206建立第一探测器元件,而最左面的正部件202和最右面的负部件208建立第二探测器元件。 I.e., the rightmost and leftmost positive part 204 of the negative part 206 establish a first detector element, the leftmost and rightmost positive part 202 of the negative part 208 establish the second detector element. 无论如何,在示出的说明性实施方案中,正部件202、 204物理地卩波此靠近,没有任何负部件插入,并且负部件206、 208物理地彼此靠近,没有任何正部件插入。 In any event, in the illustrative embodiment shown, the positive components 202, 204 are physically close to this wave Jie, no member is inserted into the negative, and the negative components 206, 208 are physically close to each other without any positive insertion member. 在具有前述传感器的情况下,图12示出的第一探测器元件监控第一空间体积,如果需要的话,可至少部分与第二探测器元件监控的第二空间体积光学交叉(interpose)或重叠。 In the case of a sensor, a first detector element 12 to monitor the volume of the first space shown in FIG, if desired, may be at least partially with a second detector element of the second volume of space monitored optical cross (Interpose) or overlapping . 具有上述两元件的基底210 可安装在单独的探测器外壳内。 A substrate having the above two elements 210 may be mounted on a separate probe housing. 尽管其它的实施方案可能利用上述的叠加原理,但在示出的非限定性实施方案中两个空间体积交错或者交叉。 Although other embodiments may utilize the above-described embodiment of the superposition principle, but the volume or cross interleaving in a non-limiting embodiment illustrated embodiment two spaces. 除了元件视图,图12还示出传感器200的符号示意图和功能图, 以及人形图像。 In addition to component views, FIG. 12 also shows a schematic view of the sensor and function map symbols 200 and humanoid image. 因此传感器200具有两組元件且当其放置在复合光学系统之后时,如果移动目标穿过复合光学系统的视场,那么传感器200 对应于经过探测器的图像产生两个分开的信号。 Thus the sensor element 200 has two sets and when it is placed after the combining optical system, if the moving object passes through the field of view of a compound optical system, the sensor 200 after the image corresponding to the probe generates two separate signals. 参考图13可更好地理解,其在(a)部分示出在移动目标存在下两个探测器元件产生的信号(在图13中标记为1和2), (b)部分示出在例如白光的非移动刺激存在下产生的信号。 Referring to Figure 13 may be better understood, which is shown in part (a) in the presence of the signal generated by the two detector elements (labeled 13 in FIG. 1 and 2) moving target, (b) partially shown in e.g. signal in the presence of a non-moving stimulus generated white light. 可以理解,可包括图1中示出的信号处理电路18和处理系统20中的一个或两个的系统可用于完成下述处理。 It will be appreciated, it may comprise one or both of FIG. 1 in the system 20 and the signal processing circuit 18 shown in a processing system may be used through the following process. 如#4居图13中(a)部分可以理解的,两个#:测器元件发出的信号被加在一起以产生总信号212。 # 4 ranks as described in FIG. 13 (a) moiety may be appreciated, two #: a signal emitted by detector elements are added together to produce an aggregate signal 212. 同样,所述信号间的差产生差分信号214。 Similarly, the difference between the signal 214 to generate a differential signal. 为了产生该差分信号,可相对于信号基线将其中之一信号极性反向,然后将单独的探测器元件信号加到一起,因此可有效地将一个信号从另一个中减去。 