CN101066579A - 钛合金材料的高效精密磨削方法 - Google Patents

钛合金材料的高效精密磨削方法 Download PDF

Info

Publication number
CN101066579A
CN101066579A CN 200710035086 CN200710035086A CN101066579A CN 101066579 A CN101066579 A CN 101066579A CN 200710035086 CN200710035086 CN 200710035086 CN 200710035086 A CN200710035086 A CN 200710035086A CN 101066579 A CN101066579 A CN 101066579A
Authority
CN
China
Prior art keywords
grinding
titanium alloy
speed
grinding process
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200710035086
Other languages
English (en)
Inventor
盛晓敏
唐昆
余剑武
宓海青
尚振涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN 200710035086 priority Critical patent/CN101066579A/zh
Publication of CN101066579A publication Critical patent/CN101066579A/zh
Pending legal-status Critical Current

Links

Images

Abstract

一种钛合金材料的高效精密磨削方法,采用常规工装设备对钛合金工件实施磨削,其工艺包括:采用超高速树脂结合剂金刚石砂轮或陶瓷结合剂CBN砂轮,修整至外圆跳动不大于5μm,并对其做常规修锐;采用砂轮动平衡系统对砂轮进行实时动平衡,砂轮动平衡不平衡量<0.1μm;采用水基冷却液,供液压力为7-9MPa;磨削工艺条件:单位砂轮宽度磨除率为3.3-180mm3/mm·s;砂轮线速度为60-150m/s;磨削深度为0.1-1.8mm;工件进给速度为1-6m/min。应用本发明可有效提高钛合金材料加工效率,降低其加工成本,改善钛合金零件表面质量,减少表面烧伤和裂纹,大幅度提高零件的可靠性。

