CN101079151A - 360 degree around panorama generation method based on serial static image - Google Patents

360 degree around panorama generation method based on serial static image Download PDF

Info

Publication number
CN101079151A
CN101079151A CN 200610053842 CN200610053842A CN101079151A CN 101079151 A CN101079151 A CN 101079151A CN 200610053842 CN200610053842 CN 200610053842 CN 200610053842 A CN200610053842 A CN 200610053842A CN 101079151 A CN101079151 A CN 101079151A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
image
images
pixel
sequence
amp
Prior art date
Application number
CN 200610053842
Other languages
Chinese (zh)
Other versions
CN100485720C (en )
Inventor
朱信忠
赵建民
徐慧英
杨琳
Original Assignee
浙江师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a full view generating method of a sequence static picture for splicing a group of static pictures to a cylindrical full view picture. A group of static pictures are twelve or more than twelve pictures that the digital camera takes the object or the environment of the needed generating full view picture from the different angle. The method comprises the following steps: taking the sequence pictures; preprocessing the taken pictures; splicing the pictures. The method needs the low hardware device and doesn' t need the expensive hardware investment, which provides the quick resultant velocity, the high intellectual degree, and can display the full view pictures.

Description

一种基于序列静态图像的360°环视全景生成方法 One kind of panorama generation method based on a sequence of still images 360 ° surveying

技术领域 FIELD

本发明涉及360°环视全景图像的生成方法。 The present invention relates to a method for generating a 360 ° Panoramic image.

背景技术 Background technique

全景图是虚拟现实和计算视觉中一种重要的场景表示方法,它指的是在固定的视点,在垂直方向180°和水平方向360°的图像视图,简单的形式可以是固定视平面上的360°环视视图。 Panorama virtual reality and computer vision is the representation of an important scene, it refers to a fixed viewpoint, and image view 180 ° in the horizontal direction of 360 ° in the vertical direction, a simple form can be fixed on a plane of view 360 ° around a view. 通常有两种方式来获得全景图:直接方式和图像拼接方式。 There are generally two ways to obtain the panorama: direct mode and image splicing. 前一种方式简单易行,但它需要使用专业全景相机、全景摄像机等特殊器材,这些器材通常价格昂贵且使用复杂,实际应用面较窄,难以普及。 The former approach is simple, but it requires the use of professional panoramic camera, panoramic camera and other special equipment, these devices are usually expensive and complicated to use, practical application of face narrow, difficult to spread. 因此基于图像拼接思想的全景视图生成方法的应用非常广泛。 Therefore, application-based method of generating image stitching panoramic view of the idea of ​​a very wide range. 图像拼接就是利用若干离散局部图像作为基础数据,经过一系列的图像分析处理后生成全景。 Image stitching is the use of a number of discrete partial image data as a base, after a series of generating a panoramic image analysis processing.

全景图一般有三种形式:立方体全景图、球面全景图和柱面全景图。 Panorama generally three forms: panorama cube, cylindrical and spherical panorama panorama. 立方体全景图在图像的获取和校正过程中会遇到很大困难。 Cube panorama will encounter great difficulties in access and correction process image. 球面全景图拼接过程中的图像求交、定位较困难,且很难找到一种与球面相对应、易于计算机存储访问的数据结构来存放球面图像数据。 Spherical panorama mosaic image during intersection, the positioning more difficult, and it is difficult to find a corresponding spherical, easily accessible data structure stored in the computer to store image data sphere. 柱面全景图在单幅图像获取比立方体形式和球面形式简单,而且容易展开为一个矩形图像,可直接用计算机常用的图像格式存储和访问。 Cylindrical panoramic image acquisition simpler than in the cubic form and spherical form a single image, and easy to expand to a rectangular image, the computer can be directly used by the image format storage and access.

如专利申请号为200410015828.0的中国发明专利申请,公开了一种180°大视场全景凝视成像方法。 Patent application number 200410015828.0 of the Chinese patent application, discloses a 180 ° wide field of view staring panoramic imaging method. 它采用圆柱平面投影法,用二次反射的环形透镜作第一次成像,实现大视角全景凝视成像,用中继透镜作第二次成像,获得实像,用平面光电成像器件接收並显示三维空间,主要应用于机器人全景视觉、管道内壁检测、医学内窥成像等领域,虽然提出了一种直接获取全景图像的方案,但该方案中全景图像的生成方法对硬件条件及环境要求较高,且不能生成完整的360°环视全景。 It employs a cylindrical projection plane, a toroidal lens as the first secondary reflective image, to achieve a large angle of view staring panoramic imaging, with the relay imaging lens for a second, to obtain a real image plane of a photoelectric imaging device receiving and displaying a three-dimensional space , mainly used in panoramic vision of the robot, the pipe wall inspection, the medical imaging, endoscopic, although the proposed scheme direct access to the panoramic image, the higher the embodiment of the method of generating a panoramic image conditions and environmental requirements of the hardware, and You can not generate a full 360 ° panoramic.

如申请号为03115149.3的中国发明专利,公开了一种基于两张鱼眼图像的全景生成方法。 The application number of Chinese patent 03115149.3, discloses a fish-eye image based on the two panorama generation method. 该方法包括鱼眼图像预处理、建立空间模型、拼合参数寻优、生成全景图像四个部分。 The method includes the fisheye image preprocessing, spatial model established, the split parameter optimization, generating a panoramic image into four parts. 但在实际应用中并不能自动、快速的找到模型的最佳拼合参数,需要人工调整拼合参数。 But it does not automatically and quickly put together to find the best parameters of the model in practical application, the need to manually adjust the parameters put together. 尤其关键的是,由于本发明要求待拼合的鱼眼图像必须具备理论上完备的空间模型,只能采用两张鱼眼图像,需要相机装配价格昂贵的鱼眼镜头,普通平面图像不能使用,难以得到平民化普及应用。 Is particularly critical, since the present invention requires the fish-eye image to be split must have a complete theoretical space model, using only two fish-eye image, the camera assembly requires expensive fisheye lens, an ordinary planar image can not be used, it is difficult to civilians get universal application.

再如申请号为03137660.6的中国发明专利,公开了一种平面图像全景重建立体图像的方法,其过程包括,选择平面图像,针对平面图像的空间分布,建立每个象素的深度列表,根据深度列表对平面图像的每个象素进行视差位移处理,重建全部视差序列图像,将视差序列图像立体合成。 Another example of Chinese Application No. 03137660.6 patent, discloses a method of a stereoscopic image reconstructed panoramic image plane, which process comprises selecting an image plane, the spatial distribution of the image plane, build a list of each pixel depth, the depth list for each pixel parallax displacement plane image is processed, reconstruction of the entire sequence of parallax images, the stereoscopic parallax synthetic image sequences. 其中,采用了三维建模、图像几何变换、图像视差变换技术来实现立体图像的重建。 Wherein, using a three-dimensional modeling, image geometric transformation, image reconstruction techniques to achieve conversion of parallax stereoscopic image. 但该方法在平面图像的获取、处理和定位、校正过程中会遇到很多实际困难,且难以处理实景大图和实现可控立体景深。 However, the method of acquiring the image plane, and the positioning process, the correction process will encounter many practical difficulties, large and difficult to handle real view and a perspective view for controlled depth.

另外,申请号为200510087641.6的中国发明专利,公开了一种用于创建全景图像的数字成像设备及其方法,其中,数字成像设备包括用于连续捕获多个图像的捕获部分;用于分别检测从捕获部分输出的多个图像的图像信息检测部分;用于图像转换的全景图像生成部分。 Moreover, Application No. of China Patent 200510087641.6 discloses a digital imaging apparatus and a method for creating a panoramic image, wherein the digital imaging apparatus comprises a capture portion for capturing a plurality of continuous images; means for detecting respectively from a plurality of portions of the captured image information detecting part of the output image; means for generating a panoramic image of the partial image conversion. 通过选择从图像信息检测部分输出的多个图像信息中的一组,通过对所选择的图像信息进行合并转换,从而创建全景图像。 A plurality of image information from the image information detecting part of the output of a group selected by the image information conversion merge, thereby creating a panoramic image by selecting. 但该方法实际处理速度较慢,且只能用于专用的全景数字成像设备。 However, the actual method of processing speed is slow, and only a dedicated digital panoramic imaging apparatus.

现有的全景图像生成方法存在的缺点是:1、若采用直接生成全景图像的方法,则对硬件设备要求较高,价格昂贵,难以普及应用;2、现有的通过图像拼合技术生成全景图像的方法,要么需要专用鱼眼镜头设备,要么实现困难、智能化程度低、对图像要求高、定位和校正困难、普通相机照片无法使用,处理速度较慢等,甚至最终合成的全景图效果也较差。 Disadvantages of conventional panoramic image generating method is: 1, if the direct method of generating a panoramic image using, for the high hardware requirements, expensive, difficult to spread applications; 2, by conventional techniques to generate a panoramic image mosaic image the method requires either a dedicated fisheye lens device, or difficult to achieve, low intelligence, high image requirements, and correct positioning difficult, ordinary camera photos can not be used, processing speed is slow, and even the final synthesis panorama effect poor.

发明内容 SUMMARY

为了克服已有的全景图像生成方法存在的缺点和不足,本发明提供了一种对设备要求低(仅需普通数码相机或普通平面照片)、实用廉价、实现简便、智能化程度高、处理速度快、全景图清晰、真实感强、适用性广、易于普及的基于序列静态图像的360°环视全景生成方法。 In order to overcome the problems of the conventional panoramic image generating method shortcomings and deficiencies, the present invention provides an apparatus for require low (only ordinary digital camera or an ordinary photograph of a plane), cheap and practical, easy to realize, high intelligence, processing speed fast panorama clear, strong sense of reality, wide applicability, easy to spread on the still image 360 ​​° panoramic sequence generation method.

本发明解决其技术问题所采用的技术方案是:一种基于序列静态图像的360°环视全景生成方法,该方法包括如下步骤:(1)用相机拍摄所需的序列图像;(2)对序列图像进行预处理:采用中值滤波进行去噪,直方图均衡化处理;(3)序列图像的拼接:通过将相邻前后图像的拼接形成360°环视全景图像,包括以下步骤:(3.1)把拍摄的图片通过变换投影到360°水平柱面; The present invention solves the technical problem using the technical solution is: based on a sequence of still images 360 ° Panoramic generation, the method comprising the steps of: (1) a sequence of images captured by the camera required; (2) sequence image preprocessing: denoising median filtering, histogram equalization; stitching (3) a sequence of images: 360 ° panoramic forming an image by stitching the longitudinal adjacent images, comprising the steps of: (3.1) the pictures taken by the conversion to 360 ° horizontal cylindrical projection;

(3.2)在读入的两幅相邻图像的前一幅图像中,选定一块大小和位置均合适的图像作为模板,确定在后一幅图像中的搜索范围,得到相邻两幅图像的最佳匹配位置li,依次得到序列图像中每相邻两幅图像的最佳匹配位置;(3.3)在两幅相邻图像的重叠区域S和T,将其对应的各象素按一定权值合成到新的图像。 (3.2) in the previous image is read into the two adjacent images, the selected block size, and location of the right image as a template, a search range is determined in the image, the two images are adjacent to obtain best matching position li, in order to obtain the best matching position of a sequence of images each adjacent two of the image; (3.3) in the overlap region of two adjacent images S and T, the value of each pixel by its corresponding constant weight synthesis of the new image. 各象素在各图像上的权值计算公式如下:WValue=cos(π2*|x-x02x02|)*cos(π2*|y-y02y02|)---(1)]]>式中WValue表示权值,(x0,y0)为重合部分的中心位置,(x,y)为象素坐标;将相邻图像的重叠区域S和T对应的各象素值按一定的权值合成新的图像;重合部分的象素值可表示为:IN′=IN×WValue1+IN+1×WValue2(2)其中,IN和IN+1分别表示两个相邻图像的某个相应重叠位置的象素在各自原图像中的象素值,WValue1和WValue2是根据公式(1)计算出的该象素在各自图像上的权值,其取值范围为(0,1),且和为1。 Weight each pixel in each image is calculated as follows: WValue = cos (& pi; 2 * | x-x02x02 |) * cos (& pi; 2 * | y-y02y02 |) --- (1)]]> wherein WValue is the weight, (x0, y0) as the center position of the overlap portion, (x, y) is the pixel coordinates; adjacent the overlap region of the pixel values ​​of the S and T image corresponding to a certain weight the new synthesized image; overlapped portion pixel value can be expressed as: iN '= iN × WValue1 + iN + 1 × WValue2 (2) wherein, iN and iN + 1 respectively represent a position corresponding to the overlapping of two adjacent images pixel values ​​of each pixel in the original image, WValue1 WValue2 and are according to the formula (1) to calculate the weights of the pixel on the respective images, which is in the range (0,1), and is and 1.

作为优选的一种方案:在所述的(2)中,采用直方图均衡化处理变换函数:sk=T(rk)=Σi=0knin,k=0,1,2···,L-1---(3)]]>其中,n是图像中象素的总合,nk是灰度级为rk的象素个数,L为图像中可能的灰度级数,一般取值为256;通过公式(3)将输入图像中灰度级为rk的象素映射为输出图像灰度级为sk的对应象素。 As a preferred embodiment: in (2) above, using the histogram equalization transfer function: sk = T (rk) = & Sigma; i = 0knin, k = 0,1,2 & CenterDot; & CenterDot; & CenterDot; , L-1 --- (3)]]> wherein, n being the sum of the pixels in the image, nk is the number of pixels gray level rk, L is the number of gray levels in the image may be, in general value is 256; (3) the gray level of the input image by mapping pixels of the formula rk of sk output image gray levels of the corresponding pixel.

作为优选的另一种方案:在所述的(3.1)中,360°水平柱面投影变换公式为: As a further preferred embodiment: in the (3.1) in, 360 ° horizontal cylindrical projection conversion formula is:

其中, among them, k=r2+(W2-x)2,]]>(x,y)为输入图像上的任意一点,(x1,y1)为该点经过360°水平柱面投影变换后的坐标值,θ为投影角度,W为图像的宽度,H为图像的高度。 k = r2 + (W2-x) 2,]]> (x, y) of the input image on an arbitrary one o'clock, (x1, y1) for the point after 360 ° horizontal coordinate value after transformation cylindrical projection, θ projection angle, W is the width of the image, H is the height of the image.

作为优选的再一种方案:在所述的(3.2)中,定义图像的绝对误差函数为:ϵ(i,j,mk,nk)=|si,j(mk,nk)-s^(i,j)-T(m,n)+T^|---(5)]]>其中,s^(i,j)=1M2Σm=1MΣn=1Msi,j(m,n),]]>T^=1M2Σm=1MΣn=1MT(m,n),]]>T为模板,S为被搜索图,si,j为子图,即模板覆盖下的那块搜索图,i,j为子图左上角象素点在S中的坐标,M为模板的宽和高。 As still another preferred embodiment: in the (3.2), the absolute error of the image is defined function: & epsiv; (i, j, mk, nk) = | si, j (mk, nk) -s ^ ( i, j) -T (m, n) + T ^ | --- (5)]]> wherein, s ^ ​​(i, j) = 1M2 & Sigma; m = 1M & Sigma; n = 1Msi, j (m, n) ,]]> T ^ = 1M2 & Sigma; m = 1M & Sigma; n = 1MT (m, n),]]> T as a template, S is searched FIG, si, j for the sub-picture, i.e., the piece covered by the template search FIG, i, j is the coordinate of the upper left corner sub-picture pixel dots in S, M being the width and height of the template.