In order to generate the differential signal with respect to one of the baseline signal polarity inversion signal, then the individual detector element signal are added together, thus effectively subtracting one signal from the other. 在有移动目标刺激的情况下(图13中(a)部分),容易理解总信号212和差分信号214频率不同。 In the case of a moving target with a stimulus (FIG. 13 (a) part), readily be understood that different total signal 212 and differential signal 214 frequency. 相反地,在(b)部分中(当探测器元件受到非移动刺激),虽然总信号和差分信号振幅不同,但总信号212 和差分信号214频率相等。 In contrast, in part (b) (when the detector element is subjected to non-stimulated movement), although the total and differential signals with different amplitudes, but the total differential signal 212 and signal 214 frequencies are equal. 因此处理系统可将频率信息和是否探测到移动目标相联系,并且如果探测到,则输出检查信号和/或警报该显示。 Thus the processing system can detect whether the frequency information and moving targets linked, and if detected, the inspection signal output and / or the alarm display. 因此,与传感器200相联系的信号处理系统能够更好地区分真实移动和其它信号。 Thus, the signal processing system associated with the sensor 200 can better distinguish the real movements, and other signals. 在白光的情况下以及在几个其他探测器干扰刺激的情况下,改进的探测器显著地降低错误警报的可能性。 In the case of white light and in the case of several other stimuli interference detector, the detector is significantly improved to reduce the possibility of false alarms. 图14示出了一种替代系统300,其具有在单一外壳中的两个或更多PIR探测器302、 304 (为了清楚只示出两个),并且从一个或更多各自的光学元件306、 308接收光,探测器和相联系的光学元件组成探测部分。 FIG 14 illustrates an alternative system 300 having a single housing in two or more PIR detectors 302, 304 (only two are shown for clarity), and from one or more respective optical element 306 , 308 receiving light, and an optical detector composed of elements linked to the detection part. 该探测器向处理电路310发送信号,处理电路310可包括放大电路和对信号进行处理以确定是否激活声音或视觉警报314的处理器312。 The detector sends a signal to processing circuitry 310, processing circuitry 310 may include amplification circuitry and processes the signal to determine whether to activate an audible or visual alarm processor 312 314. 可依照以上/>开的内容或依照前文引用的'250专利完成信号处理,并且除了以下i兌明的以外,系统300的光学部分可基本与'250 专利示出的相同。 Or may be '250 patent process completion signal, and except for the following next against i, the optical portion of the system 300 may be substantially the' 250 patent shows the same in accordance with the above /> apart in accordance with the contents of the foregoing references. 光学元件306、 308可为菲涅耳透镜,但其被配置为使得不会在任何两个临近的监控体积间出现竖直盲区,如图15所示, 其中体积302a由包括纟果测器302的纟果测部分监控,体积304a由包括探测器304的探测部分监控。 The optical elements 306, 308 may be a Fresnel lens, but it does not appear to be configured so that vertical blind volume between any two adjacent monitor, shown in Figure 15, wherein the volume of fruit 302a by the detector 302 comprises a Si If the Si monitoring the sensing portion, is monitored by the volume detection section 304a includes a detector 304. 同样,对于图16至图18示出的实施方案,基于同步接收来自以上公开的探测器302、 304的不同频率,处理 Similarly, for the embodiment shown in FIGS. 18 to 16, based on different received frequency synchronization detector 302 from the above disclosure, 304, the process

