CN101113745A - 流体压式致动装置 - Google Patents
流体压式致动装置 Download PDFInfo
- Publication number
- CN101113745A CN101113745A CNA2007101409487A CN200710140948A CN101113745A CN 101113745 A CN101113745 A CN 101113745A CN A2007101409487 A CNA2007101409487 A CN A2007101409487A CN 200710140948 A CN200710140948 A CN 200710140948A CN 101113745 A CN101113745 A CN 101113745A
- Authority
- CN
- China
- Prior art keywords
- actuator
- air
- interior pipe
- forearm
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Actuator (AREA)
Abstract
一种流体压式致动装置,具有内管和覆盖该内管的外周的网状套筒,通过向内管内供给压力流体而能够使长度收缩;这种本发明的改良的流体压式致动装置,在内管和网状套筒之间配置有低摩擦体,该低摩擦体为编织细的纤维并具有弹性力的筒状体。该低摩擦体,可实现流体压式致动装置的反复伸缩动作的长寿命化。该改良的流体压式致动装置,可作为CPM装置的驱动用致动装置使用,使所述CPM装置通过所组合的多个部件中的至少1个部件来支撑人体的四肢部位,同时,使该部件动作而实现残疾人关节的复原。
Description
本申请是申请号200480008062.1,申请日2004年3月12日,发明名称为“流体压式致动装置及使用该装置的持续的被动运动装置”的申请的分案申请。
技术领域
本发明涉及一种通过空气等流体的供给和排出而被驱动的流体压式致动装置和使用该装置的持续的被动运动(Continuous Passive Motion:下面,称为CPM)装置。
背景技术
作为流体压式致动装置,已知的有在橡胶制管(内管)的外周,用不具有伸缩性的树脂制造的网状被覆体(网状套筒)进行被覆的流体压式致动装置。如果通过向该流体压式致动装置的内管内供给空气而使内管膨胀,则网状套筒的直径增大。该网状套筒的直径的增大,是由于网状套筒的素材不具有伸缩性,因此,致动装置的长度被转换为缩小。伴随该致动装置的长度的缩小而得到收缩力(驱动力)。
将树脂制的网状套筒和橡胶制的内管作为主要构成要素的上述流体压式致动装置,与具有金属制的缸筒或缸杆的气缸相比,具有显著轻量的特点。从而,上述流体压式致动装置被人们期待在将上述特征作为必要的广阔的技术范围内的应用。
作为上述流体压式致动装置的用途,可以列举人的肌肉(muscle)或残疾人的复原(rehabilitation)机器。其中,作为残疾人的复原机器,可以考虑用于由于长期治疗而萎缩的上肢或下肢的关节的复原机器。
然而,在以往的关节用复原机器上,例如在公开于特开2000-051297号公报中的复原机器上使用了诸如马达那样的致动装置,但由于马达作为驱动源组装在机器内,因此,复原机器变得大而且重。从而,从残疾人本身要移动操作复原机器的观点上讲,存在问题。因此,期待在残疾人的复原机器上应用空气压式致动装置。
但是,本发明的发明人等实验的结果表明,如果反复伸缩上述以往的流体压式致动装置,例如,反复伸缩数百次,则通过供给流体(空气)而膨胀的内管的局部会从网状套筒的网眼露出,从而导致内管的损坏。另外,如果反复使用上述流体式致动装置,则在内管上会产生破裂,或网状套筒的网眼状纤维会断开。
防止如上所述的流体式致动装置的损坏或实现长寿命化的技术思想公开在美国专利第4,733,603号公报(以下,称为先行技术文献1),或特开平61-236905号公报(以下,称为先行技术文献2)中。在先行技术文献1中公开有以下的技术,即,为了减少流体式致动装置的内管和网状套筒之间的摩擦,向具有扩张性的柔软材料层填入网眼状被覆体而形成网状套筒,同时,在内管和所述层状网状套筒之间设置开了孔的摩擦降低层。在该先行文献中记载了所述摩擦降低层可减少由管和层状网状套筒之间的摩擦而引起的扩张时的阻力。
然而,在上述先行文献记载的流体式致动装置中存在着以下所述的问题,即,必须将网眼状体填入柔软材料层来制造网眼套筒,进而,将开有多个孔的摩擦降低层被覆在内管,因此,结构变得复杂且价格高。
另外,在先行技术文献2中公开有将网状套筒用橡胶状弹性材料、即被覆部件覆盖,同时,使该被覆部件进入网状套筒的网眼的缝隙的技术。
然而,如上述先行技术文献2记载的技术,存在以下所述的问题,即,由于只在如上所述地构成的网状套筒和内管之间涂布脱模剂,因此,可能因内管和网状套筒之间的摩擦而导致在短期间内内管的损坏,需要解决流体式致动装置的长寿命化。
发明内容
本发明的第1目的是提供结构简单且动作寿命长的流体式致动装置。
进而,本发明的第2目的是提供使用上述本发明的流体式致动装置的CPM装置,即,身患有四肢或其一部分具有后天性障碍的残疾人用的复原装置用CPM装置。
为了实现上述第1目的,本发明的流体压式致动装置,其特征在于,具有:通过供给排出流体而进行膨胀收缩的内管、覆盖所述内管的外周的网状套筒、和低摩擦体,该低摩擦体是在所述内管和所述网状套筒之间用细纤维编织为具有伸缩性的低摩擦体,该低摩擦体覆盖所述内管。
还有,其特征在于,所述低摩擦体,对所述网状套筒的摩擦系数比对所述内管的摩擦系数小。