将模板中心与所在图像的垂直中心线的水平距离,记作x1之后,遍历模板图像和第一个位置的子图像中所有的象素点,计算对应象素点的ε(i,j,mk,nk)并累加后将其作为阈值的初始值T0。 ε (i, j, mk the horizontal and vertical center line where the center of the template image distance, hereinafter, denoted x1, all sub-image pixel points and the template image traversal in the first position, the corresponding pixel point is calculated , nk) after its initial value T0 and accumulate as a threshold value.

再计算模板图像和下一个位置子图像中对应象素点的ε(i,j,mk,nk)并累加,记作T,在计算并累加的过程中比较T与T0的大小,若在完全遍历模板图像和子图像的象素点之前,得到T≥T0,则停止计算,并将子图像移动到下一个位置,重新开始新一轮的计算;若完全遍历模板图像和子图像的象素点后,得到T<T0,则更新阈值T0,并将此时子图像中心象素点的坐标位置(i,j)记录下来,得到i值与被搜索图像垂直中心线的水平距离,记作x2,取x1与x2的平均值作为相邻两幅图像的最佳匹配位置li,即li=(x1+x2)/2。 Then calculate ε (i, j, mk, nk) template images corresponding to the pixel point and the next sub-image position and accumulated, denoted by T, and comparing the size of T and T0 is accumulated in the calculation process, if the full traversing the pixel points before the template image and the sub obtain T≥T0, calculation is stopped, and the sub-picture moves to the next position, to start a new round of calculation; if fully traversed pixel points after the template image and the sub-images to give T <T0, the updated threshold value T0, and at this time the center coordinate position of the sub-pixel image point (i, J) is recorded, the horizontal distance i obtained value with the vertical center line of the search image, denoted x2, x1 and x2 taken as the average of the best matched position li adjacent two images, i.e., li = (x1 + x2) / 2.

进一步,在每累加相应位置的一行或者一列的ε(i,j,mk,nk)之后,将T与T0进行大小比较。 Further, after the position of each respective row or accumulated ε (i, j, mk, nk) is a, the size of T and T0 are compared.

再进一步,在所述的(3.3)中,对于拼接后的图像,并不是直接取IN′的值,而是引入一个阈值K,首先计算该点在平滑前的灰度值和加权平均值的差值,若此值小于阈值,则取IN′为此点的灰度值,反之,则取平滑前的灰度值为该点的灰度值。 Still further, in the (3.3), the image after the stitching, not directly take IN 'value, but the introduction of a threshold value K, first calculates the weighted average of gray values ​​and the smoothed before the difference, if this value is less than the threshold value, then take iN 'gray value for this point, on the contrary, take the gradation value of the gradation values ​​before smoothing point.

更进一步,在所述的步骤(1)中,序列图像的张数不少于12张,相邻两幅图像必须具有重叠部分,且重叠部分在30%到50%之间。 Still further, in said step (1), the number of sequences of images not less than 12, the adjacent two images must overlap portion, and 30% to 50% between the overlapping portions.

在所述的步骤(1)中,对拍摄一个完整360度环视实景全景或者仅部分视角的环视实景场景,在一个固定位置,按顺时针或者逆时针方向等角度水平旋转拍摄。 In said step (1), a captured full 360 ° view panorama of real or only partially look around real scene viewing angle, in a fixed position, horizontal angle clockwise or counterclockwise direction by rotating the like shot.

在所述的步骤(1)中,对于实物实体360°立体造型展示的虚拟拍摄,将实物实体放在赤道仪或者带刻度转盘上,逆时针或顺时针方向等角度地旋转载物仪盘进行拍摄。 In said step (1), with respect to the physical entity 360 ° virtual three-dimensional figure showing photographing, the physical entities in the equatorial belt scale or dial, clockwise or counterclockwise direction equiangularly screwed meter disk was reproduced shooting.

本发明的技术构思为:本发明提出一种利用照相机得到一组部分重叠的图像序列,通过图像的预处理、图像的拼接和融合算法来生成全景图像。 Technical concept of the present invention are: to provide a sequence of images using a camera to obtain a set of partial overlap, generating a panoramic image by stitching and image fusion algorithm pre-processing, the image of the present invention. 使用普通相机就可以完成360°环视全景图虚拟场景构造所需图像的采集工作,方便实用,易于普及。 The camera can be done using an ordinary 360 ° Panoramic Virtual Environment FIG desired image configuration acquisition working, convenient and practical, easy to spread. 鉴于360°环视全景图实现快速、简便,又不影响全景图像浏览的真实性;并且对于一些场景只需要360°环视,因此360°环视全景图就有很广泛的适用性。 360 ° Panoramic view of the chart for quick, easy, without compromising the authenticity of the panoramic image viewing; and for some scenarios need only look around 360 °, so look around 360 ° panoramas have very broad applicability.

本发明的有益效果主要表现在:对设备要求低、普通相机照片即可、成本低廉、实现简便、智能化程度高、处理速度快、全景图清晰、无需完备空间、真实感强、适用性广,易于普及及具有广泛的适用性。 The advantages of the main problems: low equipment requirements, ordinary camera photos can be low cost, easy to implement, high intelligence, processing speed, panorama clear, no complete space, realistic, wide applicability , easy to spread and has broad applicability.

附图说明 BRIEF DESCRIPTION

图1是本发明所述方法生成的360°环视全景图样本图像示例。 FIG 1 of the present invention is a method of generating the 360 ​​° of exemplary sample images Panoramic FIG.

图2是本发明中由2D图像到360°水平柱面投影变换示意图。 FIG 2 is a 2D image to a 360 ° horizontal cylindrical projection transformation schematic present invention.

图3是图像拼接算法的流程图。 3 is a flowchart of an image stitching algorithm.

图4是360°环视全景图的生成过程示意图。 FIG 4 is a generation process 360 ° Panoramic schematic of FIG.

具体实施方式 detailed description

下面结合附图对本发明作进一步描述。 DRAWINGS The invention will be further described below in conjunction.

参照图1~图4,一种基于序列静态图像的360°环视全景生成方法,包括以下步骤:(1)用相机拍摄所需的序列图像;(2)序列图像的预处理;(3)序列图像的拼接。 Referring to FIGS. 1 to 4, based on a sequence of still images 360 ° Panoramic generating method, comprising the steps of: (1) a sequence of images captured by the camera required; Pretreatment (2) a sequence of images; (3) sequence mosaic image.

拍摄所需的序列图像是指采用普通相机镜头,对不同的场景采用不同的拍摄方法所拍摄的一组序列图像,每组图像不少于12张且相邻两幅图像必须具有一定的重叠部分,且重叠部分在30%到50%之间。 Sequences required for ordinary image pickup means is a camera lens, using a set of sequences of images having different imaging method for different scenarios, each image is less than 12 and adjacent two image must have a certain overlap portion and an overlapping portion between 30% to 50%. 对拍摄一个完整360度环视实景全景或者仅部分视角的环视实景场景,在一个固定位置,按顺时针或者逆时针方向等角度水平旋转拍摄。 Photographing a panoramic real full 360 ° view angle of view or only partially look around real scene, in a fixed position, horizontal angle clockwise or counterclockwise direction by rotating the like shot. 对于实物实体360°立体造型展示的虚拟拍摄,将实物实体放在赤道仪或者带刻度转盘上,逆时针或顺时针方向等角度地旋转载物仪盘进行拍摄。 For the physical entity 360 ° virtual three-dimensional figure showing photographing, the physical entities in the equatorial belt scale or dial, clockwise or counterclockwise direction of an angle plate screwed meter shoot was reproduced.