电路可对移动进行解译。 Circuitry may interpret the movement. 次优选地,可结合本发明的、基于频率的移动判别原理使用'250专利中产生非理想盲区的菲涅耳透镜。 Less preferably, the present invention may be incorporated, based on the movement determined using the principle of frequency '250 patent blind over the non-generated Fresnel lens. 在具有移动传感器300的结构的基础上,现在关注示出了探测部分不同实施方案的图16至图21。 In the configuration of a mobile sensor 300, and now attention diagram illustrating various embodiments of the detecting section 16 to 21. 在图16中,第一探测部分316包括一个光学元件,所述光学元件具有包含一正一负两个元件的探测器, 如图所示,其间限定第一间距S1。 In FIG. 16, a first detecting section 316 includes an optical element, said optical element comprises a detector having two positive and one negative element, as shown, to define therebetween a first spacing S1. 第二探测部分318包括一个光学元件,所述光学元件具有包含四个探测器元件的探测器,四个探测器元件交替地一个为正一个为负,如图所示,相邻探测器元件之间限定第二间距S2。 The second detecting portion 318 includes an optical element, said optical element comprises a detector having four detector elements, the four detector elements alternately to a positive a negative, as shown in FIG neighboring detector elements of defining a second spacing between S2. 在图16示出的实施方案中,第一探测部分316的每一探测器元件的大小均可大于第二探测部分318的每一探测器元件的大小,和/或间距Sl可不等于间距S2。 In the embodiment shown in FIG. 16, the size of the first detecting portion 316 of each detector element may be larger than the size of each detector element of the second detecting portion 318, and / or may not be equal to the pitch spacing Sl S2. 相关的光学元件的焦距可相等。 Focal length of the associated optical element may be equal. 移动目标引起探测部分316、 318产生频率彼此不同的信号,其频率差由处理电路解译为移动,而固定的刺激引起探测部分输出同样的频率。 Causing the moving object detection section 316, 318 to produce different signal frequencies from each other, the frequency difference is interpreted by the processing circuit to move the fixed stimulation frequency detecting section outputs the same. 利用来自体积302a、 304a的信息还可能区分大小,例如小的移动目标基本一次只可占据一个体积,更多地刺激一个探测器而不是其它的探测器,因此显示了该目标较小,而大的移动目标可能一次占满多于一个的空间并因此同时刺激两个探测部分。 From using the volume 302a, 304a may also distinguish the information size, for example, a base may occupy only a small volume of the moving object, stimulate more than one detector and the other detectors, thus indicating that the target is small, and large the moving object may fill more than one time and thus stimulate two spatial detection section. 图17示出了第一探测部分320,其包括一个光学元件,所述光学元件具有包含两个探测器元件的探测器,该两个探测器元件一个为正一个为负,第二探测部分322包括两个光学元件,所述光学元件具有包含两个探测器元件的探测器,所述两个探测器元件由于两个光学元件而在功能图中显示为图示的四个被监控子体积,正负交替。 FIG 17 shows a first detecting section 320, which includes an optical element, said optical element comprises a detector having two detector elements, one of the two detector elements as a positive negative, the second detecting section 322 comprises two optical elements, said optical element comprises a detector having two detector elements, the two optical elements due to the two detector elements displayed four monitored sub-volumes as illustrated in FIG function, alternating positive and negative. 在如图17所示的实施方案中,第一探测部分320的每个探测器元件的大小可与第二探测部分322的每个探测器元件的大小相等,并且第一探测部分320的纟笨测器元件间的间距可与第二探测部分322的4笨测器元件间的间距相等,但是与二者相关的光学元件的焦距不相等,例如,由于两个因素中一个,使得该功能图将第一探测部分320的监控子体积描述得比第二探测部分322的监控子体积大。 In the embodiment shown in FIG. 17, the size of each detector element to detect a first portion 320 may be equal to the size of the detector elements of each second detecting portion 322, and the first detecting portion 320 Si stupid the spacing between the sensing elements may be equal to the distance between the second detecting element 4 stupid detector portion 322, but the focal length of the optical element associated with the two are not equal, e.g., as a factor of two, so that the function of FIG. the monitoring sub-volume detecting section 320 described in the first than the second detecting section 322 monitors the sub-bulky. 如同图16中的#1测部分一样,在图17中通过来自探测部分的不同频率显示移动并可区分大小。 # 1 as measured portions in FIG. 16, as in FIG. 17 shows the size of the movement can be distinguished by different frequencies from the detecting section. 图18示出第一^J果测部分324,其包括两个光学元件和具有两个探测器元件的探测器,在功能图中显示为四个监控子体积,其在顶排示出且正负交替。 18 illustrates a first sensing portion 324 results ^ J, which comprises two optical elements and detector having two detector elements, shown as four monitored sub-volumes in the function diagram, which is shown in the top row and n negative alternately. 同样,在底排示出的第二探测部分326包括四个光学元件,其使得一个正探测器元件和一个负探测器元件在功能图中显示为八个监控子体积,正负交替。 Similarly, the bottom row of the second detecting portion 326 shown comprises four optical element, which detector element such that a positive and a negative monitor detector element appears as eight sub-volumes in the function diagram, alternating positive and negative. 在如图18所示的实施方案中,第一探测部分324的每个探测器元件的大小可与第二探测部分326的每个探测器元件的大小相等,但是用于区分移动的间距不相等。 In the embodiment shown in FIG. 18, a first detector element size of each detecting portion 324 may be equal to the size of the detector elements of each second detecting portion 326, but used to distinguish moving distance not equal . 具体地,第一探测部分324两个探测器元件间的间距与第二探测部分326相邻探测器元件间的间距不相等,并且与第一探测部分324相关的菲涅耳透镜间的间距和与第二探测部分326相关的菲涅耳透镜元件间的间距也不相等,其意味着在实际应用中光学元件具有不同数量的透镜元件。 Specifically, the first detecting portion 324 and two second distance detecting portion 326 between the detector element the spacing between adjacent detector elements are not equal, and the distance between the Fresnel lens portion 324 and associated with the first probe Fresnel lens element spacing between the ears associated with the second detecting section 326 is not equal, it means that an optical element having a different number of lens elements in practical applications. 移动目标产生每单位时间来自第一探测部分324的第一信号峰数量和每单位时间来自第二探测部分326的第二信号峰数量,二者数量不等且基于此显示了移动目标——基本上,还是对移动目标产生不同的频率。 Generating moving object detection per unit time is a first signal from a first number of peaks per unit time and the number of the second portion 324 of the second signal from the peak detecting section 326, and varying amounts of both of the moving object based on this - Basic on different frequencies or generate a moving target. 还可以实现大小的区分。 Distinguish size can also be achieved. 图19至图21示出了不同的传感器实施方案,包括某种不够理想的、不可以产生不同频率以显示移动,但支持大小区分的实施方案。 19 to 21 show different embodiments of sensors, including some not ideal, it may not produce different frequency to display the movement, but the embodiment is distinguishable from the size of the support. 在图19中,第一探测部分328包括一个光学元件,所述光学元件具有包括正负纟笨测器元件的探测器,而第二纟果测部分330包括一个光学元件,所述光学元件具有包括正负探测器元件的探测器,所有的探测元件大小相等并且间距相等,且具有不会产生'250专利中盲区的相同透镜系统。 In FIG 19, a first detecting section 328 includes an optical element, said optical element having positive and negative detector comprises detector elements stupid Si, Si if the second sensing portion 330 includes an optical element, said optical element having positive and negative detector comprises a detector element, the detection elements all equal size and equal spacing, and having a lens system does not produce the same '250 patent in a blind spot. 根据上述没有竖直盲区的原理能够保证大小区分。 The principle of the above vertical blind can not distinguish the guarantee size. 当探测器元件如图19中"示意1"所示地布线,且被配置为能够产生如"功能图1"所示的监控子体积阵列时,不会因移动目标而产生双频率操作。 When the detector element 19 in FIG. "1 schematically 'line shown, and is configured to be able to produce arrays as the sub-volume when monitoring" shown in FIG. 1 Function ", moving targets will not produce a double frequency. 另一方面,可将#:测器元件如上述图13所示地布线和配置以产生"示意2"和"功能图2",其中在来自两个探测部分的不同频率存在的情况下显示移动纟笨测。 On the other hand, may be #: measuring elements as shown in the above FIG 13 and the wiring configuration to produce a "2 a schematic" and "function 2", wherein movement of the display in a case where the presence of different frequencies from the two detection portions Si stupid test. 图20示出了第一探测部分332,其包括一个光学元件,所述光学元件具有包括两个正探测器元件和两个负探测器元件的探测器,以及第二探测部分334,其包括一个光学元件,所述光学元件具有包括两个正探测器元件和两个负探测器元件的探测器,所有的探测器元件大 FIG 20 shows a first detecting section 332, which includes an optical element, said optical element having a detector element comprises two positive and two negative detector elements of the detector, and a second detecting section 334, which includes a the optical element, said optical element having a detector element comprises two positive and two negative detector elements of the detector, the detector elements all large