Description

钛合金材料的高效精密磨削方法
技术领域
本发明涉及钛合金材料的高效精密磨削工艺方法。
背景技术
钛合金以其比强度高、优异的抗腐蚀性能、无磁性、耐热性能好、疲劳强度高等特性,在航空、航天、航海、石油、化工等工业部门中得到了广泛的应用。随着钛合金材料应用范围的不断扩大,钛制机械设备和零件的种类也日益增多,人们对其加工精度及加工效率的要求也愈来愈高。钛合金材料如果采用普通磨削方式加工,效率低,成本高,而增大磨削用量往往会导致工件表面产生烧伤和裂纹,加工质量难以保证。钛合金材料在现有方法的磨削过程中具有下述主要特点:
1.磨削比较小,砂轮损耗量大,加工成本高。在相同条件下磨削普通金属材料的磨削比是磨削钛合金材料的20-30倍。磨削比小,易造成超硬磨料磨具的损耗严重,而超硬磨料磨具的价格目前普遍较昂贵,这使得钛合金零件的加工成本很高。因此,减少砂轮损耗,降低钛合金加工成本,是实现钛合金材料广泛应用的基本前提。
2.钛合金材料磨削表面质量不易控制。由于钛合金材料本身具有粘、韧、化学活性高等特点,使其在磨削过程中易粘附于砂轮,造成磨削力增大、磨削温度升高。高的磨削温度使得钛合金与磨粒、磨粒与空气之间易发生化学反应,且磨削区70%-80%的高温传入工件不易导出,再加上磨削过程中产生的拉应力和表面污染层,使零件易产生变形、烧伤和裂纹,表面粗糙度也很难保证,从而影响了钛合金零件的实际应用。
3.钛合金零件生产效率低。由于钛合金优良的材料性能,使得其在磨削加工过程中,磨屑不易被切离,而且砂轮的切削刃具有较大负前角,切削阻力大,强烈摩擦使磨削区产生很大的弹性和塑性变形及大量的热量,从而造成钛合金材料的切削加工性很差,生产效率低下,很多情况下还采用手工打磨的方式,采用目前的磨削加工方式比磨除率约为1-3mm3/mm·s。
因此,设法降低钛合金材料磨削过程中的磨削力和磨削温度,减少其加工成本及砂轮损耗,在保证磨削质量的前提下尽可能的提高钛合金材料加工效率成为钛合金磨削加工中有待重点研究的内容。
高效磨削以深切(0.1-30mm),高砂轮线速度(80-200m/s),不降低工作台进给速度(0.5-10m/min)的条件进行磨削,既能实现高的切除率,又能达到高的加工表面质量。以往对高效深磨的研究大多集中在普通金属材料,对难加工材料的高效深磨也局限于模拟试验方面,因此深入系统的研究如何采用高效深磨技术实现钛合金材料的低成本高质量加工,是钛合金磨削加工研究中值得探讨的一个重要技术问题。
发明内容
本发明要解决的技术问题是,针对现有技术存在的不足,提出一种钛合金材料高效精密磨削方法,应用该方法可提高钛合金材料加工效率,降低其加工成本,改善钛合金零件表面质量,减少表面烧伤和裂纹,大幅度提高零件的可靠性。
本发明的技术解决方案是,所述钛合金材料的高效精密磨削方法为,采用常规工装设备对钛合金工件实施磨削,其特征是,该方法包括:
(1)采用超高速树脂结合剂金刚石砂轮或陶瓷结合剂CBN(立方氮化硼)砂轮,将所述砂轮修整至外圆跳动不大于5μm,并对其做常规修锐;
(2)采用砂轮动平衡系统对砂轮进行实时动平衡,砂轮动平衡不平衡量<0.1μm;
(3)采用水基冷却液,供液压力为7Mpa-9Mpa;
(3)磨削工艺条件:
    a.单位砂轮宽度磨除率:3.3mm3/mm·s-180mm3/mm·s;
    b.砂轮线速度:60m/s-150m/s;
    c.磨削深度:0.1mm-1.8mm;
    d.工件进给速度:1m/min-6m/min。
以下对本发明做出进一步说明。
为使本发明具有代表性,本发明选用了TC4(Ti-6Al-4V)钛合金作为试验材料。这是目前钛合金中用量最大且性能数据最为齐全的一种钛合金。其合金元素主要为Al和V,Al为α稳定化元素,V具有β稳定化作用,这两种元素都有着显著的固溶强化作用,在提高合金强度的同时,能保证良好的塑性和热稳定性。TC4钛合金具有良好的力学性能和工艺性能(包括热变形性、焊接性、切削加工性和抗蚀性),可加工成棒材、型材、板材、锻件、模锻件等半成品供应。在航空工业中多用于制造压气机叶片、盘以及某些紧固件等。当合金中的氧、氮控制到低含量时,还能在低温(-196℃)保持良好的塑性,可用于制作低温高压容器。
本发明所述磨削方法试验在湖南大学国家高效磨削工程技术研究中心的超高速平面磨削实验台上进行。该实验台主要技术参数为:主轴功率40KW,最高转速20000r/min;采用SBS4500动平衡系统对砂轮进行实时动平衡,不平衡量<0.1μm;工作台驱动电机功率5KW;冷却系统压力范围为0-25Mpa,磨削过程采用水基冷却液,供液压力为8Mpa。装置如图10所示。
所述试验采用超高速树脂结合剂金刚石砂轮和陶瓷结合剂CBN砂轮,其参数如表1所示。首先参照表2所列参数对砂轮进行修整,直至砂轮外圆跳动不大于5μm,然后采用氧化铝砂条对其进行常规修锐。
                            表1  砂轮参数
磨料种类   砂轮外径(mm)  砂轮宽度(mm) 磨料粒度 浓度 结合剂类型
  金刚石   350   6   120-140   100   树脂
  CBN   350   6   80-100   200   陶瓷
                  表2  砂轮修整参数
  修整参数 修整步骤
  修整器 80#碳化硅制动式修整器
  砂轮线速度(m/s) 4.5
  修整滚轮线速度(m/s) 0.4(固定值)
  工作台速度(mm/min) 200
  进给量(μm) 5μm、3μm、2μm(从砂轮两侧轮流进给)
  进给次数 100
  修锐 200#氧化铝砂条,2-3cm3/次
该试验采用逆磨方式,采用四组试验方案,分别考察了不同砂轮线速度、不同工作台进给速度、不同磨削深度和同一磨除率下不同工作台进给速度和不同切深对钛合金材料磨削性能的影响。所采用的磨削参数如表4、表5所示。
                          表4  磨削参数1(采用树脂结合剂金刚石砂轮)
编号   砂轮线速度vs(m/s)   工作台进给速度vw(m/min) 磨削深度ap(mm)   单位砂轮宽度磨除率zw(mm3/mm·s)
1-1   60,90,120,150 2 0.1 3.33
1-2 150 1,2,3,4,6 0.2   3.33,6.67,10,13.33,20
1-3 150 6   0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8   20,40,60,80,100,120,140,160,180
1-4 150 1,2,3,4   0.8,0.4,0.27,0.2 13.33
                            表5  磨削参数2(采用陶瓷结合剂CBN砂轮)
编号   砂轮线速度vs(m/s)   工作台进给速度vw(m/min) 磨削深度ap(mm)   单位砂轮宽度磨除率zw(mm3/mm·s)
2-1   60,90,120,150 2 0.1 3.33
2-2 150 1,2,3,4,6 0.2   3.33,6.67,10,13.33,20
2-3 150 6   0.2,0.4,0.6,0.8,1   20,40,60,80,100
2-4 150 1,2,3,4   0.8,0.4,0.27,0.2 13.33
本发明对TC4钛合金材料进行了以上试验方案的研究,获取了大量的试验数据,通过对数据的分析、比较和整理,得出了以下试验结果。
1)砂轮表面形貌:
以往经验证明,金刚石砂轮不适宜磨削金属材料,这是由于金刚石磨料在高温下石墨化和渗碳倾向严重。然而,我们通过试验发现,如果采用高效磨削方式,采用高的砂轮线速度和工作台速度,砂轮与磨削区迅速脱离,磨削热主要传散到切屑和磨削液中,大大降低了磨削弧区温度,使得金刚石砂轮可以应用于钛合金高效深磨。
相比金刚石砂轮,CBN砂轮在相同条件下单位面积法向、切向磨削力小于金刚石砂轮,磨削后工件表面粗糙度也要略优于金刚石砂轮。图1、图2分别显示了金刚石砂轮和CBN砂轮磨削前后表面形貌对比,由图可见,金刚石砂轮磨削后砂轮表面出现较明显的烧伤和磨粒钝化现象;而CBN砂轮磨粒变化不大,能保持较好的锋锐状态。因此,钛合金高效深磨应首选CBN砂轮。
2)工件表面形貌:
图3、图4分别是TC4钛合金材料分别采用树脂结合剂金刚石砂轮、陶瓷结合剂CBN砂轮在某种试验条件下的磨削表面形貌。
由图3、图4可知,无论采用树脂结合剂金刚石砂轮还是陶瓷结合剂CBN砂轮,TC4钛合金磨削表面以塑性沟槽为主,说明两种方式下材料去除方式都以塑性去除为主。
通过试验结果的观察,我们发现砂轮线速度增加、磨削深度减小均可以使磨削力减小,比磨削能增加,加工表面塑性去除痕迹增多,这是最大未变形切屑厚度减小和接触弧长变大的缘故。试验发现,当砂轮线速度较小(vs<60m/s)时,磨削表面出现裂纹,这是砂轮和TC4钛合金工件表面发生粘附现象造成的,结果导致了加工表面的恶化,这也说明了钛合金不宜采用低速磨削。试验发现,在其它条件相同的情况下,砂轮线速度为120-150m/s时磨削表面形貌最为平整,磨削深度为0.2-0.6mm时加工表面情况最好。若同时增加磨削深度和降低工作台进给速度,不但能保证磨除率不变,而且能更有利于材料的去除,使加工表面更为平整。在磨除率相同的情况下,工作台进给速度为1m/min,磨削深度为0.8mm时,磨削表面形貌最为平整。
3)表面粗糙度
图5显示了不同磨削条件下采用不同砂轮的磨削表面粗糙度值。可以看出,粗糙度值处在0.5-1.2μm范围内。通过分析发现,表面粗糙度值受砂轮线速度和工作台进给速度的影响较大。随砂轮线速度的增大,工件表面粗糙度值呈下降趋势;随工作台进给速度的增大,工件表面粗糙度值呈上升趋势,但是粗糙度值变化范围不大。在大多数相同试验工况下,采用陶瓷结合剂CBN砂轮所获得的工件表面粗糙度要优于树脂结合剂金刚石砂轮。
4)磨削力
图6显示了单位面积磨削力随砂轮线速度的变化情况。由图6(a)和(b)所示,单位面积法向磨削力和单位面积切向磨削力随砂轮线速度的增大,呈明显的下降趋势。
图7显示了单位面积磨削力随工作台进给速度的变化情况。由图7(a)和(b)所示,单位面积法向磨削力和单位面积切向磨削力随工作台进给速度的增大呈上升趋势,而且当采用陶瓷结合剂CBN砂轮时,其上升趋势相对树脂结合剂金刚石砂轮更为平缓。
图8显示了单位面积磨削力随切深的变化情况。如图8(a)和(b)所示,单位面积法向磨削力和单位面积切向磨削力随切深的增大呈上升的趋势,但其上升过程中存在波动,我们认为这是这是最大未变形切屑厚度的变化、材料去除方式的改变、材料绝热剪切及软化三个因素共同作用的结果。
图9显示了在磨除率一定的前提下,改变切深和工作台进给速度,单位面积磨削力的变化情况。如图9(a)和(b)所示,随切深的减小和工作台进给速度的增大,单位面积法向磨削力和单位面积切向磨削力呈现减小趋势,其减小过程中也存在波动现象,且采用陶瓷结合剂CBN砂轮时其趋势较为平缓。
由图6-9还可以看出,相同工况条件下采用陶瓷结合剂CBN砂轮的单位面积法向、切向磨削力小于树脂结合剂金刚石砂轮。
综合以上结果,本发明得出以下结论:
1、将高效精密磨削技术应用于钛合金材料的加工是一种切实可行的加工方法,能极大地提高钛合金材料的加工效率,降低加工成本,并能得到较好的表面质量。
2、金刚石砂轮可以应用于钛合金材料的高效深磨。但相比金刚石砂轮,采用CBN砂轮在相同条件下单位面积法向、切向磨削力较小,磨削后工件表面粗糙度较好,且能保持较好的锋锐状态。因此,钛合金高效深磨应首选CBN砂轮。
3、砂轮线速度增加,磨削深度减小,最大未变形切屑厚度减小,比磨削能增加,单位面积磨削力减小。当砂轮线速度较小(vs<60m/s)时,磨削表面出现裂纹,说明了钛合金不宜采用低速磨削。试验发现,在其它条件相同的情况下,砂轮线速度为120-150m/s时磨削力小,磨削表面形貌最为平整,磨削深度为0.2-0.6mm时加工表面情况最好。
4、增加磨削深度和降低工作台进给速度,不但能保证磨除率不变,而且能更有利于材料的去除,使加工表面更为平整。在磨除率相同的情况下,工作台进给速度为1m/min,磨削深度为0.8mm时,磨削表面形貌最为平整。
附图说明
图1是树脂结合剂金刚石砂轮磨削前后表面形貌对比图,其中(a)为磨削前砂轮形貌图,(b)为磨削后砂轮形貌图;
图2是陶瓷结合剂CBN砂轮磨削前后表面形貌对比图,其中(a)为磨削前砂轮形貌图,(b)为磨削后砂轮形貌图;
图3是TC4钛合金磨削表面形貌图(采用树脂结合剂金刚石砂轮磨削);
图4是TC4钛合金磨削表面形貌图(采用陶瓷结合剂CBN砂轮磨削);
图5(a)(b)(c)(d)分别是不同磨削条件下磨削表面粗糙度值;
图6(a)(b)分别是单位面积磨削力随砂轮线速度的变化情况;
图7(a)(b)分别是单位面积磨削力随工作台进给速度的变化情况;
图8(a)(b)分别是单位面积磨削力随切深的变化情况;
图9(a)(b)分别是磨除率一定,单位面积磨削力随切深和工作台进给速度的变化情况;
图10是磨削装置结构示意图,其中:1-砂轮,2-喷嘴,3-工件,4-测力仪。
具体实施方式
选用TC4钛合金作为磨削加工材料,并采用图10所示装置实施所述磨削加工。试验台主轴功率40KW,最高转速20000r/min;采用SBS4500动平衡系统对砂轮进行实时动平衡,不平衡量<0.1μm;工作台驱动电机功率5KW;冷却系统压力范围为0-25Mpa。
分别采用超高速树脂结合剂金刚石砂轮和陶瓷结合剂CBN砂轮,其参数见前述表1;
对砂轮进行修整,修整参数见前述表2;
采用市售SY-1水基磨削液,供液压力为8Mpa;
磨削工艺条件:
a.单位砂轮宽度磨除率:3.3mm3/mm·s-180mm3/mm·s;
b.砂轮线速度:60m/s-150m/s;
c.磨削深度:0.1mm-1.8mm;
d.工件进给速度:1m/min-6m/min。
三组最佳磨削工艺条件:
1)砂轮线速度:150m/s,磨削深度:0.8mm,工作台速度:1m/min,单位砂轮宽度磨除率:13.3mm3/mm·s;
2)砂轮线速度:150m/s,磨削深度:0.2mm,工作台速度:6m/min,单位砂轮宽度磨除率:20mm3/mm·s;
3)砂轮线速度:150m/s,磨削深度:0.6mm,工作台速度:6m/min,单位砂轮宽度磨除率:60mm3/mm·s。

Claims (4)

1、一种钛合金材料的高效精密磨削方法,采用常规工装设备对钛合金工件实施磨削,其特征是,该方法包括:
a.采用超高速树脂结合剂金刚石砂轮或陶瓷结合剂CBN砂轮,将所述砂轮修整至外圆跳动不大于5μm,并对其做常规修锐;
b.采用砂轮动平衡系统对砂轮进行实时动平衡,砂轮动平衡不平衡量<0.1μm;
c.采用水基冷却液,供液压力为7Mpa-9Mpa;
d.磨削工艺条件:
i.单位砂轮宽度磨除率:3.3mm3/mm·s-180mm3/mm·s;
ii.砂轮线速度:60m/s-150m/s;
iii.磨削深度:0.1mm-1.8mm;
iv.工件进给速度:1m/min-6m/min。
2、根据权利要求1所述钛合金材料的高效精密磨削方法,其特征是,所述磨削工艺条件为:砂轮线速度:150m/s,磨削深度:0.8mm,工作台进给速度:1m/min,单位砂轮宽度磨除率:13.3mm3/mm·s。
3、根据权利要求1所述钛合金材料的高效精密磨削方法,其特征是,所述磨削工艺条件为:砂轮线速度:150m/s,磨削深度:0.2mm,工作台进给速度:6m/min,单位砂轮宽度磨除率:20mm3/mm·s。
4、根据权利要求1所述钛合金材料的高效精密磨削方法,其特征是,所述磨削工艺条件为:砂轮线速度:150m/s,磨削深度:0.6mm,工作台进给速度:6m/min,单位砂轮宽度磨除率:60mm3/mm·s。
CN 200710035086 2007-06-08 2007-06-08 钛合金材料的高效精密磨削方法 Pending CN101066579A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710035086 CN101066579A (zh) 2007-06-08 2007-06-08 钛合金材料的高效精密磨削方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710035086 CN101066579A (zh) 2007-06-08 2007-06-08 钛合金材料的高效精密磨削方法

Publications (1)

Publication Number Publication Date
CN101066579A true CN101066579A (zh) 2007-11-07

Family

ID=38879347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710035086 Pending CN101066579A (zh) 2007-06-08 2007-06-08 钛合金材料的高效精密磨削方法

Country Status (1)

Country Link
CN (1) CN101066579A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289980A (zh) * 2014-08-19 2015-01-21 南京航空航天大学 颗粒增强钛基复合材料磨削效率和表面质量的控制方法
CN105014539A (zh) * 2015-07-16 2015-11-04 湖南大学 基于磨削温度经验模型的可控快速往返点进给磨削系统及磨削方法
CN108115559A (zh) * 2017-12-18 2018-06-05 中国航发贵州黎阳航空动力有限公司 一种钛合金零件的磨削加工方法
CN108890407A (zh) * 2018-06-08 2018-11-27 南京航空航天大学 一种难加工材料振荡磨削加工方法
CN111390655A (zh) * 2020-03-31 2020-07-10 中国航发动力股份有限公司 一种高压涡轮盘安装端面高速大切深磨削方法
CN112548686A (zh) * 2020-12-01 2021-03-26 常州晶业液态金属有限公司 一种非晶合金产品的去料加工方法
CN113941961A (zh) * 2021-11-11 2022-01-18 南方科技大学 一种钛合金的高效低损伤磨削工艺
CN116160324A (zh) * 2023-03-28 2023-05-26 中国航发动力股份有限公司 一种单晶铸造高温合金涡轮导向叶片的高速磨削方法
CN116175348A (zh) * 2023-03-28 2023-05-30 中国航发动力股份有限公司 一种单晶高温合金涡轮工作叶片高速磨削方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289980A (zh) * 2014-08-19 2015-01-21 南京航空航天大学 颗粒增强钛基复合材料磨削效率和表面质量的控制方法
CN105014539A (zh) * 2015-07-16 2015-11-04 湖南大学 基于磨削温度经验模型的可控快速往返点进给磨削系统及磨削方法
CN108115559A (zh) * 2017-12-18 2018-06-05 中国航发贵州黎阳航空动力有限公司 一种钛合金零件的磨削加工方法
CN108890407A (zh) * 2018-06-08 2018-11-27 南京航空航天大学 一种难加工材料振荡磨削加工方法
CN111390655A (zh) * 2020-03-31 2020-07-10 中国航发动力股份有限公司 一种高压涡轮盘安装端面高速大切深磨削方法
CN111390655B (zh) * 2020-03-31 2021-11-09 中国航发动力股份有限公司 一种高压涡轮盘安装端面高速大切深磨削方法
CN112548686A (zh) * 2020-12-01 2021-03-26 常州晶业液态金属有限公司 一种非晶合金产品的去料加工方法
CN113941961A (zh) * 2021-11-11 2022-01-18 南方科技大学 一种钛合金的高效低损伤磨削工艺
CN113941961B (zh) * 2021-11-11 2022-12-06 南方科技大学 一种钛合金的高效低损伤磨削工艺
CN116160324A (zh) * 2023-03-28 2023-05-26 中国航发动力股份有限公司 一种单晶铸造高温合金涡轮导向叶片的高速磨削方法
CN116175348A (zh) * 2023-03-28 2023-05-30 中国航发动力股份有限公司 一种单晶高温合金涡轮工作叶片高速磨削方法

Similar Documents

Publication Publication Date Title
CN101066579A (zh) 钛合金材料的高效精密磨削方法
CN104875287B (zh) 干湿两用激光焊接金刚石锯片
CN104440004B (zh) 一种pcd刀具刃口的加工方法
CN110064974B (zh) 一种采用表层增韧抑制硬脆材料磨削加工崩裂损伤的方法
CN1208682A (zh) 加工装置和加工方法
CN112548175B (zh) 一种针对铝基碳化硅复合材料的超声振动加工装置及方法
CN104874863A (zh) 干湿两用金刚石锯片的制备方法
CN105538176A (zh) 一种砂轮及其制备方法
CN1788931A (zh) 工程陶瓷材料高效深磨磨削工艺
CN102773803A (zh) 大磨粒金刚石砂轮精密修整方法
CN103639908A (zh) 一种超硬cbn磨具的生产工艺
CN107138960B (zh) 用于改善复合材料加工质量的复合加工方法及加工工具
CN103639542B (zh) 一种陶瓷基复合材料螺纹磨削方法及装置
CN111531411B (zh) 一种铝基金刚石复合材料精密加工方法
CN102773560B (zh) 一种锯磨带及加工方法
Boudelier et al. Investigation of CFRP machining with diamond abrasive cutters, Journal of Composite and Advanced Materials
CN102672290A (zh) 硬质合金刀具刃口的电化学-机械复合钝化方法
CN206653237U (zh) 一种具有节水功能的静压回转支撑双头磨床
CN100404182C (zh) 金属冷热切圆锯片侧隙加工方法
CN105563261A (zh) 一种玻璃的磨削减薄方法
CN105108608B (zh) 硬脆材料超光滑表面自适应加工方法
CN108789156B (zh) 一种无心磨砂轮的在线修整方法
CN102335842A (zh) 铝合金零件的磨削加工方法
CN203197758U (zh) 一种用于高效深切磨削的砂轮
CN105479300B (zh) 镍基高温合金涡轮导向叶片深窄圆弧槽加工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication