CN101146041A - 最小化分组网络上通话的端到端延迟的方法、系统和电路 - Google Patents

最小化分组网络上通话的端到端延迟的方法、系统和电路 Download PDF

Info

Publication number
CN101146041A
CN101146041A CNA2007101470767A CN200710147076A CN101146041A CN 101146041 A CN101146041 A CN 101146041A CN A2007101470767 A CNA2007101470767 A CN A2007101470767A CN 200710147076 A CN200710147076 A CN 200710147076A CN 101146041 A CN101146041 A CN 101146041A
Authority
CN
China
Prior art keywords
network
packet network
use amount
voice
bandwidth use
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101470767A
Other languages
English (en)
Inventor
朱因韦·陈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Broadcom Corp
Zyray Wireless Inc
Original Assignee
Zyray Wireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zyray Wireless Inc filed Critical Zyray Wireless Inc
Publication of CN101146041A publication Critical patent/CN101146041A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • H04L47/365Dynamic adaptation of the packet size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1083In-session procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/752Media network packet handling adapting media to network capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明涉及一种以不会使分组语音网络超负荷的方式最小化所述分组网络上通话的端到端延迟的方法、系统和电路。所述方法包括监视用于指示所述分组语音网络带宽使用量的一个或多个参数,根据监视结果,判断所述分组语音网络带宽使用量是否发生了变化,当所述分组语音网络带宽使用量发生变化时,向电话设备发出命令,电话设备接收并响应该命令,将用于承载与电话通话相关联的编码语音信号帧的分组的长度从第一分组长度修改为第二分组长度。

Description

最小化分组网络上通话的端到端延迟的方法、系统和电路
技术领域
本发明涉及数据通信,更具体地说,涉及一种最小化分组网络上通话的端到端延迟的方法、系统和电路。
背景技术
在音频编码(有时称为“音频压缩”)过程中,编码器将输入音频信号编码为压缩数字比特流,以便进行传送或存储,解码器将传送的或存储的比特流解码为输出音频信号。编码器和解码器的组合称为编解码器。输入音频信号通常分割为段,称为“帧”,编码器对每个帧进行编码,生成代表该帧的压缩比特流。在本文中,术语“帧”有时是指输入音频信号段,有时是指代表这种段的压缩比特流。
在分组语音网络(voice over packet network)如网络电话协议(VoIP)网络中,编码语音信号帧必须封装在一个或多个数据分组的载荷中,然后进行传送。用于对编码语音信号进行打包(packetize)的多数传统的语音编码器不允许将单个帧分割为多个数据分组内。实际上,熟知的实时传输协议(RTP)标准(一种互联网工程任务组(IETF)标准,其中定义有用于在互联网上传送音频和视频数据的协议)特别反对将帧分割在多个数据分组内。这是因为多数语音解码器需要的是整个编码语音数据帧,以便成功的进行解码操作。因此,如果将一个帧分割到多个数据分组内,且在传输过程中其中的一个分组丢失(或延迟时间过长使得看起来像是丢失),则多数传统的解码器将无法使用其余的分组,即使这些分组都已成功接收。因此,可以看出,将帧分割到多个数据分组内的方法将增大通信系统的丢包率。
分组语音网络效率不高的主要原因在于电话通话的端到端延迟或时延不可避免的高于传统电路交换网络。其中的一部分原因在于,电路交换网络可以以样本为单位传送语音信号。也就是说,在电路交换网络中,输入语音的每个样本将通过如脉冲编码调制(PCM)技术编码为少量比特(例如8个比特),然后立即在网络上传送这些比特。相比之下,如上所述,在分组语音网络中,必须收集至少一个完整的编码音频信号帧,并在打包之后进行传输。例如,若分组语音网络中的编码器以16kb/s的比特率来编码以8kHz的采样率采样的语音,帧长为20毫秒(ms),则需要在传输之前收集和打包至少40字节的编码数据。
对于双向通信而言,实现较低的端到端延迟十分重要,这是因为如果延迟过长,则通话质量将受到影响。例如,端到端连接中的声音信息和电子回声在延迟增大时将变得更为明显。这是因为回声延迟的时间越长,人耳就越能感觉得到。为了解决这一问题,通常使用能够显著降低回声的回声消除器。然而,这将增加语音通信中电话设备的成本和复杂度。在通话过程中,显著的延迟如150ms或更长的延迟将造成很大的问题,导致通话双方发话时间重叠,并会造成对方参与者发话内容的丢失。
正如上文所指出的,分组语音网络中的编码器必须积累至少一个编码语音信号帧,并进行打包然后进行传输。多数传统的低比特率编解码器(也就是以每样本2比特或更低比特率工作的编解码器)使用的帧长度至少为10ms。例如,G.729编解码器使用10ms帧长度。许多其他的传统低比特率编解码器所使用的帧长度长达20ms或30ms。
用于降低分组语音通信延迟的一种方法是降低帧长度,从而降低在传输前需要积累和打包的编码数据量。BroadVoiceTM是由美国博通公司(加州尔湾)开发的应用于VoIP应用(包括有线电缆上的语音、DSL上的语音和IP电话应用)的语音编解码器族。BroadVoiceTM编解码器族包括两个编解码器版本。窄带版本的BroadVoiceTM称为BroadVoice16或BV16,以16kb/s的比特率来编码以8kHz采样率采样的窄带语音。宽带版本的BroadVoiceTM称为BroadVoice32或BV32,以32kb/s的比特率来编码以16kHz采样率采样的宽带语音。为了将实时双向通信中的延迟降至最低,BV16和BV32编码语音时的帧长度都非常小,为5ms。通过在必要时使用小至5ms的分组长度,基于BroadVoiceTM的VoIP系统具有非常低的端到端系统延迟。例如,通过使用5ms的分组长度,基于BV16的VoIP系统在传送之前只需编码和打包10字节的数据,基于BV32的VoIP系统在传送之前只需编码和打包20字节的数据。
然而,使用短帧和小分组来传送编码语音信号所带来的一个问题是,与数据分组的报头相比,数据分组的载荷相对较小。许多VoIP网络结合使用实时协议(RTP)、用户数据报协议(UDP)和互联网协议来在互联网上传送语音分组。对于RTP/UDP/IPv4来说,分组报头长度通常为40字节,对于RTP/UDP/Ipv6来说,报头长度通常为60字节。如上所述,基于BV32的系统所发送的数据分组的载荷长度仅为20字节,基于BV16的系统所生成的数据分组的载荷长度仅为10字节。因此,在使用RTP/UDP/IP和BV32的、帧/分组长度为5ms的系统所发送的数据分组中,报头长度是载荷长度的2-3倍;在使用RTP/UDP/IP和BV16的、帧/分组长度为5ms的系统所发送的数据分组中,报头长度是载荷长度的4-6倍。所传送分组的报头过大将明显降低系统的有效比特率。换句话说,很大一部分传输带宽都浪费在传送分组报头信息上,而不是编码语音上。这一点是人们非常不希望看到的,尤其是当网络的负担较重及传输带宽有限时。
用于降低大分组报头开销的一种方法是使用分组报头压缩方法,这些方法大都已经成为现有技术。通常来说,分组报头压缩是通过抑制从发送设备发往接收设备的一系列分组中所选的分组报头字段来实现的。所选择的分组报头字段通常是不变的,或者以一些可预知方式进行变化,这样一来,这些字段可由接收设备基于针对这些字段所“获知”的初始值来重建。然而在通信系统中,分组报头压缩并不总是可行的。例如,由于执行分组报头压缩协议需要在每个通信终端上安装专用的逻辑,因此部署起来成本太高,而且太不方便。
另一种可用于降低大分组报头开销的方法是在网络拥塞增大时,在每个语音分组数据中添加更多的编码语音信息。由C.W.Fitzgerald提出的、名称为“Codec-Independent Technique for Modulating Bandwidth In Packet Network”的美国专利US6,421,720中描述了这种系统的一个例子。Fitzgerald介绍了将承载语音分组的路径中的端到端分组延迟用作网络拥塞的测量手段,并基于测量结果来修改每个发送数据分组中的编码语音信息量。
在阅读下文和附图中的内容后,通过将现有系统与本发明系统的一些方面进行比较,传统和现有方法的限制和缺点对于本领域的技术人员来说将变得更加清晰。
发明内容
本发明提供了一种基于分组网络负载情况自适应的调整语音分组长度的系统和/或方法,在至少一张附图中进行了描述,并在权利要求中进行了完整的说明。
本发明提供了一种以不会使分组网络超负荷的方式最小化所述分组网络上通话的端到端延迟的方法,包括:
监视一个或多个用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数;
基于所述监视结果,判断所述分组网络所述相对较大的第一部分的带宽使用量是否发生变化;
当所述分组网络所述相对较大的第一部分的带宽使用量发生变化时,向所述分组网络相对较小的第二部分中多个设备中的每一个发出至少一条命令;
所述命令控制所述分组网络所述相对较小的第二部分中至少所述多个设备,将用于承载与通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度。
在本发明所述的方法中,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视所述分组网络相对较大的第一部分的设备正在处理的流量。
在本发明所述的方法中,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视通话控制实体正在处理的活跃通话的数量。
在本发明所述的方法中,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视当天的当前时刻。
在本发明所述的方法中,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视当前星期的当前天。
在本发明所述的方法中,判断所述带宽使用量是否发生变化,包括判断所述带宽使用量是否降低。
在本发明所述的方法中,将用于承载与通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度,包括降低所述分组的长度。
在本发明所述的方法中,降低所述分组的长度,包括将每个分组中承载的编码语音信号载荷的长度从10、20和30毫秒其中之一降低到5毫秒。
在本发明所述的方法中,判断所述带宽使用量是否发生变化,包括判断所述带宽使用量是否增加。
在本发明所述的方法中,将用于承载与通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度,包括增加所述分组的长度。
在本发明所述的方法中,增加所述分组的长度,包括将每个分组中承载的编码语音信号载荷的长度从5毫秒增加到10、20和30毫秒其中之一。
在本发明所述的方法中,向多个设备发出至少一条命令包括向电话机和网关其中之一发出命令。
在本发明所述的方法中,向多个设备发出至少一条命令包括:
向通话控制实体发出通知,所述通知控制所述通话控制实体向所述多个设备发出所述至少一条命令。
在本发明所述的方法中,所述分组网络包括分组语音网络。
本发明还提供了一种系统,包括:
网络监控实体,用于监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数;并基于所述监视结果,判断所述分组网络所述相对较大的第一部分的带宽使用量是否发生变化;以及当所述分组网络所述相对较大的第一部分的带宽使用量发生变化时,发出通知;
通话控制实体,用于接收并响应所述通知,将用于承载与所述分组网络所述相对较小的第二部分中的通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度。
在本发明所述的系统中,所述用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括所述分组网络相对较大的第一部分的设备正在处理的流量。
在本发明所述的系统中,所述用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括所述通话控制实体正在处理的活跃通话的数量。
在本发明所述的系统中,所述用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括当天的当前时刻。
在本发明所述的系统中,所述用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视当前星期的当前天。
在本发明所述的系统中,所述网络监视实体用于判断所述带宽使用量是否降低,当所述带宽使用量降低时,发出所述通知。
在本发明所述的系统中,所述通话控制实体用于响应所述通知,降低用于承载与电话通话相关联的编码语音信号帧的分组的长度。
在本发明所述的系统中,所述通话控制实体通过将每个分组中承载的编码语音信号载荷的长度从10、20和30毫秒其中之一降低到5毫秒,来降低用于承载与电话通话相关联的编码语音信号帧的分组的长度。
在本发明所述的系统中,所述网络监视实体用于判断所述带宽使用量是否增加,当所述带宽使用量增加时,发出所述通知。
在本发明所述的系统中,所述通话控制实体用于响应所述通知,增加用于承载与电话通话相关联的编码语音信号帧的分组的长度。
在本发明所述的系统中,所述通话控制实体通过将每个分组中承载的编码语音信号载荷的长度从5毫秒增加到10、20和30毫秒其中之一,来增加用于承载与电话通话相关联的编码语音信号帧的分组的长度。
在本发明所述的系统中,所述系统还包括:
一个或多个电话设备;
所述通话控制实体用于向所述一个或多个电话设备发出通话控制命令,将用于承载与电话通话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。
在本发明所述的系统中,所述一个或多个电话设备包括电话机和网关二者中的至少一个。
在本发明所述的系统中,所述分组网络包括分组语音网络。
根据本发明的一个方面,本发明还提供了一种系统,包括:
网络监控实体,用于监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数;并基于所述监视结果,判断所述分组网络所述相对较大的第一部分的带宽使用量是否发生变化;以及当所述分组网络所述相对较大的第一部分的带宽使用量发生变化时,发出命令;
用于接收所述命令的设备,所述设备响应所述命令,将用于承载与所述分组网络所述相对较小的第二部分中的通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度。
在本发明所述的系统中,所述设备包括电话机和网关二者中的一个。
在本发明所述的系统中,所述分组网络包括分组语音网络。
根据本发明的另一方面,本发明还提供了以不会使分组网络超负荷的方式降低分组语音网络端到端延迟的一个或多个电路,所述一个或多个电路包括:
至少一个接口,用于在所述分组语音网络上交换语音分组,其中每个语音分组中包含一定数量的语音帧;
至少一个处理器,与所述至少一个接口工作相连,用于:
确定所述分组语音网络相对较大的第一部分的带宽使用量;
基于所确定的带宽使用量,选择一定数量的语音帧装入每个语音分组中;
将包含所选数量语音帧的语音分组组合起来;
通过所述至少一个接口在所述分组网络中相对较小的第二部分上传送所述组合的语音分组。
在本发明所述的电路中,所述确定过程包括:
通过所述至少一个接口接收将要装入每个语音分组中的所述一定数量的语音分组。
在本发明所述的电路中,所述确定过程包括:
监视用于指示所述分组网络所述相对较大的第一部分的带宽使用量的一个或多个参数;
基于所述一个或多个参数,选择将要装入每个语音分组的语音帧的数量。
在本发明所述的电路中,所述一个或多个参数包括下列参数中的一个或多个:所述分组网络所述相对较大的第一部分中某些设备正在处理的流量、通话控制实体正在处理的活跃语音通话的数量、所述分组网络所述相对较大的第一部分的带宽使用量、当天的当前时刻和当前星期的当前天。
本发明的其他特征和优点以及本发明多个实施例的架构和操作将在下文中参考对应的附图进行详细描述。
附图说明
图1是依据本发明一实施例的示范性网络电话协议(VoIP)电话系统的结构示意图;
图2A是依据本发明一实施例的包含单个语音帧的示范性语音分组的示意图;
图2B是依据本发明一实施例的包含第一、第二、第三和第四语音帧的示范性语音分组的示意图;
图3是依据本发明一实施例的以不会使网络超负荷的方式降低分组语音网络上电话通话的端到端延迟的示范性方法的流程图;
图4是依据本发明一实施例操作语音分组终端(例如图1中的VoIP电话机)用于以不会使网络超负荷的方式降低分组语音网络上电话通话的端到端延迟的示范性方法的流程图;
图5是依据本发明一实施例的示范性VoIP电话机的结构示意图;
图6是依据本发明一实施例的示范性网关(对应例如图1中的网关)的结构示意图。
具体实施方式
本发明的一些方面涉及分组交换网上语音信息的传输。具体的,本发明的一些方面涉及一种系统和方法,用于基于网络流量的当前级别选择用于传输数字语音信息的分组的长度,以便当网络负载较轻时使用相对较短的语音分组,当网络负载较重时使用相对较长的分组长度。依据本发明一些实施例的系统和方法能够降低分组语音网络如VoIP网络上电话通话的端到端延迟,并使用较短的帧和分组在网络上传送语音分组,而不会使网络超负担或者要求增加网络的容量。
下面对本发明进行的详细描述涉及到一些附图,其中展示了本发明的一些示范性实施例。在不脱离本发明实质和范围的前提下,其他实施例也是可以的,还可以对这些实施例进行修改。应注意,尽管本文中的多数描述都是在说语音分组的处理,但本发明也可应用到分组网络上其他格式的实时通信中,例如分组形式的视频和多媒体信息(例如语音和视频组合)。因此,下面的具体实施方式目的并不在于限制本发明的范围。实际上,本发明的范围是由权利要求来定义的。
本领域的技术人员应当明白,下面描述的内容可以由硬件、软件、固件和/或附图中描述的实体构成的许多不同实施例来实现。在实现本发明的过程中,带有专门的控制硬件的所有软件代码都不会限制本发明的范围。因此,通过下位对本发明所涉及操作和行为的描述,大家会明白,通过本文所给出的详细描述,还可以对这些实施例进行修改和变化。
图1是依据本发明一实施例的示范性网络电话协议(VoIP)电话系统100的结构示意图。应注意,本发明并非仅限于VoIP电话系统中,实际上,本发明可应用在对实时信息如语音信号进行编码然后在分组中进行发送的任意电话系统(例如对于语音信号来说,这种系统通常称为“分组语音”系统)中。
在图1所示的实施例中,VoIP电话系统100支持在电话机122、124、126、128、132和134之间进行通信。电话机132和134代表POTS(普通老式电话服务)或“传统”电话机,它们可使用传统的电路交换技术在公共交换电话网(PSTN)104上进行通信。相比之下,电话机126和128代表VoIP电话机,它们可使用分组交换技术在分组网络102上发送和接收分组格式的语音数据。在本发明的一些示范性实施例中,分组网络102可使用互联网协议(IP)来传输分组。分组网络102可包括例如局域和/或广域网如互联网。电话机122和124代表不能用来进行基于IP通信的电话机,因此它们需要通过网关110连接到分组网络102,网关110执行必要的功能,以便在电话机122和124所支持的协议和分组网络102所支持的基于IP的协议之间进行转换。
例如,在本发明的一个示范性实施例中,电话机122和124可代表标准POTS电话机,它们与网关110之间收发模拟语音信号。在这种实时方式中,可对网关110进行配置,使其对接收自电话机122和124的模拟语音信号进行数字化、编码,然后封装在分组形式中,最后通过分组网络102来传送。还可对网关110进行配置,以便从分组网络102接收分组,提取其中的数字语音信号,对这些数字语音信号进行解码,将它们转换为模拟形式,发往电话机122和124。
如图1所示,VoIP电话系统100还包括网关112,其位于分组网络102和PSTN 104之间。网关112可执行一些功能,在上述网络所支持的不同协议之间进行转换。因此,例如,可对网关112进行配置,使其从PSTN 104接收模拟或数字语音信号,将这些信号封装在IP分组中,通过分组网络102传送。同理,还可对网关112进行配置,使其从分组网络102接收IP分组,提取其中的模拟或数字语音信号,以便通过PSTN 104来传送这些信号。在本发明的一个代表性实施例中,VoIP电话系统100中的设备可遵循国际电信联盟(ITU)H.323建议来工作。
如图1所示,VoIP电话系统100可包括网络管理实体140和通话控制实体150,它们通信连接到分组网络102。网络管理实体140可执行一种或多种网络管理功能,如监控和配置分组网络102的硬件部件和软件部件、带宽管理、用户和用户服务配置、计费和相关的记录保存,或者类似的功能。正如下文将要详细描述的那样,网络管理实体140至少可提供和/或监视用于指示分组网络102正在使用的带宽数量的一个或多个参数。
在本发明的一个代表性实施例中,通话控制实体150可提供通话逻辑和通话控制功能,以便管理和维护分组网络102中一个或多个通话的通话状态。通话控制实体150可包括服务逻辑,用于提供补充服务,例如主叫ID,呼叫等待,并可与应用服务器(图1中未示出)交互,以提供其所不能直接提供的服务。在一个代表性实施例中,通话控制实体150可参与信令和设备控制流的生成、中止,或消息的转发过程。根据VoIP电话系统100的架构,通话控制实体150可实现为通话代理(也称为媒体网关控制器、软件开关和通话控制器)、SIP服务器或SIP客户端。但是,这些实施例并非限制性的,还可使用其他实现方式。
本领域的技术人员应当明白,对于多种VoIP实现,网络管理实体140和通话控制实体150所执行的功能可使用单个网络部件或设备来实现,也可使用几个部件或设备来实现。此外,这些功能可使用硬件、软件或硬件或软件的组合来实现。此外,应当明白,图1中所示的连接可使用有线连接、无线连接或有线和无线的组合连接来实现。在本发明的一些代表性实施例中,通话控制实体150和网络管理实体140还可执行在许多方面与ITU H.323中定义的“网守(gatekeeper)”相类似的功能。
在本发明的一个代表性实施例中,实体例如图1中展示的网络管理实体140或通话控制实体150可从一些网络实体例如网关110、112和/或VoIP电话机126、128中收集带宽使用信息,并对这些信息进行分析,来确定当前的网络带宽使用量和拥塞情况。网络管理实体140随后可确定,通过增加每个语音分组中的语音数据量来降低活跃语音呼叫的端到端延迟。与现有技术相比,本发明的一个代表性实施例能够考虑到整体网络使用量和负荷情况,而不是像现有技术那样只测量单条通话路径中的端到端延迟。尽管通话路径中的端到端延迟可用于调整实时媒体流的打包方式,但使用本文中通过本发明一个代表性实施例所描述的一种更为全面和一致的测量和控制方法,能够提供对整体网络带宽使用量和网络拥塞情况的更为可靠和精确的评估,并对其进行补偿。
在本发明的一个代表性实施例中,网络实体如网络管理实体140和/或通话控制实体150可定期向其他网络实体如网关110、112和/或VoIP电话机126、128请求状态信息。该状态信息可包括参数如每个活跃通话所请求的带宽和/或每个活跃通话当前测定的正在使用的带宽。带宽可以以比特/秒或分组/秒为单位进行测量,本文只列举这两种可能的实施例。在本发明的一个代表性实施例中,网络实体如网络管理实体140或通话控制实体150可分析从网络实体收集来的信息,并确定是否向当前正在为活跃通话提供服务的一个、所选择的一部分或所有实体发送消息,请求降低带宽使用量或者允许其增加带宽使用量。网络实体如网络管理实体140和/或通话控制实体150还可使用收集到的有关网络使用情况的信息来扮演“网守”的角色,在新通话开始时设定通话的带宽限制。
在收到有关允许使用更多带宽的消息后,在本发明的一个代表性实施例中,网络实体可调整每个出站语音分组中的编码语音数据量。本发明的一些代表性实施例可通过继续使用当前编码算法来完成这项操作,根据是允许使用更多的带宽还是限制所使用的带宽来增加或减少每个语音分组中语音帧的数量。在本发明的其他代表性实施例中,可选择不同的算法来对语音信息进行编码,以便进行传送。例如,当网络带宽使用量相对较高时,可使用具有更高压缩率和/或更大帧长度的编码算法;当网络带宽使用量相对较低时,可使用具有更低压缩率和/或更小帧长度的编码算法。可从任意可用标准所定义的编码算法或本文所描述的任何合适的编码算法中选择需要使用的编码算法。
为避免网络实体发送过多的消息以及进行过多的处理,本发明的一个代表性实施例使用一个或多个阈值来确定何时调整带宽使用和/或编码器算法。为避免产生过多的端到端路径延迟,本发明的一个代表性实施例可依据一些参数来调整打包方式,这些参数使得网络操作员能够对多种测量值如语音质量、端到端延迟和网络带宽使用量(本文只列举了三种测量值)的重要性设定权重和限制。本发明的一个代表性实施例使用系统管理员定义的或有关过去(一天中的某个时间、一周中的某一天、假日期间等)网络使用情况的历史数据,来调整操作参数和算法行为。需要再次注意的是,尽管本发明的代表性实施例主要描述的是处理语音信息、语音帧、语音编码、语音分组的组合方面的内容,但本文所介绍的技术还可应用到其他实时媒体流例如视频和多媒体中。
在本发明的一些代表性实施例中,可能不存在单独的网络实体如网络管理实体140或通话控制实体150。在这种情况下,网络实体如网关110或VoIP电话机126可执行网络管理实体140和通话控制实体150的功能,如上文所述的收集和分析网络带宽使用情况。在这种情况下,VoIP电话机如VoIP电话机126可向其他网络实体请求状态信息如带宽分配或使用情况,并使用收集到的信息和本文描述的参数来确定处理语音数据过程中使用的编码方式和打包算法。在本发明的一个代表性实施例中,所设置的分组长度和所使用的编码算法还可由通话路径上的几个网关或VoIP电话机共同使用,而无需使用图1中展示的单独的网络管理实体或通话控制实体。
图2A是依据本发明一实施例的包含单个语音帧220A的示范性语音分组200A的示意图。在图2A所示的实施例中,语音分组200A包括报头部分(HDR)210A,其中可包含源和/或目的地址信息、分组序列号信息和控制信息。根据分组网络102所使用的协议和所选择的协议选项,HDR 210A中还可包含其他信息内容。图2A中所示的语音分组200A还包含帧校验序列(FCS)290A,用于检测和/或纠正语音帧220A和/或报头部分210A中信息由传输过程中的毁损造成的误码。语音分组200A中的语音帧220A部分可包括语音信息,这些信息是根据多种不同的、基于标准的或适当的语音编码算法中的任一种进行数字化的,这些编码算法可包括那些使用压缩的算法,例如A-law、μ-law、G.729、G.731、增强型变速率编解码器(EVRC)、码激励线性预测(CELP)、代数码激励线性预测(ACELP)、自适应多速率(AMR),这里只列举了其中的一些。
图2B是依据本发明一实施例的包含第一语音帧220B、第二语音帧230B、第三语音帧240B和第四语音帧250B的示范性语音分组200B的示意图。尽管图2B所示的语音分组200B中展示了4个语音帧1220B、2230B 3240B和4250B,但是,在本发明的一个代表性实施例中,可向语音分组中装入更多或更少的语音帧。与图2A中语音分组200A相同,图2B中的语音分组200B包括报头部分(HDR)210B,其中可包含源和/或目的地址信息、分组序列号信息和控制信息,以及类似的信息。图2B中的语音帧200B还包含帧校验序列(FCS)290B,用于检测和纠正语音帧1220B、2230B 3240B和4250B,和/或报头部分210B中由传输过程中的毁损造成的误码。如图2所示,语音分组200B中的语音帧1(220B)、2(230B)3(240B)和4(250B)可包含语音信息,这些语音信息是根据任意可用的或基于标准的语音编码算法包括上文所描述的算法进行数字化的。
图3是依据本发明一实施例的以不会使网络超负荷的方式降低分组语音网络上电话通话的端到端延迟的示范性方法的流程图300。现在将参考图1中描述的示范性VoIP电话系统100来描述本方法的流程图300。但是本领域的技术人员应当明白,本发明还可应用在任意分组语音系统中。
本方法的流程图300开始于步骤302,网络管理实体140监视一个或多个参数,这些参数用于指示分组网络102当前正在使用的带宽量。例如,网络管理实体140可监视这样一些参数,如网络设备(如路由器和服务器)正在处理的流量,或者通话控制实体150正在处理的活跃通话的数量,以此来确定带宽使用的情况。作为选择,从历史性思维的角度很容易发现,在一天中的某个时间(例如晚上)和一周中的某些天(例如周末),分组网络102的带宽使用量明显少于其他时间(例如工作日)。因此,在本发明的一个代表性实施例中,网络管理实体140可监视当前的时间和/或今天是这个星期的哪一天,以此来获取分组网络102当前的带宽使用量的指示。但是,这些实施例并非限制性的,本领域的技术人员应当明白,还可以监视能够指示分组网络102当前带宽使用量的其他参数。
在步骤304,网络实体例如网络管理实体140可基于所监视的参数来判断带宽使用量是否发生了变化。例如,网络管理实体140可基于网络设备正在处理的流量的变化或通话控制实体150正在处理的活跃呼叫的数量的变化来判断带宽使用量是减少还是增加了。在本发明的另一代表性实施例中,网络管理实体140可基于是否到达了一天中的某个时间或一周中的某些天,来判断带宽使用量是减少还是增加了。本领域的技术人员应当明白,还可通过监视其他参数来判断上述内容。
判断带宽使用量是否发生了变化包括判断带宽使用量是否增加或减少了预先确定的数量,或带宽使用量是否超出或低于预先确定的阈值。例如,判断上述内容的过程可基于评估带宽使用量当前是否超过或低于总网络容量的某一百分比。这种预先确定的数量和阈值可以是由网络(例如图1中的VoIP电话系统100)操作员进行调整的参数。
如果在步骤304确定带宽使用量未发生变化,则网络管理实体140将继续监视上述一个或多个用于指示分组网络102正在使用的带宽量的参数(图中箭头由步骤304返回步骤302)。然而,如果在步骤304确定带宽使用量发生了变化,则如步骤306所示,网络管理实体140向通话控制实体150发出通知。
在步骤308,在收到通知之后,通话控制实体150可向通信连接到分组网络102的一个或多个电话设备发出通话控制消息。本步骤中所指的电话设备包括通信连接到分组网络102的用于将编码语音信号帧打包以便通过网络传送的设备。例如,参考图1,通话控制实体150可向VoIP电话机126、VoIP电话机128、网关110和网关112中的一个或多个发出通话控制消息。在本发明的一个代表性实施例中,通话控制实体150可向每个电话设备发出通话控制消息,通过该消息可维护通话状态,本实施例是非限定性的。
在步骤310,在收到通话控制消息后,接收该消息的每个电话设备都会将用于承载编码语音信号帧的分组的长度从第一分组长度改为第二分组长度。例如在一个代表性实施例中,若通话控制消息是由于检测到带宽使用量下降才生成的,则接收该通话控制消息的每个电话设备都将降低用于承载编码语音信号帧的分组的长度。这种改变可包括,例如降低分组中承载的帧的数量,以便使每个分组所承载的载荷为5毫秒长的编码语音信号,而不是10、20或30毫秒长的编码语音信号。但是,本实施例为非限定性的,本领域的技术人员应当明白,其他降低后的载荷长度也是适用的。例如,在本发明的一个代表性实施例中,可改变用于编码语音信号的编码算法,以此来替代上述方法,或者与上述方法结合使用。
通过以这种方式来降低分组的长度,本发明的一个代表性实施例能够降低在通过分组网络102发送前必须积累和打包的编码数据的数量,从而降低VoIP电话通话的端到端延迟。然需,应当注意,通过上述方式降低分组长度的同时,会导致分组的报头过大,使得大量的传输带宽被消耗或“浪费”在传输分组报头信息,而不是编码语音的过程中。本发明的一个代表性实施例可通过这样一种方法来解决这一问题,即只有确定分组网络102的带宽使用量降低了特定数量或者降低到特定的水平时,才降低分组的长度,以便使网络能够适应传输带宽的消耗。带宽使用量降低的数量或带宽使用水平可以用作管理分组通信系统(例如图1中的VoIP电话系统100)行为的一个参数。
在本发明的另一代表性实施例中,在步骤310,若通话控制消息是由于检测到带宽使用量的增加才生成的,则接收该通话控制消息的每个电话设备都会增加用于承载编码语音信号帧的分组的长度。这种改变可包括例如增加分组中能够承载的帧的数量,以便使每个分组所承载的载荷为10、20或30毫秒长的编码语音信号,而不是5毫秒长的编码语音信号。但是本发明为非限定性的,本领域的技术人员应当明白,其他增加后的载荷长度也是适用的。
通过以这种方式增加分组的长度,本发明的一个代表性实施例能够避免生成具有过大报头的分组,这样便不会将大量的传输带宽浪费在传输分组报头信息而不是编码语音的过程中。然而,如上所述,以这种方式增加分组的长度会增加在通过分组网络102发送之前需要积累和打包的编码数据的数量,从而增加VoIP电话通话的端到端延迟。本发明的一个代表性实施例可通过这样一种方法来解决这一问题,即只有确定分组网络102的带宽使用量增加了特定数量或者增加到特定的水平时,才增加分组的长度,即避免不必要的传输带宽消耗比防止VoIP电话通话端到端延迟增加具有更高的优先级。带宽使用量增加的数量或增加后达到的水平(即到达该水平后需要改变分组的长度)是可由系统操作员调整的参数。
尽管本发明是参考图1中的示范性VoIP电话系统100和图3中的流程图300进行描述的,本领域的技术人员应当明白,本发明并非仅限于这些实现方式。例如,尽管所示的VoIP电话系统100只包含一个分组网络102,但本领域的技术人员应当明白,VoIP电话系统可包括多个分组网络,可使用一个或多个网络管理实体来监视一个或多个分组网络的带宽使用量,以此来实施本发明。本领域的技术人员还应明白这里所介绍的技术和方法同样适用于其他格式的实时媒体如视频和多媒体信息。
此外,如上文所述,本发明的一个代表性实施例通过这样一种方式来工作,即在带宽使用量很低时在VoIP电话通话中使用降低的分组长度,而在带宽使用量很高时使用增加的分组长度。用于增加或降低指定电话设备中分组长度的命令和逻辑与所使用的协议有关。在本发明的一个代表性实施例中,需要向分组网络中的双方终端都发出通话控制命令,以便改变所使用的分组的长度。而在本发明的另一代表性实施例中,只需要向其中一个终端发出通话控制命令即可。
在参考图3所介绍的本方法的流程图300中,网络管理实体140自动监视用来指示分组网络102中带宽使用量的一个或多个参数。然而,在本发明的另一实施例中,网络管理实体140仅仅将这一个或多个参数提供给系统管理员。系统管理员会监视这一个或多个参数,然后判断带宽使用量是否发生了变化。如果系统管理员确定带宽使用量发生了变化,则其向通话控制实体150发出通知。在通知发出后,将会执行图3中的步骤308和步骤310。
尽管在流程图300的方法中,网络管理实体140在检测到带宽使用量变化时会向通话控制实体150发出通知。但在本发明的另一代表性实施例中,网络管理实体140可以不像图3中步骤306中描述的那样,向通话控制实体150发出通知,而是向一个或多个电话设备直接发出通话控制消息。在发出通话控制消息后,将会执行图3中的步骤310。
图4是依据本发明一实施例操作语音分组终端(例如图1中的VoIP电话机126、128)的示范性方法的流程图400,用于以不会使网络超负荷的方式降低分组语音网络上电话通话的端到端延迟。现在将参考图1中描述的示范性VoIP电话系统100来描述本方法的流程图400。但是本领域的技术人员应当明白,本发明还可应用在任意分组语音系统中。
本方法的流程图400开始于步骤410,实体如图1中的VoIP电话机126和128其中的一个可确定分组网络的负载,这是通过从实体如网络管理实体140接收消息来实现的,网络管理实体140能够监视用于指示分组网络102当前带宽使用量的一个或多个参数。例如,网络管理实体140可监视这样一些参数,如网络设备(如网关、路由器和服务器)正在处理的流量,或者通话控制实体如通话控制实体150正在处理的活跃通话的数量,以此来确定带宽的使用量。作为选择,如上文参考图3所做的描述,从历史性思维的角度很容易发现,在一天中的某个时间(例如晚上)和一周中的某些天(例如周末),分组网络102的带宽负载量(也就是带宽使用量)明显少于其他时间(例如工作日)。因此,在本发明的一个代表性实施例中,网络管理实体140可监视当前的时间和/或今天是这个星期的哪一天,以此来获取分组网络102当前的带宽使用量的指示。网络管理实体140会通知分组网络(如分组网络102)的其他设备当前的或历史网络负载或带宽使用量,以便这些设备能够选择适当的分组语音操作特性。该通知将发往例如通话控制实体例如图1中单独的通话控制实体150,或执行通话控制实体150功能的另一网络设备。通话控制实体150可使用这些信息来选择适当的语音分组长度,并将所使用的语音分组长度通知给设备如网关110、112或VoIP电话机126、128。如上文所述,本领域的技术人员应当明白,还可监视多种能够指示分组网络102当前带宽使用量的参数。应当明白,网络管理实体140和通话控制实体150无需是分开设置的独立设备,也无需设置在图1所示的示范性网络架构中。在不脱离本发明范围的前提下,所执行的功能可以合并到其他网络实体中,以及以多种方式设置在VoIP电话系统100中的其他位置,例如设置在网关(如网关110、112)或电话机(VoIP电话机129、128)中。
再来看图4,在步骤412,网络管理实体140可基于分组网络102的当前带宽使用量设定初始的语音分组长度。在步骤414,分组语音终端例如VoIP电话机126和128判断是否需要检查分组网络的负载(也就是带宽使用量)情况。若确定需要检查分组网络的负载情况,则在本发明的一个代表性实施例中,在步骤416,将使用从分组网络实体如网络管理实体140收到的信息,来评估带宽使用量。随后,在步骤418,将判断当前语音分组长度对于分组网络的负载情况来说是否合适。这个判断过程可使用来自网络实体如网络管理实体140的、有关合适的语音分组长度的信息。例如,网络管理实体140和/或通话控制实体150可基于网络设备正在处理的流量或通话控制实体150正在处理的活跃通话的数量方面的变化来判断带宽使用量是降低了还是增加了。在本发明的另一代表性实施例中,网络管理实体140和/或通话控制实体150可基于当前时间是否到达一天中的某个时段或者一个星期中的某一天来判断带宽使用量是降低了还是增加了。网络管理实体140和/或通话控制实体150可基于观察到的分组网络带宽使用量或负载量来确定更大或更小的语音分组长度更为合适。在本发明的一个代表性实施例中,有关分组网络负载或带宽使用量的信息,或优选的语音分组长度将发往分组网络中的其他设备如网关110、112或VoIP电话机126、128。如上所述,本领域的技术人员应当明白,还可选择监视很多其他网络参数来确定语音分组的长度。
在步骤418,如果确定当前语音分组长度是合适的,则网络实体例如网关110、112或VoIP电话机126、128将继续使用而不改变语音分组长度。在这种情况下,在步骤422,语音分组终端例如VoIP电话机126、128将继续收集数字化语音信息。在步骤424,VoIP电话机126、128根据当前语音分组长度将出站数字化语音信息打包,在步骤426,VoIP电话机126、128将出站语音分组发往远端。在步骤428,判断语音通话是否结束。如果语音通话已经结束,则图4中的方法结束。然而,如果语音通话尚未结束,则图4中的方法返回步骤414,再次判断是否需要检查分组网络的负载(也就是带宽使用量)情况,本过程继续按上文所述进行。
然而,如果在步骤418确定当前的语音分组长度不再合适,则在步骤420,VoIP电话机126、128将基于有关分组网络负载情况的信息或由网络管理实体140、通话控制实体150确定的语音分组长度或VoIP电话机126、128其中一方或双方确定的语音分组长度来调整所使用的语音分组长度。如果网络实体如网络管理实体140和/或通话控制实体150、网关110、112或VoIP电话机126、128确定需要改变语音分组的长度,则网络实体会向参与到语音通话中的其他设备发送信息,以进行这种改变。在经过步骤420调整完语音分组长度之后,从步骤422开始,VoIP电话机126、128将使用新近调整过的语音分组长度继续处理数字化语音信息。
图5是依据本发明一实施例的示范性VoIP电话机500的结构示意图。图5中的VoIP电话机500可对应例如图1中的VoIP电话机126、128。如图5所示,VoIP电话机500包括处理器520、网络接口510、存储器530、麦克风/发射器540、扬声器/接收器550、显示器560和键盘570。处理器520可以包括通用或数字信号处理器(例如可由多个提供商提供的处理器),或出现在信号和分组处理设备(如由博通公司制造的此类设备)中的处理器。网络接口510可将处理器520工作连接到分组网络如图1中的分组网络102,该网络可包括使用IEEE 802.3、IEEE 802.11a/b/g/n、IEEE 802.16和IEEE 802.15.3A标准的有线或无线的基于分组的网络。
存储器530工作连接到处理器520,该存储器可包括适当的随机访问存储器、只读存储器和/或读写存储器,例如静态或动态RAM、ROM、EPROM、EEROM、EAROM和适当类型的闪存,这里仅列举了几个例子。存储器530可用于存储可执行代码、数据分组、运行参数以及类似的内容。例如,存储器530可包含可执行指令,用于控制处理器520执行图3和图4中描述的示范性方法中的步骤。
声音可由麦克风/发射器540转换为模拟电信号,由处理器520或工作连接到处理器520的电路(未示出)转换为数字形式。在一种补充方式中,代表音频信号的数字信息可由处理器520或工作连接到处理器520的电路(未示出)转换为模拟电信号,转发给扬声器/接收器550转换为声音。
显示器560可用于从处理器520向VoIP电话机500的用户提供反馈和指令,同时用户输入可由键盘570捕捉到,然后通过处理器520进行处理。
图6是依据本发明一实施例的示范性网关600(对应例如图1中的网关110、112)的结构示意图。如图6所示,网关600包括处理器620、网络接口610、存储器630和混合器680。处理器620可包括例如通用或数字信号处理器(例如可由多个提供商提供的处理器),或出现在信号和分组处理设备(如由博通公司制造的此类设备)中的处理器。
网络接口610可将处理器620工作连接到分组网络如图1中的分组网络102,该网络可包括使用IEEE 802.3、IEEE 802.11a/b/g/n、IEEE 802.16和IEEE802.15.3A标准的有线或无线的基于分组的网络。
存储器630工作连接到处理器620,该存储器可包括适当的随机访问存储器、只读存储器和/或读写存储器,例如静态或动态RAM、ROM、EPROM、EEROM、EAROM和适当类型的闪存,这里仅列举了几个例子。存储器630可用于存储可执行代码、数据分组、运行参数以及类似的内容。例如,存储器630可包含可执行指令,用于控制处理器620执行图3和图4中描述的示范性方法中的步骤。
混合器680用于与公共交换电话网(PSTN)模拟线690收发音频电信号。处理器620通过网络接口610从分组网络605接收包括语音帧的语音分组,该语音帧中包含数字化音频信息(也就是数字化语音)。对语音分组解包,生成数字语音数据,然后由处理器620或工作连接到处理器620的电路(未示出)将其转换为模拟电信号。在一种补充方式中,通过混合器680从PSTN 690接收到的模拟电信号将由处理器620或工作连接到处理器620的电路(未示出)转换为数字形式。处理器620随后将数字音频数据组合为语音帧,装入语音分组中,然后通过网络接口610发往分组网络605。
尽管在图5和图6的描述中,是由多个单独的元件来执行上文描述的功能的,但这仅是出于描述清楚的目的,并不代表对本发明的某些限制。在不脱离本发明范围的前提下,图5和图6中所描述的元件可合并为多个功能组,并以多种方式执行上文所描述的功能。
本发明的多个代表性实施例可用于降低分组语音网络例如VoIP网络上电话通话的端到端延迟,而不会使网络超负荷或要求增加网络容量。特别的,依据本发明的系统和方法允许使用较小的帧长度和分组长度以一种不会使网络超负荷或要求增加网络容量的方式在网络上传送语音帧。
本发明的一个实施例可自适应的在网络带宽使用量较低时使用降低的分组长度来传送VoIP电话通话,而在网络带宽使用量较高时使用增加的分组长度。通过自适应的降低分组长度,本发明的一个实施例能够降低通过分组网络发送前需要积累和打包的编码数据的数量,从而降低VoIP电话通话的端到端延迟。然而,降低分组的长度还会造成分组具有过大的报头,这样就使大量的传输带宽消耗在或“浪费”在传送分组报头信息而不是编码语音上。本发明的一个实施例使用这样一种方法来解决这一问题,即只有在分组网络的带宽使用量经确定已降低了特定数量或降低到特定的水平时,才降低分组的长度,以便使网络能够适应传输带宽的消耗。
通过自适应的增加分组的长度,本发明的一个实施例能够避免生成具有过大报头的分组,这样就可避免将大量的传输带宽浪费在传输分组报头信息而不是分组语音上。然而,通过这种方式增加分组长度会增加通过分组网络传输前需要积累和打包的编码数据的数量,从而增加VoIP电话通话的端到端延迟。本发明的一个实施例通过这样一种方法来解决这一问题,即只有当分组网络的带宽使用量增加了特定数量或增加到特定的水平时,才增加分组的长度,即避免不必要的传输带宽消耗比防止VoIP电话通话端到端延迟增加具有更高的优先级。
根据本发明一个实施例的方法包括监视用于指示分组语音网络上带宽使用量的一个或多个参数,根据监视的结果,判断分组语音网络上的带宽使用量是否发生了变化,当分组语音网络的带宽使用量发生变化时,向电话设备发出命令,在电话设备收到命令后,将用于承载与电话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。
依据本发明一个实施例的系统包括网络监视实体和通话控制实体。网络监视实体经配置后监视用于指示分组语音网络带宽使用量的一个或多个参数,根据监视的结果,判断分组语音网络的带宽使用量是否发生变化,当分组语音网络的带宽使用量发生变化时发出通知。通话控制实体经配置后接收并响应上述通知,将用于承载与电话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。
依据本发明一个实施例的另一系统包括网络监视实体和电话设备。对网络监视实体进行配置,使其监视用于指示分组语音网络带宽使用量的一个或多个参数,根据监视的结果,判断分组语音网络的带宽使用量是否发生变化,当分组语音网络的带宽使用量发生变化时发出命令。对电话设备进行配置,使其接收并响应上述命令,将用于承载与电话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。
本发明提供了一种方法,可通过一种不会使分组网络超负荷的方式降低分组网络上通话的端到端延迟。这种方法可包括监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,并根据监视的结果,判断分组网络相对较大的第一部分的带宽使用量是否发生改变。本方法还包括,当分组网络相对较大的第一部分的带宽使用量发生变化时,向分组网络相对较小的第二部分中的多个设备中的每一个发出至少一个命令。在本发明的一个代表性实施例中,该命令可控制分组网络相对较小的第二部分中的这些设备将用于承载与电话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。
在本发明的一个代表性实施例中,监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,可包括监视分组网络相对较大的第一部分中设备正在处理的流量。在本发明的一个代表性实施例中,监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,可包括监视分组网络相对较大的第一部分中通话控制实体正在处理的活跃通话的数量。监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,可包括监视当前天中的当前时间,还包括监视当前星期中的当前天。
在本发明的一个示范性实施例中,判断带宽使用量是否发生改变包括当带宽使用量降低时,将用于承载与通话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度,这进一步包括降低分组的长度。降低分组的长度包括将每个分组中用于承载的编码语音信号载荷的长度从10、20和30毫秒其中之一降低到5毫秒。判断带宽使用量是否发生改变包括当带宽使用量增加时,将用于承载与通话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度,这进一步包括增加分组的长度。增加分组的长度包括将每个分组中用于承载的编码语音信号载荷的长度从5毫秒增加到10、20和30毫秒其中之一。
在本发明的一个代表性实施例中,向多个设备发出至少一个命令包括向电话机和网关中的一个发出命令,还包括向通话控制实体发出通知,该通知控制通话控制实体向多个设备发出至少一个命令。在本发明的一个代表性实施例中,分组网络包括分组语音网络。
本发明还提供了一种包含网络监视实体的系统。可对该网络监视实体进行配置,使其监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,并根据监视的结果,判断分组网络相对较大的第一部分的带宽使用量是否发生改变。还可对网络监视实体进行配置,用于在分组网络相对较大的第一部分的带宽使用量发生变化时,向分组网络相对较小的第二部分中的多个设备中的每一个发出通知。本系统还包括一个通话控制实体,对该通话控制实体进行配置,使其接收并响应上述通知,将用于承载与分组网络相对较小的第二部分中的电话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,可包括分组网络中设备正在处理的流量,还可包括通话控制实体正在处理的活跃通话的数量。指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,可包括当前天中的当前时间,以及当前星期中的当前天。
在本发明的一个代表性实施例中,可对网络监视实体进行配置,使其判断带宽使用量是否降低,并在带宽使用量降低时发出通知。可对通话控制实体进行配置,使其接收并响应上述通知,降低用于承载与电话通话相关联的编码语音信号帧的分组的长度。还可对通话控制实体进行配置,通过将每个分组中承载的编码语音信号载荷的长度从10、20和30毫秒其中之一降低到5毫秒,来降低用于承载与电话通话相关联的编码语音信号帧的分组的长度。还可对网络监视实体进行配置,使其判断带宽使用量是否增加,并在带宽使用量增加时发出通知。可对通话控制实体进行配置,使其接收并响应上述通知,增加用于承载与电话通话相关联的编码语音信号帧的分组的长度。还可对通话控制实体进行配置,通过将每个分组中承载的编码语音信号载荷的长度从5毫秒增加到10、20和30毫秒其中之一,来增加用于承载与电话通话相关联的编码语音信号帧的分组的长度。
依据本发明的一种系统可包括一个或多个电话设备和通话控制实体,可对通话控制实体进行配置,使其向一个或多个电话设备发出通话控制命令,将用于承载与电话通话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。所述一个或多个电话设备可包括电话机和网关中的至少一个。分组网络可包括分组语音网络。
本发明的另一方面提供了一种系统,包括网络监视实体,对该网络监视实体进行配置,使其监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数。还可对该网络监视实体进行配置,使其根据监视的结果,判断分组网络相对较大的第一部分的带宽使用量是否发生了改变,并且当分组网络相对较大的第一部分的带宽使用量发生改变时发出命令。本系统还包括一种设备,对其进行配置,使其接收并响应上述命令,将用于承载与分组网络相对较小的第二部分中的电话相关联的编码语音信号帧的分组的长度从第一分组长度改变为第二分组长度。该设备可包括电话机和网关其中之一。分组网络可包括分组语音网络。
本发明还提供了一个或多个电路,用于以一种不会使分组网络超负荷的方式降低分组语音网络上的端到端延迟。这一个或多个电路可包括至少一个接口,用于在分组语音网络上交换语音分组,其中每个语音分组中包含一定数量的语音帧。这一个或多个电路还可包括工作连接到上述至少一个接口的至少一个处理器,用于确定分组语音网络相对较大的第一部分的带宽使用量,并基于所确定的带宽使用量,在每个语音分组中装入一定数量的语音帧。所述至少一个处理器还可用于将包含一定数量的语音帧的语音分组进行组合,将组合后的语音分组通过上述至少一个接口在所述分组网络相对较小的第二部分上传送。上述的确定过程可包括通过上述至少一个接口接收将要装入每个语音分组中的一定数量的语音帧,监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数,基于这一个或多个参数选择装入每个分组中的语音帧的数量。这一个或多个参数可包括下列参数中的一个或多个:分组网络中相对较大的第一部分中某个设备正在处理的流量、通话控制实体正在处理的活跃语音通话的数量、分组网络中相对较大的第一部分的带宽使用量,当前天中的当前时间和当前星期中的当前天。
本发明可以通过硬件、软件,或者软、硬件结合来实现。本发明可以在至少一个计算机系统中以集中方式实现,或者由分布在几个互连的计算机系统中的不同部分以分散方式实现。任何可以实现所述方法的计算机系统或其它设备都是可适用的。常用软硬件的结合可以是安装有计算机程序的通用计算机系统,通过安装和执行所述程序控制计算机系统,使其按所述方法运行。在计算机系统中,利用处理器和存储单元来实现所述方法。
本发明还可以通过计算机程序产品进行实施,所述程序包含能够实现本发明方法的全部特征,当其安装到计算机系统中时,通过运行,可以实现本发明的方法。本文件中的计算机程序所指的是:可以采用任何程序语言、代码或符号编写的一组指令的任何表达式,该指令组使系统具有信息处理能力,以直接实现特定功能,或在进行下述一个或两个步骤之后实现特定功能:a)转换成其它语言、编码或符号;b)以不同的格式再现。
本发明是通过几个具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或具体情况,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (10)

1.一种以不会使分组网络超负荷的方式最小化所述分组网络上通话的端到端延迟的方法,其特征在于,所述方法包括:
监视一个或多个用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数;
基于所述监视结果,判断所述分组网络所述相对较大的第一部分的带宽使用量是否发生变化;
当所述分组网络所述相对较大的第一部分的带宽使用量发生变化时,向所述分组网络相对较小的第二部分中多个设备中的每一个发出至少一条命令;
所述命令控制所述分组网络所述相对较小的第二部分中至少所述多个设备,将用于承载与通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度。
2.根据权利要求1所述的方法,其特征在于,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视所述分组网络相对较大的第一部分的设备正在处理的流量。
3.根据权利要求1所述的方法,其特征在于,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视通话控制实体正在处理的活跃通话的数量。
4.根据权利要求1所述的方法,其特征在于,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视当天的当前时刻。
5.根据权利要求1所述的方法,其特征在于,监视用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括监视当前星期的当前天。
6.一种系统,其特征在于,包括:
网络监控实体,用于监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数;并基于所述监视结果,判断所述分组网络所述相对较大的第一部分的带宽使用量是否发生变化;以及当所述分组网络所述相对较大的第一部分的带宽使用量发生变化时,发出通知;
通话控制实体,用于接收并响应所述通知,将用于承载与所述分组网络所述相对较小的第二部分中的通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度。
7.根据权利要求6所述的系统,其特征在于,所述用于指示所述分组网络相对较大的第一部分的带宽使用量的一个或多个参数,包括所述分组网络相对较大的第一部分的设备正在处理的流量。
8.一种系统,其特征在于,包括:
网络监控实体,用于监视用于指示分组网络相对较大的第一部分的带宽使用量的一个或多个参数;并基于所述监视结果,判断所述分组网络所述相对较大的第一部分的带宽使用量是否发生变化;以及当所述分组网络所述相对较大的第一部分的带宽使用量发生变化时,发出命令;
用于接收所述命令的设备,所述设备响应所述命令,将用于承载与所述分组网络所述相对较小的第二部分中的通话相关联的编码信号帧的分组的长度从第一分组长度修改为第二分组长度。
9.根据权利要求8所述的系统,其特征在于,所述设备包括电话机和网关二者中的一个。
10.以不会使分组网络超负荷的方式降低分组语音网络端到端延迟的一个或多个电路,其特征在于,所述一个或多个电路包括:
至少一个接口,用于在所述分组语音网络上交换语音分组,其中每个语音分组中包含一定数量的语音帧;
至少一个处理器,与所述至少一个接口工作相连,用于:
确定所述分组语音网络相对较大的第一部分的带宽使用量;
基于所确定的带宽使用量,选择一定数量的语音帧装入每个语音分组中;
将包含所选数量语音帧的语音分组组合起来;
通过所述至少一个接口在所述分组网络中相对较小的第二部分上传送所述组合的语音分组。
CNA2007101470767A 2006-09-13 2007-08-31 最小化分组网络上通话的端到端延迟的方法、系统和电路 Pending CN101146041A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/520,085 2006-09-13
US11/520,085 US8391166B2 (en) 2006-09-13 2006-09-13 Adaptive packet size modification for voice over packet networks

Publications (1)

Publication Number Publication Date
CN101146041A true CN101146041A (zh) 2008-03-19

Family

ID=38850620

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101470767A Pending CN101146041A (zh) 2006-09-13 2007-08-31 最小化分组网络上通话的端到端延迟的方法、系统和电路

Country Status (5)

Country Link
US (2) US8391166B2 (zh)
EP (1) EP1901495A1 (zh)
KR (1) KR20080024972A (zh)
CN (1) CN101146041A (zh)
TW (1) TWI373235B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617891A (zh) * 2018-12-26 2019-04-12 北京数码视讯技术有限公司 码流传输方法及装置
CN109729552A (zh) * 2017-10-27 2019-05-07 成都鼎桥通信技术有限公司 语音传输方法和装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718040B2 (en) * 2004-12-29 2014-05-06 Agere Systems Llc Method and apparatus for adaptive bandwidth utilization in a digital network
US8391166B2 (en) 2006-09-13 2013-03-05 Broadcom Corporation Adaptive packet size modification for voice over packet networks
JP4240331B2 (ja) * 2006-11-02 2009-03-18 ソニー株式会社 送信装置および方法、プログラム、並びに通信システム
KR100927469B1 (ko) * 2007-08-29 2009-11-19 포항공과대학교 산학협력단 Ieee 802.16/와이브로 시스템의 ugs 클래스
US9009343B2 (en) * 2007-12-18 2015-04-14 Verizon Patent And Licensing Inc. Managing unused media streams
US7782802B2 (en) * 2007-12-26 2010-08-24 Microsoft Corporation Optimizing conferencing performance
US20100027560A1 (en) * 2008-07-29 2010-02-04 At&T Intellectual Property I, L.P. System and method for service mitigation in a communication system
US8335857B1 (en) * 2009-05-21 2012-12-18 Sprint Communications Company L.P. System and methods of data transmission to devices
US8289870B2 (en) * 2009-09-23 2012-10-16 Avaya Inc. Priority-based, dynamic optimization of utilized bandwidth
US8565143B2 (en) * 2009-10-16 2013-10-22 At&T Mobility Ii, Llc Dynamic content distribution in mobile telecommunications network
US9178724B2 (en) * 2009-12-10 2015-11-03 Nec Corporation Gateway apparatus, relay method, program, femto system
US8856350B2 (en) 2010-09-07 2014-10-07 Microsoft Corporation Efficient connection management and data synchronization
EP2690830B1 (en) * 2011-03-22 2017-09-20 Fujitsu Limited Parallel computer, communication control device and method of controlling communication
US9716635B2 (en) * 2012-09-14 2017-07-25 Facebook, Inc. Content prioritization based on packet size
EP2879339A1 (en) 2013-11-27 2015-06-03 Thomson Licensing Method for distributing available bandwidth of a network amongst ongoing traffic sessions run by devices of the network, corresponding device.
US10412016B2 (en) * 2014-01-30 2019-09-10 Salesforce.Com, Inc. Streaming information based on available bandwidth
JP2017028660A (ja) * 2015-07-28 2017-02-02 株式会社リコー 情報処理装置、画像表示方法、通信システム、プログラム
KR101644402B1 (ko) * 2015-12-24 2016-08-01 주식회사 파이오링크 고속의 ssl 처리를 위해서 레코드 길이를 제어하는 방법 및 장치
CN110827838A (zh) * 2019-10-16 2020-02-21 云知声智能科技股份有限公司 一种基于opus的语音编码方法及装置
US11451485B2 (en) * 2020-03-27 2022-09-20 At&T Intellectual Property I, L.P. Dynamic packet size adaptation to improve wireless network performance for 5G or other next generation wireless network

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771391A (en) 1986-07-21 1988-09-13 International Business Machines Corporation Adaptive packet length traffic control in a local area network
US5425051A (en) * 1992-11-09 1995-06-13 Norand Corporation Radio frequency communication network having adaptive parameters
US20010050943A1 (en) * 1989-08-03 2001-12-13 Mahany Ronald L. Radio frequency communication network having adaptive communication parameters
US6477143B1 (en) 1998-01-25 2002-11-05 Dror Ginossar Method and apparatus for packet network congestion avoidance and control
US6370163B1 (en) 1998-03-11 2002-04-09 Siemens Information And Communications Network, Inc. Apparatus and method for speech transport with adaptive packet size
US6477164B1 (en) * 1998-03-27 2002-11-05 Clarent Corporation System and method for real-time data and voice transmission over an internet network
US6421720B2 (en) * 1998-10-28 2002-07-16 Cisco Technology, Inc. Codec-independent technique for modulating bandwidth in packet network
US7236462B2 (en) * 1999-10-04 2007-06-26 General Electric Company Method for data exchange with a mobile asset considering communication link quality
US6621793B2 (en) * 2000-05-22 2003-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Application influenced policy
ATE484906T1 (de) 2000-08-04 2010-10-15 Alcatel Lucent Verfahren für echtzeit daten-kommunikation
US6965562B2 (en) * 2000-12-14 2005-11-15 Nokia Networks System and method for managing a network to sustain the quality of voice over internet protocol communications
US7787447B1 (en) * 2000-12-28 2010-08-31 Nortel Networks Limited Voice optimization in a network having voice over the internet protocol communication devices
US7274684B2 (en) * 2001-10-10 2007-09-25 Bruce Fitzgerald Young Method and system for implementing and managing a multimedia access network device
EP1372300A1 (en) 2002-06-10 2003-12-17 Alcatel Adapting packet length to network load for VoIP communications
US7283541B2 (en) * 2002-07-30 2007-10-16 At&T Corp. Method of sizing packets for routing over a communication network for VoIP calls on a per call basis
EP1643788B1 (en) * 2004-09-30 2017-06-14 Samsung Electronics Co., Ltd. Method and apparatus for supporting voice service through radio channel in mobile telecommunication system
US8391166B2 (en) 2006-09-13 2013-03-05 Broadcom Corporation Adaptive packet size modification for voice over packet networks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729552A (zh) * 2017-10-27 2019-05-07 成都鼎桥通信技术有限公司 语音传输方法和装置
CN109729552B (zh) * 2017-10-27 2022-03-25 成都鼎桥通信技术有限公司 语音传输方法和装置
CN109617891A (zh) * 2018-12-26 2019-04-12 北京数码视讯技术有限公司 码流传输方法及装置

Also Published As

Publication number Publication date
US20080062877A1 (en) 2008-03-13
TW200830796A (en) 2008-07-16
KR20080024972A (ko) 2008-03-19
US8391166B2 (en) 2013-03-05
EP1901495A1 (en) 2008-03-19
TWI373235B (en) 2012-09-21
US20130142037A1 (en) 2013-06-06
US8830865B2 (en) 2014-09-09

Similar Documents

Publication Publication Date Title
CN101146041A (zh) 最小化分组网络上通话的端到端延迟的方法、系统和电路
EP1353462B1 (en) Jitter buffer and lost-frame-recovery interworking
JP4074633B2 (ja) VoIP端末のRTPメディアパケット処理装置及び処理方法
KR100501324B1 (ko) 음성 품질 예측값을 이용한 보이스 오버 인터넷프로토콜에서의 콜 라우팅 방법
US7746847B2 (en) Jitter buffer management in a packet-based network
US6175871B1 (en) Method and apparatus for real time communication over packet networks
US8018853B2 (en) Using RTCP statistics for media system control
US6298057B1 (en) System and method for reliability transporting aural information across a network
US7773511B2 (en) Generic on-chip homing and resident, real-time bit exact tests
EP1349344A2 (en) Late frame recovery method
US9258348B2 (en) Applying a variable encoding/decoding scheme in a communication network
US8787196B2 (en) Method of providing voice over IP at predefined QOS levels
US7298736B1 (en) Method of providing voice over IP at predefined QoS levels
US7542465B2 (en) Optimization of decoder instance memory consumed by the jitter control module
Chin et al. An Internet telephone software system for real-time voice communication
Yoo et al. A media stream processing of VoIP media gateway
EP2127268A1 (en) Transmission of real-time user data frames in packets
CN102100057A (zh) 数字电信系统、用于管理此类系统的程序产品和方法
Foo et al. An approach to real-time voice communications over the Internet
Agrawal et al. To improve the voice quality over IP using channel coding
PEZELJ et al. WTFC BASED INTEGRATION OF VOICE AND DATA TRAFFIC
OäEGOVIĆ et al. WTFC BASED INTEGRATION OF VOICE AND DATA TRAFFIC
De Vleeschauwer et al. Quality Issues for Packet-based Voice Transport

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1119501

Country of ref document: HK

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1119501

Country of ref document: HK

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20080319