CN101126673B - 一种装配和测试封闭容器的方法 - Google Patents

一种装配和测试封闭容器的方法 Download PDF

Info

Publication number
CN101126673B
CN101126673B CN2007101419328A CN200710141932A CN101126673B CN 101126673 B CN101126673 B CN 101126673B CN 2007101419328 A CN2007101419328 A CN 2007101419328A CN 200710141932 A CN200710141932 A CN 200710141932A CN 101126673 B CN101126673 B CN 101126673B
Authority
CN
China
Prior art keywords
signal
container
test
seepage
power measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101419328A
Other languages
English (en)
Other versions
CN101126673A (zh
Inventor
马丁·莱曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilco AG
Original Assignee
MARTIN LYMAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARTIN LYMAN filed Critical MARTIN LYMAN
Priority to CN2007101419328A priority Critical patent/CN101126673B/zh
Publication of CN101126673A publication Critical patent/CN101126673A/zh
Application granted granted Critical
Publication of CN101126673B publication Critical patent/CN101126673B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本发明提供了对具有至少一个挠性壁区的封闭容器进行渗漏试验的方法和仪器。将偏压件移动到该挠性壁区施加预定的压力,并随着时间推移对反作用力进行监测。

Description

一种装配和测试封闭容器的方法
此申请是国际申请日为2000年9月26日、中国申请号为00819910.8、国际申请号为PCT/CH00/00526的申请的分案申请。 
技术领域
本发明涉及对具有至少一个挠性壁区的封闭容器进行渗漏试验的方法,并涉及对具有这种挠性壁区的封闭容器进行渗漏试验的渗漏试验仪器,不涉及这种容器是否装有产品。 
背景技术
一种已知的测试封闭容器的技术方法是将要测试的容器放置到测试腔中,然后将测试腔密封起来,接着将测试腔内部所要测试容器的周围空间抽空,并在真空度达到预定水平之后,评价该容器周围空间中压力随时间的变化。虽然这种技术方法的精确度很高,但是达到这种高精确度必需非常小心仔细。测试腔的体积及其形状必须恰好符合所要测试容器的外部形状。一方面要使体积减到最小以相应地缩短抽真空的时间,另一方面体积减小的程度在很大程度上决定了所能达到的检测精度。当把容器周围空间的压力变化作为渗漏测试指标时,由于渗漏使压力受到影响的体积越小,测试精确度越高。 
此外,精确度在很大程度上还受容器周围空间的真空度影响,因此,为了达到高精确度,必须使用较为昂贵的真空泵,如果要使真空降至只有涡轮真空泵能达到的水平,甚至还要使用多级真空泵。 
发明内容
本发明的目的是提供一种如上所述的方法和仪器,它能弥补现有 的通过压力监测来进行渗漏试验技术中的缺点。这一目的是通过如上所述的渗漏试验方法来实现的,其包括步骤:使偏压件朝容器的挠性壁区作相对移动并到达容器的挠性壁区上,停止移动并监测所述容器上的偏压力。在第一时间点对所监测的偏压力进行取样而得到第一力测量信号,并在其后的至少一个第二时间点进行取样而得到第二力测量信号。将根据这两个测量信号产生的差异信号作为渗漏指示信号。 
因此,本发明的原理是,当偏压所要测试的容器时,会使这容器压缩或膨胀,作为容器膨胀或压缩反作用力的偏压力将作用在容器壁的外表面上。这种反作用力很容易监测。如果使这种偏压达到预定的水平然后停止,根据所达到的偏压水平,将监测到封闭容器恒定的反作用力。如果容器是有渗漏的,那么在容器的周围空间及其内部之间将发生介质交换,使得所监测到的反作用力随着时间的推移而减小。 
因此,这种技术的精确度基本上与试验时容器周围空间的体积无关,而主要是由偏压程度以及偏压容器反作用的力检测表面所决定。 
在本发明方法的优选实施例中,偏压达到预定的偏压力。 
在达到这一预定的偏压力后,建议在对第一和第二力测量信号分别进行取样之前,先等待一定的时间,而根据第一和第二力测量信号可产生差异信号。于是,在这段时间中,偏压容器的形状可以保持稳定。在实际操作的实施例中,试验中容器的偏压是根据所产生差异信号的变化来控制的,从而可使所述差异信号保持为预定值,并将偏压件的动作作为一种渗漏指示。于是,设立负反馈回路,其中偏压件可控制地反作用于所监测的力因渗漏而产生的变化,使得基本上不会有力的变化发生,因为偏压件通过适当的动作可以保持恒定的反作用力。 
在更优选的实施例中,偏压容器不是通过将外部表面相对移动到容器壁上实现的,而是在容器内部及其周围空间之间形成压差来实现的。所以在这种更优选的实施例中,压差是通过抽空容器周围空间来建立的。于是容器的挠性壁区具有向外弯曲的趋势,而如果这种向外 弯曲被容器外部的静止表面所阻挡,那么容器将以相应的力作用在这些表面上。可对这个力进行监测。 
在采用这种偏压方法时,为了避免有渗漏的壁区压在外部表面上时将容器的渗漏堵住,建议在容器壁偏压时所接触的表面区域中设置一种结构。这种结构可以通过在容器的壁区和外部表面之间加入网状或格状部件来实现,或者最好通过比如蚀刻或机械加工使外部表面变粗糙来实现。 
在还有一个优选实施例中,第一力测量信号被存储起来,而差异信号是根据所存储的第一力测量信号和第二测量信号产生的。 
在还有一个优选工作模式中,在第一时间点已根据存储的第一力测量信号和未存储的第一力测量信号产生差异信号。所得到的差异信号作为零点偏移信号存储起来,而后来产生的差异信号的零点偏移由所存储的该零点偏移信号补偿。 
为了及早检测到较大的渗漏,然后再检测较小的渗漏,还建议最迟在所述第一时间点取样时将所监测的偏压力与至少一个预定阈值作比较,这将导致确定非常大的泄漏,并最好进一步将差异信号与至少一个预定阈值作比较。 
根据本发明的渗漏试验仪包括用来使试验中的容器压缩或膨胀的偏压机构,还包括可应用在试验容器的器壁上并产生电输出信号的力检测计。力检测计的输出端连接到存储单元上,而存储单元的输出端连接到比较单元上。比较单元的第二输入端与力检测计的输出端相连。 
本发明尤其适合于容器都是挠性壁的装有比如糊状材料的所谓袋式容器进行渗漏试验。 
本发明涉及一种装配和测试具有至少一个挠性壁区的无渗漏的封闭容器的方法,所述方法包括以下步骤: 
对所述封闭容器进行装配和测试,所述装配和测试是串联进行,所述测试由渗漏试验实现,所述渗漏试验包括: 
使偏压件朝封闭容器的所述壁区相对移动并到达所述壁区上; 
停止所述移动; 
监测所述容器上的偏压力; 
在第一时间点对监测的所述偏压力进行取样,得到第一力测量信号; 
存储所述第一力测量信号; 
在其后的至少一个第二时间点对监测的所述偏压力进行取样,得到第二力测量信号; 
根据所述存储第一力测量信号和所述第二力测量信号产生差异信号作为渗漏指示信号; 
其中所述渗漏试验还包括: 
在所述第一时间点根据存储的所述第一力测量信号和未存储的所述第一力测量信号产生零点偏移信号, 
将所述零点偏移信号存储起来, 
并用存储的所述零点偏移信号补偿所述差异信号中的零点偏移; 
利用所述渗漏指示信号排除被认为渗漏的容器。 
通过阅读以下详细说明和所附权利要求书,本领域的专业人员更加清楚实现本发明方法和仪器的更多优选方式。 
附图说明
作为实例,以下附图中: 
图1示意性地示出了根据本发明方法工作的本发明仪器的第一个实施例,其中试验的容器是通过压缩进行偏压的,偏压件和力检测计布置在容器相对的侧面上; 
图2示出了根据图1的另一个实施例,其中容器放置在支座上,而偏压件和力检测计布置在与支座相对的容器侧面上; 
图3示意性地示出了图1和2本发明仪器和方法的另一个优选实施例,其中容器的偏压是通过抽空试验容器周围的空间来实现的; 
图4是定性的力与时间关系曲线图,说明由本发明仪器进行的本发明方法; 
图5是示意性的和简化的功能块/信号流程图,用来说明根据本发明方法工作的本发明仪器的一个实施例; 
图6以简化形式示意性地示出了本发明仪器中优先采用的存储和比较单元的优选方式; 
图7和8是实现图3所示本发明实施例并用来测试袋式容器的试验腔室的示意性透视图; 
图9和10示意性地示出了根据图3工作的测试腔的其它优选特征; 
图11a至11c是力信号与时间的关系曲线图,示出了本发明仪器实现本发明方法的优选形式; 
图12是功能块/信号流程图,用来说明进行图11a至11c所述测量的本发明仪器的实施例; 
图13是力信号与时间的关系曲线图,示出了相同类型的无渗漏容器在预定的偏压时间之后由于如制造误差而产生的偏压力统计分布; 
图14是简化的功能块/信号流程图,示出了本发明仪器和方法的另一个优选特征,用来在根据图12的实施例中产生自适应阈值; 
图15定性地示出了通过图14和16实施例实现的本发明仪器和方法中自适应变化阈值的时间曲线; 
图16示出了通过本发明优选仪器实现的本发明方法中用来自适应调整另一个参考值或阈值的实施例;和 
图17示意性地示出了用来串联安装与测试容器的串联设备。 
具体实施方式
图1示意性地示出了根据本发明的原理。进行渗漏试验的容器1中,器壁3的某个区域是挠性的。本发明的原理是,当对容器1进行 渗漏试验时,利用驱动装置7使偏压件5移动到容器1的器壁上,然后用力检测计9监测反作用力F并根据力F产生电信号Fel。如图2所示,在一种优选模式中,力检测计9直接连接到偏压件5上,驱动力检测计9和偏压件5相对容器1器壁移动到挠性区域3上,其中容器1置于比如底板11上。 
在如图3所示的另一个优选实施例中,用来使偏压件5和力检测计9的其中之一或力检测计和偏压件组合件5/9相对于容器1器壁的挠性区域3移动的驱动装置7实际上是由气动驱动装置来实现的。力检测计9和偏压件5在试验腔室13中保持静止。 
利用真空泵15将试验腔室13抽成真空,从而在容器1的周围空间和其内部之间产生压差Δp,该压差是从容器内部指向外部的。于是,挠性壁部分3向外弯曲并移动到力检测计9上,在此优选实施例中,力检测计9同时充当偏压件和力检测计。如虚线所示,还可以用带压气体源16对容器1加压,取决于容器1的器壁构造,使区域3向外弯曲。 
不管采用本发明的哪一种技术,即不管偏压件5以及力检测计9布置在哪里,也不管驱动装置7是由如图1或2所示的机械驱动装置或者通过图3所示的利用压差来实现,当容器1根据图1或2所示实施例被压扁或是根据图3所示优选实施例膨胀时,偏压件5朝容器1作相对移动并到达容器1上而偏压容器1,使得力检测计9检测到增大的力F。根据图4,从偏压件5接触到容器1器壁的时间t0开始,当偏压件5进一步压容器1的器壁时,反作用力F增加。在预定的时间t1之后使容器壁3和偏压件5的相对运动停止。如果容器是不渗漏的,容器器壁就不会有进一步的反应而达到形状的平衡,这样会产生恒定的反作用力F0。 
如果在受力状态下的容器发生如过程(b)所示的大渗漏LL,那么偏压件的偏压移动所引起的反作用力F根本无法达到F0,在t1-t0的时间间隔之后,力检测计9将测量或监测到小得多的力FLL。 
因此,根据本发明,如果将偏压件以预定的速率或速度移动到容器壁上,而在预定的时间间隔t1-t0之后达不到预定的力如F0,就可以检测出有大的渗漏LL。 
容器的这种行为最好是在比t1-t0更短的时间间隔后就已经检测出,因此就可以在容器所含物质被挤出或吸入到其周围空间中之前极早停止对容器进行偏压。所以,最好设置一更短的时间间隔tLL-t0,并在增加偏压此时间间隔之后检查是否达到预定阈值力,如图4中所示的FLL。如果按照偏压过程(b)而不能达到预定阈值力,应停止进一步偏压,并尽快使严重渗漏容器上没有任何的偏压。 
如果容器1不是严重渗漏,所监测到的反作用力F在增加偏压预定时间间隔t1-t0之后将按要求达到阈值F0,因而容器的渗漏情况只能在后来检测。 
在检查了是否有大的渗漏LL并在时间t1中止容器的进一步偏压之后,最好设置到达t2的预定时间间隔t2-t1,在此期间由容器1、偏压件5和力检测计9构成的系统达到平衡,比如容器形状的平衡。 
所以,在一种优选模式中,t2的最大值是根据tmax来设置的,于是有t2=tmax。对于试验的容器在偏压力作用下不经历比如体积变化的情况尤其是这样,不经历体积变化会使瞬变阶段的反作用力减小,而减小不是因为渗漏。 
在到达t2时或在t2之后,将所监测的反作用力F取样为F2并存储起来。在到达t3经过另一个时间间隔t3-t2之后,又将所监测的反作用力F取样为F3并与已存储的反作用力F2作比较。因此,F3和F2的差ΔF基本上可作为渗漏指示信号。 
如图4中进一步所示,还可以在容器1偏压的上升斜率时取样并存储力F2,然后在t1停止进一步偏压之后等待所监测的力F在下降斜率中重新到达根据F2的值,从而表示系统实际上已稳定。在这种情况下,时刻t2将由所监测的力F重新达到预置的存储值F2来限定。 
在图5中示意性地示出了本发明仪器的原理图,其工作过程可借 助于图4来说明。因此,对于已经介绍过的部件将使用与前面附图中相同的参考数字。在真空的试验腔室13中,放有所要测试的容器1。真空泵15由定时单元17控制操作。真空泵15最好以恒定和可调的速率抽空试验腔室13。 
力检测计和偏压件组合件9/5牢固地安装在试验腔室13中并最好相对和靠近容器1的挠性壁区3。力检测计9由于作用在区域3和力检测计/偏压件组合件9/5接触面之间的力而产生电信号S(F),该接触面如图中所示意性示出具有表面结构19,当区域3中的渗漏处正巧位于区域3与组合件9/5接触或将要接触处时,表面结构19可防止封闭区域3的渗漏。在试验腔室13的底部表面上最好设有相同的结构19a。 
如图中示意性所示,在时间tLL通过定时单元17的控制和开关装置SW1将信号S(F)输送至比较单元21,从而将时刻tLL的输出信号S(F)与预置在单元23中的大渗漏指示阈值S0(FLL)作比较。 
只要力信号S(F)在时刻tLL不能达到S0(FLL),输入端与S(F)相连的开关单元SW2就打开,从而通过控制单元25中止真空泵15对容器的进一步偏压。如果S(F)在时刻tLL至少达到阈值S0(FLL),那么就将信号S(F)输送到另一个开关单元SW3,并在时刻t2由定时单元17控制将信号取样并存储在存储单元27中。于是,在单元27中存储按照图4中力F2的值。存储单元27的输出信号被输送至比较单元28,并在时刻t3由定时单元17控制将信号S(F)的值F3也输送到比较单元28中。于是,比较单元28将时刻t2的力值与时刻t3的力值作比较。比较单元28的输出信号ΔF表示出试验中容器1除了大渗漏以外的渗漏情况,而大渗漏在前面已进行检测。 
除了直接评价比较单元28的输出信号之外,还可以根据比较单元28的输出信号的变化来控制偏压。于是,设立负反馈控制回路(未示出),其中比较单元28把根据存储单元27中所存储信号的额定值与即时信号S(F)作比较,作为负反馈控制回路中的调整单元的偏压 件使比较单元28的输出信号减到最小。因此,偏压件15的控制信号被用作渗漏指示信号。 
图6示出了图5中示意性表示的存储单元27和比较单元28的优选实现方式。 
组合件9/5中力检测计9的输出信号输入到转换单元121中,转换单元121包括作为输入级的模数转换器121a,其后是数模转换器121b。转换单元121的输出信号被输送至差分放大器123,差分放大器123另外还直接从力检测计9接收输出信号。图5中比较单元28的差分放大器123的输出信号作用到另一个放大器125上,放大器125的输出信号通过存储器127在128迭加到输入信号上。存储单元127的输入信号来自放大器125的输出端。与图5中定时单元17一样,定时单元129控制此结构。为了存储图5中力F2值的信号,在时刻t2定时单元129使单元121实现一个转换周期,于是在模拟输出端出现再转换的模拟输出信号el0(F2)。 
同时,来自力检测计9的基本上相同的信号S(F)作为信号el(F2)施加到单元123的第二输入端。于是,输出单元125将出现零信号。然而,单元125的输出端通常出现零点偏移信号,该信号由与图5中单元17类似的定时单元129控制存储在存储单元127中。在时刻t3(图55),单元121中没有触发转换,所以在放大器123的输入端出现直接来自力检测计9的t3时刻力F3值的信号,以及来自转换单元121的根据t2时力F2值存储的信号。而且,存储在存储单元127中的零点偏移信号现在作为偏移补偿信号迭加到单元123的输出端上,所以在放大器125输出端得到的信号被零点偏移补偿。使得对图4中力的差ΔF的测量能够非常精确。 
参考图1、2或3中的任何一个可以看出,即使利用真空来使容器的器壁偏压到力检测计上,试验腔室13的体积相对于所要测试容器的体积来说也不是十分重要的。在现有技术的渗漏测试装置中是评价压力的,而在本发明中是评价力的。当评价压力,如要测试容器周 围空间中的压力时,那么测量精度在很大程度上取决于试验腔室壁和容器壁之间所留的体积,因为所选择的中间体积越小,渗漏对中间体积中的压力影响就越大。根据本发明,通过偏压容器的器壁部分,使容器的器壁部分靠紧到力检测计上。向周围空间的渗漏将影响所测得的力,而与周围空间的体积以及试验腔室相对所要测试容器的相对体积无关。 
不过,为了缩短测试周期,如果偏压是通过图3的抽真空来进行的,那么建议使用相对于所要测试容器体积最小的试验腔室。 
根据图4中F0选定建立的偏压以及力和信号S(F),可以设定和选定测量水平。对于图3中的实施例,由于挠性壁部分弯曲时在力检测计和/或偏压件上的接触区域逐渐增大,所以建立较大的偏压压差Δp,使偏压力F超比例上升。这样可以放大根据图4所采用的信号ΔF。而且还可以大大提高整个测量系统的精度并能更加容易地确定评价信号的范围。 
在根据图3的一个优选实施例中,对装有某种物质的袋状容器进行测试。在图7和8中以简化形式示出了根据图3试验腔室13而专门设计的用来测试袋状容器的试验腔室或测试腔的两半部分。 
根据图7,底座30中设有形状基本上符合所要测试袋状容器34(虚线)的凹进部分32。举例来说,在底板30中设有一根或多根吸气管36,与当作真空泵15的抽气泵相连。 
图8中顶板37的构造与底板30类似,带有凹进部分38,当把顶板37放置在底板30上时,凹进部分38与凹进部分32一起形成试验腔室或测试腔。两块板30和37的底面40b和顶面40a一样大小并气密接合,如果有必要的话,可在凹进部分32/38周围设置相应的密封件。板30、37其中一个(或者也可以是两个)安装有力检测装置42,其较大的检测面44与测试腔的形状相配。力检测装置42最好根据电阻计的原理来工作,即对表面44加压,将根据压力乘以接触面积产生力,使电阻计测量元件轻微弯曲,从而产生图5的电信号S(F)。 
不过,显然也可以使用不同物理原理的其它力检测计,最好是使用机械运动最小的力检测计。因此,如可以使用压电力检测计。 
尤其是当由图7和8中两个凹进部分32和38构成的测试袋状容器的测试腔恰好符合所要测试容器1(袋状容器)的形状时,通过测量试验容器外部的阻抗,尤其是,可以得到有关大渗漏的额外信息,只要渗漏的容器中的液体物质被压出或吸出该容器,容器外部的阻抗都会发生变化。如图7的底板30而非图8的顶板37所示,可以将测试腔的内表面再分别设置导电电极44。电极中每隔一个电极44就与阻抗测量装置48的输入接头46相连,每个间中电极与输入接头49相连。阻抗测量装置48可以测量交流和/或直流阻抗,最好是测量直流阻抗。因此,只要容器如袋状容器34被偏压并有液体或糊状物质被压入测试腔中,不管上述根据图4和5的大渗漏测量结果如何,装置48中所测得的阻抗变化都将表示渗漏,且阻抗测量装置48的输出信号将停止容器进一步偏压。 
为了清洁测试腔,比如在渗漏的容器中的物质流出到测试腔中的情况下,可以在测试腔中设置其它管路或管道(未示出)并与液体和/或气体清洁介质如空气源连接,最好是氮气和/或带压液体冲洗介质,还可以在测试腔的侧壁中设置加热器(未示出)以干燥和另外对弄脏的测试腔进行清洁。 
现在将借助于图9和10来介绍一个十分重要的特征,不论系统是按照图1或2还是按照图3工作,都最好具备这一特征。 
不管是按照图10显示的图1或2的方式,还是按照图9所显示的图3的方式,只要待测容器1被偏压,至少容器的两个相对壁部,在图9和10中用51a和51b表示,将紧紧地压到偏压件/力检测装置上,或者更一般地来说,将紧紧地压到偏压件/力检测装置的表面上。当容器器壁的这一区域中发生渗漏时,这种渗漏可能会被该表面堵住。所以,如图9和10中示意性所示,容器偏压时容器壁压住的所有表面区域设有表面结构,使得表面只在个别的接触区域与容器1的 器壁接触,而与器壁的绝大部分不接触。这可以通过在相应的表面和容器1的壁部之间设置网状或格状部件来实现,或者可以通过比如蚀刻或喷砂使表面变粗糙来实现。图9和10中示意性示出的与相应的容器壁个别区域接触的机械接合点53是由相应表面的这种微观结构构成的。因此对于图7和9的实施例,建议用机械方法加工形成凹进部分32和38的各板30和37的表面,使其具有粗糙的微观结构。由此可以防止容器壁中的任何渗漏由于发生渗漏的容器壁区压到系统表面上而被堵住,不管这一表面是偏压件表面、力检测计表面还是测试腔表面的另一部分。 
图11a、11b和11c中示出根据本发明方法和仪器的优选方式测得的力与时间关系曲线,其中图11a表示有非常大的渗漏VGL,图11b表示有小的渗漏,而图11c表示容器无渗漏。将结合图12来介绍这些附图,图12中示出了一种优选的监控单元。 
按照图11a,图12中的定时单元201在时刻t10开始偏压试验的容器1,不论是根据图1或2还是根据图3中的实施例。按照图3中的实施例,定时单元201开始抽空测试腔13。 
这在图12中用偏压启动信号BIST/t10表示。 
在固定的预定时间ΔT之后,将力检测计的输出信号S(F)与预置在预置源107中的第一参考信号RFVGL作比较。为此,由定时单元201在时刻t10+ΔT启动比较单元102。 
如果在时间间隔ΔT之后,根据图12中电信号S(F)所实际监测到的力依照图11a中过程曲线I而没有达到值RFVGL,这就意味着有很大的渗漏VGL。这是在比较器109产生输出信号VGL时检测到的。如果根据图12的方块109中所示特性曲线,在时刻t11=t10+ΔT启动的该比较单元的输出信号假如仍处在高位值,就表示存在很大的渗漏VGL,这在VGL输出端输出。如果偏压力F依照图11a中的过程曲线II达到并超过参考水平RFVGL,就不会产生VGL输出信号。 
VGL信号最好能中止偏压周期,因为继续偏压只会导致将试验中 容器内的物质压入周围空间中。
如图11a中的过程曲线II所示,当VGL不发生时,继续偏压试验的容器至另一时刻t13。在时刻t13,定时单元201使偏压驱动停止,不论是利用图1和2中实施例的机械驱动装置7还是图3中实施例的真空泵15。 
此外,定时单元201的位置还启动比较单元111,由参考信号源113产生的另一参考值RFGL输送到比较单元111中。如果在时刻t13由力检测计检测到的力没有达到RFGL,那么比较单元111产生表示试验容器有大的渗漏GL的输出信号GL。在这里同样也要对测试系统的进一步工作作出一定的反应。 
如果信号VGL或GL中的任何一个由相应的比较器109、111产生,定时单元201就要被重置,因为测试已经完成且所测试容器1的质量已经被确定。这在图12中用信号RS201示意性表示。如果在时刻t13之后定时单元201没有被立即重置,由力检测计检测到的力的值S(F)(t13)将被存储在保持器或存储器117中。保持器或存储器117的输出信号被输送到差分形成单元119的一个输入端,而该单元119的另一个输入端与力检测计的输出信号S(F)相连。在一可预置的起始于时刻t13或起始于数据存储到存储器117中时刻的测试周期时间TT之后,力的差值信号ΔF被输送到经过测试时间TT而启动的另一个比较单元125中,如图12中单元121示意性所示。 
通过另一个参考值源127,参考值ΔFREF被输送到比较单元125中。如后面所要说明的,可以使ΔFREF的值可控制地随时间而变化,和/或还可以使ΔFREF所参考的参考值ΦR可控制地随时间而变化。 
如果信号ΔF在时刻t13+TT大于参考值ΔFREF,那么在单元125中会产生信号FL,表示试验的容器1存在细微的渗漏FL。这符合图11b所示的情形。如果信号ΔF没有达到ΔFREF,那么容器被认为是无泄漏的,因为信号VGL、GL和FL都没有产生。这符合图11c的情形。 
不管是根据图1、2和3中的哪一个实施例,如果按照图12产生了信号VGL,那么应立即停止进一步偏压。在使用真空泵15作为偏压驱动的图3实施例中,应立即将真空泵15与相应的试验腔室13断开。这是因为在有很大渗漏的情况下,真空泵15可能会被容器1的渗漏物质污染。 
在利用图3实施例的具有多个试验腔室的多箱串联测试系统中,当产生表示有大的渗漏的信号GL、甚至当产生表示有细微渗漏的信号FL时,最好停用或“旁路”有渗漏发生的试验腔室,以免与其他待测试容器继续试验,而其它腔室仍可工作并对新放入的容器进行测试。 
对于其中的容器已被确定为严重渗漏乃至轻微渗漏的试验腔室13,应将其旁路,以免影响该试验腔室中的其它测试结果,尤其是可防止与之连接的真空泵15由于渗漏容器中的物质被吸入泵内而损坏。在将渗漏的容器取出后,可在其它试验腔室继续进行测试周期时对旁路的试验腔室进行修复。 
可以通过加热试验腔室13、用液体和/或气体冲洗,最好是用氮气,尤其是加热气体冲洗来进行修复。 
从图11a和11b中可以看到,参考值RFGL的设置尤其是参考力差值ΔFREF的设置是十分关键的,并在很大程度上会影响到系统的精确度。所以,环境温度、容器的制造误差等因素会影响所测得的力曲线,而且如果这些关键的参考水平尤其是ΔFREF设置得不够精确的话将导致错误的结果。 
在图13中定性示出了图11a至11b曲线的偏压力曲线,但所测量的相同类型的容器已被证明是无渗漏的。这可以通过长期的实验和/或渗漏检测系统来得到,这些渗漏检测系统十分标准并具有非常高的精度,但是却很慢和/或非常昂贵。 
在时刻t13对封闭容器所测得的力的值稍有不同,并形成如图13所示的统计分布。于是具有平均值(RFGL)m。用在图12的比较器111 中或是图11a至11c的RFGL值是从(RFGL)m中减去偏移值ΔRFGL得到的。在对很多同样的容器进行测试时,这些容器的温度和制造误差可能是不同的。这些参数会缓慢变化并改变(RFGL)m。 
在多个连续试验中,每当在相应的时刻t13容器被确定为没有严重渗漏时,力检测计的实际输出信号送入如图14所示的求平均值单元130中,在那里不严重渗漏容器的最后m个实际力的值进行平均。所输出的平均结果信号符合图13中的(RFGL)m,并会因为同一类型容器的制造参数变化而随时发生变化。根据图13将偏移量ΔRFGL从输出的平均结果 
Figure GSB00000689365000151
中减去,从而得到动态变化的参考值RFGL,参考值RFGL施加到图12的比较单元111上。图15中定性示出了这种动态变化的参考值RFGL,其初始设置可借助于对无渗漏试验容器的测量来说明。 
从图15中可以清楚地看到,平均力值 (t13)现在也是ΔFREF所参考的基础。因此,如图12中所示,力差参考值ΔFREF并不是和绝对静态值如ΦR有关,而是和 
Figure GSB00000689365000153
有关。 
通过实现动态RFGL和基于该动态RFGL的ΔFREF的动态上限,还可以进一步提高精度。根据图16,在时间间隔TT的最后,只要输出信号FL表示试验中容器是无渗漏的,实际的力差异信号ΔF就被输送到求平均值单元135中。单元135的输出信号是在最后m个测试周期上求平均值的平均力差异信号 
Figure GSB00000689365000154
用ΔΔF进行偏移后,其结果被用作施加到图12中单元127上随时间变化的信号ΔFREF。 
回过头来看图15,图中使用了恒定的ΔFREF信号,而对ΔF求平均值的技术可得到如图中用曲线(ΔFREF)t示意性表示的动态变化值ΔFREF,它是根据影响这一力差的扰动参数的变化而变化。很明显,不必提供动态变化的基准值 通过(ΔFREF)t参考如图12所示用虚线表示的恒定值ΦR而不是动态变化的 
Figure GSB00000689365000156
值,就可以提供图15中所示的动态变化的(ΔFREF)t信号。 
很显然,上述一个或多个力检测计对输出信号S(F)的评价最好 是通过数字方式来进行的。 
图17中示出了串联设备,其中的容器的装配与测试一般是串联进行的。举例来说,首先对焊接台60上图7所示底板30中的袋状容器进行焊接,其中底板30用作载体和装配支座。在通过焊接装配好袋状容器之后,把由底板30构成的载体移动到加压台,在此把图8中的顶板37装配到底板30上。然后,将封闭起来的测试腔移动到测试台64上并进行根据本发明的测试。因此由焊接台60和/或加压台62和/或测试台64构成的系统相对于底板30的传送带66可以是静止的。不过,取决于操作过程所需要的时间,尤其是测试台64可以与传送带66一起移动预定的时间,使得测试过程与传送带66的速度无关。 
通过本发明的方法和仪器,提供了一种渗漏试验技术,可以达到与评价压力的渗漏试验技术相同的精度,但技术要求却低得多。根据本发明使容器偏压比在这种容器周围建立完全真空要简单得多,而且测量偏压力也比要精确地测量容器周围空间中真空压力随时间变化容易很多。与本发明中采用的力测量相比,在真空测量中有更多未知和无法控制的因素会影响测量实体即真空压力。在真空测量技术中测量水平的设置会在很大程度上影响真空泵方面的费用,而设置偏压力和使偏压力变化要省事很多。 
本发明的方法和仪器尤其适合于测试袋状容器,但显然也可以用来测试各种容器直至很大的罐,只要其器壁部分是挠性可弯曲的。本发明可以在带有多个试验台的串联设备中实施,这些试验台比如可以布置在具有很高输送能力的圆盘传送带上。 

Claims (18)

1.一种装配和测试具有至少一个挠性壁区的无渗漏的封闭容器的方法,所述方法包括以下步骤:
对所述封闭容器进行装配和测试,所述装配和测试是串联进行,所述测试由渗漏试验实现,所述渗漏试验包括:
使偏压件朝封闭容器的所述壁区相对移动并到达所述壁区上;
停止所述移动;
监测所述容器上的偏压力;
在第一时间点对监测的所述偏压力进行取样,得到第一力测量信号;
存储所述第一力测量信号;
在其后的至少一个第二时间点对监测的所述偏压力进行取样,得到第二力测量信号;
根据存储的所述第一力测量信号和所述第二力测量信号产生差异信号作为渗漏指示信号;
其中所述渗漏试验还包括:
在所述第一时间点根据存储的所述第一力测量信号和未存储的所述第一力测量信号产生零点偏移信号,
将所述零点偏移信号存储起来,
并用存储的所述零点偏移信号补偿所述差异信号中的零点偏移;
利用所述渗漏指示信号排除被认为渗漏的容器。
2.根据权利要求1所述的方法,还包括偏压所述壁区达到预定偏压力的步骤。
3.根据权利要求2所述的方法,其特征在于,在达到所述预定偏压力和进行所述取样前之间设置时间间隔。
4.根据权利要求1所述的方法,还包括根据所述差异信号的变化来控制所述偏压件,使所述差异信号保持预定值并将所述偏压件的相应动作作为渗漏指示的步骤。
5.根据权利要求1所述的方法,还包括通过在所述容器的内部和周围空间之间形成压差来进行所述移动的步骤。
6.根据权利要求5所述的方法,还包括通过抽空所述周围空间来形成所述压差的步骤。
7.根据权利要求1所述的方法,还包括给在所述容器偏压时与所述壁区接触的表面区域设一种表面结构的步骤,使得表面只在个别的接触区域处与所述壁区接触并与所述壁区的绝大部分不接触。
8.根据权利要求1所述的方法,还包括最迟在所述第一时间点取样时,将监测的所述偏压力与至少一个预定阈值作比较的步骤。
9.根据权利要求1所述的方法,还包括将所述差异信号与至少一个预定阈值作比较的步骤。
10.根据权利要求1所述的方法,还包括在所述第一时间点启动模数转换器进行转换来进行所述存储所述第一力测量信号的步骤。
11.根据权利要求10所述的方法,还包括将所述模数转换器的数字输出信号再转换为模拟信号,并用再转换的所述模拟信号产生所述差异信号的步骤。
12.根据权利要求1所述的方法,还包括在所述壁区或至少靠近所述壁区处进行阻抗测量,通过用直流电流的电阻测量进行所述阻抗测量,并根据所述阻抗测量的结果使或不使所述偏压件进一步移动朝向和到达所述壁区上。
13.根据权利要求1所述的方法,还包括用电阻计监测所述偏压力的步骤。
14.根据权利要求1所述的方法,还包括在不迟于所述第一时间点的第三时间点对所监测的所述偏压力进行取样而得到第三力测量信号,将所述第三力测量信号与预置的阈值信号作比较,如果所述第三力测量信号不能达到所述阈值信号便产生大渗漏指示信号。
15.根据权利要求1所述的方法,还包括为所述容器提供测试腔,并在其中的容器检测出有渗漏之后,清洁所述测试腔,所述清洁用氮气进行冲洗,和/或用液体冲洗,和/或通过加热来进行。
16.根据权利要求1所述的方法,还包括在一组测试腔中串联测试一系列所述容器的步骤,而且还包括当某一测试腔中所测试的容器已被证明为达到预定渗漏量后,中止所述测试腔中的测试至少一个测试周期。
17.根据权利要求1所述的方法,还包括以下步骤:
以预定速率使所述偏压件朝所述壁区移动并到达所述壁区上;
通过在所述移动的预定时间之后监测所述偏压力,并检测监测的所述偏压力是否已达到第一预定阈值来判别大渗漏。
18.根据权利要求1所述的方法,还包括使所述偏压件以恒定的速率朝所述壁区移动并到达所述壁区上。
CN2007101419328A 2000-09-26 2000-09-26 一种装配和测试封闭容器的方法 Expired - Fee Related CN101126673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101419328A CN101126673B (zh) 2000-09-26 2000-09-26 一种装配和测试封闭容器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101419328A CN101126673B (zh) 2000-09-26 2000-09-26 一种装配和测试封闭容器的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008199108A Division CN100342225C (zh) 2000-09-26 2000-09-26 对封闭容器进行渗漏试验的方法和仪器

Publications (2)

Publication Number Publication Date
CN101126673A CN101126673A (zh) 2008-02-20
CN101126673B true CN101126673B (zh) 2012-08-15

Family

ID=39094753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101419328A Expired - Fee Related CN101126673B (zh) 2000-09-26 2000-09-26 一种装配和测试封闭容器的方法

Country Status (1)

Country Link
CN (1) CN101126673B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694052C1 (ru) * 2019-05-13 2019-07-09 Михаил Иванович Голубенко Лизиметр

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756184A (en) * 1987-03-12 1988-07-12 General Mills, Inc. Apparatus and method for seal testing flexible containers
US4862732A (en) * 1987-10-19 1989-09-05 Benthos, Inc. Leak testing
CN1258351A (zh) * 1997-05-26 2000-06-28 马丁·莱曼 泄漏测试的方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756184A (en) * 1987-03-12 1988-07-12 General Mills, Inc. Apparatus and method for seal testing flexible containers
US4862732A (en) * 1987-10-19 1989-09-05 Benthos, Inc. Leak testing
CN1258351A (zh) * 1997-05-26 2000-06-28 马丁·莱曼 泄漏测试的方法与装置

Also Published As

Publication number Publication date
CN101126673A (zh) 2008-02-20

Similar Documents

Publication Publication Date Title
CN100342225C (zh) 对封闭容器进行渗漏试验的方法和仪器
CN100442038C (zh) 泄漏测试的方法与装置
AU2000272661A1 (en) Method and apparatus for leak testing closed containers
CN112326110B (zh) 一种基于压力-力值转换的高低温正弦压力校准装置
CN101126673B (zh) 一种装配和测试封闭容器的方法
CN101126670A (zh) 对封闭容器进行渗漏试验的方法和仪器
US6840087B2 (en) Method and apparatus for leak testing closed containers
CN101126671A (zh) 对封闭容器进行渗漏试验的方法和仪器
CN101126672A (zh) 对封闭容器进行渗漏试验的方法和仪器
CN110412460A (zh) 一种气体密度继电器校验装置及其校验方法
CN111141424B (zh) 差分电容式压力检测装置
US4254657A (en) Gas detector and meter employing indicator tubes
CN112326111A (zh) 一种高低温正弦压力校准装置
CN100444310C (zh) 一种质量流量控制器在线校验的方法
CN101398323A (zh) 不浸水测量复杂形状物体体积的方法
RU2344396C2 (ru) Способ испытания на герметичность закрытых контейнеров и устройство для его осуществления
KR200487790Y1 (ko) 바라트론 게이지의 출력 특성을 갖는 열전대 게이지 컨트롤러
SU1427193A1 (ru) Устройство дл контрол герметичности эластичных изделий
CN113670540A (zh) 电池下线检测电解液泄漏的检测方法
SU1640567A1 (ru) Устройство дл измерени суммарной негерметичности
CN104483457A (zh) 基于波峰焊或回流焊的氧分析仪及其易换传感器更换方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: WILCO AG

Free format text: FORMER OWNER: LEHMANN MARTIN

Effective date: 20140519

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140519

Address after: Swiss Warren

Patentee after: Wilco AG

Address before: The Swiss Wolunao Faenza, No. 1 Bill Street

Patentee before: Martin Lehmann

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120815

Termination date: 20160926