所述摩擦体,优选使用将聚氨酯芯纤维和尼龙纤维组合的合成纤维编织为无连接点的筒状并具有伸缩性的部件。
另外,所述合成纤维,优选的粗度大致为40旦尼尔。
为了实现第2目的,本发明的CPM装置,其特征在于,具有:基座部件;转动部件,该转动部件,以能够转动的方式连结在该基座部件上,通过相对所述基座部件进行转动,进行被安装或被支撑的人体的关节运动;和设置在所述基座部件上并包括向所述转动部件供给动力的致动装置的第1关节运动机构,所述致动装置具有:通过供给排出流体而进行膨胀收缩的内管、覆盖所述内管的外周的网状套筒、和低摩擦体,该低摩擦体是在所述内管和所述网状套筒之间用细纤维编织为具有伸缩性的低摩擦体,该低摩擦体覆盖所述内管。
所述致动装置,为了使所述转动部件相对基座部件在规定角度范围内进行往复运动而设置多个,根据所述转动部件的转动方向,向这些致动装置供给排出空气。
本发明的CPM装置,可以在所述转动部件上设置有附加关节运动机构,所述附加关节运动机构,对于通过该转动部件运动的部位和该部位的前端的部位进行独立或复合的关节运动。
还有,所述附加关节运动机构包括第2关节运动机构、第3关节运动机构和第4关节运动机构中的2个以上的关节运动机构;所述第2关节运动机构,与所述转动部件共同设置,进行在通过该转动部件而运动的部位和其前端的部位之间的关节的运动;所述第3关节运动机构,使通过该转动部件而运动的部位和其前端的部位同时进行内外旋转运动;所述第4关节运动机构,设置在所述基座部件和所述转动部件之间,并进行通过所述转动部件从支撑的部位向原始部位的关节运动;可以将这些关节运动机构择一地或复合地组装在所述CPM装置上使用。
附图说明
图1是表示本发明的流体式致动装置的第1实施例的结构的图,而且是表示供气状态的图。
图2是表示图1所示的流体式致动装置的排气状态的图。
图3是网状套筒的局部放大图。
图4是表示本发明的流体式致动装置的第2实施例的结构的图,而且是表示供气状态的图。
图5是图4所示的流体式致动装置的内管的外观图。
图6是图5所示的内管的排气状态下的横截面图。
图7是图5所示的内管的排膨胀状态下的横截面图。
图8是内管的其他实施例的排气状态下的横截面图。
图9是表示本发明的CPM装置的整体构成的外观图。
图10是本发明的CPM装置的第1实施例的俯视图。
图11是图10的下侧的侧视图。
图12是图10的上侧的侧视图。
图13是本发明的CPM装置的第2实施例的俯视图。
图14是表示图13所示的CPM装置的支撑部件的转动状态的图。
图15是表示所述支撑部件的摇动机构的结构的图。
图16是表示所述支撑部件的摇动动作的图。
图17是本发明的CPM装置的第3实施例的主视图。
图18是表示图17中的空气致动装置的动作的图。
图19是表示本发明的CPM装置的第4实施例的主要部结构的图。
图20是图19的俯视图。
图21是图20的左视图。
图22是图20的右视图。
具体实施例
下面,对作为本发明的特定发明的流体式致动装置的实施例使用附图进行说明。
图1是表示本发明的、使用空气作为流体的流体式致动装置的实施例1在膨胀状态的侧视图,图2是表示图1的流体式致动装置的收缩状态的侧视图。而且,在图1中,为了表示空压式致动装置的内部结构,用虚线表示网状套筒及低摩擦体的局部。
在图1及图2中,在作为膨胀收缩体的内管1的长度方向上的一端部,连接有将作为流体的空气对内管1内供给、排出的供气排气管2。在内管1的另一端部,通过插入衬套(省略图示)而进行气密性封闭。在供给排气管2上,连接着由小型空气压缩机和电磁阀等构成的空气供给排气装置(省略图示)。
在内管1的外周,覆盖着网眼状的被覆体,即网状套筒3。该网状套筒3是编织对于负荷延伸极小的树脂制品,例如,是将尼龙或聚酯纤维等高抗拉纤维等的线材(纤维)编织而成,其网眼是与网状套筒3的长度方向保持规定的角度而从2个方向交叉地编织。上述的网状套筒具有以下所述的特性,即,如果承受来自内周的压力,则向径向膨胀而长度收缩,如果压力被释放,则直径和长度恢复到原始的状态。相比所述先行技术文献1公开的网状套筒的纤维之间在交叉点是粘接的这一点,本实施例中的网状套筒是纤维之间在交叉点不进行粘接。其区别在于,参考技术文献中公开的网状套筒,由于在每次运行时在纤维的交叉点产生应力而有损坏的危险,但在本实施例中的网状套筒在交叉点上,纤维之间是没有粘接,不存在由于上述应力而从纤维之间的交叉点开始破坏网状套筒的问题。但是,本发明并不排除先行技术文献1中记载的纤维之间的交叉点粘接的网状套筒。
网状套筒3的长度方向上的两端部,由紧固件4a、4b紧固,由此固定在内管1的两端部。
在内管1和网状套筒3之间,设置有对网状套筒的摩擦系数比对内管1的还小的低摩擦体5。低摩擦体5配置为覆盖整个内管1,用紧固件4a、4b与网状套筒3一同在内管1的两端部固定在内管1上。低摩擦体5是在收缩时具有与在内管套筒1收缩时大致相同的外径的周长的筒状体,作为低摩擦体5的材料,可以使用例如用在长袜等中的能够伸缩的布料。这样的布料,是通过编织在例如聚氨酯的芯纤维里掺入尼龙纤维的合成纤维而构成为能够伸缩的结构,其对编织树脂制纤维的网状套筒的摩擦系数,比对丁基橡胶或硅胶制的内管的摩擦系数小。而且,若使低摩擦体5使用具有以上特性的纤维,则希望使用公知的用长袜的编织技术而制造的没有连接点的筒状体。
在这样的空压式致动装置中,虽然通过对内管供给空气而使内管1膨胀,但网状套筒3的原材料不被拉伸(因为几乎不具有伸缩性),而内管1的直径的增大转换为全长的缩短。另外,通过从内管1排出所供给的空气而使内管1的直径变小,致动装置的全长恢复为原来状态。