小相等并且间距相等,且具有不会产生'250专利中盲区的相同透镜系统。 Small equal and equidistant from, and has no '250 patent the same lens system blind spot. 根据上述没有竖直盲区的原理能够保证大小区分。 The principle of the above vertical blind can not distinguish the guarantee size. 图21示出了第一探测部分336,其包括一个光学元件,所述光学第二探测部分338,其包括一个光学元件,所述光学元件具有包括四个正探测器元件和四个负探测器元件的探测器,所有的探测元件大小相等并且间距相等,且具有不会产生'250专利中盲区的相同透镜系统。 FIG 21 shows a first detecting section 336, which includes an optical element, said second optical detecting portion 338, which includes an optical element, said optical element having a detector element comprises four positive and four negative detector detector element, the detection elements all equal in size and equally spaced, and has no '250 patent the same lens system blind spot. 根据上述没有竖直盲区的原理能够保证大小区分。 The principle of the above vertical blind can not distinguish the guarantee size. 该八元件探测器产生4x4分辨率。 The detector generates eight 4x4 resolution element. 当探测器元件如图21 "示意1"所示地布线,且被配置为能够产生如"功能图1"所示的监控子体积阵列时,不会因移动目标而产生双频率操作。 When the detector element 21 'schematically a "line as shown, and is configured to be able to generate as" function 1 "when the volume of the sub-arrays illustrated monitor, moving targets will not produce a double frequency. 另一方面,可将探测器元件如上述图13所示地布线和配置以产生图21中的"示意2"和"功能图2",其中在来自两个探测部分的不同频率存在的情况下显示移动探测。 On the other hand, the detector elements can be wired and arranged as shown in FIG. 13 to generate the above-described case of "schematically 2" and "function 2", in which two different frequency from the presence detection section 21 in FIG. display motion detection. 可以理解对于在图14至图21中示出的实施方案,将4笨测部分以其基本单元形式描述,其可通过将若干第一探测部分并排垂直地和/ 或水平地和/或以另外的方式放置而增加,,人而加大^L场。 Be appreciated that for embodiments in FIG. 14 to FIG. 21 shows the measuring portion 4 in its base unit stupid form described, which can be prepared by a number of side by side the first detecting section vertically and / or horizontally and / or otherwise the way to place increased ,, people and increase ^ L field. 在功能图中示出的探测器元件间距只是为了说明,可以理解部件间的间距不必代表存在盲区。 In the detector element pitch function diagram shown for purposes of illustration, the spacing between the members to be understood that not necessarily represent blind spots. 本文示出并详细描述的改进的PIR移动传感器完全能够达到本发明的上述目的,可以理解其为本发明目前优选的实施方案并因此代表了本发明广泛预期的主旨,并且本发明的范围仅受所附权利要求的限制,在权利要求中涉及的单数元件除非明确指出,通常不是意指"一个且只有一个",而更相当于"一个或多个"。 Improved PIR motion sensor herein shown and described in detail is fully capable of achieving the above object of the present invention, it will be understood that the present disclosure of the presently preferred embodiments of the present invention and therefore represent broadly contemplated by the spirit and scope of the present invention is defined only by the limiting the appended claims, the singular in the claims, unless clearly indicated elements involved, usually not mean "one and only one", but rather corresponds to "one or more." 此外,权利要求所涵盖的装置或方法并非必须解决本发明的每一个问题。 In addition, a method or apparatus not covered by the claims must address each and every problem of the present invention. 而且,本公开中没有任何元件、组件或者方法步骤是开放供公众使用的,不管该元件、 组件或者方法步骤是否在权利要求中明确提及。 Further, the present disclosure does not contain any element, component, or method step is open for public use, regardless of whether the element, component or method steps explicitly mentioned in the claims. 本文中没有任何权利要求成分要根据35 USC §112,第六章的规定解释,除非使用短语"用于...的装置"对该成分进行特别限定,或者在方法权利要求中, 使用短语"步骤"代替"动作"陈述该成分。 Nothing herein is to be construed as claimed in claim ingredient under 35 USC §112, Chapter VI, except using the phrase "means for ..." the ingredients particularly limited, or in a method claim, the phrase " step "instead of" action "of the components set forth. 如果在本文中没有特别限定的话,权利要求中的术语将具有与本说明书和文件历史不相矛盾的、全部普通和惯用的含义。 Unless otherwise defined herein, then the terms in the claims have the file history of this specification and not inconsistent, all ordinary and customary meaning.