为了得到效果较好的全景图像,本实施例提出了在图像拼接之前,对序列图像采用中值滤波进行去噪、直方图均衡化处理,以平衡光照条件不同带来的影响。 In order to obtain a better panoramic image, the present embodiment proposes a prior image stitching, median filtering the image sequence using denoising, histogram equalization, to balance the impact of different illumination conditions. 我们采用如下直方图均衡化处理变换函数:sk=T(rk)=&Sigma;i=0knin,k=0,1,2&CenterDot;&CenterDot;&CenterDot;,L-1---(3)]]>其中,n是图像中象素的总数,nk是灰度级为rk的象素个数,L为图像中可能的灰度级数,一般取值为256。 We use the following histogram equalization transfer function: sk = T (rk) = & Sigma; i = 0knin, k = 0,1,2 & CenterDot; & CenterDot; & CenterDot;, L-1 --- (3)]]> wherein , n being the total number of pixels in the image, nk is the number of pixels gray level rk, L is the number of gray levels in the image may be, the general value of 256. 通过公式(3)将输入图像中灰度级为rk的象素映射为输出图像灰度级为sk的对应象素。 By the equation (3) the input image is a gray scale pixel map of rk output image gray levels of the corresponding pixel sk.

在完成图像的预处理后,我们通过三个步骤来完成对12幅图像的拼接从而完成一幅360°环视全景图的生成,这三个步骤为:①图像的变换;②图像的匹配;③图像的平滑处理。 After completion of the pre-image, we accomplished by three steps 12 to complete a mosaic image generated look around 360 ° panorama, these three steps: ① converted image; matching image ②; ③ smoothing the image. 本发明所述的方法首先要对序列图像进行360°水平柱面投影变换,将各投影平面的重叠图像映射到一个标准投影即360°水平柱面投影上得到360°水平柱面投影图像。 The method of the present invention is the first to be 360 ​​° horizontal cylindrical projection transformation sequence of images, superimposed image mapped to each of the projection plane obtained by projecting a standard 360 ° horizontal cylindrical projection image horizontal cylindrical projection i.e. 360 °. 在平面透视投影中,对于一个固定的观点,任意两个2D平面的透视变换可以由矩阵相乘完成:x&prime;y&prime;w&prime;=m0m1m2m3m4m5m6m7m8xyw]]>其中,(x,y)代表第一幅图像的象素坐标,(x′,y′)是(x,y)在第二幅图像上的对应坐标,首先把拍摄的图片通过变换投影到标准360°水平柱面,相应的投影变换公式为: In a plane perspective projection, with respect to a fixed point of view, any perspective transformation two 2D planes may be multiplied completed by the matrix: x & prime; y & prime; w & prime; = m0m1m2m3m4m5m6m7m8xyw]]> where, (x, y) representative of the first image the pixel coordinates, (x ', y') are (x, y) coordinates on a corresponding second image, the first image captured by the projection transformation to the standard 360 ° horizontal cylinder, corresponding projection conversion formula is : 其中, among them, k=r2+(W2-x)2,]]>(x,y)为输入图像上的任意一点,(x1,y1)为该点经过柱面投影变换后的坐标值,θ为投影角度,W为图像的宽度,H为图像的高度。 k = r2 + (W2-x) 2,]]> (x, y) of the input image on an arbitrary point, (x1, y1) for the point values ​​after the lapse of a cylindrical projection conversion, θ is the projection angle, W for the width of the image, H is the height of the image.

参见图2,360°水平柱面投影变换的核心是投影变换公式,首先要建立坐标系,如图2(a)所示假定所有相机运动都发生在XZ平面,以原始输入图对应的观察方向为Z轴,以原始输入图像所在的视平面为XY平面,坐标圆点就是光轴与图像平面的交点,并将原始输入图像标定为I,柱面投影图像标定为J,投影柱面标定为K,观察点标定为O(投影中心)。 Referring to Figure 2,360 ° horizontal central cylindrical projection transformation is projective transformation equation, to establish a first coordinate system, as shown in FIG 2 (a) are shown assuming that all camera motion occurs in the XZ plane, the viewing direction corresponding to the original input FIG. Z-axis, the original input image in the viewing plane where the XY plane, the coordinates of the dots is the intersection of the optical axis of the image plane, and the original input image calibration is I, cylindrical projection image calibration is J, their nominally cylindrical projection K, calibrated to the observation point O (center of projection). 现在是要在O点观察图像I在柱面K上的投影像J。 I now to observe the image projected on the image cylinder at the point O and K J.

图2(b)和图2(c)分别是横向观察方向(XZ平面)和纵向观察方向(YZ平面)的柱面投影示意图,图中标定了原始输入图像和柱面投影图像上的两个对应点M和N的相互位置关系,以及投影柱面半径、横向观察角α和纵向观察角β的情况。 FIG 2 (b) and 2 (c) are respectively a lateral observation direction (XZ plane) and longitudinal viewing direction (YZ plane) of the cylindrical projection schematic drawing calibrated on two original input image and the cylindrical projection image mutual positional relationship between corresponding points M and N, and the radius of the cylindrical projection, where a horizontal view angle and vertical viewing angle α to β.

本实施例提出的一种自适应阈值序列序贯相似性检测算法(SSDA,Sequential Similarity Detection Algorithms),该算法中包括确定阈值的选取、模板的大小、模板位置和搜索范围。 An adaptive threshold sequential sequence similarity detection algorithm proposed embodiment (SSDA, Sequential Similarity Detection Algorithms) according to the present embodiment, the algorithm includes determining the size of the selected template threshold value, and the position of the template search range. 首先,定义图像的绝对误差函数为:&epsiv;(i,j,mk,nk)=|si,j(mk,nk)-s^(i,j)-T(m,n)+T^|---(5)]]>其中,s^(i,j)=1M2&Sigma;m=1M&Sigma;n=1Msi,j(m,n),]]>T^=1M2&Sigma;m=1M&Sigma;n=1MT(m,n),]]>T为模板,S为被搜索图,si,j为子图,即模板覆盖下的那块搜索图,i,j为子图左上角象素点在S中的坐标,M为模板的宽和高。 First, the absolute error of the image is defined function: & epsiv; (i, j, mk, nk) = | si, j (mk, nk) -s ^ (i, j) -T (m, n) + T ^ | --- (5)]]> wherein, s ^ ​​(i, j) = 1M2 & Sigma; m = 1M & Sigma; n = 1Msi, j (m, n),]]> T ^ = 1M2 & Sigma; m = 1M & Sigma; n = 1MT (m, n),]]> T as a template, to be searched FIG S, si, j for the sub-graph, i.e. that piece of the search template in FIG cover, i, j is the sub-pixel upper left corner point S in FIG. coordinates, M being the width and height of the template.

参照图3,在读入的两幅相邻图像的前一幅图像中,选定一块大小和位置均合适的图像作为模板,将模板中心与所在图像的垂直中心线的水平距离记作x1之后,确定在后一幅图像中的搜索范围(即子图的遍历范围)。 Referring to FIG 3, after, before an image is read into the two adjacent images, the selected block size, and location of the right image as a template, the template horizontal and vertical center line where the center of the image referred to as a distance x1 determining a search range in the image (i.e., the range of the sub-graph traversal). 遍历模板图像和第一个位置的子图像中所有的象素点,计算对应象素点的ε(i,j,mk,nk)并累加后将其作为阈值的初始值T0。 As its initial value T0 threshold after all pixel points traversing the sub-image and the template image in the first position, the corresponding pixel point calculating ε (i, j, mk, nk) and accumulated. 再计算模板图像和下一个位置子图像中对应象素点的ε(i,j,mk,nk)并累加,记作T,在计算并累加的过程中比较T与T0的大小。 Then calculate ε (i, j, mk, nk) template images corresponding to the pixel point and the next sub-image position and accumulated, denoted by T, and comparing the size of T and T0 is accumulated in the calculation process. 为了加快匹配拼接速度,在每累加相应位置的一行或者一列的ε(i,j,mk,nk)之后,将T与T0进行大小比较。 In order to speed up the matching piecing speed, the position of the corresponding row after each accumulation or ε (i, j, mk, nk) one will be compared in magnitude with T T0. 对于某一位置,若在完全遍历模板图像和子图像的象素点之前,得到T≥T0,则停止计算,并将子图像移动到下一个位置,重新开始新一轮的计算。 For a certain position, when the pixel points before complete traversal template image and a sub image, obtained T≥T0, calculation is stopped, and the sub-picture moves to the next position, to start a new round of calculation. 若完全遍历模板图像和子图像的象素点后,得到T<T0,则更新阈值T0,并将此时子图像中心象素点的坐标位置(i,j)记录下来,得到i值与被搜索图像垂直中心线的水平距离,记作x2。 After completely traversing the pixel points when a template image and a sub image, to obtain T <T0, the updated threshold value T0, and at this time the center coordinate position of the sub-pixel image point (i, J) is recorded, is searched to obtain the value of i image vertical centerline horizontal distance, denoted by x2. 阈值T0按下式取值:T0=TT&le;T0T0T>T0,]]>这样在搜索范围内遍历子图像,即可找到x2。 T0 threshold value by the following equation: T0 = TT & le; T0T0T> T0,]]> so traverse the sub-picture can be found within the search range x2. 取x1与x2的平均值作为相邻两幅图像的最佳匹配位置li,即li=(x1+x2)/2。 X1 and x2 taken as the average of the best matched position li adjacent two images, i.e., li = (x1 + x2) / 2. 同理可求得序列图像中每相邻两幅图像的最佳匹配位置。 The same sequence of images can be obtained best matching position of each adjacent two images.

本实施例为了使得拼接后的图像效果更好,更具有整体感,提出一种改进的带权缝合的方法进行拼接后的平滑过渡,在两幅相邻图像的重叠区S和T,将其对应的各象素按照一定权值合成到新的图像。 For the present embodiment, an image effect such that the stitched better, more overall sense, proposes an improved method for smoothing weighted sewn stitching after the transition, in the two adjacent images overlap region S and T, which corresponding to each pixel of the new image to the synthesized according to a certain weight. 各象素在各图像上的权值计算公式如下:WValue=cos(&pi;2*|x-x02x02|)*cos(&pi;2*|y-y02y02|)---(1)]]>式中WValue表示权值,(x0,y0)为重合部分的中心位置,(x,y)为象素坐标。 Weight each pixel in each image is calculated as follows: WValue = cos (& pi; 2 * | x-x02x02 |) * cos (& pi; 2 * | y-y02y02 |) --- (1)]]> wherein WValue is the weight, (x0, y0) as the center position of the overlap portion, (x, y) is the pixel coordinates. 将相邻图像的重叠区域S和T对应的各象素值按一定的权值合成新的图像。 Each pixel values ​​S and T corresponding to the overlapping area of ​​the adjacent image synthesizing new image by a certain weight.

重合部分的象素值可表示为:IN′=IN×WValue1+IN+1×WValue2(2)其中,IN和IN+1分别表示两个相邻图像的某个相应重叠的象素在各自原图像中的象素值,WValue1和WValue2是根据公式(1)计算出的该象素在各自图像上的权值,其取值范围为(0,1),且和为1。 Overlapped portion of the pixel value can be expressed as: IN '= IN × WValue1 + IN + 1 × WValue2 (2) wherein, IN and IN + 1 each represent a respective two adjacent pixels overlap in the respective original images the pixel values ​​in the image, WValue1 WValue2 and are according to the formula (1) to calculate the weights of the pixel on the respective images, which is in the range (0,1), and up to one.

对于拼接后的图像,并不是直接取IN′的值,而是引入一个阈值K,首先计算该点在平滑前的灰度值和加权平均值的差值,若此值小于阈值,则取IN′为此点的灰度值,反之,则取平滑前的灰度值为该点的灰度值。 For the stitched image, not directly take IN 'value, but the introduction of a threshold value K, and first calculates the difference between the weighted average gray value before smoothing in this point, if this value is less than the threshold value, then take IN "gradation value for this point, on the contrary, take the gradation value of the gradation values ​​before smoothing point.

如图4所示,是整个360°环视全景图像的生成过程。 4, the entire 360 ​​° Panoramic image generation process. 首先根据所拍摄场景的不同选择不同的拍摄方式,根据401拍摄序列图像。 First, depending on the shooting scenes to select shooting different ways, according to the captured image sequence 401. 对拍摄一个完整360度环视实景全景或者仅部分视角的环视实景场景,在一个固定位置,按顺时针或者逆时针方向等角度水平旋转拍摄;对于实物实体360°立体造型展示的虚拟拍摄,将实物实体放在赤道仪或者带刻度转盘上,逆时针或顺时针方向等角度地旋转载物仪盘进行拍摄。 Photographing a panoramic real full 360 ° view angle of view or only partially look around real scene, in a fixed position, horizontal angle clockwise or counterclockwise direction by rotating the like captured; for virtual modeling of physical entities 360 ° stereoscopic imaging display, the kind entity on the equatorial belt scale or dial, clockwise or counterclockwise direction of an angle plate screwed meter shoot was reproduced. 拍摄时相邻两幅图像要有一定的重叠,且对同一场景图像的张数不少于12张。 There should be some overlapping of adjacent two images when shooting, and on the number of images of the same scene less than 12. 402对序列图像进行中值滤波去噪、直方图均衡化处理等图像预处理,以平衡光照条件不同带来的影响,采用直方图均衡化处理变换函数:sk=T(rk)=&Sigma;i=0knin,k=0,1,2&CenterDot;&CenterDot;&CenterDot;,L-1---(3)]]>其中,n是图像中象素的总数,nk是灰度级为rk的象素个数,L为图像中可能的灰度级数,一般取值为256。 402 pairs of image sequences denoising median filtering, histogram equalization image pre-processing and the like, in order to balance the impact of different lighting conditions, using the histogram equalization transfer function: sk = T (rk) = & Sigma; i = 0knin, k = 0,1,2 & CenterDot; & CenterDot; & CenterDot;, L-1 --- (3)]]> wherein, n being the total number of pixels in the image, nk is the gray level of the pixel number rk number, L is the number of gray levels in the image may be, the general value of 256. 通过公式(3)将输入图像中灰度级为rk的象素映射为输出图像灰度级为sk的对应象素。 By the equation (3) the input image is a gray scale pixel map of rk output image gray levels of the corresponding pixel sk.

403通过360°水平柱面投影变换公式将各投影平面的重叠图像映射到一个标准投影即360°水平柱面投影上得到360°水平柱面图像,相应的变换公式为: 403 cylindrical projection conversion formula will be superimposed image by mapping each projection plane horizontal to a standard 360 ° 360 ° horizontal cylindrical projection image obtained i.e. 360 ° on the horizontal cylindrical projection, converting the corresponding formula is:

其中, among them, k=r2+(W2-x)2,]]>(x,y)为输入图像上的任意一点,(x1,y1)为该点经过360°水平柱面投影变换后的坐标值,θ为投影角度,W为图像的宽度,H为图像的高度。 k = r2 + (W2-x) 2,]]> (x, y) of the input image on an arbitrary one o'clock, (x1, y1) for the point after 360 ° horizontal coordinate value after transformation cylindrical projection, θ projection angle, W is the width of the image, H is the height of the image.

404采用一种自适应阈值序列序贯相似性检测算法(SSDA),先完成相邻两幅图像的拼合,最终通过同样的方法完成一组序列图像的拼合。 404 sequence using an adaptive threshold sequential similarity detection algorithm (as SSDA), to complete the split adjacent two images, a complete set of the final sequence of images split by the same method.

405为消除痕迹采用改进的带权缝合的方法进行拼接后的平滑过渡,在该步骤中并不是直接采用按照一定权值合成到新的图像,而是在之前引入一个阈值,首先计算该点在平滑前的灰度值和加权平均值的差值,若此值小于阈值,则将该点对应的象素按一定权值合成到新的图像,反之则取平滑前的灰度值为该点的灰度值。 405 a smooth transition to eliminate traces of the weighted method improved suture stitching, in this step, is not directly to the new synthesized image according to a certain weight, but prior to the introduction of a threshold value, the point is first calculated and the difference between the weighted average of the gray value before smoothing, if this value is less than the threshold value, then the corresponding pixel point in a certain weight to the new synthesized image, otherwise smooth gradation value taken before the point gradation value. 最终完成序列图像的全景生成。 The final sequence is completed panoramic image is generated.

Claims (10)

  1. 1.一种基于序列静态图像的360°环视全景生成方法,其特征在于:该方法包括如下步骤:(1)用相机拍摄所需的序列图像;(2)对序列图像进行预处理:采用中值滤波进行去噪,直方图均衡化处理;(3)序列图像的拼接:通过将相邻前后图像的拼接形成360°环视全景图像,包括以下步骤:(3.1)把拍摄的图片通过变换投影到360°水平柱面;(3.2)在读入的两幅相邻图像的前一幅图像中,选定一块大小和位置均合适的图像作为模板,确定在后一幅图像中的搜索范围,得到相邻两幅图像的最佳匹配位置li,依次得到序列图像中每相邻两幅图像的最佳匹配位置;(3.3)在两幅相邻图像的重叠区域S和T,将其对应的各象素按一定权值合成到新的图像。 1. Based on the sequence of still images 360 ° Panoramic generating method, characterized in that: the method comprising the steps of: (1) a sequence of images captured by the camera required; (2) pretreatment sequence of images: the use of denoising median filtering, histogram equalization; stitching (3) a sequence of images: 360 ° panoramic forming an image by stitching the longitudinal adjacent images, comprising the steps of: (3.1) converting the captured image projected by 360 ° horizontal cylinder; (3.2) in the previous image is read into the two adjacent images, the selected block size, and location of the right image as a template, a search range is determined in the image, to give li best matching position of two adjacent images, in order to obtain the best matching position of a sequence of images each adjacent two of the image; (3.3) in the overlap region of two adjacent images S and T, each of the corresponding synthesis of pixel values ​​according to a certain weight to a new image. 各象素在各图像上的权值计算公式如下:WValue=cos(&pi;2*|x-x02x02|)*cos(&pi;2*|y-y02y02|)---(1)]]>式中WValue表示权值,(x0,y0)为重合部分的中心位置,(x,y)为象素坐标;将相邻图像的重叠区域S和T对应的各象素值按一定的权值合成为新的图像,重合部分的象素值可表示为:IN′=IN×WValue1+IN+1×WValue2(2)其中,IN和IN+1分别表示两个相邻图像的某个相应重叠位置的象素在各自原图像中的象素值,WValue1和WValue2是根据公式(1)计算出的该象素在各自图像上的权值,其取值范围为(0,1),且和为1。 Weight each pixel in each image is calculated as follows: WValue = cos (& pi; 2 * | x-x02x02 |) * cos (& pi; 2 * | y-y02y02 |) --- (1)]]> wherein WValue is the weight, (x0, y0) as the center position of the overlap portion, (x, y) is the pixel coordinates; adjacent the overlap region of the pixel values ​​of the S and T image corresponding to a certain weight synthesis of a new image, the pixel values ​​of the overlapping portions can be expressed as: iN '= iN × WValue1 + iN + 1 × WValue2 (2) wherein, iN and iN + 1 each represent a respective two adjacent images overlap pixel value of each pixel position in the original image, WValue1 WValue2 and are according to the formula (1) to calculate the weights of the pixel on the respective images, which is in the range (0,1), and, and 1.
  2. 2.如权利要求1所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(2)中,采用直方图均衡化处理变换函数:sk=T(rk)=&Sigma;i=0knin,k=0,1,2&CenterDot;&CenterDot;&CenterDot;,L-1---(3)]]>其中,n是图像中象素的总数,nk是灰度级为rk的象素个数,L为图像中可能的灰度级数,一般取值为256;通过公式(3)将输入图像中灰度级为rk的象素映射为输出图像灰度级为sk的对应象素。 2. one of the claims 1 Panoramic 360 ° sequence generating method based on a static image, wherein: in said (2), using the histogram equalization transfer function: sk = T (rk ) = & Sigma; i = 0knin, k = 0,1,2 & CenterDot; & CenterDot; & CenterDot;, L-1 --- (3)]]> wherein, n being the total number of pixels in the image, nk is the gray level rk number of pixels, L is the number of gray levels in the image may be, the general value of 256; by the equation (3) the input image is a gray scale pixel map of rk output image gray level sk the corresponding pixel.
  3. 3.如权利要求1所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(3.1)中,360°水平柱面投影变换公式为: 3. one of the claims 1 Panoramic 360 ° sequence generating method based on a static image, wherein: in the (3.1), 360 ° horizontal cylindrical projection conversion formula is: 其中, among them, k=r2+(W2-x)2,]]>(x,y)为输入图像上的任意一点,(x1,y1)为该点经过柱面投影变换后的坐标值,θ为投影角度,W为图像的宽度,H为图像的高度。 k = r2 + (W2-x) 2,]]> (x, y) of the input image on an arbitrary point, (x1, y1) for the point values ​​after the lapse of a cylindrical projection conversion, θ is the projection angle, W for the width of the image, H is the height of the image.
  4. 4.如权利要求1-3之一所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(3.2)中,定义图像的绝对误差函数为:&epsiv;(i,j,mk,nk)=|si,j(mk,nk)-s^(i,j)-T(m,n)+T^|---(5)]]>其中,s^(i,j)=1M2&Sigma;m=1M&Sigma;n=1Msi,j(m,n),T^=1M2&Sigma;m=1M&Sigma;n=1MT(m,n),]]>T为模板,S为被搜索图,si,j为子图,即模板覆盖下的那块搜索图,i,j为子图左上角象素点在S中的坐标,M为模板的宽和高。 4. The one of claims 1-3 panorama generation method based on 360 ° surveying the sequence of still images, wherein: in the (3.2), the absolute error of the image is defined function: & epsiv; (i, j, mk, nk) = | si, j (mk, nk) -s ^ (i, j) -T (m, n) + T ^ | --- (5)]]> wherein, s ^ (i, j) = 1M2 & Sigma; m = 1M & Sigma; n = 1Msi, j (m, n), T ^ = 1M2 & Sigma; m = 1M & Sigma; n = 1MT (m, n),]]> T as a template, S FIG is searched, si, j for the sub-graph, i.e. that piece of the search template in FIG cover, i, j is the coordinate of top left corner of FIG pixel dots in S, M being the width and height of the template. 将模板中心与所在图像的垂直中心线的水平距离记作xi之后,遍历模板图像和第一个位置的子图像中所有的象素点,计算对应象素点的ε(i,j,mk,nk)并累加后将其作为阈值的初始值T0。 After the horizontal and vertical center line where the center of the template image is referred to as a distance xi, all the sub-image pixel points and the template image traversal in the first position, the corresponding pixel point calculating ε (i, j, mk, nk) after its initial value T0 and accumulate as a threshold value. 再计算模板图像和下一个位置子图像中对应象素点的ε(i,j,mk,nk)并累加,记作T,在计算并累加的过程中比较T与T0的大小,若在完全遍历模板图像和子图像的象素点之前,得到T≥T0,则停止计算,并将子图像移动到下一个位置,重新开始新一轮的计算;若完全遍历模板图像和子图像的象素点后,得到T<T0,则更新阈值T0,并将此时子图像中心象素点的坐标位置(i,j)记录下来,得到i值与被搜索图像垂直中心线的水平距离,记作x2,取x1与x2的平均值作为相邻两幅图像的最佳匹配位置li,即li=(x1+x2)/2。 Then calculate ε (i, j, mk, nk) template images corresponding to the pixel point and the next sub-image position and accumulated, denoted by T, and comparing the size of T and T0 is accumulated in the calculation process, if the full traversing the pixel points before the template image and the sub obtain T≥T0, calculation is stopped, and the sub-picture moves to the next position, to start a new round of calculation; if fully traversed pixel points after the template image and the sub-images to give T <T0, the updated threshold value T0, and at this time the center coordinate position of the sub-pixel image point (i, J) is recorded, the horizontal distance i obtained value with the vertical center line of the search image, denoted x2, x1 and x2 taken as the average of the best matched position li adjacent two images, i.e., li = (x1 + x2) / 2.
  5. 5.如权利要求4所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在每累加相应位置的一行或者一列的ε(i,j,mk,nk)之后,将T与T0进行大小比较。 5. An claimed in claim 4, wherein the generating method based on the Panoramic 360 ° sequence still image, wherein: each of the corresponding position in the row or accumulated ε (i, j, mk, nk) one after the T and T0 size comparison.
  6. 6.如权利要求5所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(3.3)中,对于拼接后的图像,并不是直接取IN′的值,而是引入一个阈值K,首先计算该点在平滑前的灰度值和加权平均值的差值,若此值小于阈值,则取IN′为此点的灰度值,反之,则取平滑前的灰度值为该点的灰度值。 The value (3.3), with respect to the stitched image, not directly take IN ': 6. An claimed in claim 5, wherein the generating method based on the Panoramic 360 ° sequence still image, wherein , but the introduction of a threshold value K, and first calculates the difference between the weighted average gray value before smoothing in this point, if this value is less than the threshold value, take the 'gray value for this point iN, on the contrary, take the smooth grayscale value before the gradation value point.
  7. 7.如权利要求1-3之一所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(1)中,序列图像的张数不少于12张,相邻两幅图像必须具有重叠部分,且重叠部分在30%到50%之间。 7. The one of claims 1-3 Panoramic 360 ° sequence generating method based on a static image, wherein: in said (1), the number of a sequence of images not less than 12 , the adjacent two images must overlap portion at 30% to 50% and between the overlapping portions.
  8. 8.如权利要求4所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(1)中,一组序列图像的张数不少于12张,相邻两幅图像必须具有重叠部分,且重叠部分在30%到50%之间。 8. An claimed in claim 4, wherein the generating method based on the Panoramic 360 ° sequence still image, wherein: in said (1), a set of sequences the number of images not less than 12, with o two images must overlap portion at 30% to 50% and between the overlapping portions.
  9. 9.如权利要求8所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(1)中,对拍摄一个完整360度环视实景全景或者仅部分视角的环视实景场景,在一个固定位置,按顺时针或者逆时针方向等角度水平旋转拍摄。 9. An according to claim 8 panorama generation method based on 360 ° surveying the sequence of still images, wherein: in said (1), a captured real full 360 ° view angle of view or only partially panoramic Looking around real scene, in a fixed position, horizontal angle clockwise or counterclockwise direction by rotating the like shot.
  10. 10.如权利要求8所述的一种基于序列静态图像的360°环视全景生成方法,其特征在于:在所述的(1)中,对于实物实体360°立体造型展示的虚拟拍摄,将实物实体放在赤道仪或者带刻度转盘上,逆时针或顺时针方向等角度地旋转载物仪盘进行拍摄。 10. An according to claim 8 Panoramic 360 ° sequence generating method based on a static image, wherein: in said (1), with respect to the physical entity 360 ° virtual three-dimensional figure showing photographing, the physical entity on the equatorial belt scale or dial, clockwise or counterclockwise direction of an angle plate screwed meter shoot was reproduced.
CN 200610053842 2006-10-13 2006-10-13 360 degree around panorama generation method based on serial static image CN100485720C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610053842 CN100485720C (en) 2006-10-13 2006-10-13 360 degree around panorama generation method based on serial static image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610053842 CN100485720C (en) 2006-10-13 2006-10-13 360 degree around panorama generation method based on serial static image

Publications (2)

Publication Number Publication Date
CN101079151A true true CN101079151A (en) 2007-11-28
CN100485720C CN100485720C (en) 2009-05-06

Family

ID=38906616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610053842 CN100485720C (en) 2006-10-13 2006-10-13 360 degree around panorama generation method based on serial static image

Country Status (1)

Country Link
CN (1) CN100485720C (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100576907C (en) 2007-12-25 2009-12-30 谢维信;裴继红 Method for real-time generating 360 degree seamless full-view video image by single camera
CN101895693A (en) * 2010-06-07 2010-11-24 北京高森明晨信息科技有限公司 Method and device for generating panoramic image
CN101594533B (en) 2009-06-30 2010-12-29 华中科技大学 Method suitable for compressing sequence images of unmanned aerial vehicle
CN101984463A (en) * 2010-11-02 2011-03-09 中兴通讯股份有限公司 Method and device for synthesizing panoramic image
CN102013110A (en) * 2010-11-23 2011-04-13 李建成 Three-dimensional panoramic image generation method and system
CN101540046B (en) 2009-04-10 2011-07-27 凌阳电通科技股份有限公司 Panoramagram montage method and device based on image characteristics
CN102143305A (en) * 2010-02-02 2011-08-03 华为终端有限公司 Image pickup method and system
CN102201115A (en) * 2011-04-07 2011-09-28 湖南天幕智能科技有限公司 Real-time panoramic image stitching method of aerial videos shot by unmanned plane
CN101601239B (en) 2007-01-22 2012-07-11 艾利森电话股份有限公司 Method and system for using user equipment to compose an ad-hoc mosaic
CN102739954A (en) * 2011-03-31 2012-10-17 卡西欧计算机株式会社 Imaging device capable of combining images
CN102902485A (en) * 2012-10-25 2013-01-30 北京华达诺科技有限公司 360-degree panoramic multi-point touch display platform establishment method
CN102999891A (en) * 2011-09-09 2013-03-27 中国航天科工集团第三研究院第八三五八研究所 Binding parameter based panoramic image mosaic method
CN103514581A (en) * 2013-10-23 2014-01-15 小米科技有限责任公司 Screen picture capturing method, device and terminal equipment
CN103533149A (en) * 2012-07-02 2014-01-22 北京赛佰特科技有限公司 Mobile phone robot system and application method thereof
WO2014100985A1 (en) * 2012-12-26 2014-07-03 Harman International Industries, Incorporated Method and system for generating a surround view
CN103945103A (en) * 2013-01-17 2014-07-23 成都国腾电子技术股份有限公司 Multi-plane secondary projection panoramic camera image distortion elimination method based on cylinder
CN104077764A (en) * 2014-07-11 2014-10-01 金陵科技学院 Panorama synthetic method based on image mosaic
US9094632B2 (en) 2008-12-03 2015-07-28 Measureout, Llc Displaying objects with certain visual effects
CN105128743A (en) * 2015-09-07 2015-12-09 深圳市灵动飞扬科技有限公司 Vehicle panoramic display method and system
CN105741239A (en) * 2014-12-11 2016-07-06 合肥美亚光电技术股份有限公司 Method and apparatus for generating tooth panorama image, and panorama machine for shooting teeth
CN105933695A (en) * 2016-06-29 2016-09-07 深圳市优象计算技术有限公司 Panoramic camera imaging device and method based on high-speed interconnection of multiple GPUs
CN105957015A (en) * 2016-06-15 2016-09-21 武汉理工大学 Thread bucket interior wall image 360 DEG panorama mosaicing method and system
CN106331675A (en) * 2016-08-23 2017-01-11 王庆丰 Image processing and projecting method and device, and imaging system
CN103985134B (en) * 2014-06-04 2017-04-05 无锡维森智能传感技术有限公司 Calibration method for detecting one kind of look around effect synthesis
WO2017113533A1 (en) * 2015-12-30 2017-07-06 完美幻境(北京)科技有限公司 Panoramic photographing method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1272750C (en) * 2003-01-24 2006-08-30 上海杰图软件技术有限公司 Intelligent panorama creating process based on two fish-eye images
CN100414566C (en) * 2003-06-19 2008-08-27 邓兴峰;张正辉;游建军 Panoramic reconstruction method of three dimensional image from two dimensional image
DE10359928A1 (en) * 2003-12-19 2005-07-28 Siemens Ag A method for automated, subsequent removal of moving objects from a captured image with a Bildaufzeichenden device, image processing system and computer program product
KR101042638B1 (en) * 2004-07-27 2011-06-20 삼성전자주식회사 Digital image sensing apparatus for creating panorama image and method for creating thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101601239B (en) 2007-01-22 2012-07-11 艾利森电话股份有限公司 Method and system for using user equipment to compose an ad-hoc mosaic
CN100576907C (en) 2007-12-25 2009-12-30 谢维信;裴继红 Method for real-time generating 360 degree seamless full-view video image by single camera
US9094632B2 (en) 2008-12-03 2015-07-28 Measureout, Llc Displaying objects with certain visual effects
CN101540046B (en) 2009-04-10 2011-07-27 凌阳电通科技股份有限公司 Panoramagram montage method and device based on image characteristics
CN101594533B (en) 2009-06-30 2010-12-29 华中科技大学 Method suitable for compressing sequence images of unmanned aerial vehicle
CN102143305B (en) 2010-02-02 2013-11-06 华为终端有限公司 Image pickup method and system
CN102143305A (en) * 2010-02-02 2011-08-03 华为终端有限公司 Image pickup method and system
CN101895693A (en) * 2010-06-07 2010-11-24 北京高森明晨信息科技有限公司 Method and device for generating panoramic image
CN101984463A (en) * 2010-11-02 2011-03-09 中兴通讯股份有限公司 Method and device for synthesizing panoramic image
CN102013110A (en) * 2010-11-23 2011-04-13 李建成 Three-dimensional panoramic image generation method and system
CN102013110B (en) 2010-11-23 2013-01-02 李建成 Three-dimensional panoramic image generation method and system
CN102739954A (en) * 2011-03-31 2012-10-17 卡西欧计算机株式会社 Imaging device capable of combining images
CN102739954B (en) * 2011-03-31 2015-04-01 卡西欧计算机株式会社 Imaging device capable of combining images
CN102201115A (en) * 2011-04-07 2011-09-28 湖南天幕智能科技有限公司 Real-time panoramic image stitching method of aerial videos shot by unmanned plane
CN102999891A (en) * 2011-09-09 2013-03-27 中国航天科工集团第三研究院第八三五八研究所 Binding parameter based panoramic image mosaic method
CN103533149A (en) * 2012-07-02 2014-01-22 北京赛佰特科技有限公司 Mobile phone robot system and application method thereof
CN102902485A (en) * 2012-10-25 2013-01-30 北京华达诺科技有限公司 360-degree panoramic multi-point touch display platform establishment method
US10075634B2 (en) 2012-12-26 2018-09-11 Harman International Industries, Incorporated Method and system for generating a surround view
CN104937634B (en) * 2012-12-26 2018-04-03 哈曼国际工业有限公司 A method for generating a surround view and the system
CN104937634A (en) * 2012-12-26 2015-09-23 哈曼国际工业有限公司 Method and system for generating surround view
WO2014100985A1 (en) * 2012-12-26 2014-07-03 Harman International Industries, Incorporated Method and system for generating a surround view
CN103945103A (en) * 2013-01-17 2014-07-23 成都国腾电子技术股份有限公司 Multi-plane secondary projection panoramic camera image distortion elimination method based on cylinder
CN103514581B (en) * 2013-10-23 2017-02-15 小米科技有限责任公司 A method of intercepting a screen image, and means the terminal device
CN103514581A (en) * 2013-10-23 2014-01-15 小米科技有限责任公司 Screen picture capturing method, device and terminal equipment
CN103985134B (en) * 2014-06-04 2017-04-05 无锡维森智能传感技术有限公司 Calibration method for detecting one kind of look around effect synthesis
CN104077764A (en) * 2014-07-11 2014-10-01 金陵科技学院 Panorama synthetic method based on image mosaic
CN105741239A (en) * 2014-12-11 2016-07-06 合肥美亚光电技术股份有限公司 Method and apparatus for generating tooth panorama image, and panorama machine for shooting teeth
CN105128743A (en) * 2015-09-07 2015-12-09 深圳市灵动飞扬科技有限公司 Vehicle panoramic display method and system
WO2017113533A1 (en) * 2015-12-30 2017-07-06 完美幻境(北京)科技有限公司 Panoramic photographing method and device
CN105957015A (en) * 2016-06-15 2016-09-21 武汉理工大学 Thread bucket interior wall image 360 DEG panorama mosaicing method and system
CN105933695A (en) * 2016-06-29 2016-09-07 深圳市优象计算技术有限公司 Panoramic camera imaging device and method based on high-speed interconnection of multiple GPUs
CN106331675A (en) * 2016-08-23 2017-01-11 王庆丰 Image processing and projecting method and device, and imaging system
CN106331675B (en) * 2016-08-23 2018-09-25 王庆丰 Image processing, casting method, apparatus, and an imaging system

Also Published As

Publication number Publication date Type
CN100485720C (en) 2009-05-06 grant

Similar Documents

Publication Publication Date Title
Shum et al. Systems and experiment paper: Construction of panoramic image mosaics with global and local alignment
Bouguet Visual methods for three-dimensional modeling
Wagner et al. Real-time panoramic mapping and tracking on mobile phones
Saito et al. Shape reconstruction in projective grid space from large number of images
US6757446B1 (en) System and process for image-based relativistic rendering
US7006709B2 (en) System and method deghosting mosaics using multiperspective plane sweep
US6791598B1 (en) Methods and apparatus for information capture and steroscopic display of panoramic images
Huang et al. Panoramic stereo imaging system with automatic disparity warping and seaming
El-Hakim et al. A multi-sensor approach to creating accurate virtual environments1
US6677982B1 (en) Method for three dimensional spatial panorama formation
US20080037829A1 (en) System And Method For 3D Space-Dimension Based Image Processing
US7643025B2 (en) Method and apparatus for applying stereoscopic imagery to three-dimensionally defined substrates
Pollefeys et al. From images to 3D models
US20070285419A1 (en) System and method for 3d space-dimension based image processing
Capel Image mosaicing
US6097854A (en) Image mosaic construction system and apparatus with patch-based alignment, global block adjustment and pair-wise motion-based local warping
US6018349A (en) Patch-based alignment method and apparatus for construction of image mosaics
Raskar et al. Multi-projector displays using camera-based registration
Szeliski et al. Creating full view panoramic image mosaics and environment maps
Teller et al. Calibrated, registered images of an extended urban area
US20020113865A1 (en) Image processing method and apparatus
Sinha et al. Pan–tilt–zoom camera calibration and high-resolution mosaic generation
US20120242795A1 (en) Digital 3d camera using periodic illumination
JP2006053694A (en) Space simulator, space simulation method, space simulation program and recording medium
Coorg et al. Acquisition of a large pose-mosaic dataset

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right