在这样膨胀、收缩时,由于在内管1和网状套筒3之间设置有低摩擦体5,因此,内管1和网状套筒3不直接发生摩擦,能够防止由于少量反复操作而导致内管1上产生破裂或网状套筒3的纤维断开。从而,能够实现空压式致动装置对反复操作的耐久性,换而言之可长寿命化。
图3表示网状套筒3的局部的放大图。网状套筒3是将多条聚乙烯纤维6的捆状编织成网眼状而构成。另外,网状套筒3具有足够多的聚乙烯纤维6的条数,即,通过充分提高配置密度而构成为眼小的网眼结构。由此,防止由于空气的供给而膨胀的内管1的局部从网状套筒3的网眼中露出,从而能够提高内管1的耐久性。
本发明人为了确认所述以往技术中的问题,而对将网状套筒由网眼大的结构构成的情况和网眼小的结构构成的情况进行了耐久性试验。在该耐久性试验中,作为网眼大的第1试验体,使用具有144条聚乙烯纤维的网状套筒,作为网眼小的第2试验体,使用具有288条聚乙烯纤维的网状套筒。另外,将两者的编织方法设为相同,两者都将不向内管供给空气的初始状态的直径形成为大约15mm,供给空气后由内压将直径扩大到30mm。进而,作为试验用的网状套筒,使用了用于保护或捆扎电线的可变直径网状套筒。进而,另外在该试验中,没有使用低摩擦体。
其结果,第1试验体,耐压力为0.3Mpa,长度的收缩率为25%,在反复施加负荷的情况下,容许伸缩次数为200~300次,而第2试验体,耐压力为0.7Mpa,长度的收缩率为30%,在反复施加负荷的情况下,容许伸缩次数为7,000~20,000次。如果再稍微详细说明该试验结果,则在第1试验体中,发现伴随伸缩次数的增加而在内管的两端部附近网眼的大小变大,在膨胀时内管从网眼中露出的现象。对此,在第2试验体中,即使反复使用,网眼的大小也不会在网状套筒的整个长度方向上变化,反复进行了均匀的膨胀收缩。
从该试验可知,如果将网状套筒的网眼设置得粗大,则即使供给到内管的空气的压力小,也能够保持致动装置的收缩率大,但是由于内管从网状套筒的网眼中露出或网状套筒破损,因此,致动装置的寿命短。
其次,为了确认本发明的效果,用与上述的试验相同的第2试验、和将所述低摩擦体5组装在第2试验体上的第3试验体进行了耐久性的比较试验。作为试验用的低摩擦体,利用了市售的袜子(纤维粗度为40旦尼尔)的局部。
其结果,第2试验体,耐压力为0.7MPa、长度的收缩率为30%,在反复施加负荷的情况下,容许伸缩次数为7,000~20,000次,而第3试验体,耐压力为0.7MPa、长度的收缩率为30%,在反复施加负荷的情况下,容许伸缩次数为80,000~400,000次。从这样的比较试验也可知,通过组装低摩擦体而能够提高致动装置的耐久性。
在以上的实施例中,如果向致动装置送入空气,则使内管向径向膨胀,向内管的周方向产生拉伸应力。因此,内管从网状套筒的网眼间露出。接下来的第2实施例的空压式致动装置,在使致动装置动作时不在内管的周方向上产生拉伸应力。
图4是表示本发明的第2实施例中的空压式致动装置的侧视图,图5是图4的内管的立体图,图6是图5的内管的横截面图,图7是图5的内管的排膨胀状态的横截面图。还有,在图4中,为表示致动装置的内部结构而局部剖表示了网状套筒的一部分。
在图中,作为膨胀收缩体的内管11,其结构为在从收缩状态转化为膨胀状态的过程中,保持相同的表面积,同时,由管围成的区域的截面积增大。即,在内管11上,以等间隔在管的周方向上设置多个在收缩时向内侧凸出的多个褶状部11a。在内管11膨胀时,通过如图7所示地扩大褶状部11a而增大由管11围成的区域的截面积。
内管11与如图1所示的实施例相同,由例如丁基橡胶或硅橡胶等具有伸缩性的弹性体构成。内管11的外周,由作为网眼状的被覆体的网状套筒3覆盖。网状套筒3的构成与实施例1相同。
还有,在该例中,内管11膨胀时的截面周长(图7中的圆周长)为内管11的截面周长(外接于图6中的截面外接圆的周长)的2.2倍以内。
其次,对本实施例2中的动作进行说明。通过向内管11内供给空气,使内管11的表面积不产生变化,而使由内管11围成的区域的截面积增大。即,在本实施例2的内管11中,在膨胀时,以保持截面的外周长相同而由内管11围成的截面积增大的方式使内管的截面形状变化。还有,由于这样的内管11的膨胀而使致动装置的全长缩小,从而在致动装置的两端之间产生驱动力。为了实施本实施例,只要将网状套筒3和内管11的关系设定为在内管11如图7所示地使全部的褶部伸开而使内管11的截面呈圆形时使致动装置只缩小期望的长度即可。
由于全长缩小的致动装置是通过从内管11排出空气而使内管11恢复为如图6所示的截面形状,因此,恢复为原始的长度。
在本实施例2中的空压式致动装置可以不利用内管11的弹性,换而言之,不在管的周方向上产生拉伸应力而能够使管膨胀。从而,不存在内管11从网状套筒3的网眼中露出。从而,减少了在内管11上产生损伤,而且该损伤在膨胀时扩大的现象。另外,由于在膨胀时对内管11不作用拉伸应力,因此,即使对内管反复作用拉伸应力,也能防止内管产生塑性变形,从而能够稳定地保持内管11的特性。所以,提高了内管11的耐久性,因此,实现致动装置的长寿命化。
进而,根据本实施例2,由于内管只膨胀所供给的空气的份额,因此,致动装置产生的力的特性近似于线形,另外,由于如上所述地在内管上不产生塑性变形,因此,也减少滞后损耗,故能够提高致动装置的伸缩控制的精度。
还有,在上述实施例2中,虽然以将内管11的表面积保持相同的方式对空气的供给进行了控制,但只要在内管11的材质的弹性变形的范围内,则也可以使内管11的表面积从图7中的状态增大到某种程度为止的程度供给空气。在这种情况下,也由于在内管11的膨胀过程中的大部分过程,在内管11上不产生拉伸应力,因此,能够提高内管11的耐久性。
另外,也可以将内管11的结构设为从膨胀的初期阶段开始增大内管11的表面积,同时扩大褶状部。在这种情况下,内管11的弹性变形量也比完全没有设置褶状部的情况少,能够提高内管11的耐久性。
进而,在实施例2中,虽然在内管11的外周配置网状套筒3,但也可以在内管11和网状套筒3之间设置与实施例1相同的低摩擦体5。
其次,对本发明的第3实施例中的空压式致动装置进行说明。图8是本发明的实施例3的内管收缩时的横截面图。如图8所示,内管12在收缩时呈折叠的截面形状。在使用这样的内管12的情况下,也能够使在膨胀时内管的表面积不变化,而增大由内管围成的区域的横截面积。从而,通过本实施例3,也能够提高内管12的耐久性,能够实现致动装置的长寿命化,并提高伸缩控制的精度。
以上,作为本发明的流体压式致动装置,举例说明了使用空气压力的致动装置,但本发明不限于此。例如,供给到膨胀收缩体内的流体不限于空气,而可以根据用途使用各种气体或液体。
另外,在实施例1至3中,只表示了细长管状的致动装置,但本发明也可以适用于改变膨胀收缩体的形状的各种流体压式致动装置。
进而,在实施例2及3中的内管收缩时的横截面形状不限于如图5及图8所示的横截面形状,也可以将褶形成为例如星状的横截面形状。
进而,本发明的流体压式致动装置可以作为用于驱动人类带用的带用形机器手的致动装置,即,作为人工肌肉使用。进而,可以作为用于驱动工业用机器手或建设机械等的致动装置使用。进而,也可以作为驱动关节上有障碍的残疾人用复原机器的致动装置使用。即,本发明的流体压式致动装置可以使用在广范围领域的机器上。
如上所述的说明,根据本发明,在膨胀收缩体和被覆体之间设置对被覆体的摩擦系数比膨胀收缩体的小的低摩擦体,因此,提高反复使用时致动装置的耐久性,即,实现长寿命化。
另外,根据本发明,在从收缩状态开始向膨胀状态转变的过程中的至少一部分中,使用了以在保持相同的表面积的同时增大所围成的区域的面积的方式膨胀的膨胀收缩体,因此,提高了反复使用致动装置的耐久性,即,实现长寿命化。
其次,对与作为本发明的关联发明的CPM装置进行说明。图9是作为将上述流体压式致动装置作为构成要素而设置的CPM装置的概略构成图。在图9中,20为CPM装置主体,80为箱型的控制装置,90为连接CPM装置主体20和控制装置80之间的空气软管,在图中,表示有1条,但也有从控制装置内的电磁阀连接到各种类型的空气致动装置的、将多条打捆的空气软管。控制装置80,虽然在图中有所省略,但在箱内部收容有空气压缩机、电磁阀、及中央控制装置(CPU)及将这些装置形成电连接的电路,同时,在外部具有向这些装置供给电力的电源连接器。压缩机用于生成压缩空气,电磁阀用于向致动装置供给、排出空气,CPU用于控制CPM装置的动作,而且,在CPU具有的ROM上存有多种CPM装置的运行顺序。还有,在控制箱型的控制装置80上设置有操作板81。电磁阀也可以设置在个致动装置的附近。通过将电磁阀设置在致动装置的附近,从而提高向致动装置供给空气的供给效率和致动装置排出空气的排出效率。
若如图9所示地构成CPM装置,则由于将所述的流体压式致动装置作为驱动用致动装置而组装在CPM装置主体中,可将空气压缩机那样的重物与CPM装置主体分离地设置,因此,使CPM装置主体的移动操作变得容易。
其次,对CPM装置20的第1实施例使用图10至图12进行说明。
图10使用于使臂进行弯曲、伸展运动的CPM装置的俯视图,图11是图10所示的CPM装置的下面图,是表示臂的弯曲动作时的状态的图,图11是图10所示的CPM装置的上面图,是表示臂的伸展动作时的状态的图。
在图10中,21为作为CPM装置的基座的基座板,在基座板21的上面设置有转动支撑部22。该转动支撑部22由配置在基座板21的上面的转动支撑部件22a、和设置在该转动支撑部件22a的图示的右端的上下的1组转动支撑部22b、22c构成。还有,在转动支撑部22b、22b上设置有平行于图1中的Y轴的转动轴23a、23b,通过该轴23a、23b,支撑人的小臂的小臂支撑板24以能够转动的方式连结在转动支撑部22b、23c上。将人体的臂置于1组转动支撑部22b、22c的中间,而通过小臂支撑板24支撑小臂。转动支撑部件22a具有与基座板21大致相同的宽度,形成为在宽度方向上的两端部的厚度厚,在中央部的厚度薄,而且内部构成为中空,起到覆盖基座板21的作用。小臂支撑板24被构成为能够在图12中所示的水平状态和图11所示的大约120°竖立状态之间旋转。
小臂支撑板24是上面呈大致平面、背面呈沿所述转动支撑部件22a的上面的形状的大致板状部件,在图示的右端部设置有连结到安装在所述转动支撑部22b、22c上的转动轴23a、23b上的连结部件24a、24b。在小臂支撑板24上设置有松弛支撑(夹持)手掌部分的支撑部件25,同时,出于防止相对于臂在前的部分抵接小臂支撑板24的边缘的目的,在小臂支撑板24的局部形成有凹部24c。支撑部件25,配置在以下所述的位置,即,在使用CPM装置时,如果使用人将臂置于所述转动支撑部的附近,并将小臂在小臂支撑板24上伸展,则手掌被支撑部件25松弛支撑的位置。
小臂支撑板24介由连结部件24a、24b被结合在转动支撑部22b、22c的各个转动轴23a、23b上。转动轴23a、23b通过两端支撑结构,以能够转动的方式由转动支撑部22b、22c支撑。在转动轴23a、23b上,分别固定有滑轮26a、26b,在滑轮26a、26b上卷绕有钢丝27a、27b。卷绕这些钢丝27a、27b的一端,被固定在滑轮26a、26b上。还有,卷绕钢丝的滑轮26a、26b的槽的直径,可以考虑用于转动小臂支撑板23的力矩(小臂支撑板的重量、和从转动中心到重心的距离的积<致动装置的收缩力和槽的直径的积)而决定。另外,卷绕在滑轮26a、26b上的钢丝27a、27b的卷绕量,可以考虑小臂支撑板24的转动角度而决定。
还有,在2条钢丝中的1条钢丝27a的端部、和基座板21之间或转动支撑部件22a之间(优选的是,与支撑部件22a之间),设置有作为用于产生将小臂支撑板24从水平状态转动大概120°的驱动力的流体式致动装置(空压式致动装置)的管形空气致动装置28a。另外,在钢丝27中的另一方的钢丝27b的端部、和基座板21之间或转动支撑部件22a之间(优选的是,与支撑部件22a之间),设置有作为用于产生将小臂支撑板24从转动120°状态复原到水平状态的驱动力的流体式致动装置(空压式致动装置)的管形空气致动装置28b。
具体来说,管形空气致动装置28a的一端部,连接在所述钢丝27a的一端部,该钢丝27a的另一端部,如图10所示地被导入滑轮26a而固定在滑轮26a上。另外,管形空气致动装置28a的一端部也连接在钢丝27b的一端部,该钢丝27b的另一端部,如图11所示地被导入滑轮26b而固定在滑轮26b上。
但是,管形空气致动装置28a,是用于将小臂支撑板24从如图11所示的状态复原的装置,因此,在管形空气致动装置28a动作时,需要有将小臂支撑板24向与滑轮26b的旋转相反的方向转动的机构。该逆动作机构29,被简略化表示在图12中,但具体来说,例如,其构成如下。即,将滑轮26b以能够自由旋转的方式安装在转动轴23b上,在该滑轮26b上在同轴上固定有伞齿轮A。而且,将转动轴23b夹在中间,还配置有2个小的伞齿轮B,所述伞齿轮B可以与该伞齿轮A啮合。进而,配置有伞齿轮C,该伞齿轮C与这2个伞齿轮B啮合,并将该伞齿轮C固定在转动轴23b上。如果将逆动作机构29这样构成,则从钢丝27b传递到滑轮26b的力,从伞齿轮A介由伞齿轮B而传递到伞齿轮C,但伞齿轮A和伞齿轮C的转动的方向相反。从而,如果管形空气致动装置28b动作,则小臂支撑板24将从图11中的状态向水平方向转动。还有,上述的逆动作机构29用于使钢丝27b导入到滑轮26b的方向与将钢丝27a导入滑轮26a的导入方向相同,因此,通过另行设置辅助滑轮而将钢丝27b从与上述相反的方向导入滑轮26b,也可以简略化逆动作机构。
还有,以上的管形空气致动装置28a、28b,使用了在本发明的特定发明中进行说明的图1及图4所示的类型的空压式致动装置。还有,管形空气致动装置28a、28b具有同样的规格,也可以具有不同的规格。在作为不同的规格的情况下,用于将小臂支撑板24从水平立起的管形空气致动装置28a,使用了收缩力强的装置,用于将小臂支撑板24复原到水平状态的管形空气致动装置28b,使用了收缩力弱的装置。
从而,介由连接在管形空气致动装置28a的一端部的空气软管,从由例如空气压缩机或电磁阀构成的空气供气排气装置(省略图示)向致动装置的内管供给空气,由此,缩短管形空气致动装置28a的长度。当产生在管形空气致动装置28a上的收缩力传递到钢丝27a时,滑轮26a旋转,小臂支撑板24从图9中的水平状态转动到图10中所示的竖立方向。还有,在从管形空气致动装置28a排出空气的同时,介由连接在管形空气致动装置28a的一端部的空气软管(省略图示),从由例如空气压缩机或电磁阀构成的空气供气排气装置(省略图示)向致动装置的内管供给空气,由此,缩短管形空气致动装置28b的长度。当产生在管形空气致动装置28b上的收缩力传递到钢丝27b时,滑轮26b旋转,同时,逆动作机构29动作,小臂支撑板24向水平方向转动。小臂支撑板24通过向管形空气致动装置28a及28b的长度方向上的交替收缩动作进行往复动作。由此,能够进行臂的弯曲、伸展运动。还有,小臂支撑板24的转动速度,通过根据残疾人的残疾程度或残疾的复原程度,通过电磁阀的打开控制来调节对管形空气致动装置28a、28b以单位小时供给或排出空气的空气量,并能够任意地调节设定。
其次,对本发明的CPM装置的第2实施例进行说明。图13是向图10中所示的本发明的CPM装置的第1实施例组装手腕的弯曲、伸展机构的第2实施例的CPM装置的俯视图,图14是表示在该第2实施例的CPM装置中,进行手腕弯曲动作时的状态的俯视图。在小臂支撑板24上设置有圆盘状的转动台31。转动台31以图13中的X轴平行的轴线、即垂直于小臂支撑板24的上面的轴线为中心可转动地安装在小臂支撑板24上。支撑部件25搭载在转动台31上。从而,支撑部件25可以与转动台31一同转动。
在小臂支撑板24的背面侧,配置有用于使转动台31转动的第1气缸32。第1气缸32的缸杆(柱塞)32a的前端,在距转动台31的转动中心规定的距离的位置,与连结到转动台31的旋转轴的臂(省略图示)的前端连结,另外,第1气缸32的气缸主体的端部,与小臂支撑板24连结。第1气缸32的缸杆的前端和转动台31的连接点,可以根据使转动台31转动(往复动作)的角度、和缸杆的冲程而决定。还有,用于连接转动台31、和第1气缸32的部件,可以取代省略了上述图示的臂,而为圆盘状部件。
在以上构成的支撑部件25的动作机构中,介由连接到第1气缸32上的软管并通过由空气压缩机和电磁阀构成的空气供给源进行空气的供给、排气,而使支撑部件25通过转动台31的转动如图14所示地转动。从而,可以进行由支撑部件25夹持的手腕的曲伸运动。
其次,对本发明的CPM装置的第3实施例进行说明。该实施例是向所述第1及第2实施例中的CPM装置附加了小臂扭动运动机构的实施例。图15是用于说明向图10或图13所示的实施例中的CPM装置组装的小臂扭动运动机构的图,并且是图10或图13的左视图。在图15中,将支撑部件25的内部形成为中空,在该中空部配置有第2气缸33及第3气缸34,并固定有这些气缸的主体部。在这些气缸33及34的缸杆(柱塞)33a及34a上,以能够旋转的方式分别连接有第1连杆35、第2连杆36,这些第1连杆35及第2连杆36的另一端,以能够旋转的方式连接到设置在小臂支撑板24或转动台31上的连接部件37。还有,虽然连接到第2气缸33及第3气缸34的连接省略了图示,但连接有供给空气的软管,这些空气软管沿支撑部件25的中空部攀缘,从支撑部件25的中央部贯穿到小臂支撑板24的背面,并与其他的空气软管被打捆处理。
在以上构成的小臂扭动运动机构中,通过由空气压缩机和电磁阀构成的空气供给源向第2气缸33和第3气缸34互斥性地供给空气,而使支撑部件25以连接部件37为中心进行摇动。例如,如图15所示,如果向第1气缸33供给空气,则第2气缸33的缸杆33a突出。即使第2气缸33的缸杆33a突出,由于没有向第3气缸34供给空气,因此在第3气缸33和第2连杆36的连结状态上不发生变化,支撑部件25只延伸被第2气缸33的主体推动第2气缸33的缸杆33a的部分。即,支撑部件25如图16所示地摇动而倾斜。如图16所示,当支撑部件25摇动后向第3气缸34供给空气时,支撑部件25向与上述动作相反的方向(图示的2点划线的位置方向)摇动。由此,向夹持在支撑部件25内的手掌,在往复方向上传递转动力。从而,小臂将进行向外旋转及向内旋转的扭动运动。还有,支撑部件25的摇动速度及摇动角度,可以通过控制电磁阀的打开而进行调整。即,为了加速支撑部件25的摇动速度,可以将电磁阀的开放量设大,为了减小摇动速度,可以设小电磁阀的打开量,另外,通过为调节支撑部件25的摇动角度而控制向气缸供给空气的空气量或电磁阀的打开时间,进行应对。
其次,对本发明的第3实施例的CPM装置使用图17进行说明。由于该第3实施例的CPM装置适于使人体的肩、肩胛部的曲伸动作,向图10、图13、图15所示的CPM装置附加了肩、肩胛部曲伸运动机构。图17相当于图10、图13的右视图。如图17所示,在基座板21和转动支撑部件22a之间,有第1垫片形空气致动装置41及第2垫片形空气致动装置42,排列配置在图中的Y轴方向上。这些配置位置,优选尽量靠近将臂放置的位置。从而,将这些垫片形空气致动装置配置在靠近转动支撑部件22a的转动部22b、22c的位置。因此,在对应于转动支撑部件22a的垫片形空气致动装置配置位置的部分,通过给中空部分盖上盖的方法形成平面。
这些垫片形空气致动装置41、42,通过软管连接在包括压缩机、电磁阀的空气供给源上。还有,这些垫片形空气致动装置41、42,通过将空气供给到内部而膨胀,抬高转动支撑部件22a,在转动支撑部件22a和基座板21之间制造间隙。向垫片形空气致动装置41和42供给空气的供给方法可以为交替供给、排出空气的控制方法和同时供给、排出空气的控制方法,可以根据控制装置来选择这些控制方法。
在这些控制方法中,如果向垫片形空气致动装置41和42交替供给、排出空气,则转动支撑部件22a会进行摇动(参照图18)。由此,将小臂置于CPM装置中的人体肩、肩胛部进行弯曲、伸展运动。另外,通过向垫片形空气致动装置41和42同时供给、排出空气,可使小臂置于CPM装置中的人体的肩进行上下运动。还有,转动支撑部件22a的摇动量和上下量及这些移动速度,通过电磁阀的打开程度来控制向垫片形空气致动装置41、42供给空气的空气量及单位小时供给空气的空气量,由此,能够任意设定。
其次,对本发明的第4实施例的CPM装置进行说明。图19是其侧视图,图20是图19的俯视图,图21是图19的左视图,图22是图19的右视图。在图中,在基座板51上的一端部,设置有转动支撑部52。在转动支撑部52上,以能够将水平的旋转轴54为中心转动的方式连结着作为支撑小臂的转动部件的小臂支撑板53。小臂支撑板53能够在水平状态(参照图19)和从水平旋转到120°的状态(未图示)之间转动。
在转动支撑部52和小臂支撑板53之间,设置有弯曲用管形空气致动装置55和伸展用管形空气致动装置56。这些管形空气致动装置55、56在图中简略化而用直线表示,但具有与所述实施例中的相同的结构。还有,管形空气致动装置55、56的一端,以能够旋转的方式连接在安装于小臂支撑板53上的轴57、58上,另一端以能够旋转的方式连接在安装于转动支撑部52的轴59、60上。
在此,对管形空气致动装置55、56的安装和小臂支撑板53的旋转轴54的位置关系进行说明。连结安装着管形空气致动装置55的轴57和轴59的中心轴的直线与连结轴54和轴59的中心轴的直线,大致呈60°的角度。另一方面,将连结安装着管形空气致动装置56的轴58和轴60的中心轴的直线与连结着轴54和轴60的中心轴的直线大致呈不到180°的钝角。换而言之,轴60比连结轴54和轴59的中心轴的直线靠图示的左侧,并安装在比轴54的中心轴靠基座板51侧的位置。
通过这样配置管形空气致动装置55、56,可以不将管形空气致动装置的长度的缩短转换为滑轮的转动,就能够使小臂支撑板53进行往复转动。其动作原理如下。当向管形空气致动装置55供给空气时,在管形空气致动装置55的长度缩小时产生的收缩力,作为使小臂支撑板53围绕轴54向顺时针方向旋转的旋转力(扭矩)。还有,该扭矩产生作用到轴54、59、57成一直线为止,即,小臂支撑板53从水平状态大概转动到120°为止。如果轴54、59、57成一直线,则扭矩消失,因此,小臂支撑板53的旋转停止。当小臂支撑板53的旋转停止时,管形空气致动装置55的空气被排出,向管形空气致动装置56供给空气。这样,管形空气致动装置56的长度收缩,此时产生的收缩力作为使小臂支撑板53围绕轴54向半时针方向旋转的扭矩。由此,小臂支撑板53返回到水平方向。
通过这样的小臂支撑板53的往复转动动作,可以进行臂的曲伸运动。
在小臂支撑板53上,设置有将与图20中的Z轴平行的轴作为中心进行转动的内旋转外旋转板61。内旋转外旋转板61与设置在小臂支撑板58的前端部的滚动机构部62一体地转动。在小臂支撑板53上搭在有使内旋转外旋转板61转动的一对带有钢丝的管形空气致动装置63、64。
带有钢丝的管形空气致动装置63、64,是与作为本发明的特定发明所说明的相同的管形空气致动装置,在这些端部上连接有传递驱动力的钢丝63a、64a。通过带有钢丝的管形空气致动装置63、64的空气致动装置部分的伸缩,使滚动机构部62转动,内旋转外旋转板61相对小臂支撑板53转动(摇动)。由此,能够进行小臂的向内旋转、向外旋转的运动。
在内旋转外旋转板61上设置有松弛约束使用人的手腕的手腕支撑器65、和安装在使用人的手上的安装带66。安装带66连接在能够以与图中的Y轴平行的轴67为中心转动的手腕驱动机构68上。在手腕驱动机构68和内旋转外旋转板61之间,设置有使手腕驱动机构68转动的一对管形空气致动装置69、70。手腕驱动机构68,通过向管形空气致动装置69、70交替供给排出空气,而转动(摇动)。由此,能够使手腕做曲伸运动。
在基座板51和小臂支撑板53之间,有如图22所示的第1及第2垫片形空气致动装置71、72沿图中的Y轴方向排列配置。这些垫片形空气致动装置71、72的动作与所述第3实施例中的CPM装置相同,并通过有选择地向第1及第2垫片形空气致动装置71、72中的任意一方供给空气,能够进行肩、肩胛部的曲伸运动。另外,通过同时向两方的垫片形空气致动装置71、72供给排出空气,能够进行肩的上下运动。
在本实施例的CPM装置中,也能够将管形空气致动装置55、56、63、64、69、70及垫片形空气致动装置71、72等作为驱动源使用,因此,能够实现整体的小形轻量化。另外,能够容易组合多个关节的复杂运动。
还有,上述第1至第4实施例出示了进行包括肩的上肢的复原动作的CPM装置,但本发明也可以适用于进行例如,包括腰的下肢的复原动作的CPM装置。
另外,在上述各实施例中,作为流体使用了空气,但也可以使用例如燃气或油、水等其他流体。
如上所述所说明的,本发明的CPM装置具有通过供给、排出流体而膨胀、收缩的膨胀收缩体,和覆盖膨胀收缩体的外周的网状的被覆体,和插入在膨胀收缩体和网状的被覆体之间的低摩擦体,并使用通过膨胀收缩体膨胀而缩小长度从而产生驱动力的流体压式致动装置,使转动部件转动,因此,能够实现整体的小形轻量化。另外,所述流体压式致动装置,在膨胀收缩体和网状被覆体之间配置有低摩擦体且寿命长,因此,使用人可以长期安心地使用CPM装置。
另外,作为使转动部件相对于基座转动的致动装置,另外,作为使可动部件相对于转动部件转动的多个致动装置,使用了空压式致动装置,因此,能够实现整体的小形轻量化,且容易组合多个关节运动。
Claims (3)
1.一种流体压式致动装置,其特征在于,具有:
通过供给排出流体而进行膨胀收缩的内管;和
网状套筒,其覆盖所述内管的外周,在随所述内管的膨胀其直径膨胀的同时长度收缩;
其中,所述网状套筒是使所述内管不露出的小网眼结构。
2.根据权利要求1所述的流体压式致动装置,其特征在于,所述网状套筒是通过将多条线束编织成网眼状而构成的。
3.根据权利要求1所述的流体压式致动装置,其特征在于,所述网状套筒的网眼大小不会在所述网状套筒的整个长度方向上变化。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083648 | 2003-03-25 | ||
JP2003083648 | 2003-03-25 | ||
JP2003117303 | 2003-04-22 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200480008062 Division CN1764786A (zh) | 2003-03-25 | 2004-03-12 | 流体压式致动装置及使用该装置的持续的被动运动装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101113745A true CN101113745A (zh) | 2008-01-30 |
Family
ID=36748300
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101409487A Pending CN101113745A (zh) | 2003-03-25 | 2004-03-12 | 流体压式致动装置 |
CN 200480008062 Pending CN1764786A (zh) | 2003-03-25 | 2004-03-12 | 流体压式致动装置及使用该装置的持续的被动运动装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200480008062 Pending CN1764786A (zh) | 2003-03-25 | 2004-03-12 | 流体压式致动装置及使用该装置的持续的被动运动装置 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN101113745A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106489030A (zh) * | 2014-09-12 | 2017-03-08 | 株式会社国际电气通信基础技术研究所 | 致动器装置、动力辅助机器人以及仿人机器人 |
CN110998104A (zh) * | 2017-05-31 | 2020-04-10 | 哈佛大学董事会 | 纺织物致动器 |
EP3536982A4 (en) * | 2016-11-07 | 2020-06-17 | Bridgestone Corporation | HYDRAULIC ACTUATOR |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018136004A1 (en) | 2017-01-23 | 2018-07-26 | National University Of Singapore | A fluid-driven actuator and its applications |
JP6928105B2 (ja) * | 2017-10-30 | 2021-09-01 | 株式会社ブリヂストン | 空気圧式アクチュエータ |
-
2004
- 2004-03-12 CN CNA2007101409487A patent/CN101113745A/zh active Pending
- 2004-03-12 CN CN 200480008062 patent/CN1764786A/zh active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106489030A (zh) * | 2014-09-12 | 2017-03-08 | 株式会社国际电气通信基础技术研究所 | 致动器装置、动力辅助机器人以及仿人机器人 |
EP3536982A4 (en) * | 2016-11-07 | 2020-06-17 | Bridgestone Corporation | HYDRAULIC ACTUATOR |
US10774855B2 (en) | 2016-11-07 | 2020-09-15 | Bridgestone Corporation | Hydraulic actuator |
CN110998104A (zh) * | 2017-05-31 | 2020-04-10 | 哈佛大学董事会 | 纺织物致动器 |
CN110998104B (zh) * | 2017-05-31 | 2022-07-05 | 哈佛大学董事会 | 纺织物致动器 |
Also Published As
Publication number | Publication date |
---|---|
CN1764786A (zh) | 2006-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7299741B2 (en) | Hydraulic pressure actuator and continuous manual athletic device using the same | |
Daerden et al. | Pneumatic artificial muscles: actuators for robotics and automation | |
CN104769236B (zh) | 致动器 | |
Daerden | Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements | |
JP2005524802A (ja) | 人工筋肉 | |
JP6653557B2 (ja) | 誘電エラストマー動作装置 | |
EP0161750B1 (en) | Actuator | |
JP5246717B2 (ja) | 流体注入型アクチュエータ | |
US5568957A (en) | Pressure actuated gripping apparatus and method | |
US6168634B1 (en) | Hydraulically energized magnetorheological replicant muscle tissue and a system and a method for using and controlling same | |
JPH03113104A (ja) | 湾曲可能なアクチュエータ | |
CN101439513A (zh) | 复合驱动多种类关节的姿态表现机器人 | |
CN106499689A (zh) | 致动器、致动器装置以及致动器的驱动方法 | |
CN101113745A (zh) | 流体压式致动装置 | |
CN111300385B (zh) | 一种具有灵活抓取目标功能的多自由度连续型机器人 | |
CN108436954A (zh) | 仿生气动柔性抓持装置 | |
CN107810335A (zh) | 致动器 | |
JP6854509B2 (ja) | 自重補償装置および力覚提示装置 | |
EP1950424A1 (en) | Fluid-pressure actuator | |
JPH0448592B2 (zh) | ||
Tse et al. | Novel design of a soft pump driven by super-coiled polymer artificial muscles | |
JPH033791A (ja) | 弾性収縮体を用いたマニプレータ | |
JP2001012414A (ja) | 流体作動式回転駆動装置 | |
JP2009024835A (ja) | アクチュエータ | |
JP2022057312A (ja) | 人工筋肉ユニット及びそれを用いた把持装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080130 |