Claims (13)

1.PIR移动传感器,包括:至少第一和第二红外探测部分(302/306,304/308,316,318,320,322,324,328,330,332,334,336,338),每一探测部分包括至少一个光学元件和至少一个探测器,所述探测器至少具有正极探测器元件和负极探测器元件,其中: 光学元件组合以建立四个或更多的被监控空间体积,在任意两个相邻的由所述光学元件建立的所述体积之间不存在任何没有监控的竖直盲区,所述第一探测部分监控第一体积而所述第二探测部分监控第二体积,所述第一和第二体积依次交替。 1.PIR motion sensor, comprising: at least first and second infrared detecting section (302/306, 304 / 308,316,318,320,322,324,328,330,332,334,336,338), each a detecting section including at least one optical element and at least one detector, the detector having at least a positive electrode and the negative detector elements of detector elements, wherein: the optical element are combined to establish four or more monitored spatial volumes, in any there are no vertical blind does not monitor the volume between the two adjacent optical elements by established, a first volume of the first part of the monitoring and detecting the second detection portion monitoring a second volume, the said first and second volumes are alternately.
2. 如权利要求1所述的传感器,其中移动目标引起所述第一探测部分的所述探测器输出信号,所述信号的频率与所述第二探测部分的所述探测器输出的信号频率不同,并且非移动刺激引起两个探测器输出同样的频率。 2. The sensor of claim 1, the signal frequency of the signal output from the detector detecting the second portion, wherein the moving object causes the detector output signal of the first detection section, different, and two non-moving stimuli detector output at the same frequency.
3. 如权利要求2所述的传感器,其中所述第一探测部分(316) 的至少一个探测器元件的大小,与所述第二探测部分(318)的至少一个探测器元件的大小不同。 3. The sensor of claim 2, wherein the size of said at least one first detection portion (316) of detector elements required, with the second detection portion (318) of different sizes at least one detector element.
4. 如权利要求2所述的传感器,其中所述第一探测部分(316, 324)的相邻探测器元件间的间距,与所述第二探测部分(318, 326) 的相邻探测器元件间的间距不同。 4. The sensor of claim 2, wherein the spacing between said first detection portion (316, 324) of claim neighboring detector elements, adjacent to the second detector detecting portion (318, 326) different distances between the elements.
5. 如权利要求3所述的传感器,其中所述第一探测部分(316) 的相邻探测器元件间的间距,与所述第二探测部分(318)的相邻探测器元件间的间距不同。 5. The sensor of claim 3 wherein the spacing between said first detection portion (316) of the spacing between adjacent detector elements adjacent detector element and the second detecting section (318) as claimed in claim, different.
6. 如权利要求2所述的传感器,其中所述第一探测部分(320) 的所述光学元件的焦距,与所述第二探测部分(322)的所述光学元件的焦距不同。 6. The sensor according to claim 2, wherein the focal length of the first detection portion (320) of the optical element, and the focal length of the second detection portion (322) of different optical elements.
7. 如权利要求2所述的传感器,其中所述第一探测部分(324) 的所述光学元件的透镜元件数量,与所述第二探测部分(326)的光学元件的透镜元件数量不同。 7. The sensor according to claim 2, the number of different number of lens elements of the lens element wherein the first detection portion (324) of the optical element, and the second detection portion (326) of the optical element.
8. PIR移动传感器(200),包括:至少一个红外探测器,其具有至少第一和第二元件(202/208, 204/206),所述第一和第二元件分别产生第一和第二信号;以及系统(20),其将所述第一和第二信号加到一起以形成总信号,该系统还通过把一个信号从另一个信号减去形成差分信号,其中当所述总信号的频率与所述差分信号的频率不同时,所述系统输出表示移动目标的探测信号,否则不会输出所述探测信号。 8. PIR movement sensor (200), comprising: at least one infrared detector having at least a first and a second element (202/208, 204/206), respectively, said first and second member and generating a first second signal; and a system (20), which said first and second signals are added together to form a total signal, the system further by a signal formed by subtracting the difference signal from the other signal, wherein when the total signal the frequency of the frequency of the differential signal is not the same, the system outputs a detection signal of the moving object, or does not output the detection signal.
9. 如权利要求8所述的传感器,其中所述第一部分(202/208)监控的第一空间体积,与所述第二部分(204/206)监控的第二空间体积至少部分光学交叉或重叠。 9. The sensor according to claim 8, wherein said first portion (202/208) of the first monitoring space volume, said second portion (204/206) of the second volume of space monitored optical cross or at least partially overlapping.
10. 如权利要求8所述的传感器,其中每个所述元件各具有两个且只有两个部件(202/208, 204/206),所述部件一个为正(202或204 ), 一个为负(206或208),所述部件彼此大小相同。 10. The sensor according to claim 8, wherein each of said elements each having two and only two members (202/208, 204/206), one of the positive member (202 or 204), one of negative (206 or 208), said another member of the same size.
11. 如权利要求IO所述的传感器,其中所述正部件(202, 204) ;f皮此物理靠近,没有任何负部件插入,并且所述负部件(206, 208) 彼此物理靠近,没有任何正部件插入。 IO 11. The sensor of claim, wherein said positive member (202, 204); f is close to the physical skin, no member is inserted into the negative, and the negative part (206, 208) physically near each other, there is no positive insertion member.
12. 如权利要求IO所述的传感器,其中所述部件在基底上以下述顺序布置:所述第一元件的正部件(202 ),所述第二元件的正部件(204 ),所述第二元件的负部件(206 ),所述第一元件的负部件(208 ), 一个元件的所述部件彼此电连接。 IO 12. The sensor of claim, wherein said member is arranged on the substrate in the following order: a positive part (202) of the first element, a positive part (204) of the second element, the first the negative component member (206) of the two-element, a negative part (208) of the first element, an element electrically connected to each other.
13.在监控空间中用于区分移动目标和具有非连续辐射特征的非移动目标的方法,包括:提供第一和第二探测器元件(202/208, 204/206),所述第一和第二探测器元件分别产生第一和第二信号;将所述第一和第二信号相加以形成总信号; 将一个信号从另一个信号减去以形成差分信号;以及当所述总信号的频率与所述差分信号的频率不同时,显示存在移动目标,否则不显示存在移动目标。 13. The method of non-moving object in the monitored space and for distinguishing the moving object has a non-continuous radiation characteristics, comprising: providing a first and a second detector element (202/208, 204/206), said first and a second detector element generates first and second signals, respectively; the first and second signal added to form a total signal; and a signal is subtracted from the other signal to form a difference signal; and when the total signal the frequency of the frequency difference signal is not the same, show the presence of a moving target, or do not show the presence of a moving target.
CN 200680011420 2003-03-14 2006-03-27 Improved PIR motion sensor CN101167110B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/097,904 2005-04-01
US11097904 US7183912B2 (en) 2003-03-14 2005-04-01 PIR motion sensor utilizing sum and difference sensor signals
US11134780 US7755052B2 (en) 2003-03-14 2005-05-20 PIR motion sensor
US11/134,780 2005-05-20
PCT/US2006/011164 WO2006107642A3 (en) 2005-04-01 2006-03-27 Improved pir motion sensor

Publications (2)

Publication Number Publication Date
CN101167110A true true CN101167110A (en) 2008-04-23
CN101167110B CN101167110B (en) 2010-05-19

Family

ID=39334896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200680011420 CN101167110B (en) 2003-03-14 2006-03-27 Improved PIR motion sensor

Country Status (1)

Country Link
CN (1) CN101167110B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975970A (en) * 2010-11-02 2011-02-16 邝亦工 Headband infrared multidimensional detecting instrument for blind person
CN102472669A (en) * 2009-07-10 2012-05-23 西荣科技有限公司 Infrared motion sensor system and method
CN102906360A (en) * 2010-03-02 2013-01-30 Utc 消防及保安公司 Seamless authentication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168854A (en) 1978-01-17 1979-09-25 Vsi Corporation Toggle lock
EP0361224B1 (en) 1988-09-22 1993-11-03 Cerberus Ag Infrared intrusion detector
DE69413117D1 (en) 1993-05-11 1998-10-15 Optex Co Ltd Detection system of the passive type of moving object
CA2196014C (en) 1997-01-27 2001-05-08 Reinhart Karl Pildner Size discriminating dual element pir detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472669A (en) * 2009-07-10 2012-05-23 西荣科技有限公司 Infrared motion sensor system and method
CN102472669B (en) 2009-07-10 2013-10-30 西荣科技有限公司 Infrared motion sensor system and method
CN102906360A (en) * 2010-03-02 2013-01-30 Utc 消防及保安公司 Seamless authentication system
CN102906360B (en) * 2010-03-02 2016-07-06 Utc 消防及保安公司 Seamless authentication system
CN101975970A (en) * 2010-11-02 2011-02-16 邝亦工 Headband infrared multidimensional detecting instrument for blind person
CN101975970B (en) 2010-11-02 2012-07-25 邝亦工 Headband infrared multidimensional detecting instrument for blind person

Also Published As

Publication number Publication date Type
CN101167110B (en) 2010-05-19 grant

Similar Documents

Publication Publication Date Title
US6215399B1 (en) Passive infrared motion detector and method
US5446334A (en) Piezoluminescent, pyroluminescent sensor
US4394773A (en) Fingerprint sensor
EP0853237A1 (en) Sensors using detector arrays
US5641963A (en) Infrared location system
JP2003255049A (en) Light-detecting apparatus and radiation-detecting apparatus
US3760399A (en) Intrusion detector
JP2002208073A (en) Intrusion monitor
US20100207909A1 (en) Detection module and an optical detection device comprising the same
US5468960A (en) Pyroelectric infrared detector
US20070115459A1 (en) Compound-Eye Imaging Device
US20090302220A1 (en) PIR Motion Sensor System
JP2006145488A (en) Object detector
JP2004096457A (en) Area monitoring apparatus
US20050040947A1 (en) Logical pet immune intrusion detection apparatus and method
US20080306708A1 (en) System and method for orientation and location calibration for image sensors
US6414314B1 (en) Passive-type infrared detector with elongated detection areas
US20050184869A1 (en) PIR motion sensor
EP1645841A1 (en) Three-dimensional shape-measuring device
US7982656B2 (en) Imaging apparatus and method
McKee et al. Discrimination of time: comparison of foveal and peripheral sensitivity
JP2009276243A (en) Range sensor and range image sensor
JP2010015258A (en) Monitoring system, information processing apparatus, information processing method, and program
JP2001178708A (en) Biological light measuring device
US20050236572A1 (en) PIR motion sensor

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted