CN101065502A - Microarray-mediated diagnosis of herpes virus infection by monitoring host's differential gene expression upon infection - Google Patents
Microarray-mediated diagnosis of herpes virus infection by monitoring host's differential gene expression upon infection Download PDFInfo
- Publication number
- CN101065502A CN101065502A CNA2005800323153A CN200580032315A CN101065502A CN 101065502 A CN101065502 A CN 101065502A CN A2005800323153 A CNA2005800323153 A CN A2005800323153A CN 200580032315 A CN200580032315 A CN 200580032315A CN 101065502 A CN101065502 A CN 101065502A
- Authority
- CN
- China
- Prior art keywords
- sequence
- polynucleotide
- polypeptide
- hvi
- expression product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention discloses molecule and test about diseases can be used for diagnosing and evaluating the animals infected by herpes virus, and for testing the animals in herpes virus infection or in sequela. The invention allows early diagnosis and monitoring of an infected animal's immune response and thus enables better treatment and management decisions to be made in clinical and sub-clinically affected animals.
Description
Invention field
Present invention relates in general to diagnosis, detect host response, the method and system of herpesvirus infection in monitoring, treatment and the processing Mammals.The present invention can be applied to early diagnosis and infect, detects the specific immune response (having or do not have clinical symptom) to herpesvirus infection, can be to being subjected to the clinical and subclinical Mammals that influences to make better treatment and handling decision.The present invention also can be applied to monitor the Mammals of the clinical sign recurrence that the relevant sequela risk of bleb takes place or cause because of latent virus.This Mammals includes but not limited to: because of suffer from other disease or give due to the medicine, suffer from chronic fatigue syndrome, meet with stress or the animal that weakens of training immunity.
Background of invention
Simplexvirus has been represented and has extensively caused people and the domestic and viral extended familys wildlife various diseases.Known herpes virus type surpasses 80 kinds, but has only 8 kinds knownly can cause the human disease.These 8 kinds are divided into three subfamilies shown in the following table.
1. α herpetoviridae | |
Human herpesvirus 1 (HHV-1) human herpesvirus 2 (HHV-2) herpes virus hominis 3 (HHV-3) | Human herpes simplex vicus 1 (HSV-1) human herpes simplex vicus's 2 (HSV-2) varicella zoster virus (VZV) |
2. β herpetoviridae | |
Human herpesvirus 5 (HHV-5) herpes virus hominis 6 (HHV-6) herpes virus hominis 7 (HHV-7) | Cytomegalovirus (CMV) Roseolovirus |
3. gamma herpes viruses section | |
Human herpesvirus 4 (HHV-4) human herpes virus 8 (HHV-8) | The Lymphocryptovirus Rhadinovirus |
Herpesvirus infection is widely distributed, and the disease that causes has serious Economic Importance.In fact, the Mammals of most of kinds is in the early stage at least a virus strain infection that once was subjected to simplexvirus of life.Infection is persistent, and does not have known methods of treatment.Can use antiviral to treat, but after symptom takes place, use and/or take (when they have the time spent at least) often, because side effect and expense and can not be as the prevention administration.Therefore, their application is generally limited to the mankind.
At present can only detect clinical sign and the antibody that back and patient produce behind other zoogenetic infection occur based on the diagnostic method of antibody test.Other detection method comprises polymerase chain reaction (PCR) amplification virus transcription thing or viral DNA, tissue culture isolated viral and/or virus neutralization tests.
All herpesvirus infections are persistent.After the primary infection, virus enters latent period.When patient's immunizing power weaken or be subjected to stress or strong movements when training, disease can activate again.Again the activation of virus can cause symptomatic recurrence, or general malaise, or the tolerance or the performance of taking exercise reduced, perhaps can be asymptomatic.
The mensuration of antiviral antibody, antigen or transcript (value) not necessarily is associated with disease or clinical sign.
The available effective vaccine does not almost have.
Available medicine is treated, but their costlinesses need give before main clinical sign occurs for obtaining greatest treatment efficacy.
Epidemiology and clinical manifestation
Simplexvirus can cause several clinical manifestations in the host that normal and immunizing power weaken.Asymptomatic during most of herpesvirus infection, most of cases that bleb is propagated are people that outburst fashion is not recognized or still do not diagnosed out.
The adult of 50-90% has the antibody to HHV-1 or 1 type human herpes simplex vicus (HSV-1); The 20-30% adult has the antibody to HHV-2 or 2 type human herpes simplex vicuses (HSV-2).(virus) propagation in the low colony of socio-economic status chooses friends indiscriminately individuality with property is more general.HSV-1 is usually relevant with actinal surface portion (orofacial) regional primary infection, the latent infection gasserian ganglion, and HSV-2 is common relevant with genital infection, latent infection rumpbone neuroganglion.Though initial and recurrent infection is (self-limited) of self-limit normally, HSV can cause serious disease, newborn infant's dissemination bleb for example, viral encephalitis and blinding keratitis (blinding keratitis).
During acute primary infection, HSV hide lastingly with skin that enters or the corresponding nerve root ganglion of mucosal sites (nerve root ganglia) in.In lip (orolabial) infected, HSV hid in gasserian ganglion, and hides in the rumpbone neuroganglion when sexual organ or anorectal infection.Various stimulations, for example the damage of UV-light and sensory nerve can activate the HSV that hides again.The recurrence venereal disease is decreased and to be occurred in or near the primary infection position.Recurrence as if with some mode reduce individual relevant to the factor of disease resistance, for example flu or upper respiratory tract infection, the high strength physical sport, Exposure to Sunlight, stress, woman month is through triggering because of food with some individualities, particularly a large amount of chocolates or peanut.
During reactivation, HSV duplicates in neuroganglion, and the progeny virus particle moves to the mucous membrane or the epithelial surface of its reactivation neuroganglion domination to outer planet along sensory nerve.Virus is in the active typical clinical sign and sick the damage (situation that recurs flu as the people who infected by HSV) that has produced the HSV infection and recurrence of duplicating of skin surface then.
" Epstein-Barr virus " (EBV) or HHV-4 and be also referred to as the infectious mononucleosis of " glandular fever " and tumour to form (for example, Burkitt lymphoma and nasopharyngeal carcinoma (nasopharyngeocarcinoma)) relevant.In addition, in the patient of immunosuppression and trouble Hodgkin, find to have EBV.EBV has in the whole world, and most of people were infected by it once in life at it.In the U.S., nearly 95% adult is infected in 35-40 when year.In case maternal antibody provide protection (existing during birth) disappears, the baby is promptly to the EBV susceptible.
The EBV symptom of infectious mononucleosis comprises heating, throat pain, lymph gland swelling.Spleen or liver swelling can take place sometimes.Rare cardiac problems or relate to central nervous system, infectious mononucleosis is fatal scarcely ever.The most of individualities that contact with the people who suffers from infectious mononucleosis were infected by EBV in the past, did not have the risk of suffering from infectious mononucleosis.In addition, EBV propagates and need contact closely with sufferer's saliva (finding virus in mouth).This virus is not generally by air or blood propagation.Latent period, or from infect to the time that symptom occurs be 4-6 week.The infectious mononucleosis patient propagates this infectious diseases to other people in can be in several weeks.Yet, do not recommend special preventive measures or partition method, because in healthy people's saliva, often can find this virus yet.In fact, many healthy persons can carry and intermittently propagate this virus all the life.These people are the main source (primary reservoir) of person to person's propagation normally.In view of this, may prevent this virus disseminating hardly.
Though the symptom of infectious mononucleosis can disappear 1 or 2 middle of the month usually, Epstein-Barr virus can be kept in a few cell that lies dormant or latent in throat and blood in all the other times in this person's all one's life.This virus can periodically activate again, is common in sufferer's the saliva.This reactivation does not often have obvious disease symptoms when taking place, but nonspecific symptom can be arranged, and for example discomfort or athletic performance are not good.EBV also can set up lifelong dormancy and infect in some cells of body immune system.Two kinds of rare cancers of seldom finding in the U.S. Burkitt lymphoma and nasopharyngeal carcinoma can appear, in this virus few carrier afterwards.As if EBV plays an important role in these malignant tumours take place, but may not be the sole cause of these diseases.
Cytomegalovirus (CMV) or HHV-5 generally see in all geographic areas and the colony of social economy, and in the U.S., 40 years old adult of 50%-85% is infected.CMV can cause immunosuppression person's pulmonary infection.In addition, it is believed that CMV is relevant with EBV and chronic fatigue syndrome, per 100,000 philtrums have 6 people influenced by this disease.Can discharge infectious CMV in the infected's the body fluid before any, thereby can in urine, saliva, blood, tears, seminal fluid and breast milk, find.The discharge of virus can intermittently take place, and does not have detectable sign, does not also cause symptom.CMC is in interpersonal propagation.CMV can also can propagate through breast milk, transplanted organ through spreading through sex intercourse, and seldom propagates through blood transfusion.Though should virus not be hyperinfection, its demonstration can be propagated within the family with among the young children.Often can stop the propagation of this virus,, should virus be absorbed then by susceptible person's nose or mouth because its modal circulation way is to contact with hand by infected body fluid.Therefore, should the heart when the article of handling children such as diaper.With soap and water simply wash one's hands can be effectively with should virus from removing on hand.
The symptom that CMV causes is less than EBV, and long-term unconspicuous infection often takes place, and virus resides in the cell and do not cause detectable damage or clinical disease during this period.Because of taking medicine or disease causes body immune system to be badly damaged making often this virus from hiding or dormant state activates again.Cmv infection is common but do not have symptom in baby and child; Therefore, known infected children are dropped out of school or drop out of school unreasonable also unnecessary.Similarly, inpatient does not need independent or meticulous isolation preventive measures.The value of children or patient being carried out the CMV screening is suspicious.The cost of this method is unrealistic with operation.The known children that infected CMV should not got rid of separately, isolate or treat especially.On the contrary, suggestion is educated the personnel that take care of children and is set up effective hygiene measure.It is gestation that CMV may cause the situation of problem, the people of baby and child care work and the people that immunizing power weakens.
Varicella zoster virus (VZV) or HHV-3 cause children varicella usually, and its (infection) needs suction the infected's nose or throat to drain into the small droplets that contains virion of air.This virus enters human body by the cell that infects respiratory tract, thereby diffuses to other position of great majority of health, comprises skin and causes the characteristic fash.Each sick decrease (spot) has experienced the series of features sexual stage in an about week.Papule and vesicle develop into warts, incrustation then, healing.The notable feature of varicella is to grow several consecutive spots, reaches the peak period (occur first fash 3-4 days after) of disease, develops into all ill damage of all stages of incrustation from new bubble.
The ability that VZV propagates in this way shows that varicella has infectivity.Virus is discharged from air flue and is started from the later stage of hiding, and continues to institute's spottiness incrustation.Though skin blister contains virion, they are not main contagium.Scar does not have infectivity.The interference method that is of long duration is to reduce heating and uncomfortable (that is, antipyretic, cooling bath and comfort washing lotion (soothing lotion)) as far as possible.
Varicella is the clinical manifestation of VZV primary infection.After the primary infection recovery, VZV does not disappear in body, but sensorineural root is in dormant state (but common many decades) in spinal cord.After infecting activation again, cause infected sensory nerve institute's distributed areas pain and fash.Latent infection can cause the zoster outbreak.This takes place in the elderly usually, may be that immunity system can not be controlled this virus because with age.The fash of zoster contains the VZV particle, as the fash of varicella.Therefore, zoster infects varicella to the people's who does not suffer from the past varicella risk little.The baby usually can be by catching varicella with grand parents's intimate contact of suffering from zoster, but this propagation risk is low, because VZV does not discharge by throat during the zoster.
Roseola virus or HHV-6 infect relevant with " roserash " and " baby's rash (infantum) " that children and immunizing power weaken the patient.For example, AIDS patient shows HHV-6 and infects, though the meaning that HHV-6 infects it be unclear that.HHV-6 enantiopathy cytotoxic drug sensitivity.Yet how antiviral is resisted HHV-6 or should virus how the resistance of this medicine to be produced it be unclear that.The meaningful aspect of HHV-6 is that it infers that it is relevant with multiple sclerosis and chronic fatigue syndrome respectively.
HHV-7 and HHV-8 (elongated virus) are understood still less.The clear and definite evidence that HHV-7 participates in any human diseases directly yet there are no report.Yet, studies show that HHV-7 may be relevant with the HHV-6 infections relating.One relevant viewpoint is that it is relevant with Kaposi sarcoma to it is believed that HHV-8 infects.
In addition, think that simplexvirus is the reason of the motor capacity of the major reason of horse keeping industry loss and grievous injury horse.Animal doctor, trainer and horse owner people tend to only rely on the horse that experiential therapy is suffered from respiratory tract disease, in default of clinical guidelines and laboratory method, also because do not understand virus and Secondary cases infectation of bacteria and the relation of disease between the time length.Other diagnosis or appraisal procedure complexity, invasive, inconvenience, costliness, consuming time, animal often may and often need animal is transported to diagnositc center because of injured dangerous of this method.
In the research that carry out the West Australia, have the blood of the horse that respiratory problems or (motion) perform poor from 48% and to be separated to simplexvirus.Yet can be separated to simplexvirus from 54% Malaysia and China that do not have clinical sign yet, thereby reach a conclusion: having this virus in the hemocyte is not the determinative of disease.Isolated viral more can show respiratory tract infection from the nose swab, but only is separated in 50% clinical case.According to reports Britain nearly 75% horse carry this virus.
Equine rhinopneumonia is generally acknowledged equine disease different by two kinds but that antigenicity associated virus (being called 4 type EHVs (EHV-4) and 1 type EHV (EHV-1)) causes with equine abortion.EHV-1 is the cause of disease of the popular miscarriage of horse, perinatal death, respiratory tract disease and neurosigns (once in a while).Miscarriage is the surprising and the most fearful result that EHV infects, and it is raiser's economic woes, causes customer churn and a large amount of insurance benefits.The respiratory tract disease that EHV-1 or extremely relevant EHV-4 cause can poorly influence the sports performance of horse.
Studies show that what Australian Hunter Valley carried out the EHV-1 infection is popular in the horse keeping industry, young coltfoal is infected by EHV-1 often before these place 60 ages in days.The independent studies of carrying out in the U.S. shows young coltfoal 6-8 month seropositive conversion after wean of 85%.It is believed that young coltfoal is to contact by the respiratory droplets with mare or the young coltfoal of same group to infect.
EHV-1 is a kind of DNA α simplexvirus of having a preference for airway epithelial cell.This virus is transmitted to other organ by immune system cell at whole body.Because these two kinds of viruses are relevant on antigenicity, can't determine whether horse is subjected among EHV-4 or the EHV-1 one or both infection by serologic test (blood test) at present.For example, if infected by EHV-4 as the horse of young coltfoal, the antibody that produces in its serum can not only also can react with EHV-1 with EHV-4, therefore, can't know whether this young coltfoal infected by EHV-4.EHV-4 only confirms to cause respiratory tract disease, and EHV-1 can also cause neural and reproductive disease (Wilcox and Raidal, 2000, " effect of virus in respiratory tract disease " (Role of viruses inrespiratory disease), RIRDC publication number 00/146, RIRDC item number UMU-22A; Dunowska etc., 2002, New Zealand Veterinary Journal 50 (4): 132-139; Dunowska etc., 2002, New Zealand Veterinary Journal 50 (4): 140-147).
Proved that EHV-1 is lasting, lifelong latent infection, it activates again and causes the horse respiratory tract disease to be shown effect once more.Yet when other horses that infect when contacting with first dry goods (index case (index case)) were pregnant mares in the pasture, this virus activated again and it is propagated to other pregnant mare that contacts with it, and its consequence is more serious to raising the farm.One or many abortion of mares that contact with it may be miscarried or cause to index case mare oneself.Fetus, fetal membrane and the liquid of miscarriage are subjected to the EHV-1 severe infections, have polluted the place that miscarriage takes place.Born other curious mare comes the miscarriage place in this pasture, smells this fetus and peptide film.Like this, in this pasture almost 100% mare infected, miscarriage in 10 or 20 days, thus cause " the miscarriage storm " that be commonly referred to.This outburst of EHV-1 miscarriage is to global horse keeping industry, and particularly thoroughbred (Thoroughbred) and standard-bred (Standardbred) have Economic Importance.
Immunizing power and diagnosis
Simplexvirus can be induced strong humoral antibody reaction, though this reaction protection host's validity is doubtful.Finally be by cell-mediated mechanism, for example cytotoxic lymphocyte or natural killer cell are given provide protection.One of key feature of herpesvirus infection is lifelong long-lasting infection and hides.This virus maintains in the nucleus, for a long time still can be separated to from many organs after clinical symptom disappears.Therefore, when patient (horse) has the clinical sign that is difficult to describe, for example (motion) perform poor or be uncomfortable, can be from the separate tissue to virus, it be unclear that but whether the activation of virus is the reason of these symptoms.Stress or other factors can cause dormancy activated viral and the clinical sign followed (Walker etc., 1999, Veterinary Microbiology, 68:3-13).
HSV-1 or HSV-2 infect the immunizing power of energy inducing cell mediation, produce the antibody of general type and particular type.Do not influence generation or the recurrence frequency that HSV hides though these immune mechanisms be it seems, activate again in case (virus) takes place, they can be regulated the seriousness of clinical recurrence and reduce HSV and duplicate.
HSV-1 or HSV-2 infect the host immune response that causes and show to provide and resist the part provide protection that HSV subsequently infects because in the individuality that HSV infects common resistibility to self infection.In addition, with the physiognomy ratio that did not infect in the past HSV, when the patient who infected HSV was infected by another HSV type, clinical sign often more relaxed.
HSV is the most frequent detected virus in the diagnostic test chamber.Can be by virus separation, polymerase chain reaction (PCR) (Espy etc., 2000, J Clin Microbiol., 38 (2): 795-799) make diagnosis with histopathology (method).These methods all can not be used for control and monitoring of diseases.Other laboratory inspection that can be used for diagnosing comprises scrapes bits (scrapings) and blood antibody test with the microscopy special disposal.Some detect only effective in early days, may need multiple these checks for confirming that bleb exists.Genital herpes may mistaken diagnosis be other disease, comprises syphilis.Serum antibody level height also is the index of recent infection.If someone has visible symptom really, cultivate check in preceding 48 hours after being recommended in symptom and occurring.After 48 hours, the risk that obtains the false negative assay is arranged because symptom may begin to fully recover and skin on do not have enough virus to cultivate.
When someone does not have visible symptom, but when worrying herpes infection is arranged, can adopt blood test.In fact blood test is not to detect virus; But look for antibody (immune response of body), but the human blood of 50-90% has positive antibody.Available twice blood test at present obtains the precise results of bleb.The same with any blood test, it is oral cavity or reproductive tract that these checks can not be measured infection site.Yet because the most of cases of genital herpes are that HSV-2 causes, 2 type antibody results are positive, and most probable shows it is genital herpes.With regard to the most accurate result, recommend from possible last duration of contact waiting until that 12-16 has the enough time to produce antibody after week at least with bleb (virus).
According to the clinical diagnosis of generating heat, having sore throat, lymph gland swelling symptom and patient's age proposing EBV and infectious mononucleosis.Usually need laboratory inspection to confirm.Infectious mononucleosis patient's serology result comprises that white blood cell count(WBC) raises, some atypia white corpuscle per-cent raises and " single spot " check is positive.
By enzyme-linked immunosorbent assay (or ELISA), a kind of serologic test that detects antibody carries out the CMV clinical diagnosis.Can utilize its result to determine whether the baby has the maternal antibody of acute infection, infection in the past or passive acquisition.Other check comprises various fluorescent tests, IHAT and milk agglutination test.
According to respiratory symptom, promptly cough or nasal mucus carry out the EHV diagnosis.Yet, distinguish respiratory bacillary infection or viral infection, exercise inductive lung is hemorrhage with irritated most important.The cost of mistaken diagnosis is very big.The cost of horse owner's diagnose medical conditions comprises transportation, animal doctor's expense and pathological examination.Respiratory tract disease can kill (horses) fast, produces lifelong deformity, hinders (motion) performance or need long-term rest.Be in the horses that challenge virus carries situation and can infect other animal again.
With horse keeping already is example, need whether have that EHV-4 and/or EHV-1 antibody carry out accurately to horses, the monitoring of the serology of type specific helps the epidemiology (characteristics) that we understand these virus, particularly EHV-1.EHV-1 infects and is difficult to diagnosis and treatment, any useful information how the sector welcome treats ill horses.Yet, can not distinguish EHV-1 or EHV-4 antibody in the polyclonal serum at present, because between these two kinds of viruses antigenicity cross reaction is widely arranged.Adopt this specific serum to learn check control (perhaps eradicating) EHV-1 is also had far reaching significance with the candidate horses of selecting vaccine inoculation.Be subjected to short duration protection opposing EHV-1 though infect the back horses, do not have enough high-caliber permanent immunity power to resist the EHV-1 disease consistently usually.Therefore, but horses its in life repeated infection for several times, and simplexvirus can be set up lifelong latent infection and made the vaccine inoculation scheme complicated in host animal.
Still there is not to prevent the vaccine of HSV disease generation.Though and then the back clinical trial phase based on the some protein subunit vaccine of HSV-2 envelope glycoprotein.Select these antigens to be because they are the target and the energy trigger cell immunizing power of neutralizing antibody reaction.
Developed oral antiviral, for example acyclovir, Famciclovir (famcyclovir) or valacyclovir (valacyclovir) are effectively treated bleb (virus) infection.These medicines can be used for treating the bleb outburst or can be used for suppressing the bleb recurrence.Lower dosage helps to reduce the number of times of bleb outbreak among the frequent outburst crowd.Ganciclovir, Penciclovir (penciclovir) and acyclovir are effective inhibitor of 1 type (HSV-1) and 2 types (HSV-2) hsv.This antiviral therapy costliness need give when clinical sign outbreak the earliest.These antiviral therapies are based on the employing suicide gene, for example the thymidine kinase gene.Having compared ganciclovir, Penciclovir and acyclovir induces hsv thymidine kinase (HSVTK) system to cause effect (Shaw etc., 2001, Antivir Chem Chemother., 12 (3): 175-86) of necrocytosis.All compound retards the HSVTK transformant growth or reduced its survival.
Except treating these symptoms, EBV and infectious mononucleosis there is not special methods of treatment.There are not antiviral or vaccine to use.Some physicians have opened 5 days steroid and have controlled throat and tonsilla swelling the course of treatment.Have report to say that the use sterol can reduce the total time and the seriousness of disease, but these reports are not delivered.At last, even detect EBV antibody, when for example early antigen test prompting existed reactivation to infect, this result showed that not necessarily the present medical conditions of patient is due to EBV infects.Many healthy persons that do not have a symptom can have the EBV early antigen for many years after infecting EBV first antibody.
At present, the cmv infection that exists in the healthy individual needn't be treated.Now just in the baby, assessing the antiviral therapy.Ganciclovir is used for the treatment of immunosuppression and the patient who suffers from visual correlation or life-threatening disease.Vaccine still is in the research and development stage.
Usually antiviral compound treatment varicella that need not be special is because its time length is short and common gentle character is uncomplicated.Some doctors believe that antiviral is suitable for the elderly that disease may be more serious.Chickenpox vaccine (varicella virus (varicella) vaccine) was brought into use from nineteen ninety-five.Studies show that the prophylactic validity of Varivax is 85%.This vaccine is of value to the grownup of no immunizing power, particularly is in high risk grownup, for example child care and health worker.Because most of grownups have immunizing power, be recommended in the preceding serology state of checking of vaccine inoculation.
The main difficult point of treatment zoster is a fast pain relief.Four kinds of factors have increased the risk of lasting pain independently: age growth, the pain (being called forerunner's pain) when fash occurs before serious or medium serious pain (being called acute pain), the fash appearance occur failing to obtain enough antiviral therapies in 3 days with fash.Think pain, due to the infected nerve injury that particularly lasting pain is virus induction to a great extent.The principle of using antiviral is very simple: reduce nerve injury as far as possible by the fast as far as possible virus replication that stops.Zoster is to oral antiviral, and promptly acyclovir, Famciclovir and valacyclovir truly have reaction.
The early stage EHV-1 of evaluation infects, and particularly virus abortion is most important for the treatment horses, thereby makes the susceptible horses can generating period repeated infection and recurrence.Because cause training fate forfeiture, repeated infection and palindromia, miscarriage and (motion) to perform poor, the cost that the EHV infection already causes horse keeping is very big.Treatment mainly depends on accurate diagnosis.Can utilize vaccine to cause strong humoral immune reaction, but these vaccines complete protection of tool not.Sudden infection (breakthrough infection) betides the vaccine inoculation animal usually.Though can adopt vaccine, generally know that the provide protection that they provide is very few, and sudden infection often takes place in the vaccine inoculation animal.Antybody therapy can only prevent the Secondary cases infectation of bacteria.
At present, the simplexvirus in the diagnosis blood and the method for relative disease are according to antibody-antigen quantitative assay or detect viral genetic information (for example, passing through the polymerase chain reaction).For example, United States Patent (USP) 6,506,553 have described the test of diagnosing EBV and relative disease by the antigen-antibody in the detection blood sample.This test detects in the blood, more particularly the IgG and the IgM antibody of the dispersivity of EBV early antigen (EA-D) and restricted (EA-R) component in the serum.Can adopt this to test and diagnose the EBV-relative disease, for example infectious mononucleosis (IM); Also can be used for distinguishing the acute phase and the convalescent individuality of this disease.Yet the method that this patent is described is to detect EA-Ab, rather than detects virus or to this viral immune response.
United States Patent (USP) 6,537,555 have described the composition and the method for diagnosing and treating the HSV infection according to HSV detection of antigens (result).Yet this patent is not described and is detected virus or to the immunoreactive method of this virus.
Genetic expression that international publication WO 99/45155 describes and molecular diagnosis method are used for amplification and detect EBV nucleic acid, particularly RNA specific sequence.This method is specially adapted to detect in the circulation peripheral blood cells, (utilizing " in the solution " amplification or " original position " amplification technique) in people's (tumour) tissue sample and the thin section thereof, with other biological sample that may contain the EBV cells infected in late period of EBV genetic expression infect.Yet this method only detects the virus transcription thing, is suitable for the terminal illness diagnosis most.This method does not detect causing the immune responses of the virus infection of symptom the earliest such as discomfort, heating and swollen lymph node yet.
U.S. Patent Application Publication 20040072147 discloses utilizes probe oligonucleotides and at least two kinds of primer tasteless nucleotides to come the target area section of following particular type simplexvirus of selective amplification or strain to comprise: HSV-1, resistance HSV-1, HSV-2, resistance HSV-2, VZV, EBV (HHV-4a and HHV-4b), CMV, lymph cryptovirus (HHV-6a, HHV-6b), HHV-7 and elongated virus (HHV-8).Yet this method can not provide when infected whether disease stage or animal or disease be any information of active.
United States Patent (USP) 6,193,983 have described the method that detects EVH-4 and EVH-1 type specificity glycoprotein is used for relevant with the feature of this glycoprotein clinically field.This method detects anti-EHV-1 and EHV-4 specific antibody, but it is contacted in childhood and these virus to know most of horses, the sustainable certain hour of antibody titers.So this method can not provide when infected whether disease stage or animal or disease be any information of active.
In a word, the various virus strain infections of simplexvirus are general phenomenon in the community, cause having the disease of serious economic impact.Most of people and domestic animal are in the infection that all is subjected at least a strain of simplexvirus in petticoats, and this infection is lifelong.Simplexvirus enters latent period, can activate again and causes symptomatic recurrence.The reactivation frequentation of virus is toward asymptomatic, but can show as discomfort or nonspecific symptom, for example low fever, drowsiness, confirmed fatigue, exercise tolerance is not good or athletic performance is not good.Physiological stress (for example, heavy exercise, concurrent disease, stress), or immunity system weakens (for example HIV infect, immunosuppressant therapy) and can cause the simplexvirus reactivation and produce the chronic infection symptom.In view of these reasons, the monitoring herpesvirus infection is often important, particularly the patient that weakens of immunizing power or outstanding sportsmen.Present antibody diagnosis method itself is not monitored herpesvirus infection because the serum antibody that these methods detect 7-14 talent after infection raises and due to illness poison hide and continue and raise.Other present diagnostic method, for example virus is separated and PCR itself does not monitor (virus infection), because these method efforts or viral genome are not constantly to be present in the blood cell.The result that the current diagnosis method obtains does not join with the time correlation that clinical sign shows effect.For example, but at first can detect antibody and long-term existence in 10-14 days in the initial back of infecting.Depend merely on antibody test and can not show time or the disease activity level that takes place that infect, detect virus transcription thing or viral protein and also do not show the disease activity level.Host's immunity system finally is responsible for the provide protection that opposing virus is invaded.Be immune response, but rather than the viral clinical sign that causes this disease itself.The monitoring method that more is appropriate to herpesvirus infection is to detect the specific immune response of host to infecting.
Equally, need more efficient methods to diagnose herpesvirus infection at present, be fit to use the animal of antiviral treatment or preventive therapy by host immune response mensuration activity herpesvirus infection and evaluation.In all cases, primary infection causes latent infection, and the patient that immunizing power weakens also often has risk of relapse.In this case, symptom may be obvious or not obvious, can detect maybe and can propagate.Therefore, need better method and reagent to assess and monitor the Mammals that is in herpesvirus infection and/or the risk of relapse at present.
The invention summary
The invention discloses the detection herpesvirus infection, particularly the method and system of reactivity herpesvirus infection.Identify and the gene of having described one group of predictability of the immune system cell that is used for (detection) herpesvirus infection.These genes and product thereof can be used for gene expression test, protein expression test, full test cell line and design and preparation therapeutical agent.They also can be used for measuring the animal that has or do not have the disease clinical sign.Someone proposes, and is frequent when opposing viral active indicator reaction when these tests, can obtain better that reply determines and treatment plan, comprises that outstanding sportsmen or immunizing power weaken the used scheme of patient.
The present invention has represented the marked improvement of present processing infected animals treatment technology.In some preferred embodiment, depend on the level that detects some mark, particularly circulating leukocyte in the host cell, rather than detect viral product or antiviral antibody.Equally, these methods are applicable to that extensive screening has symptom and asymptomatic animal.In some embodiment that with the circulating leukocyte is analytic target, can before detecting serum simplexvirus specific antibody, should detect the host at the very commitment of this virus progress, the particularly reaction of EHV infection to herpesvirus infection.
Therefore, the present invention is by detecting the host solves the diagnosis herpesvirus infection to the reaction of simplexvirus problem.Embodiment preferred comprises some expression of gene in the immune peripheral leukocytes of monitoring, and described genetic expression is reflected in the change that exists relevant rna level of herpesvirus infection or protein to produce pattern.
Therefore, on the one hand, the invention provides the diagnostic test object, particularly have herpesvirus infection in the horses tested object, particularly the method for movable herpesvirus infection.These methods generally comprise and detect at least a unconventionality expression that is selected from following gene (this paper is also referred to as " herpesvirus infection marker gene " or " HVI marker gene ") in this tested object: (a) a kind of gene, its polynucleotide expression product contains and following arbitrary sequence have at least 50% (and at least 51%-at least 99% and between all integer per-cents) nucleotide sequence of sequence homogeny: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113 (referring to table 1), or its complementary sequence; (b) a kind of gene, its polynucleotide expression product contain the nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114 (referring to table 1); (c) a kind of gene, its polynucleotide expression product contains coding and at least a portion of following arbitrary sequence at least 50% (and at least 51%-at least 99% and between all integer per-cents) nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) a kind of gene, its polynucleotide expression product contain at least can be under low preciseness, middle preciseness or high preciseness condition and the sequence of (a) and (b), (c) or the nucleotide sequence of its complementary sequence hybridization.These HVI marker gene of the present invention are at herpesvirus infection or suffer from abnormal expression in the animal of herpesvirus infection associated conditions, the exemplary example of described illness comprise immunosuppression, stress, high-intensity athletic training, an accompanying infection and a special venereal disease disease.
This paper is called the polynucleotide expression product of used HVI marker gene " herpesvirus infection mark polynucleotide " or " HVI mark polynucleotide ".This paper is called the expression of polypeptides of HVI marker gene " herpesvirus infection mark " or " HVI labeling polypeptide ".
Therefore, in some embodiments, described method comprises and detects the unconventionality expression be selected from following HVI mark polynucleotide: (a) contain and following arbitrary sequence have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of sequence homogeny nucleotide sequence: SEQ IDNO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; (c) contain coding and at least a portion of following arbitrary sequence and have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) containing at least can be under low preciseness, middle preciseness or high preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
In other embodiments, described method comprises and detects the unconventionality expression that is selected from following HVI labeling polypeptide: (i) contain and following arbitrary sequence have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polypeptide of aminoacid sequence of sequence similarity: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; The polypeptide that (ii) contains a following arbitrary sequence part: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains at least 5 contiguous amino acid residues of this sequence; At least 15 contiguous amino acid residues of (iii) amino acid contained sequence and following arbitrary sequence have the polypeptide of 30% similarity at least: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; The polypeptide that (iv) contains the part of following arbitrary sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains at least 5 contiguous amino acid residues of this sequence, and with can and (i), (ii) or (iii) described certain sequence immune interactional antigen binding molecules takes place immunity takes place interacts.
This unconventionality expression generally detects by following steps: (1) detects the level or the functionally active of at least a HVI marker gene expression product in the biological sample that derives from tested object, (2) with the level or the functionally active of detected each expression product and derive from one or more normal subjects or one or morely (for example do not suffer from this disease, the level or the functionally active of corresponding expression product are made comparisons in the reference sample of object no activity infection), wherein compare with the level or the functionally active of corresponding expression product in the reference sample, the level of this expression product or functionally active are variant in this biological sample, show to have herpesvirus infection or associated conditions in this tested object.In some embodiments, when this expression product or the detected level of each expression product or functionally active and corresponding this expression product or the detected level of each expression product or functionally active not simultaneously, described method also comprises existence, stage or degree or the associated conditions of herpesvirus infection in this tested object of diagnosis.In these embodiments, compare with the level or the functionally active of each corresponding expression product, it is about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% that the level of described each expression product of difference ordinary representation or functionally active improve at least, perhaps even at least improves about 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900% or 1000%; Perhaps reduce at least about 10%, 20%, 30% 40%, 50%, 60%, 70%, 80%, 90%, 92%, 94%, 96%, 97%, 98% or 99%, perhaps even at least reduce about 99.5%, 99.9%, 99.95%, 99.99%, 99.995% or 99.999%, promptly hereinafter alleged " unconventionality expression ".In the exemplary example of this type, reduce existence or the associated conditions of measuring herpesvirus infection by detecting at least a level or the functionally active that is selected from following HVI mark polynucleotide: (a) contain and following arbitrary sequence have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of sequence homogeny: SEQID NO:6,10,19,24,25,29,33,34,35,37,38,41,53,57,61,63,65,66,73,77,83,89,93,94,96,100,101,102,104,106,107 or 108, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:11,20,30,36,42,54,58,62,64,74,78,90,95,97,103 or 105; (c) contain coding and at least a portion of following sequence and have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:11,20,30,36,42,54,58,62,64,74,78,90,95,97,103 or 105, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) containing at least can be under low preciseness, middle preciseness or high preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
In other exemplary example, determine the existence or the associated conditions of herpesvirus infection by the raising that detects at least a level that is selected from following HVI mark polynucleotide or functionally active: (a) contain and following arbitrary sequence have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of sequence homogeny: SEQ ID NO:1,2,4,8,12,13,15,17,21,23,26,27,31,39,43,45,47,49,51,55,59,67,69,71,75,76,79,81,85,87,91,98,99109,111 or 113, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,14,16,18,22,28,32,40,44,46,48,50,52,56,60,68,70,72,80,82,86,88,92,110,112 or 114; (c) contain coding and following arbitrary sequence at least a portion and have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:3,5,9,14,16,18,22,28,32,40,44,46,48,50,52,56,60,68,70,72,80,82,86,88,92,110,112 or 114, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) containing at least can be under low preciseness, middle preciseness or high preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
In some embodiments, when institute's detection level of this expression product or the detected level of each expression product or functionally active and corresponding this expression product or each expression product or functionally active were same or similar, described method comprised that also diagnosis does not exist herpesvirus infection or associated conditions.In these embodiments, the difference of detected level of the corresponding expression product with each of detected level of each expression product or functionally active or functionally active is no more than about 20%, 18%, 16%, 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1% or at 0.1% o'clock, hereinafter referred to as " normal expression ".
In some embodiments, described method comprises that detection is at least about 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77 or the level or the functionally active of 78 kind of each expression product of HVI mark polynucleotide.For example, described method can comprise independent detection a kind of HVI mark polynucleotide or joint-detection as many as 77,76,75,74,73,72,71,70,69,68,67,66,65,64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2 or the level or the functionally active of a kind of other HVI mark polynucleotide.In another embodiment, described method can comprise a kind of HVI labeling polypeptide of independent detection or joint-detection as many as 77,76,75,74,73,72,71,70,69,68,67,66,65,64,63,62,61,60,59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2 or the level or the functionally active of a kind of other HVI labeling polypeptide.In the exemplary example of this type, described method comprises detection and has at least 1 of herpesvirus infection or associated conditions or its risk height correlation (p<0.00001), 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 or the level or the functionally active of each expression product of 17 kind of HVI marker gene (hereinafter referred to as " one-level be correlated with HVI marker gene "), its representative example includes but not limited to: (a) contain and following arbitrary sequence have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of sequence homogeny: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25 or 26, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20 or 22; (c) contain coding and at least a portion of following sequence and have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:3,5,9,11,14,16,18,20 or 22, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) containing at least can be under low preciseness, middle preciseness or high preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
In other exemplary example, described method comprises detection and has at least 1 of herpesvirus infection or associated conditions or its risk height correlation (p<0.0001), 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 or the level or the functionally active of each expression product of 21 kind of HVI marker gene (hereinafter referred to as " secondary be correlated with HVI marker gene "), its representative example includes but not limited to: (a) contain and following arbitrary sequence have at least 50% (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of sequence homogeny: SEQID NO:27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61 or 63, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:28,30,32,36,40,42,44,46,48,50,52,56,58,60,62 or 64; (c) contain coding and at least a portion of following arbitrary sequence and have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:28,30,32,36,40,42,44,46,48,50,52,56,58,60,62 or 64, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) containing at least can be under low preciseness, middle preciseness or high preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
In other exemplary example, described method comprises detection and has at least 1 of herpesvirus infection or associated conditions or its risk medium relevant (p<0.0003), 2,3,4,5,6,7,8,9,10,11,12,13,14 or the level or the functionally active of each expression product of 15 kind of HVI marker gene (hereinafter referred to as " three grades of relevant HVI marker gene "), its representative example includes but not limited to: (a) contain and following arbitrary sequence have at least 50% (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of sequence homogeny: SEQ ID NO:65,66,67,69,71,73,75,76,77,79,81,83,84,85 or 87, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:68,70,72,74,78,80,82,86 or 88; (c) contain coding and at least a portion of following arbitrary sequence and have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:68,70,72,74,78,80,82,86 or 88, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) containing at least can be under low preciseness, middle preciseness or high preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
In other exemplary example, described method comprises detection and has at least 1 of herpesvirus infection or associated conditions or its risk appropriateness relevant (p<0.06), 2,3,4,5,6,7,8,9,10,11,12,13,14,16 or the level or the functionally active of each expression product of 17 kind of HVI marker gene (hereinafter referred to as " level Four be correlated with HVI marker gene "), its representative example includes but not limited to: (a) contain and following arbitrary sequence have at least 50% (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of sequence homogeny: SEQ ID NO:89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:90,92,95,97,103,105,110,112 or 114; (c) contain coding and at least a portion of following arbitrary sequence and have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of polypeptide of sequence similarity: SEQ ID NO:90,92,95,97,103,105,110,112 or 114, wherein said part contains 15 contiguous amino acid residues of this sequence at least; (d) containing at least can be under low preciseness, middle preciseness or high preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
In some embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least a kind of one-level of detection.In other embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 2 kinds of one-levels of detection.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of secondary expression product.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least 2 kinds of one-levels of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of secondary expression product.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least 2 kinds of relevant HVI marker gene of secondary expression products.
In some embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least a kind three grades relevant HVI marker gene expression products.In other embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least 2 kinds of one-levels of detection or the level or the functionally active of functionally active and at least a kind three grades relevant HVI marker gene expression products.In also having other embodiment, these methods comprise the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least 2 kinds three grades relevant HVI marker gene expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least 3 kinds three grades relevant HVI marker gene expression products.
In some embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of level Four expression product.In other embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least 2 kinds of one-levels of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of level Four expression product.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least 2 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least 3 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of one-level of detection or the level or the functionally active of functionally active and at least 4 kinds of relevant HVI marker gene of level Four expression products.
In some embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least a kind of secondary of detection.In other embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 2 kinds of secondarys of detection.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least a kind three grades relevant HVI marker gene expression products.In other embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least 2 kinds of secondarys of detection or the level or the functionally active of functionally active and at least a kind three grades relevant HVI marker gene expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 2 kinds three grades relevant HVI marker gene expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 3 kinds three grades relevant HVI marker gene expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 4 kinds three grades relevant HVI marker gene expression products.
In some embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of level Four expression product.In other embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least 2 kinds of secondarys of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of level Four expression product.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 2 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 3 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 4 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 5 kinds of relevant HVI marker gene of level Four expression products.
In some embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least a kind of secondary of detection.In other embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 2 kinds of secondarys of detection.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of Pyatyi expression product.In other embodiments, described method comprises the level of the relevant HVI marker gene expression product of at least 2 kinds of secondarys of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of Pyatyi expression product.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 2 kinds of relevant HVI marker gene of Pyatyi expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 3 kinds of relevant HVI marker gene of Pyatyi expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 4 kinds of relevant HVI marker gene of Pyatyi expression products.In also having other embodiment, described method comprises the level of the relevant HVI marker gene expression product of at least a kind of secondary of detection or the level or the functionally active of functionally active and at least 5 kinds of relevant HVI marker gene of Pyatyi expression products.
In some embodiments, described method comprises the level or the functionally active of at least a kind three grades relevant HVI marker gene expression products of detection.In other embodiments, described method comprises the level or the functionally active of at least 2 kinds three grades relevant HVI marker gene expression products of detection.In also having other embodiment, described method comprises the level of at least a kind three grades relevant HVI marker gene expression products of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of level Four expression product.In other embodiments, described method comprises the level of at least 2 kinds three grades relevant HVI marker gene expression products of detection or the level or the functionally active of functionally active and at least a kind of relevant HVI marker gene of level Four expression product.In also having other embodiment, described method comprises the level of at least a kind three grades relevant HVI marker gene expression products of detection or the level or the functionally active of functionally active and at least 2 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of at least a kind three grades relevant HVI marker gene expression products of detection or the level or the functionally active of functionally active and at least 3 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of at least a kind three grades relevant HVI marker gene expression products of detection or the level or the functionally active of functionally active and at least 4 kinds of relevant HVI marker gene of level Four expression products.In also having other embodiment, described method comprises the level of at least a kind three grades relevant HVI marker gene expression products of detection or the level or the functionally active of functionally active and at least 5 kinds of relevant HVI marker gene of level Four expression products.
In some embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least a kind of level Four of detection.In other embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 2 kinds of level Four of detection.In other embodiments, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 3 kinds of level Four of detection.In also having other embodiment, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 3 kinds of level Four of detection.In also having other embodiment, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 4 kinds of level Four of detection.In also having other embodiment, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 5 kinds of level Four of detection.In also having other embodiment, described method comprises the level or the functionally active of the relevant HVI marker gene expression product of at least 6 kinds of level Four of detection.
Biological sample preferably includes and should contain leukocytic blood, particularly peripheral blood.Described expression product should be selected from RNA molecule or polypeptide.In some embodiments, described expression product is identical with corresponding expression product.In other embodiments, the described expression product variant (for example, allele variant) that is corresponding expression product.
In certain embodiments, described expression product or corresponding expression product be target RNA (for example, mRNA) or the DNA of this target RNA copy, its horizontal available energy copies at least a nucleic acid probe of hybridizing with this target RNA or this DNA and detects under low preciseness condition, this nucleic acid probe contains 15 contiguous nucleotides of certain HVI mark polynucleotide at least.In these embodiments, this target RNA or its DNA are copied level or the abundance stdn of detected level or abundance by the DNA copy of the reference RNA that exists in the same sample or this reference RNA.Nucleic acid probe should be fixed on solid or the semi-solid upholder.In the exemplary example of this type, this nucleic acid probe forms the part of nucleic acid probe space array.In some embodiments, detect the level that copies the bonded nucleic acid probe with this target RNA or this DNA by hybridization (for example adopting nucleic acid array).In other embodiments, detect the level that copies the bonded nucleic acid probe with this target RNA or this DNA by nucleic acid amplification (for example, adopting polymerase chain reaction (PCR)).In also having other embodiment, detect the level that copies the bonded nucleic acid probe with this target RNA or this DNA by the nuclease protection test.
In other embodiments, described expression product or corresponding expression product are the target polypeptide, and its horizontal available energy and this target polypeptide the interactional at least a antigen binding molecules of immunity take place detect.In these embodiments, with the detected level of this target polypeptide or abundance by the reference polypeptide level standardization that exists in the same sample.Antigen binding molecules should be fixed on solid or the semi-solid upholder.In the exemplary example of this type, this antigen binding molecules forms the part of antigen binding molecules space array.In some embodiments, with the level of immunoassay (for example utilizing ELISA) detection with this target polypeptide bonded antigen binding molecules.
In also having other embodiment, described expression product or corresponding expression product are the target polypeptide, and at least a substrate that its horizontal available energy and the reaction of this target polypeptide form reaction product detects.In these embodiments, with of the functionally active stdn of the detected functionally active of this target polypeptide by the reference polypeptide that exists in the same sample.
In some embodiments, available suitably comprise at least one with base station (base station) mutually a kind of system in the terminal station (end station) of coupling connection carry out this diagnostic method.This base station should (a) be accepted data by network of communication from the terminal station, wherein said data represented parameter value is detected or level of standardization or functionally active corresponding at least a expression product in the biological sample, (b) with described data with represent the detected or standardization of at least a corresponding expression product in the reference sample or the tentation data of functionally active to make comparisons, thereby measure with the reference sample in the flat or functionally active of corresponding expression product water compare any difference of the level of this expression product or functionally active in this biological sample.The base station preferably can also diagnose whether have herpesvirus infection associated conditions or its degree.In these embodiments, the base station also can will diagnose indication to be passed to the terminal station by network of communication.
On the other hand, the present invention has considered to adopt above broadly described method to monitor, treat and control to have the animal that possibility causes the patient's condition of herpesvirus infection, and the exemplary example of the described patient's condition comprises: immunosuppression, new birth, stress or high-intensity training scheme.In these embodiments, use diagnostic method of the present invention often can effectively monitor the early stage generation or the associated conditions of herpesvirus infection, thus can early treatment intervention and this illness of treatment.
On the other hand, the invention provides treatment, prevention or suppress herpesvirus infection in the object or the method for associated conditions.These methods generally comprise the unconventionality expression of at least a HVI marker gene in the detected object, and the medicine that gives this object significant quantity is with treatment or relief of symptoms, perhaps reverse or suppress this object generation herpesvirus infection or associated conditions.The representative example of this treatment or medicine includes but not limited to: the palliative supportive treatment of microbiotic, steroid and anti-inflammatory drug, intravenously (injection) liquid, vasoactive (medicine), damage or damage organ (for example, the oxygen supply of respiratory distress, the hypovolemia transfusion) and monitor vital organ closely.
On the other hand, the invention provides the isolating polynucleotide that this paper is called " HVI mark polynucleotide ", described polynucleotide are selected from: (a) contain and following arbitrary sequence have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polynucleotide of nucleotide sequence of sequence homogeny: SEQ ID NO:1,12,23,24,25,26,33,34,37,38,65,66,75,76,83,84,93,98,99,100,101,106,107 or 108, or its complementary sequence; (b) contain the polynucleotide that comprise a following arbitrary sequence part: SEQ ID NO:1,12,23,24,25,26,33,34,37,38,65,66,75,76,83,84,93,98,99,100,101,106,107 or 108, or its complementary sequence, wherein said part contains 15 contiguous nucleotides of this sequence or complementary sequence at least; (c) at least can be under low preciseness, middle preciseness or high preciseness condition and (a) or (b) polynucleotide of described sequence or its complementary sequence hybridization; (d) contain the polynucleotide of the part of following arbitrary sequence: SEQ ID NO:1,12,23,24,25,26,33,34,37,38,65,66,75,76,83,84,93,98,99,100,101,106,107 or 108, or its complementary sequence, wherein said part contains 15 contiguous nucleotides of this sequence or complementary sequence and at least can be under low preciseness, middle preciseness or high preciseness condition and (a) and (b) or (c) described sequence or its complementary sequence hybridization at least.
Also having on the other hand, the invention provides and contain the nucleic acid construct thing that operability is connected in the above broadly described polynucleotide of regulatory element, this construction can be operated in host cell.In certain embodiments, described construction is a carrier format, particularly expression vector.
Also having on the other hand, the invention provides the isolating host cell that contains above broadly described nucleic acid construct thing or carrier.In some preferred embodiment, described host cell is selected from bacterial cell, yeast cell and insect cell.
Also having on the other hand, the invention provides and be used for detecting the probe whether nucleic acid exists above broadly described polynucleotide.These probes generally comprise at least can be under low preciseness condition and the nucleotide sequence of above broadly described multi-nucleotide hybrid.In some embodiments, described probe is basically by constituting corresponding to nucleotide sequence at least a portion of the following arbitrary aminoacid sequence of coding or with its complementary nucleotide sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part is to 15 Nucleotide of the youthful and the elderly.In other embodiments, described probe contains the nucleotide sequence that can hybridize with nucleotide sequence at least a portion of arbitrary aminoacid sequence below the coding at least under low preciseness condition: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part is to 15 Nucleotide of the youthful and the elderly.In also having other embodiment, described probe contains the nucleotide sequence that can hybridize with at least a portion of following sequence at least under low preciseness condition: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, wherein said part is to 15 Nucleotide of the youthful and the elderly.Be used to detect the representative probe of HVI mark polynucleotide of the present invention shown in SEQID NO:145-2150 (seeing Table 2).
In related fields, the invention provides solid or the semi-solid upholder of having fixed at least a above broadly described nucleic acid probe thereon.In some embodiments, this solid or semi-solid upholder comprise the nucleic acid probe space array that is fixed thereon.
In others, the invention provides the isolated polypeptide that this paper is called " HVI labeling polypeptide ", described polypeptide generally is selected from: (i) contain and the expression of polypeptides product of above broadly described HVI marker gene have 50% at least (and at least 51%-at least 99% and between all integer per-cents) polypeptide of aminoacid sequence of sequence similarity, for example, particularly contain and following arbitrary sequence have 50% at least (and at least 51%-at least 99% and between all integer per-cents) the HVI marker gene of nucleotide sequence of sequence homogeny: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113; (ii) as the part of polypeptide as described in (i), wherein this part contains 5 contiguous amino acid residues of this polypeptide at least; (iii) contain and (i) at least 15 contiguous amino acid residues of described polypeptide have at least 30% similarity (and at least 31%-at least 99% and between all integer per-cents) the polypeptide of aminoacid sequence; (iv) contain can with (i), (ii) or (iii) described sequence the polypeptide that immune interactional aminoacid sequence takes place immune interactional antigen binding molecules takes place.
A further aspect of the present invention provides and can immune interactional antigen binding molecules take place with above broadly described HVI labeling polypeptide.
In related fields, the invention provides solid or the semi-solid upholder of having fixed at least a above-mentioned antigen binding molecules thereon.In some embodiments, this solid or semi-solid upholder comprise the antigen binding molecules space array that is fixed thereon.
The present invention provides the application in the test kit that preparation diagnosis object herpesvirus infection associated conditions exists of one or more above broadly described HVI mark polynucleotide, one or more above broadly described probes, one or more above broadly described HVI labeling polypeptides or one or more above broadly described antigen binding molecules in addition on the other hand.
Each side of the present invention relates to above broadly described diagnostic method, broadly described HVI mark polynucleotide, one or more above broadly described probes, one or more above broadly described HVI labeling polypeptides or one or more above broadly described antigen binding molecules are used for diagnosis trouble herpesvirus infection associated conditions more than one or more.Animal (vertebrates), Mammals, non-human mammal for example relate to the horse and the pet (for example, dog and cat) that bear a heavy burden or move (for example sports).
Each side of the present invention relates to animal (vertebrates), Mammals, non-human mammal, for example relates to the horse and the pet (for example, dog and cat) that bear a heavy burden or move (for example sports).
The accompanying drawing summary
Fig. 1 is the receptor operating curve (Receiver Operator Curve) of group 1 virus inoculation animal, has compared the genetic expression with other fate in the 2nd, 4 and 6 day.Utilize this check sensitivity and the specificity of genetic expression mark (signature) outstanding, area under curve surpasses 0.9.
Fig. 2 is when utilizing the selection gene of clinical infection animal, the diagram of receptor operating curve.Utilize the check sensitivity and the specificity of genetic expression mark outstanding.
Fig. 3 utilizes when regarding the selection gene of the animal with reactivity virus infection as the diagram of receptor operating curve.Utilize this check sensitivity and the specificity of genetic expression mark outstanding.
Fig. 4 is when utilizing all genes of clinical infection animal, the diagram of receptor operating curve.Utilize this check sensitivity and the specificity of allelic expression good.
Fig. 5 utilizes when regarding the selection gene with challenge virus infected animals as the diagram of receptor operating curve.Utilize this check sensitivity and the specificity of allelic expression good.
Fig. 6 shows that EHV-1 organizes the synoptic diagram of gene expression index (Log volume unit), serum EHVAb level (450nm absorbancy), date, fate (D=days) and the clinical sign of 1 young coltfoal.The children coltfoal is in inoculation on March 18th, 2003 (virus).The variation of gene expression index is corresponding to the clinical sign that exists, before 10-14 days of anti--EHV-1 antibody generation that this variation occurs in specific serum.
Fig. 7 is that the main ingredient of group 1 young coltfoal is analyzed synoptic diagram.These components are according to the fate mapping of inoculation after (virus).
Detailed Description Of The Invention
1. definition
Unless otherwise defined, all technology used herein are identical with the meaning that one skilled in the art of the present invention understand usually with scientific terminology. Although can utilize to any method similar or of equal value described herein and material and implement or check the present invention, preferred method as herein described and material. For purpose of the present invention has defined following term.
Article used herein " one " and " one " refer to that one or more (being at least one) this article is at phraseological object. For example, " element " refers to an element or a plurality of element.
This paper is used for describing the term " unconventionality expression " that the HVI marker gene is expressed, refer to and take from health objects or be not subjected to certain HVI marker gene in the cell of herpesvirus infection object or the expression of its variant, and/or with take from health objects do not have the tissue sample of object of herpesviral or body fluid in certain HVI marker gene product (for example, transcript or polypeptide) higher or reduced levels compare this HVI marker gene overexpression or express not enough. Specifically, if with take from health objects or do not have the cell of the object of herpesviral, the expression of certain HVI marker gene is compared in tissue or the humoral sample, this HVI marker gene is at least high by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%, or even at least high by about 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900% or 1000%, perhaps low at least about 10%, 20%, 30%40%, 50%, 60%, 70%, 80%, 90%, 92%, 94%, 96%, 97%, 98% or 99%, or even at least low by about 99.5%, 99.9%, 99.95%, 99.99%, 99.995% or 99.999%, this HVI marker gene unconventionality expression then.
This paper is used for describing the term " unconventionality expression " that HVI mark polynucleotides are expressed, refer to and take from health objects or (for example do not have the herpesvirus infection relevant disease, the expression of certain HVI mark polynucleotides or its variant in the cell of object no activity herpesvirus infection), and/or take from health objects or do not have the tissue sample of object of herpesvirus infection disease or body fluid in certain HVI mark polynucleotide products (for example, transcript or polypeptide) higher or lower level compare this HVI mark polynucleotides overexpression or express not enough. Specifically, if with take from health objects or do not have the cell of the object of herpesviral disease, the expression of certain HVI marker gene in tissue or the humoral sample, and/or with take from health objects do not have the tissue sample of object of herpesviral disease or body fluid in the expression of certain HVI mark polynucleotides compare, the expression of these HVI mark polynucleotides is at least high by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%, or even at least high by about 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900% or 1000%, perhaps hang down about 10% at least, 20%, 30%40%, 50%, 60%, 70%, 80%, 90%, 92%, 94%, 96%, 97%, 98% or 99%, or even at least low by about 99.5%, 99.9%, 99.95%, 99.99%, 99.995% or 99.999%, this HVI mark polynucleotides unconventionality expression then. Abnormal gene expression in the immune system cell of the present invention, particularly circulating leukocyte can be derived from following two consecutive steps: (1) notes abnormalities, and the gene of expressing is diagnosed, prognosis is assessed with illness; (2) gene of clinical affirmation unconventionality expression.
(for example often organizing the cell or tissue sample according to following steps, immune cell, such as but not limited to leucocyte) in be subjected to significantly raising or those genes of downward modulation (p<0.06) and determine the gene expression that notes abnormalities: (a) keep constant constant gene according to expression under normal and disease state and come standardization, (b) employing (for example can prevent false-positive statistical method, Holm and FDR judge) explain multivariate data, for example the intrinsic false positive of microarray data is found. The technical staff in Gene Expression Data Analysis field know admissible data normalization other form and can material change's character of the present invention (for example MAS5, stable multi-chip equalization (Robust multi chip averaging), multi-chip equalization (GC Robust multi chip averaging) or Li Wong algorithm that GC is stable). With regard to diagnosis, the cell or tissue sample usually derives from one group and represents the true negative cell or tissue sample of illness interested and the true positives cell or tissue sample that a group represents this illness. All other parameters or variable usually need to suitably utilize identical animal and induce this animal that illness interested takes place and control in these groups, and for example age, geographical position, sex, sport health and other normal biology change. The technical staff in experimental design field knows and can adopt other method to control other parameter and variable and can material alterations character of the present invention. This method includes but not limited to: the co-variation amount (covariates) that randomization, blocking-up (blocking) and utilization are analyzed. With regard to prognosis, the cell or tissue sample usually derives from one group and represents same group of true positives cell or tissue sample that the true negative cell or tissue sample of illness interested and subsequently (behind the certain hour) represent this illness. All other parameters or variable need to utilize identical animal usually in these groups, induce those animals that illness interested and temporal evolution take place and take from the sample of same animal and control, for example age, geographical position, sex, sport health and other normal biology change. With regard to assessment, the cell or tissue sample usually derive from one group of an end of the detected clinical parameter collection of illustrative plates relevant with representing illness interested with represent along the array that can detect clinical parameter collection of illustrative plates each point. Similarly, all other parameters or variable usually need to suitably utilize identical animal and induce this animal that illness interested takes place and control in these groups, and for example age, geographical position, sex, sport health and other normal biology change.
In finding inventory according to the constant gene standardization in the cell or tissue after; those genes that proof significantly raises or reduces; and analyze that interested situation is to make the gene of unconventionality expression at those genes of the correct diagnosis of at least 75% time or assessment illness in the clinical cell or tissue sample used in discover method, thereby determine the abnormal gene expression of clinical affirmation. Receiver operating curve (ROC) generally is the useful testing tool of carrying out this diagnosis. The technical staff in Gene Expression Data Analysis field knows that available other standardized method (for example MAS5, the multi-chip equalization that stable multi-chip equalization, GC is stable or Li Wong algorithm) replaces constant gene standardized method and can material alterations character of the present invention. In addition, the technical staff in Gene Expression Data Analysis field knows that can adopt many methods to measure those genes is subjected to " significantly raising or downward modulation ".
" pact " refers to compare with amount, level, numerical value, numeral, frequency, percentage, dimension, size, consumption, weight or the length of reference product, and 30,25,20,25,10,9,8,7,6,5,4,3,2 or 1% different amount, level, numerical value, numeral, frequency, percentage, dimension, size, consumption, weight or length variations arranged at most.
Term " Active infection " uses with wide significance at this paper, comprise virus to host's intrusion, live away from home and/or breed, usually clinically may be obviously with one or more or may unconspicuous pathology symptom. Active infection comprises part, subclinical or temporary infection. Local infection can exist lastingly and expand to acute, subacute or chronic clinical infection or morbid state by propagation. When cell entry lymph or vascular system, local infection also can become general. " Active infection " is often referred to the Infection Status of host's the infected factor activator of immune system.
Term " amplicon " refers to the amplified production of the target sequence of the target sequence that increases and/or amplification. In some other embodiment, " amplicon " can comprise probe or the primer sequence for amplification.
" antigen binding molecules " refers to target antigen is had the molecule of binding affinity. Will be appreciated that this term can extend to the protein framework that shows that immunoglobulin (Ig), immunoglobulin fragment and NIg with antigen-binding activity derived.
When term used herein " specific binding ", " specific immunity interaction " etc. referred to certain antigen binding molecules, this term referred to can determine to exist the association reaction of this antigen in the heterogeneous population of protein and other biological products. Therefore, under specified immunoassays condition, described antigen binding molecules can combine with its specific antigen and not combine with other oroteins or the antigen that exists in obvious amount and the sample. Specific binding with certain antigen under this condition may need to select that this specific antigen is had specific antigen binding molecules. For example, can prepare the antigen binding molecules for selected proteantigen, this molecular energy with this antigen but not in the sample other oroteins antigen combine. Can adopt various forms of immunoassays select can with the interactional antigen binding molecules of certain specified protein generation specific immunity. For example, conventional adopt solid phase ELISA immunoassays select can with the interactional monoclonal antibody of certain protein generation specific immunity. The immunoassays mode and the condition that can be used for measuring specific immune response can be referring to Harlow and Lane, (1988), " antibody, laboratory manual " (Antibodies, A Laboratory Manual), cold spring port publication, New York.
" BA part " referred to keep the total length parental generation peptide of parental generation molecular activity or the part of polypeptide. Term used herein " BA part " comprises deletion mutant with parental generation molecular activity and for example has peptide at least about 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,30,40,50,60,70,80,90,100,120,150,300,400,500,600,700,800,900,1000 continuous amino acid residues. The recombinant nucleic acid technology of available standards obtains or adopts conventional liquid phase or solid phase synthesis technique to synthesize this type of part. For example, can be with reference to publishing such as Blackwell Scientific Publications, in the publication of " synthetic vaccine " (Synthetic Vaccines) by name that Nicholson compiles Atherton and Shephard institute famous for the liquid phase described in " peptide is synthetic " (Peptide Synthesis) the 9th chapter synthetic or solid phase synthesize. Perhaps, available protease, for example endoLys-C, endoArg-C, endoGlu-C and staphylococcus V8-protease digestion peptide of the present invention or polypeptide prepare this class peptide. The fragment that can digest by for example high performance liquid chroma-tography (HPLC) technology purifying. Also can adopt the recombinant nucleic acid technology to prepare this protein.
Term used herein " biological sample " refers to from the sample animal extraction, that be untreated, process, dilute or concentrate. Biological sample can comprise biological fluid, such as whole blood, serum, blood plasma, saliva, urine, sweat, ascites, peritoneal fluid, synovial fluid, amniotic fluid, cerebrospinal fluid, biopsy (sample) etc. In certain embodiments, biological sample is blood, particularly peripheral blood.
Should understand term used herein " cis acting sequence ", " cis-acting elements ", " cis regulatory region " or " regulatory region " or similarly term refer to when the appropriate location that places certain can express genetic sequence, can regulate any nucleotide sequence of this genetic sequence expression of at least part of adjusting. Those skilled in the art will know that the cis regulatory region can be after transcribing or translating level activation, reticent, the expression and/or cell type specificity and/or the development-specific that strengthen, suppress or change gene order. In certain embodiments of the invention, cis acting sequence is to strengthen or to stimulate certain can express the activation sequence that genetic sequence is expressed.
Unless needs are arranged in the literary composition in addition, the word in this specification " comprises " and " containing " is interpreted as referring to comprise certain described step or element or one group of step or element, but does not get rid of any other step or element or one group of step or element.
" correspondence " or " corresponding to " refer to following polynucleotides: (a) all or part of of its nucleotide sequence that contains and certain reference polynucleotide sequence is substantially the same or complementary, or (b) amino acid sequence of its coding is identical with the amino acid sequence of certain peptide or protein. The scope of this phrase also comprises amino acid sequence peptide or the polypeptide substantially the same with the amino acid sequence of reference peptide or protein that contains.
In this paper treatment or prevent in the chapters and sections of certain disease, " effective dose " refers to need the individuality of this treatment or prevention, this consumption can prevent effectively that the symptom of this illness from this symptom and/or the existing symptom for the treatment of taking place, suppressing with the part of single dose or successive doses the activity of this consumption (compound). Effective dose according to the assessment of the formulation of the taxology group of the health of individuality to be treated and health, individuality to be treated, composition, medical condition with other correlative factor and different. Wish that this consumption can determine to have relative broad range with routine test.
Term " expression " or " gene expression " refer to produce RNA information or are protein or polypeptide with the RNA information translation. Adopting methods described herein to detect all types of gene expressions is parts of the present invention.
" expression vector " refers to instruct the contained polynucleotides of this carrier to transcribe and suitably synthesizes the coded peptide of these polynucleotides or any autonomous genetic elements of polypeptide. Those skilled in the art will know that this expression vector.
Genomic any with all discontinuous code areas of term used herein " gene " phalangeal cell and relevant non-coding and regulatory region thereof. 5 ' and 3 ' the non-coding nucleotide sequence that adjoins of regulating is expressed in gene also refer to encode ORF, introne, the participation of concrete polypeptide. In this, gene also can contain and the natural relevant adjustment signal of certain given gene, for example promoter, enhancer, termination and/or polyadenylation signal, or allos adjustment signal. Dna sequence dna can be cDNA or genomic DNA or its fragment. Gene can be introduced in the suitable carrier and be maintained at outside the chromosome or be integrated into the host.
Every cm such as " high density polynucleotides array " finger2At least those arrays that contain 400 different elements (feature).
Phrase " height distinctive hybridization conditions " refers to determine the hybridization conditions of a base mispairing.
This paper produces hybrid dna-DNA or hybrid dna-RNA with the pairing of " hybridization " expression complementary nucleotide sequence. Complementary base sequence is by basepairing rule those sequences that are mutually related. In DNA, A and T pairing, C and G pairing. In RNA, U and A pairing, C and G pairing. In this, term used herein " coupling " and " mispairing " refer to the hybridization possibility of pairing nucleotides in the complementary nucleic acid chain. The nucleotides of coupling can effectively be hybridized for example above-mentioned typical A-T and C-G base pairing. Mispairing is other combination that can not effectively hybridize nucleotides.
Phrases " specific hybrid " etc. refer to that under the preciseness condition when certain specific nucleotide sequence was present in complicated DNA or the RNA mixture (for example, total cell), double helix or hybridization are combined, are formed to certain molecule only with this sequence.
This paper mentions that " immunity interacts " comprises any interaction, reaction or other combining form of (particularly when one of described molecule is or simulates the immune system component) between the molecule.
" immunologic function " or " immunoreactivity " refers to detect immune system to the respond of exotic antigen by code test well known in the art.
The described material of " separation " expression in fact or be substantially free of its under native state normally with component. For example, " polynucleotides of separation " used herein have referred to remove the polynucleotides of its side joint sequence under the native state, have for example removed the dna fragmentation that normally adjoins sequence with it. Perhaps, " peptide of separation " used herein or fingers such as " polypeptide of separation " are separated peptide or peptide molecule and its n cell environment and other cellular component of being combined with it and/or purifying external. Polynucleotides, peptide or the polypeptide that separates can refer to (being not limited to) by separating the native sequences of purifying or the sequence that produces by restructuring or synthetic method.
" marker gene " thus expression can be given the cell of expressing this marker gene that unique phenotype makes this transformant and other gene of cell phase region that does not contain this mark. But selectable marker gene is given and is equaled the characteristic energy according to the resistance of selectivity factor (for example, the processing method of herbicide, antibiotic, radiation, heat or other destruction no transformed cells) is selected. The proterties that screenable marker gene (or reporter) is given can by observing or check, namely be identified (for example, non-existent beta-Glucuronidase, luciferase or other enzymatic activity in the non-transformed cell) by " screening ".
" natural generation " used herein nucleic acid molecules refers to have RNA or the dna molecular of the nucleotide sequence of natural generation. For example, the naturally occurring nucleic acid molecules protein of natural generation of encoding.
" available from " represent certain sample, for example cell extract or nucleic acid or polypeptide extract be separate from or derived from particular source. For example, can be directly from the biological fluid of object or tissue, separate and obtain extract.
Term used herein " oligonucleotides " refers to through phosphodiester bond continuous a plurality of nucleotide residues (deoxyribonucleotide or ribonucleotide, or its relevant structural variant or synthetic analogues, comprise and contain the nucleotides of modifying or replacing glycosyl group etc.) polymer that consists of (or its relevant structural variant or synthetic congener). Therefore, although nucleotide residue and the connecting key between residue that term " oligonucleotides " is often referred to wherein are naturally occurring nucleotide polymers, but the scope that should know this term also comprises various congeners, includes but not limited to: peptide nucleic acid (PNA), thiophosphate, phosphorodithioate, seleno phosphate (phosphoroselenoate), two seleno phosphates (phosphorodiselenoate), phosphoroanilothioate, phosphoraniladate, phosphoramidite, methyl-phosphonate, 2-O-methylribose nucleic acid etc. The definite size of this molecule is looked concrete application and difference. Oligonucleotides is the polynucleotides subgroup of 200 of length or following base. Oligonucleotides is a long 10-60 base preferably, and most preferably long 12,13,14,15,16,17,18,19 or 20-40 base. Although oligonucleotides can be double-stranded, for example be used for making up variant nucleic acid sequences, oligonucleotides is strand normally, for example probe. Oligonucleotides of the present invention can be the sense or antisense oligonucleotides.
Term " oligonucleotide arrays " refers to contain the substrate of oligonucleotide probe, has deposited different known arrays in the known discontinuous position of this substrate surface. For example, this substrate can be such as U.S. Patent number 5,424,186 described bidimensional substrate forms. This substrate can be used for oligonucleotides (matrix) array of synthetic two-dimensional space addressing. Perhaps, this substrate is characterised in that being rolled into three-dimensional tube shape configuration by the thin slice with two-dimensional plane forms tube array. This substrate also can be taked the microballoon or the pearl form that link to each other with optical fiber surface, such as Chee etc. described in the WO 00/39587 like that. These oligonucleotide arrays have two kinds of different elements at least, and its density is every cm2At least 400 elements. In certain embodiments, the density of these arrays can be every cm2About 500, at least one thousand, at least one ten thousand, at least ten ten thousand, at least one 1,000,000 or at least one ten million elements. For example, this substrate can be silicon or glass, has the thickness of slide or cover glass, perhaps can be made of other synthetic polymer. When the method for testing at this substrate comprises that light detects, the substrate of available printing opacity. This term also refers to the substrate of probe array and a coupled formation wafer part.
Term used herein " operability connection " or " operability links to each other " expression place structural gene under the regulation and control of promoter, thereby can control transcribing and optional translation of this gene. When making up allogeneic promoter/structural gene combination, usually preferably genetic sequence or promoter are placed in arrange with the distance of genetic transcription initiation site is natural with it in this genetic sequence or promoter and its gene of regulating and control, the distance cardinal principle of the gene of namely derive this genetic sequence or promoter is identical. The known in the art permission this not loss of function apart from doing some changes. Similarly, the regulating and controlling sequence element can utilize this element in its natural setting with placing the preferred orientation of heterologous gene under its control, and the location in its gene of namely deriving is determined.
Term " pathogen " this paper with its most widely implication use, but refer to biology or the infectant of the diseases induced reaction of the living tissue cell of infection animal.
Term used herein " polynucleotides " or " nucleic acid " refer to mRNA, RNA, cRNA, cDNA or DNA. This term is often referred to the polymerized form of the nucleotides of 10 bases of the youthful and the elderly, no matter is the modified forms of ribonucleotide or deoxyribonucleotide or this two classes nucleotides. This term comprises strand or the double chain form of DNA.
Term " polynucleotides variant " and " variant " refer to show the polynucleotides that have the basic sequence homogeny with the reference polynucleotide sequence, or the polynucleotides that can hybridize with reference sequence under following preciseness condition. These terms also comprise wherein has one or more nucleotides to add or deletion, or with the polynucleotides of different nucleotides replacements. In this, well knownly can make some change to described polynucleotides according to the reference polynucleotides, comprise sudden change, interpolation, disappearance and replace, thereby make the polynucleotides of change still keep biological function or the activity of these reference polynucleotides. Term " polynucleotides variant " and " variant " also comprise the allele variant of natural generation.
" polypeptide ", " peptide " and " protein " are used interchangeably at this paper, refer to the polymer of amino acid residue and variant thereof and synthetic congener. Therefore, these terms are applicable to that wherein one or more amino acid residues are the amino acid polymer of the alpha-non-natural amino acid that synthesizes (for example, the chemical analog of corresponding natural amino acid) and the amino acid polymer of natural generation.
Term " polypeptide variants " refer to by at least one amino acid residue interpolation, disappearance or replacement and with other polypeptide of reference polypeptide phase region. In certain embodiments, one or more amino acid residues of reference polypeptide can replace with different amino acid. As described below, more well known amino acid can be replaced with other amino acid with similar quality roughly and the activity (the conservative replacement) that can not change polypeptide.
" primer " expression can start the synthetic oligonucleotides of primer extension product in the presence of suitable polymerization agent when a chain with DNA matches. For making the amplification efficiency maximum, the preferred strand of primer, but or can be double-stranded. Thereby primer answers long enough can cause synthetic extension products when polymerization agent exists. The length of primer depends on many factors, comprising: the temperature that use, adopts, template reaction condition, other reagent and primer source. For example, the complexity that depends on target sequence, 3 ' terminal comparable template sequence length weak point of primer can extend nucleic acid chains at least about 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,35,40,50,75,100,150,200,300,400,500 to 1 base, although the extensible 3 ' end that exceeds template sequence of primer 5 ' tip length. In certain embodiments, primer can be big polynucleotides, and for example about 35 nucleotides are to more than thousands of bases. Can select the primer with template sequence " basically complementary ", these primers of design can be with template hybridization and as synthetic starting point. " basically complementary " represents the complementary enough and target polynucleotide hybridization of this primer. Primer and the design with it template of hybridization preferably do not contain mispairing, but this is optional. For example, the incomplementarity nucleotide residue can be connected 5 ' end of primer, and the remainder of this primer sequence and template complementation. Perhaps, can will be between the extension of incomplementarity nucleotide residue or incomplementarity nucleotide residue insert in the primer, prerequisite be this primer sequence with and the template sequence of its hybridization complementary enough and form the required template of the extension products of synthetic this primer.
" probe " refer to can with particular sequence or the subsequence or the other parts bonded molecule of another molecule.Except as otherwise noted, term " probe " is often referred to and can matches and another polynucleotide (often being called " target polynucleotide ") bonded polynucleotide probes by complementary base.The preciseness that depends on hybridization conditions, probe can in conjunction with the target polynucleotide of this probe shortage sufficient sequence complementarity.Probe is mark directly or indirectly, and its scope comprises primer.
Term used herein " recombination of polynucleotide " refers to make it become that occurring in nature is not normally found form and at the polynucleotide of external formation by operation nucleic acid.For example, recombination of polynucleotide can be taked the expression vector form.This expression vector generally comprises operability and is connected in transcribing of this nucleotide sequence and translates adjusting nucleic acid.
Recombinant technology is adopted in " recombinant polypeptide " expression, promptly expresses the polypeptide for preparing by recon or synthetic polynucleotide.
" regulatory element " or " adjusting sequence " is illustrated in and expresses the required nucleotide sequence of the continuous encoding sequence of operability in the concrete host cell (for example, DNA).For example, be applicable to that the adjusting sequence of prokaryotic cell prokaryocyte comprises promotor and optional cis acting sequence, as operon sequence and ribosome bind site.Be applicable to that eukaryotic regulating and controlling sequence comprises the leading and tailer sequence of promotor, polyadenylation signal, transcriptional enhancer, translational enhancer, regulating mRNA stability, and the targeting sequencing that makes interior compartment of the polynucleotide encoding product targeted cells of transcribing or target born of the same parents external environment.
Term used herein " sequence homogeny " refer to two sequences on comparison window nucleotide pair Nucleotide or amino acid to amino acid whose homogeny degree.Therefore, " sequence homogeny per-cent " can calculate by following steps: the sequences that compare two best comparisons on comparison window, (for example measure nucleotide base identical in the two sequences, A, T, C, G, I) or identical amino-acid residue (for example, Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys and Met) the position number produces the position number of coupling, with the matched position number (promptly divided by total positional number of comparison window, window size), again the result be multiply by 100 and obtain sequence homogeny per-cent.Be purpose of the present invention, " sequence homogeny " should be interpreted as with DNASIS computer program (2.5 editions of existing windows; Available from Hitachi Software engineering Co., Ltd., South San Francisco, California, the U.S.), adopt the standard of using in the appended reference manual of this software to give tacit consent to " match-percentage " that (parameter) calculated.
Such as following table 3 definition, " similarity " refers to identical or constitutes the conservative amino acid percentage ratio that replaces.Can utilize sequence comparison program, for example GAP (Deveraux etc., 1984, Nucleic Acids Research, 12,387-395) mensuration similarity.Length and sequence similarity described herein or different basically sequences can be inserted the room in this way and come comparison in arrangement, this room can be determined by the used comparison algorithm of for example GAP.
The term that is used to describe the serial correlation between two or above polynucleotide or the polypeptide comprises " reference sequence ", " comparison window ", " sequence homogeny ", " sequence homogeny per-cent " and " substantially the same ".At least 12 of the length of " reference sequence ", but more common 15-18, often at least 25 monomeric units comprise Nucleotide and amino-acid residue.Because two polynucleotide respectively contain similar between (1) two a polynucleotide sequence (promptly, be the part of whole polynucleotide sequence), article (2) two, a differentiated sequence between the polynucleotide sequence, then general by in " comparison window " thus go up that the sequence of these two polynucleotide is relatively identified and relatively regional area sequence similarity two (more than) carry out sequence between the polynucleotide and compare." comparison window " is to contain at least 6, usually about 50-is about 100, notional fragment of about 150 continuous positions of more common about 100-, wherein after the best comparison of certain sequence and reference sequence, this sequence is made comparisons with the reference sequence that contains the similar number continuous position.Be the best comparison of (carrying out) two sequences, compare that comparison window can comprise about 20% or following interpolation or disappearance (that is room) with reference sequence (do not comprise and add or disappearance).Be the comparison comparison window, can pass through computer execution algorithm (GAP, BESTFIT, FASTA and TFASTA, Wisconsin Genetics Software Package Release 7.0, GeneticsComputer Group, 575 Science Drive Madison, WI, the U.S.), or come that by the best comparison (promptly causing highest homology per-cent on the comparison window) that one of range estimation and selected the whole bag of tricks produce all sequences are carried out the best and compare.Also can be as Altschul etc., 1997, Nucl.Acids Res., 25:3389 is described, compares by BLAST family program.Visible Ausubel etc. is described in sequential analysis in detail, the 15th chapter of " up-to-date molecular biology method " (Current Protocols in Molecular Biology), Unit the 19.3rd, John Wiley ﹠amp; Sons Inc, 1994-1998.
The term " object ", " individuality " or " patient " that are used interchangeably at this paper refer to any object, particularly vertebrate subject of needs treatment or prevention, even more refer in particular to mammalian object.Suitable vertebrates includes but not limited in the scope of the invention: primate, birds, domestic animal are (for example, sheep, cow, horse, donkey, pig), the laboratory inspection animal (for example, rabbit, mouse, rat, cavy, hamster), companion animals (for example, cat, dog) and the wildlife (for example, fox, deer, wild dog) that catches.Preferably to as if need the related indication animal of treatment or prophylaxis of herpes viral infections or its, particularly horse class animal.However, it should be understood that above term has not hinted that symptom exists.
The phrase of this paper " similar basically avidity " refer to target sequence under selected one group of preciseness condition to the complementary of them or complementary oligonucleotide probe hybridization intensity is similar and can detect basically.
Term used herein " template " refers to be used for producing and the nucleic acid that is somebody's turn to do " template " chain complementary nucleic acid chains.Template can be RNA and/or DNA, and its complementary strand also can be RNA and/or DNA.In certain embodiments, complementary strand can comprise all or part of complementary sequence of this " template ", and/or can comprise sudden change, thereby it is not the complete complementary strand of this " template ".In detection as herein described test and other test known in the art, not with the complete complementary chain of template strand also can with the template strand specific hybrid, this complementary strand that can be used for detecting test is a part of the present invention.
Term " conversion " expression changes certain organism by introducing external source or endogenous nucleic acid, for example the genotype of bacterium, yeast, Mammals, birds, Reptilia, fish or plant.
Term " treatment " expression therapeutic and prophylactic treatment.
The polynucleotide molecule of certain polynucleotide can be inserted or be cloned into to " carrier " expression therein, and suitable carriers can be derived from, the dna molecular of plasmid, bacteriophage, yeast, virus, Mammals, birds, Reptilia or fish for example.Carrier preferably contains the restriction site of one or more uniquenesses and can comprise self-replicating in target cell or tissue or its daughter cell or the tissue at the host cell of determining, thereby or can integrate reproducible sequence of cloning with the host cell gene group of determining.Therefore, carrier can be the carrier of self-replicating, i.e. the carrier that exists with the outer entity of karyomit(e), and it duplicates and is independent of THE REPLICATION OF CHROMOSOME, for example linear or closed loop plasmid, extra-chromosomal element, minichromosomes or artificial chromosome.Carrier can contain the element of guaranteeing self-replication.Perhaps, it can be integrated in the genome and duplicates with the karyomit(e) that is integrated into after carrier is introduced host cell.Carrier system can comprise a kind of carrier or plasmid, contains two or more carriers or the plasmid of the total DNA that introduces the host cell gene group together, or transposon.The selection carrier generally depends on this carrier and waits to introduce the consistency of the host cell of this carrier.Carrier also can comprise selective marker, for example can be used for selecting the antibiotics resistance gene of suitable transformant.The example of the known this resistant gene of those skilled in the art.
Term " wild-type " and " normally " are used interchangeably, and refer to the characteristic phenotype of the species of most of natural generations, and its opposite example is a mutation type surface.
2. abbreviation
Use following abbreviation in the specification sheets:
Nt=Nucleotide
Many Nucleotide of nts=
Aa=amino acid
Kb=kilobase or kilobase are right
The kDa=kilodalton
D=day
H=hour
S=second
3. the mark of herpesvirus infection and application thereof
The present invention relates to herpesvirus infection, particularly early detection, diagnosis, monitoring or the prognosis of EHV infection or its associated conditions.The invention discloses the cell of the object that has infected simplexvirus, hemocyte particularly, more specifically be alternative (surrogate) mark of herpesvirus infection in the peripheral blood cells, the form of described mark is the RNA molecule of particular sequence or the polypeptide of these RNA developed by molecule.These marks are indexs of herpesvirus infection, with compare in normal subjects or the expression do not had in the herpesvirus infection object, diagnosable this tested object generation herpesvirus infection, particularly reactivity herpesvirus infection when their differential expressions, or have risk.The prior art in field is compared therewith, thisly is marked with many advantages.Utilize in the preferred embodiment that peripheral blood analyzes at some, may before detecting serum antibody, promptly diagnose herpesvirus infection.
It seems that nucleotide sequence as herein described can be used for the various Application Areass of simplexvirus detection, diagnosis, prognosis and treatment.In this paper scope these examples of applications comprise utilize primer amplified HVI mark, by with oligonucleotide probe hybridization, isolating nucleic acid is mixed carrier, makes the expression of nucleic acid that mixes carrier for RNA and protein and make the immunology reagent colour development corresponding to the coded product of this mark detect the HVI mark.
The HVI mark of being identified and then can be used for designing specific oligonucleotide probe and primer.This probe and primer can be can with any length of the marker gene sequence-specific identified hybridization, it is about 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,35,40,50,75,100,150,200,300,400,500 Nucleotide at least, and probe is the total length of the marker gene sequence that this paper identifies.Thereby also can comprising other sequence at its 5 ' and/or 3 ' end, probe can extend beyond target sequence with its hybridization.
When the coupling nucleic acid amplification method, the transcript of these probes and primer energy real-time analysis biological sample (for example, peripheral blood sample) certification mark gene or detection or quantitative assay marker gene.This method comprises any method or the technology that is used to duplicate or increase the copy number or the content of target nucleic acid or its complementary sequence known in the art or described herein.
The mark of being identified also can be used for identifying the full-length gene order with the isolation of genomic DNA library, comprises the regulatory element of genetic expression, is preferably the element in (but being not limited to) source, Malaysia.The cDNA sequence that this paper identifies can be used as hybridization probe and comes the screening genome dna library with routine techniques.In case identify portion gene group clone, can be by " karyomit(e) walking " (being also referred to as " overlapping hybridization "), employing, for example Chinault and Carbon (1979, Gene, 5:111-126) described method is separated full-length gene.Obtain portion gene group clone in case utilize the cDNA hybridization probe to separate, being positioned near this portion gene group clone two non-replicating sections terminal or it can be used as hybridization probe and does further genomic library screening, the final whole gene order that obtains HVI mark interested of separating.Should know available total length as herein described or Partial cDNA Sequence or short expressed sequence tag (ETS), adopt for example Sambrook etc., (" molecular cloning. laboratory manual " (MOLECULAR CLONING.A LABORATORY MANUAL), (cold spring port press, 1989) and Ausubel etc., (" up-to-date molecular biology method " (CURRENTPROTOCOLS IN MOLECULAR BIOLOGY), John Wiley ﹠amp; Sons, Inc., 1994) described standard technique acquisition full-length gene.In addition, can adopt disclosedly, for example above, utilize described sequence to identify and obtain full length cDNA sequence with separating with reference to the standard technique described in the teaching material.Can utilize these technical evaluation and isolating sequence, adopt detection method described herein to detect the HVI marker gene, these sequences are parts of the present invention.
Those of ordinary skills can select some sections to be used for various detections, diagnosis or method of prognosis as a part of the present invention from the marker gene of being identified, vector construct, preparation antigen binding molecules, test kit and/or any embodiment described herein.The marker gene sequence that the present invention preferably uses is SEQID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109, sequence shown in 111 or 113.
3.1 nucleic acid molecule of the present invention
As described in embodiment and table 1, this paper provides and has passed through GeneChip
TM63 kinds of simplexvirus marks (that is 63 kinds of simplexvirus marker gene) that analysis identifies from the blood of normal horses and the horses with EHV clinical evidence.In these 63 kinds of marker gene, 44 kinds have the total length or the encoding sequence of total length basically, and all the other 21 kinds have partial sequence information in their 5 ' and 3 ' terminal one or both ends.The HVI marker gene of being identified comprises 21 kinds of former not horse genes of characterized.
According to the present invention, find that isolated nucleic acid sequences described herein itself can be used as hybridization probe or amplimer.These nucleic acid can be used for, and for example diagnostic is assessed biological sample or is used to clone full-length cDNA or its corresponding genomic clone.In certain embodiments, these probes and primer provide length to be enough to and to mention from the RNA of biological sample or the oligonucleotide of DNA sample specific hybrid.About usually 10-20 the Nucleotide of these sequences is long, but can be longer.Some embodiments needs long sequence, for example about 30,40,50,100,500 Nucleotide and even total length nearly.
The present invention has considered to have following SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109, about 10 of arbitrary sequence shown in 111 or 113,15,17,20,30,40,50,60, the nucleic acid molecule that adjoins the extension of 75 or 100 or 500 Nucleotide.The present invention also considered and above-mentioned sequence complementation, can be under high preciseness condition bonded molecule with it.These probes can be used for various hybridization embodiments, for example Southern and Northern trace.In some instances, the present invention considers to use the probe that can not damage their efficient diagnosis herpesvirus infection abilities with multiple target sequence hybridization.In a word, it is considered herein that the expression that reagent that hybridization probe described herein both can be used as solution hybridization (in PCR) detects corresponding gene also can be used in the solid phase embodiment.
Various probes and primer have been designed around described nucleotide sequence.For example, in certain embodiments, the sequence that is used for designing probe and primer can comprise the repetition extension (poly-A tail) of the adenine nucleotide of RNA two ends that are connected in institute's identifying mark gene usually.In other embodiments, those of ordinary skills may think that some section more is applicable to described detection method, so probe and primer can be specifically designed as these or other section that does not comprise institute's identifying mark gene.In any situation, those of ordinary skill all can be selected primer or probe sequence for selected Application Areas.The exemplary probe sequence that is used to detect the HVI marker gene sees Table 2.
Primer can be two strands or single stranded form, though single stranded form is more desirable.Probe design can be need not to be used for amplification method for combining (although may cause) with target DNA or RNA.In certain embodiments, available radioactive substance (
32P,
14C,
35S,
3H or other marker), fluorophore (for example rhodamine, fluorescein) or chemiluminescent labels (for example, luciferase) these probes of mark or primer.
The invention provides cDNA sequence and the EST or the Partial cDNA Sequence of the total length basically that can be used as the EHV mark.However, it should be understood that this paper content is not limited to these disclosed sequences, particularly to comprise at least can with the isolating nucleic acid of the variant of the nucleic acid that contains disclosed sequence or these nucleic acid hybridization.For example, the partial sequence of available nucleic acid is identified gene or its deutero-full-length gene group or the cDNA clone of structurally associated.The cDNA of the target sequence that can be used as above-mentioned probe known in the art and the preparation method of genomic library (referring to, Sambrook etc. for example, 1989, the same and Ausubel etc., 1994, the same).All this nucleic acid and specific nucleic acid molecule as herein described are referred to as " simplexvirus mark polynucleotide " or " HVI mark polynucleotide ".In addition, scope of the present invention comprises the expression product (that is, rna transcription thing and polypeptide) of the isolated or purified of HVI mark polynucleotide.
Therefore, the present invention includes nucleic acid isolating or purifying basically or protein composition." isolating " or " purifying " nucleic acid molecule or protein, or its biologic activity partly is not contain the natural together normal or interactional component with it found in the environment that exists of this nucleic acid molecule or protein basically or in itself.Therefore, it is substantially free of other cellular material or medium component when the polynucleotide of isolated or purified or polypeptide produce by recombinant technology, perhaps when they are substantially free of precursor or other chemical substance during with chemosynthesis." isolating " polynucleotide should not contain the sequence (that is, being positioned at 5 ' and 3 ' terminal sequence of these polynucleotide) of natural these polynucleotide of side joint in the genomic dna of the organism that produces these polynucleotide, particularly proteinic encoding sequence.For example, in various embodiments, isolating HVI mark polynucleotide can contain the nucleotide sequence of natural these polynucleotide of side joint in the genomic dna of cell of these polynucleotide of generation that are less than about 5kb, 4kb, 3kb, 2kb, 1kb, 0.5kb or 0.1kb.The polypeptide that is substantially free of cellular material comprises the protein articles that contains the contaminating protein matter that is less than about 30%, 20%, 10%, 5% (with dry weight basis).When protein of the present invention or its biologic activity were partly used recombinant methods, substratum should contain precursor or the non-proteins of interest materialization material that is less than about 30%, 20%, 10% or 5% (with dry weight basis).
The present invention also comprises the total length of HVI mark polynucleotide or the each several part of full length nucleotide sequence basically, perhaps the DNA of their transcript or these transcripts copy.The each several part codified polypeptide portion of HVI labeled nucleotide sequence or keep the section of this natural polypeptides biologic activity.Perhaps, the each several part that can be used as the HVI labeled nucleotide sequence of hybridization probe is not encoded usually and is kept the aminoacid sequence of this biologic activity.Therefore, the each several part of HVI labeled nucleotide sequence contains about 15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,40,50,60,80,90,100 Nucleotide of the nucleotide sequence of code book invention HVI labeling polypeptide at least, perhaps almost reaches its total length.
The part of the HVI labeled nucleotide sequence of the biologic activity part of code book invention HVI labeling polypeptide is about 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,30,40,50,60,70,80,90,100,120,150,300,400,500,600,700,800,900 in the codified total length HVI labeling polypeptide or 1000 or even at least about 2000,3000,4000 or 5000 continuous amino acid residues, perhaps almost up to its amino acid sum at least.The each several part that can be used as the HVI labeled nucleotide sequence of hybridization probe or PCR primer generally need not the to encode biologic activity part of HVI labeling polypeptide.
Therefore, the biologic activity part of a part of codified HVI labeling polypeptide of HVI labeled nucleotide sequence, perhaps it can be the fragment that is used as hybridization probe or PCR primer in standard method known in the art.Can be by separating the part of a HVI labeled nucleotide sequence of the present invention, the part (activity) expressing the part (for example passing through in-vitro recombination expression) of its coded HVI labeling polypeptide and assess this coded HVI labeling polypeptide prepares the biologic activity part of this HVI labeling polypeptide.At least contain about 15,16,17,18,19,20,25,30,50,75,100,150,200,250,300,350,400,450,500,550,600 or 650 Nucleotide in the total length HVI labeled nucleotide sequence as the nucleic acid molecule of HVI labeled nucleotide sequence each several part, perhaps almost up to its Nucleotide sum.
The present invention has also considered the variant of HVI labeled nucleotide sequence.The nucleic acid variant can be natural generation, for example allele variant (same locus), homologue (different genes seat) with directly to homologue (different organism) or can be that non-natural produces.Can adopt the Protocols in Molecular Biology of knowing, polymerase chain reaction for example known in the art (PCR) and hybridization technique are identified the variant of natural generation, for example described these variants.Can pass through induced-mutation technique, comprise that the technology that is applicable to polynucleotide, cell or organism prepares the variant that non-natural produces.These variants can contain Nucleotide replacement, disappearance, inversion and insertion.Coding can morph with non-coding region.Variation both can cause conservative property also can cause non-conservation aminoacid replacement (comparing with coded product).With regard to nucleotide sequence, examples of conservative variations comprise because of the genetic codon degeneracy still can code book those (nucleic acid) sequences of aminoacid sequence of one of invention HVI labeling polypeptide.The variant nucleotide sequence also comprises synthetic the generation but still the nucleotide sequence of energy code book invention HVI labeling polypeptide, for example those sequences that produce by site-directed mutagenesis.Generally, the variant and this specific nucleotide sequence that utilize default parameters to be measured to the present invention's specific nucleotide sequence by sequence alignment program as herein described have about 30%, 40%, 50%, 55%, 60%, 65%, 70% at least, generally at least about 75%, 80%, 85%, more than preferred about 90%-95%, the sequence homogeny more than 98% more preferably from about.
HVI labeled nucleotide sequence of the present invention can be used for separating other organism, particularly corresponding sequence of the horse of other Mammals, especially other kind and allelic variant sequence.The hybridizing method of nucleotide sequence is not difficult in this area to obtain.Can separate the encoding sequence that obtains other organism according to it with the sequence homogeny of encoding sequence described herein by knowing technology.In these technology, the known coded sequence of all or part can be used as probe, with cloned genes group dna fragmentation or middle other HVI marker coding sequence selective cross that exists of cDNA segment group (that is, genome or cDNA library) of selected organism.Therefore, the present invention also consider under following preciseness condition can with the polynucleotide of described HVI marker gene nucleotide sequence or its complementary sequence hybridization.The condition of having described hybridization and washing " hybridized " in term used herein under low preciseness, medium preciseness, high preciseness or high preciseness condition.Carry out (1998, the same) such as the visible Ausubel of guide of hybridization, the 6.3.1-6.3.6 part.Described water-based and non-aqueous method in this reference, the two is all available.The low preciseness condition that this paper mentions comprises at least about 1%-at least about the methane amide of 15%v/v with at least about the salt of 1-at least about 2M, 42 ℃ of hybridization, and at least about the salt of 1-at least about 2M, and 42 ℃ of washings.Low preciseness condition also can comprise 1% bovine serum albumin (BSA), 1mM EDTA, 0.5M NaHPO
4(pH 7.2), 7%SDS, 65 ℃ of hybridization, with (i) with 2 * SSC, 0.1%SDS; Or (ii) use 0.5%BSA, 1mM EDTA, 40mM NaHPO
4(pH 7.2), 5%SDS, room temperature washing.An embodiment of low preciseness condition comprises about 45 ℃ of hybridization in 6 * sodium chloride/sodium citrate (SSC), then at least 50 ℃ (wash temperature of hanging down the preciseness condition can be increased to 55 ℃) with 0.2 * SSC, 0.1%SDS washed twice.Medium preciseness condition comprises at least about 16-at least about the methane amide of 30%v/v with at least about the salt of 0.5-at least about 0.9M, 42 ℃ of hybridization, and at least about the salt of 0.1-at least about 0.2M, and 55 ℃ of washings.Medium preciseness condition also can comprise 1% bovine serum albumin (BSA), 1mM EDTA, 0.5M NaHPO
4(pH7.2), 7%SDS, 65 ℃ of hybridization, with (i) with 2 * SSC, 0.1%SDS; Or (ii) use 0.5%BSA, 1mM EDTA, 40mM NaHPO
4(pH 7.2), 5%SDS, 60-65 ℃ of washing.An embodiment of medium preciseness condition comprises that about 45 ℃ hybridize in 6 * SSC, 60 ℃ with 0.2 * SSC, more than the 0.1%SDS washing once then.High preciseness condition comprises that at least about 31-at least about the methane amide of 50%v/v and the salt of the about 0.15M of about 0.01-, 42 ℃ of hybridization are with the salt of the about 0.02M of the about 0.01-of usefulness, 55 ℃ of washings.High preciseness condition also can comprise 1%BSA, 1mM EDTA, 0.5M NaHPO
4(pH 7.2), 7%SDS, 65 ℃ of hybridization, with (i) with 0.2 * SSC, 0.1%SDS; Or (ii) use 0.5%BSA, 1mM EDTA, 40mM NaHPO
4(pH 7.2), 1%SDS, temperature washing more than 65 ℃.An embodiment of high preciseness condition comprises that about 45 ℃ hybridize in 6 * SSC, 65 ℃ with 0.2 * SSC, more than the 0.1%SDS washing once then.
In certain embodiments, the HVI labeling polypeptide is by can be under high preciseness condition and the polynucleotide encoding of described nucleotide sequence hybridization.An embodiment of high preciseness condition comprises that 65 ℃ hybridize in 0.5M sodium phosphate, 7%SDS, 65 ℃ with 0.2 * SSC, more than the 1%SDS washing once then.
Well known other preciseness condition, the technician knows can control the specificity that various factors is optimized hybridization.The preciseness that can optimize final washing step is to guarantee highly hybridization.Specific example can be referring to Ausubel etc., and is the same, 2.10.1-2.10.16 page or leaf and Sambrook etc., (1989, the same), 1.101-1.104 part.
Though generally under about 42 ℃-68 ℃ temperature, carry out the preciseness washing, those skilled in the art will know that other temperature also is suitable for the preciseness condition.For forming DNA-DNA hybridization, maximum hybrid rate generally occurs in and compares T
mLow about 20 ℃-25 ℃ temperature.Well known T
mBe melting temperature(Tm), or two dissociated temperature of complementary polynucleotide sequence.Well known estimation T
mMethod (referring to Ausubel etc., the same, 2.10.8 page or leaf).Generally, can utilize the double-helical T of optimum matching of following formula prediction DNA
mApproximation:
T
m=81.5+16.6 (log
10M)+0.41 (%G+C)-0.63 (% methane amide)-(600/ length)
Wherein: M is Na
+Concentration, preferred 0.01-0.4 mole; %G+C is the per-cent that guanosine and cytidine base sum account for the base sum, its scope 30% and 75%G+C between; The % methane amide is the methane amide percentage of by volume; Length is the number of base pair in the dna double spiral.Mismatched bases is to the every rising 1% of number, the T of duplex DNA at random
mReduce about 1 ℃.High preciseness washing is usually at T
mCarry out in the time of-15 ℃, perhaps medium preciseness is at T
m-30 ℃ are carried out.
In an example of hybridizing method, the film (for example, nitrocellulose filter or nylon membrane) that will contain fixed dna is hybridized in containing the hybridization buffer of label probe (50% deionized formamide, 5 * SSC, 5 * Denhardt solution (0.1%ficoll, 0.1% polyvinylpyrrolidone and 0.1% bovine serum albumin), 0.1%SDS and 200mg/mL denatured salmon sperm dna) for 42 ℃ and is spent the night.Then (promptly with twice of medium this film of preciseness continuous washing, 45 ℃ with 2 * SSC, 0.1%SDS the washing 15 minutes, then 50 ℃ with 2 * SSC, 0.1%SDS the washing 15 minutes), again (promptly with twice of higher preciseness continuous washing, 55 ℃ with 0.2 * SSC, 0.1%SDS washing 12 minutes, and 65-68 ℃ with 0.2 * SSC, 0.1%SDS solution washing 12 minutes then).
3.2 polypeptide of the present invention
The present invention has also considered the full-length polypeptide of HVI marker gene coding of the present invention and the biologic activity part of those polypeptides, is referred to as " herpesvirus infection mark polynucleotide " or " HVI labeling polypeptide " at this paper.The biologic activity of total length HVI labeling polypeptide partly comprise be about 6,8,10,12,14,16,18,20,25,30,40,50,60 amino-acid residues at least have an immunity active part that interacts.For example, the immunity interaction fragment that the present invention considered is to 6 of the youthful and the elderlys, preferred at least 8 amino-acid residues, thus they can cause immune response and produce and can immune interactional antigen binding molecules take place with HVI labeling polypeptide of the present invention in animal.The relevant HVI labeling polypeptide of structure and/or function in available this other Mammals of antigen binding molecules screening, particularly horse class Mammals.The each several part of total length HVI labeling polypeptide generally may participate in certain interaction, for example intramolecularly or molecular interaction.Molecular interaction can be specificity binding interactions or enzymatic interaction (for example described interaction can be an instantaneity, can form or interrupt certain covalent linkage).The biologic activity of total length HVI labeling polypeptide partly comprises the aminoacid sequence that contains with certain (supposition) total length HVI labeling polypeptide, aminoacid sequence for example shown below is enough similar or derived from the peptide of the aminoacid sequence of this aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, these sequences contain the amino acid that is less than total length HVI labeling polypeptide and show a kind of activity of this polypeptide at least.Biologic activity part comprises usually and has total length HVI labeling polypeptide a kind of active structures territory or motif at least.The biologic activity part of total length HVI labeling polypeptide can be long, for example 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,30,40,50,60,70,80,90,100,120,150,300,400,500,600,700,800,900 or 1000, perhaps even at least about the polypeptide of 2000,3000,4000 or 5000 above amino-acid residues.Described part should be to contain to be not less than its about 1%, 10%, 25%, 50% active " the biologic activity part " of full-length polypeptide of deriving.
The present invention has also considered variant HVI labeling polypeptide." variant " polypeptide comprises in the following manner from natural protein deutero-protein: delete (being called brachymemma) or add one or more amino acid at the N-of this natural protein end and/or C-end; In the one or more site deletion of this natural protein or add one or more amino acid; Perhaps the one or more site at this natural protein replace one or more amino acid.Variant proteins of the present invention has biologic activity, and promptly they still have the required biologic activity of this natural protein.For example, genetic polymorphism or manual operation can form this variant.Utilize default parameters to be measured to the biologic activity variant of natural HVI labelled protein of the present invention and the aminoacid sequence of this natural protein can have at least 40%, 50%, 60%, 70% by sequence alignment program as herein described, generally at least 75%, 80%, 85%, more than preferred about 90%-95%, the sequence similarity more than 98% more preferably from about.The proteinic biologic activity variant of the present invention and this protein generally can have nearly 1000,500,400,300,200,100,50 or 20 amino-acid residues, perhaps should lack to 1-15 amino-acid residue, few to 1-10 (for example 6-10 is individual), lack to 5, lack to 4,3,2 or even 1 amino-acid residue difference.
HVI labeling polypeptide of the present invention be can change in every way, aminoacid replacement, disappearance, brachymemma and insertion comprised.This area generally knows that this working method.The aminoacid sequence variant that for example, can prepare the HVI labelled protein by dna mutation.The method that well known mutagenesis and nucleotide sequence change.Referring to, for example Kunkel (1985, Proc.Natl.Acad.Sci.USA, 82:488-492), Kunkel etc., (1987, Methods in Enzymol., 154:367-382), U.S. Patent number 4,873,192; Watson, J.D. etc., the reference that quote (" molecular biology of gene " (Molecular Biology of the Gene), the 4th edition, Benjamin/Cummings, Menlo Park, Calif., 1987) and they.The guide that suitably carries out aminoacid replacement and do not influence the biologic activity of proteins of interest matter is seen Dayhoff etc., (1978), " protein sequence and structure iron " (Atlas of Protein Sequenceand Structure), (Natl.Biomed.Res.Found., Washington, model D.C.).Screening known in the art contains the combinatorial library gene product of passing through point mutation or brachymemma (method) preparation of selected characteristics and the method for screening cDNA library gene product.This method is applicable to the gene library of rapid screening by the HVI labeling polypeptide of combinatorial mutagenesis generation.But coupling can improve the technology-recursion group mutagenesis (REM) of functional mutation frequency in this library identifies HVI labeling polypeptide variant (Arkin and Yourvan, (1992), Proc.Natl.Acad.Sci.USA, 89:7811-7815 with shaker test; Delgrave etc., (1993), Protein Engineering, 6:327-331).The ideal conservative property hereinafter has been described in detail in detail has replaced, for example replaced certain monoamino-acid with another amino acid with similar characteristics.
Compare with parental generation HVI marker amino acid sequence, variant HVI labeling polypeptide can contain conservative amino acid at the different positions along their sequences and replace." conservative amino acid replacement " is to replace certain amino-acid residue with the amino-acid residue with similar side chain.This area has defined the amino-acid residue family with similar side chain, and they generally can be further divided into:
Acid: this residue is electronegative because of lose the H ion under physiological pH, and this residue is attracted by the aqueous solution, and therefore when the peptide that comprises it was in the physiological pH aqueous medium, this residue was in the surface location of this peptide configuration.The amino acid that contains acid side-chain comprises L-glutamic acid and aspartic acid.
Alkalescence: this residue is because of under physiological pH or positively charged (for example in conjunction with the H ion in its one or two pH unit, Histidine), this residue is attracted by the aqueous solution, and therefore when the peptide that comprises it was in the physiological pH aqueous medium, this residue was in the surface location of this peptide configuration.The amino acid that contains basic side chain comprises arginine, Methionin and Histidine.
Charged: these residues are electrically charged when physiological pH, therefore comprise the amino acid (that is, L-glutamic acid, aspartic acid, arginine, Methionin and Histidine) that contains acidity or basic side chain.
Hydrophobicity: these residues neutral and repelled by the aqueous solution under physiological pH, therefore when the peptide that comprises it was in the aqueous medium, this residue was in the interior location of this peptide configuration.The amino acid that contains hydrophobic side chain comprises tyrosine, Xie Ansuan, Isoleucine, leucine, methionine(Met), phenylalanine and tryptophane.
Neutrality/polarity: these residues are neutral under physiological pH, but the aqueous solution is not enough to repel them, and therefore when the peptide that comprises this residue was in the aqueous medium, this residue was adsorbed in the interior location of this peptide configuration.The amino acid that contains neutrality/polar side chain comprises l-asparagine, glutamine, halfcystine, Histidine, Serine and Threonine.
This specification sheets also is accredited as some amino acid characteristics " little " amino acid, because their side chain big inadequately (even lacking polar group) thereby can not hydrophobic property.Except that proline(Pro), " little " amino acid is those amino acid that have 4 following carbon and have 3 following carbon when at least one polar group is arranged on the side chain when not having polar group on the side chain.Amino acid with little side chain comprises glycine, Serine, L-Ala and Threonine.The secondary amino acid of genes encoding--proline(Pro) is because of the influential special case that becomes of known its secondary configuration to peptide chain.The structure of proline(Pro) combines the amino acid that is different from all other natural generations because of its side chain with alpha-amino nitrogen-atoms and alpha-carbon atom.For example Dayhoff etc. ((1978), " model that protein evolution changes " (A model of evolutionary change in proteins)) discloses several amino acid similarity matrixes (for example, PAM120 matrix and PAM250 matrix).Yet, publish in " protein sequence and structure iron " (Atlas of Protein Sequence andStructure) that M.O.Dayhoff compiles, the 5th volume, the 345-358 page or leaf, national biomedical research foundation (NationalBiomedical Research Foundation), Washington DC; With Gonnet etc., 1992, Science, 256 (5062): the matrix that is used for measuring long-range relation in 144301445 is included in proline(Pro) glycine, Serine, L-Ala and Threonine same group.Therefore, proline(Pro) is classified as " little " amino acid for purpose of the present invention.
(amino acid) is divided into polarity or required attraction or the repulsion degree of nonpolar classification is random, so the special amino acid of considering of the present invention can be divided into a class or another kind of.Can classify according to the amino acid that known performance is not named specially to great majority.
Amino-acid residue also can be further divided into ring-type or non-annularity, aromatic series or non-aromatic, according to the classification of can justifying oneself of the side chain substituents of residue, be divided into little or big.If certain residue contains 4 following carbon atoms (comprising carboxyl carbon) altogether, think that it is a p1 amino acid, prerequisite is to have other polar substituent; If there is no other polar substituent, the residue that contains 3 following carbon atoms altogether can be thought p1 amino acid.Little residue is non-aromatic residue always certainly.Can it be divided into two or more kinds according to the structure properties of amino-acid residue.With regard to the gal4 amino acid of natural generation, see Table 3 according to the subclassification of this scheme.
The conservative amino acid replacement also comprises according to side chain classifies.For example, the one group of amino acid that contains aliphatic lateral chain is glycine, L-Ala, Xie Ansuan, leucine and Isoleucine; The one group of amino acid that contains aliphatic series-hydroxyl side chain is Serine and Threonine; One group of amino acid with amide containing side chain is l-asparagine and glutamine; The one group of amino acid that contains the aromatic series side chain is phenylalanine, tyrosine and tryptophane; The one group of amino acid that contains basic side chain is Methionin, arginine and Histidine; With one group of amino acid with sulfur-containing side chain be halfcystine and methionine(Met).For example, can reasonably expect to replace with Isoleucine or Xie Ansuan that leucine, glutamine replace l-asparagine, Serine replaces Threonine, can not have a strong impact on the performance of the variant polypeptide that is produced during perhaps with certain seed amino acid of amino acid similarity ground replacement of structurally associated.Whether amino acid change can produce functional HVI labeling polypeptide is not difficult by checking its activity to measure.Conservative property replaces the title see Table 4 exemplary replacement.Preferred replacement title is seen in preferred replacement.Aminoacid replacement in the scope of the invention generally by selected substituting group to keeping: (a) replace regional peptide backbone structure, (b) electric charge of this molecule target site or hydrophobicity, or (c) volume of side chain not have the obvious not replacement of same-action to realize.After introducing replacement, the variant that screening has biologic activity.
Perhaps, can will prepare the similar amino acid that conservative property replaces according to the homogeny of side chain is divided three classes.As Zubay, G., " biological chemistry " (Biochemistry), the third edition, Wm.C.Brown Publishers, (1993) are described, first group comprises L-glutamic acid, aspartic acid, arginine, Methionin, the Histidine that all contains electrically charged side chain; Second group comprises glycine, Serine, Threonine, halfcystine, tyrosine, glutamine, l-asparagine; The 3rd group comprises leucine, Isoleucine, Xie Ansuan, L-Ala, proline(Pro), phenylalanine, tryptophane, methionine(Met).
Therefore, replace the non-essential amino acid residue of estimating in the HVI labeling polypeptide with another amino-acid residue in the identical side chain family usually.Perhaps, can introduce sudden change at random along HVI marker gene encoding sequence all or part of, for example by saturation mutagenesis, the mutant that obtains of screening has or not the activity of parental generation polypeptide to identify and has kept this active mutant then.Behind the mutagenesis encoding sequence, can recombinant expressed coded peptide, measure the activity of this peptide.
Therefore, the present invention also considers the variant of HVI labeling polypeptide sequence of natural generation or their biological active fragment, and wherein said variant can be by adding, lack or replacing one or more amino-acid residues and distinguish mutually with the sequence of natural generation.Generally, variant can show and parental generation HVI labeling polypeptide sequence that arbitrary sequence has the similarity at least about 30,40,50,55,60,65,70,75,80,85,90,91,92,93,94,95,96,97,98,99% shown in for example following SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114.Variant preferably with parental generation HVI labeling polypeptide sequence, arbitrary sequence has the sequence homogeny at least about 30,40,50,55,60,65,70,75,80,85,90,91,92,93,94,95,96,97,98,99% shown in for example following SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114.In addition, the present invention consider by add, lack or replace 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,30,40,50,60,70,80,90,100,150,200,300,500 with upper amino acid with natural or the parental generation sequence is different but still kept the sequence of this parental generation HVI labeling polypeptide characteristic.The HVI labeling polypeptide also comprises can be under rigorous condition defined herein, the polypeptide of the polynucleotide encoding of hybridizing with the invention described above HVI mark polynucleotide sequence or its noncoding strand under the particularly high rigorous condition.
In one embodiment, variant polypeptide has at least one with the HVI flag sequence but to be less than 50,40,30,20,15,10,8,6,5,4,3 or 2 amino-acid residues different.In another embodiment, variant polypeptide and the corresponding sequence shown in the following SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114 have at least 1% but to be lower than 20%, 15%, 10% or 5% residue different.If (this compares (method) and needs comparison, then should compare the maximum comparability of these sequences.Because of disappearance or " ring " outer sequence that insertion or mispairing produced can think that difference is arranged).These difference preferably are positioned at the difference or the change of nonessential residue, or conservative property replaces.
" nonessential " amino-acid residue is can change from the wild-type sequence of certain concrete polypeptide and do not destroy or do not change its residue a kind of or various active basically.Described change does not preferably change one of these activity basically, and for example 20% of wild-type activity, 40%, 60%, 70% or 80%." essential " thus amino-acid residue is the activity that can destroy this parental generation molecule when changing this residue of HVI labeling polypeptide wild-type sequence of the present invention is lower than the activity 20% of wild type peptide.
In other embodiments, variant polypeptide comprises the corresponding sequence with the HVI labeling polypeptide, for example following SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110, arbitrary sequence has at least about 50% shown in 112 or 114,55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%95%, 96%, 97%, 98% or above similarity and have the active aminoacid sequence of this HVI labeling polypeptide.
Can prepare HVI labeling polypeptide of the present invention by any appropriate method well known by persons skilled in the art.For example, can prepare these polypeptide by the method that may further comprise the steps: (a) preparation contains the mosaic type construction of the nucleotide sequence of encoding certain HVI mark polynucleotide at least a portion and linking to each other with the regulatory element operability; (b) this mosaic type construction is introduced in the host cell; (c) cultivate this HVI labeling polypeptide of this host cell expression; (d) from host cell, separate this HVI labeling polypeptide.In exemplary example, sequence shown in the described nucleotide sequence coded following SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, or at least a portion of its variant.
The mosaic type construction is taked the form of expression vector usually, should be selected from the outer carrier (for example plasmid) of karyomit(e) of self-replication and can be integrated into carrier in the host genome.
Regulatory element generally should be suitable for expressing the used host cell of this HVI labeling polypeptide.The expression vector of many types of various host cells known in the art and regulatory element.The demonstrative component of this type includes but not limited to: promoter sequence (for example can be the composing type or the inducible promoters of natural generation or the composition element with multiple promotor), leading or signal sequence, ribosome bind site, transcription initiation and terminator sequence, translation initiation and terminator sequence and enhanser or activation sequence.
In some embodiments, expression vector comprises selectable marker gene to select transformed host cells.But selectable marker gene is well known in the art and different with used host cell.
Described expression vector fusion partner (being provided by this expression vector usually) also can be provided thereby the HVI labeling polypeptide can be prepared as the fusion polypeptide that contains fusion partner.The major advantage of fusion partner is that they help to identify and/or this fusion polypeptide of purifying.Be the preparation fusion polypeptide, HVI mark polynucleotide need be connected into fusion partner is overlapped with the translation frame of HVI mark polynucleotide.The well-known examples of fusion partner includes but not limited to: Fc part, maltose binding protein (MBP) and six Histidines (hexahistidine) (HIS of glutathione-S-transferase (GST), human IgG
6), these companions are particularly useful for separating fusion polypeptide by affinity chromatography.In some embodiments, can utilize with fusion partner bonded matrix (such as but not limited to: gsh-, amylose starch-and nickel-or cobalt-coupling resin) by these fusion polypeptide of affinitive layer purification.Many this matrix can " test kit " form be buied, and for example utilize (HIS
6) companion's QIAexpress
TMSystem (Qiagen) and Pharmacia GST purification system.Other fusion partner known in the art is a photoprotein, for example can be used as fluorescence " label " identified and/or separated fusion polypeptide by fluorescent microscopy or flow cytometry green fluorescent protein (GFP) and luciferase.The flow cytometry method, for example fluorescence-activated cell sorting (FACS) method is particularly useful in use this back one.
Fusion partner also preferably contains proteolytic enzyme cutting site, for example factor X
aOr the cleavage site of zymoplasm, thereby make the associated protein enzyme partly digest this fusion polypeptide and from fusion construct, discharge the HVI labeling polypeptide.Can separate polypeptide and the fusion partner that is discharged by chromatographic separating process subsequently.
The scope of fusion partner also comprises " epi-position label ", and these labels normally can be buied the short peptide sequence of its specific antibody.The well-known examples that is easy to buy the epi-position label of monoclonal antibody specific comprises c-Myc, influenza virus hemagglutinin and FLAG label.
Can mosaic type construction of the present invention be introduced among the host by comprising " transduction " and proper methods such as " transfections ", this means the transgenosis that mediates by nucleic acid technically with nucleic acid, and for example expression vector is introduced in the donee's cells.Yet the genotype that " conversion " refers to the host is taken in the process that exogenous DNA or RNA change because of cell, and for example transformant contains expression system of the present invention.The mosaic type construction is introduced cell many methods are arranged.Used method generally depends on the selection of host cell.Those skilled in the art know the technology of the mosaic type construction being introduced host cell.Described four classes nucleic acid molecule has been sent method into cell: (1) chemical process, for example precipitation and the lipofection of calcium phosphate precipitation, polyoxyethylene glycol (PEG)-mediation; (2) physical method, for example microinjection, electroporation, accelerated method and vacuum are infiltrated; (3) carrier method, for example conversion of bacterium and virus vector mediation; (4) receptor-mediated conversion.Those skilled in the art know the transformation technology of these and other type, and new technology also continues to bring out.Concrete efficient and the concrete method of selecting of employing of selecting transformation technology to depend on this technical transform particular host cell implemented the present invention's people's experience and preference.The concrete selection that the technician obviously introduces the mosaic type construction conversion system in the cell as can be known is not substantial or limitation of the present invention, as long as this system can realize acceptable nucleic acid transfer level.
Can prepare reorganization HVI labeling polypeptide by cultivating through mosaic type construction transformed host cells.With host cell and different, the technician is by normal experiment definite these conditions of being not difficult with selected expression vector for condition that be fit to express the HVI labeling polypeptide.The host cell that is fit to express can be protokaryon or eukaryotic cell.The exemplary host cell of expressing polypeptide of the present invention is a bacterium.Used bacterium can be intestinal bacteria (Escherichia coli).Perhaps, host cell can be yeast cell or insect cell, for example utilizes the SF9 cell of baculovirus expression system.
Can adopt as Sambrook etc., (1989, the same), particularly the 16th and 17 parts; Ausubel etc., (1994, the same), particularly the 10th and 16 chapters; With Coligan etc., " fresh approach of protein science " (CURRENT PROTOCOLS IN PROTEIN SCIENCE), (John Wiley﹠amp; Sons, Inc., 1995-1997), particularly the standard method described in the 1st, 5 and 6 chapters is not difficult to prepare reorganization HVI labeling polypeptide.Perhaps, can be by chemosynthesis, for example adopt as Atherton and Shephard, (the same) the 9th Zhanghe Roberge etc., (1995, Science, 269:202) liquid phase described in is synthesized or solid-phase synthesis comes chemosynthesis HVI labeling polypeptide.
4. antigen binding molecules
The present invention also provide can with the interactional antigen binding molecules of HVI labeling polypeptide generation specific immunity of the present invention.In one embodiment, this antigen binding molecules comprises the polyclone whole antibody.Can pass through, for example HVI labeling polypeptide of the present invention is injected into the animal (comprising mouse and rabbit) that can produce (antibody) and prepare this antibody to obtain polyclonal antiserum.Those skilled in the art know the method for preparing polyclonal antibody.Adoptable exemplary method sees, Coligan etc. for example, " immunology fresh approach " (CURRENTPROTOCOLS IN IMMUNOLOGY), (John Wiley ﹠amp; Sons, Inc, 1991) and Ausubel etc., the III part of (1994-1998, the same), particularly Chapter 11.
Can adopt, for example K_hler and Milstein (1975, Nature, 256,495-497) described standard method or employing, for example Coligan etc., (1991, the same) described up-to-date improving one's methods, prepare monoclonal antibody with the infinite multiplication splenocyte or other antibody produced cell that derive from generation (antibody) animal that has inoculated one or more HVI labeling polypeptides of the present invention, substitute from producing the polyclonal antiserum that (antibody) animal obtains.
The present invention also considers with Fv, Fab, Fab ' and F (ab ')
2Immunoglobulin fragment is as antigen binding molecules.Perhaps, antigen binding molecules can comprise the Fv fragment that synthetic is stable.The exemplary fragment of this type comprises with peptide linker difference bridging V
HThe N-terminal of structural domain or C-terminal and V
LThe strand Fv fragment (sFv is commonly referred to scFv) of the C-terminal of structural domain or N-end.ScFv lacks all constant regions of complete antibody, thereby can not activating complement.Can basis, for example Kreber etc. (Kreber etc., 1997, J.Immunol.Methods, 201 (1): 35-55) method of being summarized prepares ScFv.Perhaps, can pass through U.S. Patent number 5,091,513; European patent number 239,400 or the article (1991 of Winter and Milstein, Nature, 349:293) and Pl ü ckthun etc. (1996, publish in " antibody engineering: a kind of practical approach " (Antibodyengineering:A practical approach), 203-252) described method prepares them.In another embodiment, the stable Fv fragment of synthetic comprises the stable Fv of disulfide linkage (dsFv), in this fragment two cysteine residues is introduced V
HAnd V
LThereby in the structural domain in folding fully molecule this two residue form disulfide linkage to each other.The appropriate method that produces dsFv is described in, for example (Glockscuther etc., Biochem., 29:1363-1367; Reiter etc., 1994, J.Biol.Chem., 269:18327-18331; Reiter etc., 1994, Biochem., 33:5451-5459; Reiter etc., 1994, Cancer Res., 54:2714-2718; Webber etc., 1995, Mol.Immunol., 32:249-258).
Preparation known in the art is anti--and the phage display of the antigen binding molecules of HVI labeling polypeptide and combined method be (for example, described in the following document: Ladner etc., U.S. Patent number 5,223,409; Kang etc., international publication number WO 92/18619; Dower etc., international publication number WO 91/17271; Winter etc., international publication WO 92/20791; Markland etc., international publication number WO 92/15679; Breitling etc., international publication WO 93/01288; McCafferty etc., international publication number WO 92/01047; Garrard etc., international publication number WO 92/09690; Ladner etc., international publication number WO 90/02809; Fuchs etc., (1991), Bio/Technology,
9: 1370-1372; Hay etc., (1992), Hum Antibod Hybridomas,
3: 81-85; Huse etc., (1989), Science,
246: 1275-1281; Griffths etc., (1993), EMBOJ,
12: 725-734; Hawkins etc., (1992), J Mol Biol,
226: 889-896; Clackson etc., (1991), Nature,
352: 624-628; Gram etc., (1992), PNAS,
89: 3576-3580; Garrad etc., (1991), Bio/Technology,
9: 1373-1377; Hoogenboom etc., (1991), Nuc AcidRes,
19: 4133-4137; With Barbas etc., (1991), PNAS,
88: 7978-7982).These antigen binding molecules can be used for screening the variant HVI labeling polypeptide in the expression library.They also can be used for detecting and/or separating HVI labeling polypeptide of the present invention.Therefore, the present invention also considers to utilize these antigen binding molecules, adopts for example any suitable immune affine method (including but not limited to immunochromatography and immunoprecipitation) to separate the HVI labeling polypeptide.Suitable method is utilized solid phase adsorption, wherein will resist-antigen binding molecules of HVI labeling polypeptide links to each other with appropriate resin, and this resin is contacted with suspecting the sample that contains the HVI labeling polypeptide, then wash-out HVI labeling polypeptide (if present) from the resin.Exemplary resin comprises: Sepharose
TM(Pharmacia), Poros
TMResin (Roche Molecular Biochemicals, Indianapolis), ActigelSuperflow
TMResin (Sterogene Bioseparations Inc., Carlsbad Calif.) and Dynabeads
TM(Dynal Inc., Lake Success, N.Y.).
Can be with antigen binding molecules and compound, marker for example, as radionuclide, or imaging agents, as radioactivity, enzymic activity (reagent) or other imaging agents, as the coupling of NMR contrast agent phase.The preferred marker that can produce detectable radioactive ray or fluorescence.Be abundance and pattern that evaluating protein matter is expressed, can utilize the antigen binding molecules (for example, monoclonal antibody) of anti--HVI labeling polypeptide to detect HVI labeling polypeptide (for example, in cell lysate or cell conditioned medium liquid).In some advantageous applications of the present invention, available this antigen binding molecules comes the HVI labeling polypeptide level in the monitoring biological sample (containing complete cell and liquid) and diagnoses the risk that whether has herpesvirus infection and degree or herpesvirus infection associated diseases.Antibody and detectable substance (that is antibody labeling) phase coupling (that is physical connection) are helped to detect.The example of detectable substance comprises various enzymes, prothetic group, fluorescent material, luminescent material, bioluminescent material and radio active material.The example of suitable enzyme comprises horseradish peroxidase, alkaline phosphatase, beta-galactosidase enzymes or acetylcholinesterase; The example of suitable prothetic group mixture comprises Streptavidin/vitamin H and avidin/biotin; The example of suitable fluorescent material comprises Umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichloro three azine amine fluoresceins (dichlorotriazinylamine fluorescein), dansyl chloride or phycoerythrin; The example of luminescent material comprises luminol,3-aminophthalic acid cyclic hydrazide; The example of bioluminescent material comprises luciferase, fluorescein and aequorin; The example of suitable radio active material comprises
125I,
131I,
35S or
3H.Marker can be selected from chromogen, catalyzer, enzyme, fluorophor, chemiluminescent molecule, lanthanide ion, as europium (Eu
34But), the marker of radio isotope and direct viewing.But with regard to the direct viewing marker, available colloidal metal particle or non-metallic particle, dye granule, enzyme or substrate, organic polymer, latex particle, liposome or contain the preparation marks such as other carrier that signal produces material.
US Patent specification U.S.4,366,241; U.S.4,843,000 and U.S.4,849,338 disclose the enzyme that can be used as marker in a large number.Available enzyme labelling thing of the present invention comprises alkaline phosphatase, horseradish peroxidase, luciferase, beta-galactosidase enzymes, glucose oxidase, N,O-Diacetylmuramidase, malate dehydrogenase (malic acid dehydrogenase) etc.Can use separately enzyme labelling thing solution or with second kind of enzyme coupling.
5. detecting unusual HVI marker gene expresses or allelic method
The present invention is partly based on following discovery: compare with the horses that are not subjected to herpesvirus infection, be subjected to some gene of horses, particularly those horses of reactivity herpesvirus infection that simplexvirus (particularly EHV) infects or some allelotrope (this paper is called the HVI marker gene) abnormal expression of these genes.This paper proposes to find these genes or their homologue or straight abnormal expression to homologue in being subjected to other animal of herpesvirus infection.Therefore, the invention is characterized in that the unconventionality expression of taking from certain HVI marker gene in the biological sample of object by detection assesses herpesvirus infection or the diagnosis herpesvirus infection, the particularly method of reactivity herpesvirus infection of this object (preferred mammal).Herpesvirus infection should comprise that one of simplexvirus subfamily member of being selected from α herpetoviridae, β herpetoviridae and gamma herpes viruses section infects.The exemplary example of the simplexvirus of α herpetoviridae subfamily comprises: HHV-1 (HSV-1), HHV-2 (HSV-2), HHV-3 (VZV) and EHV (as, EHV-1 and EHV-4).The non-limitative example of the simplexvirus of β herpetoviridae subfamily comprises: HHV-5 (CMV), HHV-6 (roseola virus) and HHV-7.The representative example of the simplexvirus of gamma herpes viruses section subfamily includes but not limited to: and HHV-4 (the lymph cryptovirus, EBV) and HHV-8 (elongated virus).In specific embodiment, described simplexvirus is EHV, particularly EHV-1, more especially reactivity EHV-1.
For making assessment or diagnosis, need qualitatively or quantitatively determine the level of HVI marker gene transcript, the specific allelic existence of certain HVI marker gene or the level or the functionally active of level or HVI labeling polypeptide.In some embodiments, certain the HVI marker gene product detection level that exists in biological sample is lower than to be taken from normal subjects or not to be subjected to herpesvirus infection, when particularly not being subjected to the simplexvirus reactivity to infect the level of this gene in the reference sample of object, diagnosable herpesvirus infection state, degree or stage, perhaps the existence generation simplexvirus sequela risk of existing.In other embodiments, but the detection level of certain HVI marker gene product is higher than and takes from normal subjects or be not subjected to herpesvirus infection in biological sample, when particularly not being subjected to the simplexvirus reactivity to infect the level of this gene of reference sample of object, then diagnosable herpesvirus infection state, degree or stage, perhaps the existence generation simplexvirus sequela risk of existing.In a word, the level of corresponding HVI marker gene product or functionally active are compared and are had 10% at least in the level of certain the HVI marker gene product in the biological sample or functionally active and reference sample, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 92%, 94%, 96%, 97%, 98% or 99%, or even at least about 99.5%, 99.9%, 99.95%, 99.99%, 99.995% or 99.999%, or even at least about 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, during 900% or 1000% difference, can make this diagnosis.The exemplary rising or the reduction of representative HVI marker gene expression level see Table 5-7.
Corresponding gene product is selected from the same gene product that exists in the biological sample, variant gene (for example, homology or orthologous gene) expressed genes product or their protein that contains allele variant or splice variant usually.In some embodiments, this method comprises that detection is at least about 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 or the level or the functionally active of 30 kind of each expression product of HVI marker gene.
Biological sample generally comprises blood, peripheral blood particularly, or its component or extract.Biological sample contains hemocyte usually, for example ripe, immature and grow white corpuscle, comprise lymphocyte, polymorphonuclear leukocyte, neutrophil, monocyte, reticulocyte, basophilic granulocyte, chamber born of the same parents, hemocyte, eosinophilic granulocyte, megalokaryocyte, scavenger cell, dendritic cell, natural killer cell, or the component of these cells (for example, nucleic acid or protein portion).In specific embodiment, biological sample contains white corpuscle, comprises peripheral blood lymphocytes (PBMC).
5.1 diagnostic nucleic acid
Can according to standard method (Sambrook etc., 1989, the same; Ausubel etc., 1994, the same) isolating nucleic acid is used for the polynucleotide test from the contained cell of biological sample.Described nucleic acid generally is fractionated (for example, poly A
+RNA) or whole-cell rna.When during as detected object, RNA being changed RNA into complementary DNA.In some embodiments, adopt template dependency nucleic acid amplification technologies this nucleic acid that increases.Existing many template dependency methods increase, and certain gives the HVI flag sequence that exists in the solid plate sample.Exemplary nucleic acid amplification technologies is specified in U.S. Patent number 4,683,195; 4,683,202 and 4,800,159; Ausubel etc. (the same) and Innis etc., the polymerase chain reaction (being called PCR) in (" PCR method " (PCRProtocols), Academic Press, Inc., San Diego Calif., 1990).In brief, in PCR, two primer sequences of regional complementarity on preparation and the relative complementary strand of this flag sequence.In reaction mixture, add excessive deoxynucleoside triphosphate and archaeal dna polymerase, for example Taq polysaccharase.If there is homology HVI flag sequence in certain sample, these primers will combine with this mark (sequence), and polysaccharase can make this primer extend along flag sequence by adding Nucleotide.By raising and reduce the temperature of reaction mixture, the primer of extension can with mark (sequence) the formation reaction product of dissociating, excessive primer can combine with mark (sequence) and reaction product, and carries out this process repeatedly.MRNA content for quantitative assay is increased can adopt the reverse transcriptase PCR amplification method.With the RNA reverse transcription is that the method for cDNA is known, and it is described in Sambrook etc., 1989, and the same.Other reverse transcription method is utilized heat-staple RNA dependent dna-polymerases.WO90/07641 has described these methods.Well known polymerase chain reaction method.
In some preferred embodiment, the template dependent amplification comprises real-time quantitative mensuration transcript.For example, can adopt real time pcr (Higuchi etc., 1992, Biotechnology, 10:413-417) quantitative assay RNA or DNA.By measuring the concentration of finishing similar number amplification round in the PCR reaction and being in the target DNA amplified production in the linearity range, can determine the relative concentration of specific target sequence in the original DNA mixture.If the DNA mixture is the relative abundance from the specific mrna that separates from the RNA of different tissues or cell synthetic cDNA, then can measure each tissue that produces this target sequence or cell.This direct proportional relationship between the concentration of PCR product and the mRNA relative abundance is only just correct in the linearity range of PCR reaction.Can measure the final concentration of this curve terrace part target DNA by the utilization ratio of reagent in the reaction mixture, this final concentration does not rely on the starting point concentration of this target DNA.
Another amplification method is EPO No.320 308 disclosed ligase chain reaction (LCR)s (" LCR ").In LCR, prepare two pairs of complementary probe, thereby the opposed complementary chain combination of the every pair of probe and target sequence is adjoined them in the presence of target sequence.In the presence of ligase enzyme, these two pairs of probes can link to each other and form a unit.With the same among the PCR, by temperature cycle, make bonded connect unit and dissociate, then with connecting excess probe right " target sequence " from target sequence.U.S. Patent number 4,883,750 described similar to LCR, make probe to target sequence bonded method.
Also can use the described Q β of PCT application number PCT/US87/00880 replicative enzyme.In this method, in the presence of RNA polymerase, will have with the rna replicon sequence of the regional complementary region mutually of target sequence and add in the sample.Polysaccharase can copy this replication sequence, detects then.
Utilize the amplification of restriction endonuclease and ligase enzyme also to can be used for the nucleic acid of the present invention that increases in the constant-temperature amplification method that the restriction site of a chain contains the target molecule of Nucleotide 5 ' α-sulfo--triphosphoric acid, Walker etc., (1992, Proc.Natl.Acad.Sci.U.S.A, 89:392-396).
Strand displacement amplification (SDA) is the another kind of method of carrying out nucleic acid constant-temperature amplification, and this method comprises many wheel strand displacements with synthetic, i.e. nick translation.The similarity method that is called reparation chain reaction (RCR) comprises anneals several probes on the entire target zone of amplification, only repair reaction to two kinds in four kinds of bases then.For ease of detecting other two kinds of bases are added as the biotinylation derivative.Adopted similar method among the SDA.Also can adopt circle probe reaction (CPR) detection specificity target sequence.In CPR, has the DNA hybridization that exists in the probe of 3 ' and the 5 ' sequence of non-specific DNA and specific RNA stage casing sequence and the sample.After the hybridization, with RNA enzyme H processing reaction (mixture), the product of probe is accredited as the different products that the digestion back discharges.Make the annealing of primary template and another circle probe, repeat this reaction.
Also can adopt the described another kind of amplification method of GB Patent Application No. 2 202 328 and PCT application number PCT/US89/01025.In last application, the template and the enzyme dependency that " modification " primer are used for the PCR-sample are synthetic.Available part (for example, vitamin H) and/or test section (for example, the enzyme) mark of catching modified these primers.In one application of back, excessive label probe is added sample.In the presence of target sequence, probe in conjunction with and cut by enzyme catalysis.After the cutting, the complete release of target sequence and then combine with excess probe.The cutting of label probe is the signal that target sequence exists.
Other nucleic acid amplification method comprises transcription amplification system (TAS), comprises amplification of nucleic acid sequences (NASBA) and 3SR (Kwoh etc., 1989, Proc.Natl.Acad.Sci.U.S.A., 86:1173; Gingeras etc., PCT applies for WO 88/10315).In NASBA, can the extraction of standard phenol/chloroform, thermally denature, lysis buffer by clinical sample handle and microcentrifugation (minispin) post DNA isolation and RNA or extract RNA by the chlorination guanidine and prepare the nucleic acid that is used to increase.These amplification techniques comprise makes the primer annealing with target-specific sequence.After the polymerization, the DNA/RNA crossbred with RNA enzyme H digestion hybridization carries out thermally denature again to double chain DNA molecule.In two kinds of situations, thus by add second target-specific primer then polymerization single stranded DNA is made complete two strands.Use RNA polymerase then, for example T7 or SP6 transcribe this double chain DNA molecule for many times.In the constant temperature circulating reaction, be single stranded DNA with the RNA reverse transcription, change double-stranded DNA then into, then use RNA polymerase, for example T7 or SP6 transcribe again.No matter the product that obtains is brachymemma or the complete target-specific sequence that all is shown as.
Davey etc., EPO No.329 822 discloses a kind of nucleic acid amplification method, comprises can be used for circulation synthetic single stranded RNA of the present invention (" ssRNA "), ssDNA and double-stranded DNA (dsDNA).SsRNA is the template of first primer tasteless nucleotide of reversed transcriptive enzyme (RNA dependent dna-polymerases) extension.Utilize the effect of ribonuclease H (RNA enzyme H has specific RNA enzyme to RNA in the duplex that contains DNA or RNA) to remove RNA in the DNA:RNA duplex that obtains then.The ssDNA that produces is the template of second primer, and this primer also contains promoter sequence with this template homologous RNA polymerase (for example T7 RNA polymerase) at 5 ' (end).Use archaeal dna polymerase (for example big " Klenow " fragment of e. coli dna polymerase I) to extend this primer then, obtain double-stranded DNA (" dsDNA ") molecule, its sequence is identical with original RNA between the primer, also contains promoter sequence at an end.Suitable R NA polysaccharase can utilize this primer sequence to prepare the many parts of RNA copies of this DNA.Thereby these copies can enter the circulation rapid amplifying more then.Suitably select enzyme, but constant temperature carries out this amplification (method) and need not at every adding enzyme of taking turns.Owing to the recursive nature of this method, can select the homing sequence of DNA or rna form.
Disclosed amplification of nucleic acid sequences scheme in PCT application WO 89/06700 such as Miller is transcribed many parts of RNA copies of this sequence then according to promotor/primer sequence and strand target DNA (" ssDNA ") hybridization.This scheme is not circulative, and the rna transcription thing that promptly obtains does not produce new template.Other amplification method comprises " RACE " and " monolateral (one-sided) PCR " (Frohman, M.A., publish in " PCR method: method and application guide " (PCR Protocols:A Guide to Methods andApplications), Science Press, N.Y., 1990; Ohara etc., 1989, Proc.Natl Acad.Sci.U.S.A., 86:5673-567).
Also can adopt the nucleic acid that contains to some extent " two-oligonucleotide " sequence that produces connect down two (or many) thereby oligonucleotide increases the method for this " two-oligonucleotide " come amplifying target nucleic acid sequence.Wu etc., (1989, Genomics, 4:560).
Depend on used mode, can adopt for example above-mentioned template dependent amplification or after amplification, directly identify interested HVI labeling nucleic acid in the sample with second kind of known nucleic acid.Detect the product of being identified then.In some applications, can detect (for example, gel ethidium bromide staining) by visual method.Perhaps, detection can comprise by chemoluminescence, radiolabeled radioactivity scintiphotography or fluorescent marker or even identify product (Affymax Technology indirectly by the system that utilizes electricity or thermal pulse signal; Bellus, 1994, J Macromol.Sci.Pure, Appl.Chem., A31 (1): 1355-1376).
In some embodiments, can observe amplified production or " amplicon " to confirm the amplification of HVI flag sequence.A kind of typical visual method comprises uses the ethidium bromide staining gel, observes under UV light.Perhaps, if amplified production has been integrated mark radioactivity or fluorescently-labeled Nucleotide can make these amplified productions exposure x-radiographic films or observe under suitable excitation spectrum after the separation.In some embodiments, can observe indirectly.Amplified production makes the nucleic acid probe of mark contact with the HVI flag sequence of amplification after separating.Probe preferably with chromophore's coupling, but but also radio-labeling.Perhaps, with probe and binding partners, for example antigen binding molecules or vitamin H coupling, but and carry test section or report molecule in conjunction with another right member.Related technology is well known to those skilled in the art, can find in the standard textbook of many molecular methods (for example, referring to Sambrook etc., 1989, the same and Ausubel etc., 1994, the same).For example, can be during increasing or thereafter with chromophore or radiolabeled probe or primer evaluation target (sequence).
In certain embodiments, adopt engram technology quantitative assay target nucleic acid well known to those skilled in the art.The Sourthern trace utilizes DNA as target, and the Northern trace utilizes RNA as target.Each method can provide different kinds of information, though the cDNA trace is similar to above-mentioned trace or RNA in many aspects.In brief, probe is used for target and is fixed in suitable matrix, normally DNA on the nitrocellulose filter or RNA.Different sorts nucleic acid spatially should separate so that analyze.Often by the nucleic acid gel electrophoresis, " trace " realized to film then for this.Subsequently, common trace target (sequence) and the probe (the normally probe of mark) cultivated under the condition that promotes sex change and hybridization (rehybridisation) again.Because probe design is and target (sequence) base pairing that probe can combine with the part of target sequence under the renaturation condition.Remove unconjugated probe then, detect as mentioned above.
After detected/quantified is measured, can or not have herpesvirus infection, particularly do not have the reference group that statistical significance is arranged of reactivity herpesvirus infection object and make comparisons finding result and the control reaction (result) or the normal subjects of certain given object.Detected HVI labeling nucleic acid content is associated with the process or the seriousness of disease.
The present invention also considers as Kristensen etc., (Biotechniques, 30 (2): 318-322) described methods of genotyping and allelotrope discrimination method and technology, these methods and technology comprise the single nucleotide polymorphisms analysis of employing, high performance liquid chromatography, TaqMan
TM, liquid chromatography (LC) and mass spectrum.
The present invention also considers biochip technology, for example Hacia etc. (1996, Nature Genetics, 14:441-447) and Shoemaker etc. (1996, Nature Genetics, 14:450-456) described technology.In brief, these technology comprise the method for quantitatively determining of the many genes of quick Accurate Analysis.By tagging to gene with oligonucleotide or utilizing fixed probe array, available biochip technology that target molecule is separated into high density arrays and according to these molecules of screening by hybridization.Also referring to Pease etc. (1994, Proc.Natl.Acad.Sci.U.S.A., 91:5022-5026); Fodor etc. (1991, Science, 251:767-773).In brief, summarize as this paper, the nucleic acid probe of preparation HVI mark polynucleotide links to each other it with being used to screen with the biochip of diagnostic method.The nucleic acid probe that connects biochip can be designed to basically and specific expressed HVI labeling nucleic acid, be no matter target sequence (is target sequence or other probe sequence of sample, the sequence in the sandwich assay for example) complementation, thus target sequence and probe hybridization of the present invention made.This complementarity need not perfection; The base-pair mismatch that can have the interference hybridization of some amount between target sequence and the nucleic acid probe of the present invention.Yet if do not hybridize under minimum preciseness hybridization conditions even the quantity of mispairing is too big, this sequence is not the complementary sequence of target sequence yet.In certain embodiments, every sequence can be utilized multiple probe, can utilize the eclipsed probe or at the probe of target sequence different piece.That is, available two kinds, three kinds, the probe more than four kinds (preferred three kinds) make up concrete target (sequence) and have Feng Yudu.These probes can be eclipsed (being that some sequence is identical) or isolating.
Those of ordinary skills should be understood that and can in every way nucleic acid be connected in or be fixed in solid support." fixed " of this paper or its grammer vocabulary of equal value shows being connected or being combined under following combination, washing, analysis and the removal condition enough stable between nucleic acid probe and the solid support.In conjunction with can being covalently or non-covalently." the non-covalent combination " of this paper and its grammer vocabulary of equal value shows one or more of static, wetting ability and hydrophobic interaction.Non-covalent combination comprises molecule, and for example Streptavidin combines with the non-covalent of Streptavidin with the covalently bound and biotinylated probe of upholder." covalent attachment " of this paper and grammer thereof vocabulary of equal value shows two portions, and promptly solid support and probe by a key, comprise that σ key, π key link to each other with coordinate bond at least.Can be formed directly in covalent linkage between probe and the solid support, perhaps can form covalent linkage by cross linker or by solid support or probe the two or the contained specific reaction active group of these two kinds of molecules.Immobilization also can comprise unites with covalency and noncovalent interaction.
In a word, those skilled in the art will know that linking probe and biochip in every way.As described herein, can first nucleic acid, link to each other with biochip then, perhaps direct nucleic acid on biochip.
Biochip comprises suitable solid or semi-solid substrate or solid support." substrate " or " solid support " expression is modified and contain and be fit to link to each other with nucleic acid probe or discontinuous a plurality of sites of bonded and be applicable to any material of at least a detection method.Those skilled in the art will know that the available substrate is a lot, include but not limited to: glass and modification or functional glass, plastics (multipolymer of vinylformic acid, polystyrene and vinylbenzene and other material, polypropylene, polyethylene, polybutene, urethane, Teflon
TMDeng), polysaccharide, nylon or nitrocellulose, resin, silicon-dioxide or material (silicon that comprises modification), carbon, metal, unorganic glass, plastics etc.In a word, these substrates can detect and not be with fluorescence with optical means.
Described substrate generally is flat, though those skilled in the art will know that the substrate that also can utilize other configuration.For example, reduce sample volume as far as possible, probe can be placed the internal surface of test tube for the sample that flows through is analyzed.Similarly, described substrate can be flexible, and for example the bendable foam plastics comprise the porous plastics that the sealing cell is arranged that particular plastic is made.
In certain embodiments, known in the art can be on substrate synthetic oligonucleotide probe.For example, utilize the photoactivation technology of photopolymerization compounds and technology.In an exemplary example, adopt the light version printing technology of knowing, for example WO 95/25116; WO 95/35505; U.S. Patent number 5,700,637 and 5,445,934 and the reference quoted described in technology original position nucleic acid; These methods of attachment constitute Affymetrix GeneChip
TMThe basis of technology.
In the example of an exemplary analyzing biochips, the oligonucleotide probe on the biochip is contacted at the nucleic acid samples that helps under the condition of specific hybrid to contain one or more simplexvirus polynucleotide with suspection.Can from the suspension of biomaterial, prepare the DNA of sample or RNA extract (no matter strand or two strands), perhaps grind biomaterial, perhaps according to the preparation of lysis step, described step includes but not limited to: handle with SDS (or other washing composition), osmotic pressure impact, guanidinium isothiocyanate and N,O-Diacetylmuramidase and carry out cracking.The suitable DNA that can be used for the inventive method comprises cDNA.Can adopt this DNA of one of multiple common method preparation, for example see Ausubel etc., 1994, the same; With Sambrook etc., 1989, same as above.
The suitable RNA that can be used for the inventive method comprises complementary RNA (cRNA) or geneome RNA or the subgenomic RNA that messenger RNA(mRNA), DNA transcribe.Can adopt standard method to prepare this RNA, Ausubel etc. for example, 1994, the same; With Sambrook etc., 1989, same as above.
Can pass through, for example ultrasonication or handle with restriction endonuclease and to make the cDNA fragmentation.Thereby it is preferably make the cDNA fragmentation make the dna fragmentation of generation be longer than the fixed oligonucleotide probe, but enough little and can under suitable hybridization conditions, contact the fixed probe fast.Perhaps, can adopt for example above-mentioned suitable amplification oligonucleotide technology cDNA fragment of selecting and increase, this relate to utilize suitable at random or Auele Specific Primer.
Usually thereby detectability labels targets HVI mark polynucleotide can be measured the hybridization of they and each probe.Usually with report molecule detectability labels targets polynucleotide, the exemplary example of described report molecule comprises chromogen, catalyzer, enzyme, fluorescence dye, chemiluminescent molecule, bioluminescent molecules, lanthanide ion (for example, Eu
34But), the marker of radio isotope and direct viewing.But, can utilize colloidal metal particle or non-metallic particle, dye granule, enzyme or substrate, organic polymer, latex particle, liposome or contain other carrier etc. that signal produces material for the marker of direct viewing.This type of exemplary marker comprises big colloid, and metallic colloid for example is as gold, selenium, silver, tin and titanium oxide colloid.At some but enzyme is used as in the embodiment of direct viewing marker, biotinylated base is mixed in the target polynucleotide.Detect hybridization by cultivating with Streptavidin-report molecule.
Suitable fluorescence dye includes but not limited to: fluorescein isothiocyanate (FITC), isothiocyanic acid tetramethyl-rhodamine (TRITC), R-phycoerythrin (RPE) and Texas red (Texas Red).Other exemplary fluorescence dye comprises described in (international publication WO 93/06121) such as Dower.Fluorescence dye also can be with reference to United States Patent (USP) 5,573,909 (Singer etc.); 5,326,692 (Brinkley etc.).Perhaps, fluorescence dye can be with reference to U.S. Patent number 5,227,487; 5,274,113; 5,405,975; 5,433,896; 5,442,045; 5,451,663; 5,453,517; 5,459,276; 5,516,864; 5,648,270 and 5,723, described in 218.The fluorescent marker that can buy comprises, fluorescein phosphoramidite for example is as Fluoreprime
TM(Pharmacia), Fluoredite
TM(Millipore) and FAM (Applied Biosystems International).
Radioactivity report molecule comprises, for example can pass through the 32P of X-ray or phosphoric acid imaging (phosphoimager) technology for detection.
Can under the condition that is suitable for oligonucleotide probe and test nucleic acid (comprising DNA or RNA) hybridization, hybridize the formation step.Thus, but reference example as " nucleic acid hybridization, a kind of practical approach " (NUCLEICACID HYBRIDIZATION, A PRACTICAL APPROACH), (Homes compile with Higgins), (IRL press, Washington D.C., 1985).In a word, hybridization whether be subjected to concentration, the hybridization formation of length, pH, temperature, monovalence and the divalent cation of oligonucleotide probe and the polynucleotide sequence of test distinguish in ratio, the dielectric viscosity of G and C Nucleotide and the influence of the denaturing agent that may exist.These variable factors also influence the hybridization required time.Therefore, preferred condition depends on concrete application.Yet available ordinary method is determined these empirical conditions and be need not too much experiment.
Some preferred embodiment adopts height distinctive hybridization conditions.For example, can be with reference to Wallace etc. (1979, Nucl.Acids Res., 6:3543), he has described with the similar oligonucleotide probe that contains an inner base-pair mismatch and has compared, and can distinguish and the hybridization conditions of target sequence Perfect Matchings with the oligonucleotide probe of complete homologous 11-17 base length.Also can be with reference to Wood etc. (1985, Proc.Natl.Acid.Sci.USA, 82:1585), he has described the condition of utilizing the 3M tetramethylammonium chloride to make the long oligonucleotide hybridization of 11-20 base, wherein the melting temperature(Tm) of crossbred only depends on the length of oligonucleotide probe, and its GC content no matter.In addition, Drmanac etc. (the same) have described the rigorous hybridization conditions of the long oligomer of 6-10 Nucleotide, utilize nucleotide analog, for example " locked nucleic acid " be not difficult to obtain simulated condition (Christensen etc., 2001, Biochem J, 354:481-4).
Hybridization generally can carry out in the presence of hybridization buffer, optional hybridization optimization reagent, for example stablizer (isostabilising agent), denaturing agent and/or the renaturation accelerator of containing of described damping fluid.The example of stablizer includes but not limited to: trimethyl-glycine and rudimentary tetraalkylammonium salt.Denaturing agent is the composition that reduces the double chain acid molecule melting temperature(Tm) by the hydration of hydrogen bond between the interference double-strandednucleic acid base or nucleic acid molecule.Denaturing agent includes but not limited to: methane amide, formaldehyde, dimethyl sulfoxide (DMSO), tetraethyl-acetic ester (tetraethylacetate), urea, guanidinium isothiocyanate (guanidium isothiocyanate), glycerine and chaotropic salt.The hybridization accelerator comprises heterogeneous nuclear ribonucleoprotein (hnRP) A1 and cationic detergent in the nuclear, as cetyl trimethylammonium bromide (CTAB) and Trimethyllaurylammonium bromide (DTAB), polylysine, spermine, spermidine, single strand binding protein (SSB), phage T4 gene 32 albumen and ammonium acetate and alcoholic acid mixture.Hybridization buffer can contain concentration and be the about 50nM of about 0.005-, preferably about 0.5-5nM, the target polynucleotide of 1-2nM more preferably from about.
The hybridization mixture that contains target HVI mark polynucleotide is contacted with probe array and cultivate appropriate time so that the target sequence in the target polynucleotide is hybridized with any complementary probe in room temperature.Can in any suitable containers, contact, for example be designed for the dish or the cell that hold the solid support that is connected with probe on it.Cultivate temperature and be generally the used temperature of nucleic acid hybridization, for example about 20 ℃-Yue 75 ℃, 25 ℃ according to appointment, about 30 ℃, about 35 ℃, about 40 ℃, about 45 ℃, about 50 ℃, about 55 ℃, about 60 ℃, or about 65 ℃.Length surpasses the preferred 20-50 of probe ℃ of 14 Nucleotide.For short probe, preferred lesser temps.Target polynucleotide sample and probe cultivated when enough reach required hybridization level between the target sequence in the chien shih target polynucleotide and any complementary probe.For example, can in methane amide, hybridize 1-2 days at about 45 ℃+/-10 ℃.
After hybrid forms step, optimize the hybridization buffer washing probe of agent to remove any unconjugated nucleic acid with containing with the hybridization of the used same concentrations of hybridization step.This washing step only stays the bonded target polynucleotide.But detection probes is to identify the hybridization of which kind of probe and target polynucleotide then.
Can detect hybridization then to determine which kind of probe and corresponding target sequence hybridization.The character that depends on the report molecule that is connected with target polynucleotide can be used the instrument detecting signal: use the rayed fluorescent marker, detect fluorescence with photofluorometer in the following manner; Provide enzyme system to produce the color that available spectrophotometer detects; Perhaps detect dye granule or colored colloidal metal particle or non-metallic particle with the light reflectometer; Adopt radiation counter or radioautography during with radioactively labelled substance or chemiluminescent molecule.Therefore, proofing unit should be applicable to detection or the relevant light of passing marker thing, and described light can comprise fluorescence, cold light, focused beam or laser.At this moment, charge available coupled apparatus (CCD) or photocell scan each position probe in the microarray: the light of target polynucleotide hybrid emission is also directly at the digital machine identifying recording layer.In some cases, need not the detected electronically signal.For example, producing the color spot relevant with the nucleic acid array pattern with enzymatic is example, estimates this array with regard to the pattern on the soluble array.In the nucleic acid array situation, proofing unit preferably links to each other with mode identificating software and the signal mode of array is converted into ordinary language heredity distribution pattern.In certain embodiments, the specific oligonucleotide probe that different HVI stress the marker gene product is taked the nucleic acid array form, with the report signal that molecule produced on " chip-reader " detection arrays.(U.S. Patent number 5,143,854) such as detection system that " chip-reader " adopts such as Pirrung are described.Chip-reader comprises also that usually some signal courses of processing determine that the signal at certain concrete array position or element place is true positives or may is spurious response.Exemplary chip-reader for example Fodor etc. (U.S. Patent number 5,925,525) is described.Perhaps, when array is when being made by the microballon mixture of various addressable phenotypic markers, can adopt this reaction of Flow cytometry.
5.2 protein diagnostic
Consistent with the present invention is, exists the HVI labelled protein of abnormal concentrations to show herpesvirus infection, the particularly existence of reactivity herpesvirus infection, degree or stage, or the risk of herpesvirus infection sequela takes place.Can adopt the imitate level of HVI labelled protein in the product of any appropriate method detection of biological known in the art.For example, when the HVI labelled protein is enzyme, can come this protein of quantitative assay according to its catalytic activity or contained per sample this protein molecule number.Can adopt antibody technique, for example immunohistology and immunohistochemical method come the level of proteins of interest matter in the test set tissue samples.For example, provide specific recognition, detect anti-existing (or combination) with second detection system with one anti-(polyclone or mono-clonal).Can be with detectable, but for example fluorescent marker, radioactively labelled substance maybe can produce quantitative assay (as colored) product enzyme (as, alkaline phosphatase, horseradish peroxidase) with two anti-couplings mutually.In another suitable method, detectability ground mark one is anti-own.Therefore can make the immunohistology mark to tissue slice.In some embodiments, preparation is analyzed and is used protein extract from biological sample (for example, tissue, cell).Can adopt routine immunization trace method (Jalkanen etc., 1985, J.Cell.Biol., 101:976-985; Jalkanen etc., 1987, J.Cell.Biol., 105:3087-3096) level of proteins of interest matter in western-trace or spot/narrow line experiment (analysis) this extract (for example, washing composition extract).
Other useful antibody method comprises immunoassay, for example enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA).For example, the protein specific monoclonal antibody can be used as immunosorbent and enzyme labelled probe detects and the interested HVI labelled protein of quantitative assay.Can adopt the linear regression computerized algorithm (referring to, Lacobilli etc., 1988, Breast Cancer Research and Treatment, 11:19-30), the content in the reference standard goods comes this Protein content in the calculation sample.Other embodiment can be with two kinds of different monoclonal antibodies of proteins of interest matter, and a kind of as immunosorbent, another kind is as enzyme labelled probe.
In addition, the latest developments in protein capture array field make and can detect simultaneously and/or a large amount of protein of quantitative assay.For example, low density protein array on the filter membrane is as general protein array system (Ge, 2000, Nucleic Acids Res., 28 (2): e3) adopt standard ELISA technology and scanning electric charge coupling device spare (CCD) detector to take the AM picture of forming array.Also developed the immunosensor array that can detect clinical (multiple) analyte simultaneously.Can come in the analysing body fluid with protein array at present, for example the protein expression distribution pattern in the object serum before and after health or ill object and the pharmacological agent.
The protein capture array generally comprises the multiple proteins trapping agent, and they have formed the different element in this array manifold position separately.The protein capture agent can be energy conjugated protein and any molecule or the molecular complex that is fixed in the protein capture agent site on the array.The protein capture agent can be a kind of protein, its natural function in cell be specificity in conjunction with another kind of protein, for example antibody or acceptor.Perhaps, the protein capture agent can be that the energy specificity is in conjunction with certain proteinic partial synthesis or protein complete synthesis or reorganization.Perhaps, the protein capture agent can be external basis to the binding affinity of specific target protein matter or peptide from mutagenesis, at random or the protein of selecting completely randomization and the synthetic library.It is methods of exhibiting known in the art that used system of selection can be chosen wantonly, for example ribosomal display or phage display method.Perhaps, the protein capture agent that obtains through external selection can be can specificity in conjunction with the DNA of target protein or RNA fit (referring to, Potyrailo etc. for example, 1998, Anal.Chem., 70:3419-3425; Cohen etc., 1998, Proc.Natl.Acad.Sci.USA, 95:14272-14277; Fukuda etc., 1997, Nucleic Acids Symp.Ser., 37:237-238; Derive from SomaLogic).For example, from oligonucleotide library, selects fitly with the SelexTM method, can pass through covalently boundly, for example mix bromination deoxyuridine and UV-activated crosslinked (light is fit) and improve they and protein interactions.Fit advantage be to be easy to by automatic oligonucleotide synthesize prepare and DNA stable and firmly; Can adopt general fluorescence protein staining technique to detect in conjunction with situation.Perhaps, the protein capture agent of external selection can be polypeptide (for example, antigen) (referring to, for example Roberts and Szostak, 1997, Proc.Natl.Acad.Sci.USA, 94:12297-12302).
The another kind of array of capture molecules is the array of making by " molecule printing " technology, peptide wherein (for example proteinic C-stub area) produces complementary structure as template in polymerizable matrix sequence-specific space; These spaces energy specificitys are caught (sex change) protein with corresponding one-level aminoacid sequence and (for example, are derived from ProteinPrint then
TMWith Aspira Biosystems).
The exemplary proteins capture array comprises that being commonly referred to has living space containing of antibody array and goes up the array of addressable antigen binding molecules, and this array helps on a large scale the numerous protein of parallel analysis to determine protein group or protein subgroup.Antibody array shows to have required specificity character and acceptable background, and some arrays can be buied (for example, BD Biosciences, Clontech, BioRad and Sigma).The existing report of the whole bag of tricks of preparation antibody array (referring to, Lopez etc. for example, 2003, J.Chromatogr.B, 787:19-27; Cahill, 2000, Trends in Biotechnology, 7:47-51; U.S. Patent Application Publication 2002/0055186; U.S. Patent Application Publication 2003/0003599; PCT announces WO03/062444; PCT announces WO 03/077851; PCT announces WO 02/59601; PCT announces WO02/39120; PCT announces WO 01/79849; PCT announces WO 99/39210).The antigen binding molecules of these arrays can be discerned the expressed protein subgroup of certain cell or cell mass at least, and its exemplary example comprises growth factor receptors, hormone receptor, neurotransmitter receptor, the catecholamine acceptor, the amino acid derivative acceptor, cytokine receptor, the extracellular matrix acceptor, antibody, lectin, cytokine, silk presses down albumen, proteolytic enzyme, kinases, Phosphoric acid esterase, ras-sample GTP enzyme, lytic enzyme, steroid hormone receptor, transcription factor, thermal excited transcryption factor, DNA-is conjugated protein, zinc finger protein, leucine zipper protein, homeodomain protein, intracellular signal transduction conditioning agent and effector, the apoptosis correlation factor, the DNA composition-factor, the DNA reparative factor, the DNA recombinant factor, cell-surface antigens, hepatitis C virus (HCV) proteolytic enzyme and hiv protease.
In phage display or ribosomal display library (for example, derive from Cambridge AntibodyTechnology, BioInvent, Affitech and Biosite) in can be (for example after selecting by the routine immunization method, polyclonal serum and hybridoma), or as the antigen binding molecules for preparing antibody array usually at the recombinant fragment of expression in escherichia coli.Perhaps, " combinatorial antibody (combibody) " form that contains non-covalent associating VH and VL structural domain of preparation makes up formed matrix for producing double antibody bacterial clone (for example, deriving from Domantis).Exemplary antigen binding molecules as the protein capture agent comprises monoclonal antibody, polyclonal antibody, Fv, Fab, Fab ' and F (ab ')
2Immunoglobulin fragment, synthetic are stablized Fv fragment (as strand Fv fragment (scFv), by the stable Fv fragment (dsFv) of disulfide linkage), the little antibody of single variable region structural domain (dAbs) (minibody), combinatorial antibody and multivalent antibody (as double antibody and many-scFv), the single structure territory of camel (camelids) or engineered people's equivalence antibody.
Each different protein capture agent of locus is connected in usually generally to be flat or the support surface of fluctuating is arranged.Physical support thing commonly used comprises slide glass, silicon, micropore, nitrocellulose or pvdf membrane and magnetic micro-beads and other microballon.
Though extensively adopt the protein droplet is delivered on the plane, but also can adopt other relevant structure, the CD centrifugal device that comprises the progress exploitation of instrument Microfluidics (for example, available from Gyros) and specialized chip design, engineered microchannel (for example, The Living Chip in the plane for example
TM, available from Biotrove) and the small 3D post (for example, deriving from Zyomyx) of silicon face.
Also the basis of the particle in the suspension as array can be needed only the identity coding to them; These systems comprise with color-coded microballon (for example, available from Luminex, Bio-Rad and NanomicsBiosystems), semiconductor nanocrystal (for example, Qdots
TM, available from Quantum Dots), clavate encoded beads (UltraPlex
TM, available from Smartbeads) and many metals microbot (Nanobarcodes
TMParticle is available from Surromed).Also these pearls can be assembled into planar array (for example, available from LEAPS technology and BioArray Solutions) on semi-conductor chip.When using particle, each protein capture agent is connected in each particle usually and determines position or the array that separates so that the space to be provided.Distinguish (but parallel) then with isolation method, for example detect these particles in the hole of titer plate or in the different test tube.
In operation, with the optional fragmentation of protein example with form peptide fragment (referring to, for example U.S. Patent Application Publication 2002/0055186), be suitable for being delivered to the protein capture array under protein or the peptide bonded condition; Wash this array with in the sample not in conjunction with or the component of non-specific binding flush away from the array.Then, utilize the protein of each combination of elements on suitable detection system detection and the array or the existence or the content of peptide.To make comparisons with the protein determination amount of certain combination of elements on the array and second Protein content of this array second combination of elements.In certain embodiments, second Protein content is known or known constant in the sample.
For analyzing the difference of protein expression between two kinds of cells or the cell mass, the protein example of first kind of cell or cell mass is being suitable for being delivered to this array under the condition of protein bound.The protein example of second kind of cell or cell mass is delivered to second array identical with first array in a similar manner.Wash then two arrays with in the sample not in conjunction with or the component of non-specific binding flush away from the array.At last, will keep with the first array element bonded protein content and keep with the respective element bonded protein content of second array and make comparisons.For measuring the difference of protein expression mode between two kinds of cells or the cell mass, will with the protein content of first each combination of elements of array from the respective element bonded protein content of second array deduct.
In an exemplary example, can utilize fluorescent mark to detect and array bonded protein.Will with understand the used identical instrument application of dna microarray in the protein capture array.For showing difference, the available fluorescent mark protein detection capture array that derives from two kinds of different states cells (for example, antibody array), the cell lysate of two states with different fluorophores (for example, Cy-3 and Cy-5) mark and mixing, thus the reading that color can be changed as target (molecule) abundance.The sensitivity of fluorescence reading can be improved 10-100 doubly by junket acid amides amplification of signal (TSA) (for example, available from PerkinElmer Lifesciences).Slab guide technology (for example, available from Zeptosens) can be carried out overdelicate fluoroscopic examination, and its another advantage is to need not washing.Utilize mark thing (for example, available from Luminex) or utilize the suspended beads and the particle of semiconductor nanocrystal (for example, available from Quantum Dot) performance also can realize highly sensitive of phycoerythrin.Adopted the combination (for example, available from Affibody) that FRET (fluorescence resonance energy transfer) detects the unmarked part that can be used for array.Several other reading devices have been developed, the modifying device that comprises following method: surperficial plasmon resonance (for example, available from HTS Biosystems and Intrinsic Bioprobes), rolling circulation DNA cloning (for example, available from Molecular Staging), mass spectrum (for example, available from Sense Proteomic, Ciphergen, Intrinsic and Bioprobes), resonant light scattering (for example, available from Genicon Sciences) and atomic force microscope (for example, available from BioForce Laboratories).NextGen and PerkinElmer Life Sciences have developed jointly and have been used for sample and the automatic microfluid system of cultivating and washing of slide glass array.
In certain embodiments, the technology that is used to detect HVI marker expression product comprises with inside or external perimysium reference product comes quantitative or those products of semiquantitative determination, thus the level or the functionally active of corresponding expression product in these expression products and the reference sample in the comparative biology sample effectively.The technician adopts standard method can determine this standard substance.The level of each expression product or the absolute value of functionally active have been measured in the specific embodiment.
In specific embodiment, can utilize as awaiting the reply described in the PCT application number PCT/AU03/01517 of submitting in international publication number WO 02/090579 and on November 14th, 2003, comprise with the base station mutually the system at least one terminal station of coupling connection carry out this diagnostic method.The base station usually with one or more databases mutually coupling join, these databases contain the representative HVI marker expression product level of a large amount of individualities or the tentation data of functionally active, and when collecting these tentation datas these individual virtual conditions indication (for example, the existence of herpesvirus infection, do not exist, degree, stage or the risk of simplexvirus sequela takes place).In operation, the base station is data by station, network of communication receiving terminal and described data and the tentation data that is stored in the database made comparisons generally, and described data represented at least a expression product detects or level of standardization or functionally active in the tested object biological sample corresponding to taking from.The data of this object and tentation data made comparisons make the base station can determine the state of this object according to comparative result.Therefore, the individuality that has the similarity parameter value with tested object is attempted to identify in the base station, in case determined state according to this evaluation (result), the terminal station can be delivered to the diagnosis that shows in the base station.
5.3 test kit
Can be assembled in the test kit with required all necessary materials and the reagent of quantitative assay HVI marker gene expression product detecting.These test kits are also optional to be equipped with suitable agent, the positive and negative control, washing soln, blotting membrane, the titer plate dilution buffer liquid etc. of certification mark thing.For example, kit for detecting nucleic acid can be equipped with (i) HVI mark polynucleotide (can be used as positive control), (ii) can with the primer or the probe of certain HVI mark polynucleotide specific hybrid.Also the enzyme that is applicable to amplification of nucleic acid can be housed, comprise various polysaccharases (reversed transcriptive enzyme, Taq, Sequenase
TMDna ligases etc. depend on the nucleic acid amplification technologies that is adopted), deoxynucleotide and damping fluid are to provide amplification required reaction mixture.This test kit generally is equipped with the different vessels of all ingredients and enzyme and various primer or probe with suitable method.Perhaps, protein detection reagent kit can be equipped with: immune interactional antigen binding molecules, (ii) can take place with certain HVI mark polynucleotide in (i) HVI labeling polypeptide (can be used as positive control).The feature of this test kit also is to be equipped with various devices and the reagent that carries out test described herein; And/or the working instructions of the printing of expressing with this test kit quantitative assay HVI marker gene.
These test kits are optional to be equipped with suitable agent, the positive and negative control, washing soln, blotting membrane, the titer plate dilution buffer liquid etc. of certification mark thing.For example, kit for detecting nucleic acid can be equipped with (i) HVI mark polynucleotide (can be used as positive control), (ii) can with the primer or the probe of certain HVI mark polynucleotide specific hybrid.Also the enzyme that is applicable to amplification of nucleic acid can be housed, comprise various polysaccharases (reversed transcriptive enzyme, Taq, Sequenase
TMDna ligases etc. depend on the nucleic acid amplification technologies that is adopted), deoxynucleotide and damping fluid are to provide amplification required reaction mixture.This test kit generally is equipped with the different vessels of all ingredients and enzyme and various primer or probe with suitable method.Perhaps, protein detection reagent kit can be equipped with: immune interactional antigen binding molecules, (ii) can take place with certain HVI mark polynucleotide in (i) HVI labeling polypeptide (can be used as positive control).The feature of this test kit also is to be equipped with various devices and the reagent that carries out test described herein; And/or the working instructions of the printing of expressing with this test kit quantitative assay HVI mark polynucleotide.
6. treat or prevention method
Make object have herpesvirus infection sequela risk positive diagnosis takes place after, the present invention is also extensible to be used for the treatment of or the herpesvirus infection, particularly reactivity herpesvirus infection of object of prevention.Generally, described treatment comprises the medicine of diagnosing male object significant quantity or treatment improving symptom or to reverse the generation of herpesvirus infection, or reduces the possibility of object generation herpesvirus infection sequela.The medicine that is applicable to the treatment herpesvirus infection at present includes but not limited to: for example U.S. Patent Application Publication No. 20020147210 described acyclovirs, Famciclovir, valacyclovir, ganciclovir, Penciclovir, Zidovodine, cytidine arabinose glycosides, ribavirin, amantadine, iododeoxyuridine, poscarnet, trifluoridine, Metisazone (methizazone), vidarabine, levanisole 4-amino-α, alpha-alpha-dimethyl-2-ethoxyl methyl-1H-imidazoles (imidazo) [4,5-c] quinoline-1-ethanol; U.S. Patent Application Publication No. 20020103262 described hydroxylation tolane; U.S. Patent number 5,840,728 described cyclopropylization (cyclopropanated) carbocyclic rings 2 '-deoxynucleoside; U.S. Patent number 6,048,843 described thymus pyrimidines-analogue herpes medicine; (PFA originates from Astra to U.S. Patent Application Publication No. 20040053891 described phosphine formic acid, Sodertlje, the Foscavir of Sweden
TM), 5-(E)-bromo vinyl uracil analogues and relevant pyrimidine nucleoside; U.S. Patent Application Publication No. 20040024209 described 1-aryl-4-oxygen-1,4-dihydro-3-quinolinecarboxamideas; With Raymond etc., (1984, Biochem.Bioph.Res.Comm., 121 (3): 848-854) described spermidine catechol acid amides iron chelating agent.
Perhaps, can utilize as U.S. Patent Application Publication No. 20020099426 described device treatment targets, described device is delivered to infected skin of patient or mucous membrane with electricity irritation.Apply electricity irritation with a series of electricimpulses with different electrical features.
However, it should be understood that the present invention includes to can be used for treating or any medicine or the method for prophylaxis of herpes viral infections, be not limited to above-mentioned exemplary compound and preparation.
The simplexvirus cushion generally becomes medicine (or veterinary science) composition with pharmaceutically acceptable vehicle group, realizes the purpose that they are required with significant quantity.The dosage that gives the active compound of object should be enough to cause useful reaction in for some time in object, for example reduces or alleviate herpesvirus infection, particularly the symptom of reactivity herpesvirus infection.The consumption of the pharmaceutically active compound that gives depends on object to be treated, comprises its age, sex, body weight and whole body health situation.Thus, the accurate consumption of the active compound that is given depends on the doctor's that obtains employment judgement.Determining to treat or during the significant quantity of the active compound of prophylaxis of herpes viral infections, doctor or animal doctor should assess with herpesvirus infection and have related indication seriousness, comprise above-mentioned herpesvirus infection sequela related symptoms.In any situation, those skilled in the art are not difficult to determine the suitable dose of herpesvirus infection cushion and suitable treatment plan and need not too much experiment.
In specific embodiment, there is EHV or after its stage at the positive object of diagnosis, the extensible EHV of being used for the treatment of of the present invention infects, treatment EHV infection and recurrence or object of prevention are further infected by EHV.Generally, treatment comprises to be isolated in case further infect, and the palliative treatment damages avoiding over a long time with having a rest.The present invention can make more effective isolation and control decision when animal is infectivity, thereby the animal doctor, horse owner people and the trainer that know this information just can stop protecting from infection other horses, particularly other pregnant mare until the virus diffusion with these animals isolation.On the contrary, existing method can only could be diagnosed EHV later at infection stage warp, therefore can not be used for isolating decision.
For ease of understanding and implementing the present invention, particularly preferred embodiment has been described by following non-limiting example.
Embodiment
Identify the specific diagnosis gene of herpesvirus infection
Experimental disease test design
At different time, in two groups of 13 young coltfoals, induce equid herpesvirus 1 (EHV-1) to infect.6 young coltfoal tracing observations 20 days (group 1) infected at the 0th day (experimental inoculation).7 young coltfoal tracing observations 42 days (group 2) infected at the 21st day (experimental inoculation).All young coltfoals of EHV-1 nasopharynx aerosol infection with vitro culture.Group 1 blood sample was 8 time point collections of the 0th, 1,2,4,6,10,13 and 20 day.Group 2 blood sample was 16 time point collections of the 0th, 1,2,4,6,10,13,20,21,22,23,25,27,31,34 and 41 day.The 0th day sample is as the contrast of each dry goods.
The animal of discovery group then 2 has been subjected to natural and nonsynchronous infection of EHV.All animal serums sun of group 2 changes, and utilizes the time (before seropositive conversion 10-14 days) of seropositive conversion time estimation natural infection.Because group 2 infection time is asynchronous, the diagnostic characteristic that utilizes the gene expression datas of these animals to check utilization group 1 to obtain.
Carry out following check and observation at all time points:
● health check-up comprises body temperature, pulse and respiration measurement
● hematology and biological chemistry (check)
● nose swab is carried out PCR
● serum EHV-1 antibody (Ab) titre
● leukocyte specific gene array is carried out gene expression analysis.
Utilization contains the GeneChips of thousands of kinds of expressed genes of horse white corpuscle
TM(using method is specified in hereinafter " generation gene expression data ") analyzes the blood sample of taking from infected animals.Analyze these data (" identifying response gene and proof diagnosis potentiality " vide infra) disclose infect before and after the EHV and back first day of infection between many genetic expressions of animal variant.Can design in a kind of test test sample at least a, the rna level of preferred at least two kinds of HVI marker gene, the representative transcription sequence of described gene is as follows: 1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113.The specificity and the level of sensitivity of this method are 94%.Perhaps, any combination of one of at least two kinds of polynucleotide and listed other the 61 kinds of HVI mark polynucleotide of table 1 all has strong diagnosis capability.
Materials and methods
Blood sampling
Extract high-quality RNA or protein from horses (non-affective state) blood sampling.The suitable blood sampling test tube of collection, preservation, transhipment and isolation of RNA comprises PAXgene
TMTest tube (PreAnalytix Inc., Valencia, CA, the U.S.).Perhaps, blood collecting can be gone into contain to be designed in the test tube of solution (available from Roche, Ambion, Invitrogen and ABI) of preservation nucleic acid.Be to measure protein level, the 50ml blood collecting is gone into to contain in the test tube of 4ml 4% Trisodium Citrate in case condense.Separate white corpuscle and blood plasma, freezing is used for subsequent analysis and detection specificity protein.The PAXgene test tube is remained in room temperature, extract RNA then.With standard format record clinical sign.
The test kit of Qiagen Inc (Valencia, CA, the U.S.) be equipped with the 2.5mL blood of collection PAXgene blood rna test tube (PAXgene Blood RNA Tube) with reagent that separates total RNA and working instructions.Separation begins to precipitate nucleic acid the PAXgene blood rna test tube from centrifugation step.Washing precipitate, resuspended, cultivate with digesting protein with the optimization damping fluid that contains Proteinase K.Recentrifuge is removed residual cell debris, and supernatant liquor is transferred in the fresh micro-centrifuge tube.Add ethanol and regulate, lysate is put on PAXgene RNA spin (spin) post in conjunction with condition.During simple centrifugal, RNA optionally combines with pellosil, and pollutent flows out.Remove residual pollutent through three effective washing steps, use buffer B R5 eluted rna then.
Need before the test with absorbancy 260/280 ratio quantitatively and qualitative test RNA with Agilent biological analyser and spectrophotometer.
DNA extraction
(Valencia, CA, test kit USA) are equipped with the PAXgene blood DNA test tube (PAXgene Blood DNA Tube) and reagent that separates total DNA and working instructions of the 8.5ml blood of collection to Qiagen Inc.It is centrifugal then that separation begins to add extra cracked solution.Washing precipitate, resuspended is cultivated with digesting protein with the optimization damping fluid that contains Proteinase K.Ethanol sedimentation DNA, centrifugal again primary sedimentation nucleic acid.Residual contaminants is removed in washing, then DNA is resuspended among the buffer B G4.
Need before the test quantitatively and qualitative test DNA with spectrophotometer or agarose gel electrophoresis.
Serum antibody is measured
Basically as Foote etc., (Equine Vet J., 36 (4): 341-345,2004) are described, measure the serum antibody level of EHV-1 by ELISA with reorganization EHV-1 glycoprotein G.Total RNA extracts.
Produce gene expression data
Method is selected
Can adopt the specific RNA level in the various technology for detection tissue samples.Two kinds of routines well known in the art and wieldy technology are:
Adopt the Affymetrix technology to make GeneChip
TMAnalyze;
Real-time polymerase chain reaction (for example, the TaqMan of Applied Biosystems
TM).
GeneChips
TMCome quantitative assay RNA by detecting with the mark cRNA that is structured in the short oligonucleotide hybridization on the silicon substrate.This technology and method see www.affymetrix.com for details.
Real-time polymerase chain reaction (RT-PCR) utilizes the probe of two kinds of PCR primers, mark and heat-stable DNA polymerase to come quantitative assay RNA.The color that the PCR product produces is released into solution, detects this color.Internal contrast commonly used, for example original level of total RNA in the 18S rna probe working sample.Measure each gene and internal contrast respectively.This technology and method see www.appliedbiosytems.com or www.qiagen.com or www.biorad..com for details.AppliedBiosystems provides following service: promptly the client provides dna sequence dna information and negative expense, provides as feedback the said firm each gene is carried out the required whole reagent of RT-PCR.
GeneChip
TMThe advantage of analyzing is once can analyze thousands of genes.Yet this analysis is expensive and carry out a test and take more than 3 days.RT-PCR generally once can only analyze a kind of gene, but cheap and can finish in one day.
If concrete number gene to be analyzed is less than 20, then RT-PCR is optional gene expression analysis method.When needs are analyzed many genes simultaneously, GeneChip
TMOr other gene expression analysis technology (for example Illumina pearl array) is optional method.
Be used for producing and analyzing GeneChip
TMThe method and the PCR in real time of data are summarized in hereinafter.
Produce GeneChip
TMData
Preparation cDNA and cRNA
Prepare the method that the following method of cDNA and cRNA adopts Affymetrix (www.affymetrix.com) to provide and recommend from total RNA.
Step is:
● total RNA of 3 μ g is as the double-stranded cDNA of template for preparing altogether.
● preparation cRNA also marks with biotinylation uridylic (dUTP).
● the cRNA that purifying (clean) vitamin H is marked, utilize spectrophotometer and the quantitative assay of MOPS gel analysis.
● the cRNA fragment of marking is turned to about 300bp size.
● utilize Agilent " Lab-on-a-Chip " system (Agilent Technologies) to measure rna content.
Hybridization, washing and dyeing
Step is:
● preparation contains 0.05 μ g/ μ L marks and the cRNA of fragmentation, the hybridization mixture that doping (spike-in) positive is hybridized contrast and Affymetrix oligonucleotide B2, bioB, bioC, bioD and cre.
● the hybridization mixture of final volume (80 μ L) is added GeneChip
TMIn the medicine box.
● this medicine box is placed the hybrid heater of constant rotational speed, 16 hours.
● remove GeneChip
TMIn liquid and preserve.
● with GeneChip
TMPlace the fluid station.
● with each GeneChip
TMExperiment condition be recorded as the .EXP file.
● after the helpmate added suitable solution, all washings and dyeing course were carried out in Affymetrix fluid station.
● washing GeneChip
TM,, wash once more with low salts solution then with Streptavidin-phycoerythrin dyeing.
● after washing is finished, " excite " dyestuff on the probe array, pass through CCD camera image with Affymetrix scanner (Agilent manufacturing) with laser.
Scanning and generation data file
Scanner and MAS 5 softwares produce a GeneChip
TMImage file, be called .DAT file (referring to the figure at the back side).
Carry out statistical analysis behind the pre-treatment .DAT file.
The pre-treatment step of data (before any statistical analysis) comprising:
● the quality control of .DAT file (QC).
● produce the .CEL file.
● demarcate (scaling) and stdn.
.DAT the quality control of file
.DAT file is a kind of image.The manual human factor (artifact) (for example, high/low intensity spot, cut, high local background or total background) of checking these images.(by changing intensity mode that produces the border and the cross performance that the array title is not difficult to identify the B2 oligonucleotide arrays).Thereby MAS 5 softwares utilize B2 oligonucleotide border to come grid on the comparison chart picture can concentrate and identify the oligonucleotide of each grid.
Utilize other doping (spiked) hybridization contrast (bioB, bioC, bioD and cre) by reading the hybridization efficiency of assessing sample with " basis " gene test introducing sub-routine of their relative concentrations of increase reflection of signal value.(if the .DAT file has suitable quality, is translated into intensity data file (.CEL file) with Affymetrix MAS 5 softwares).
Produce the .CEL file
The .CEL file that produces from the .DAT file with MAS 5 softwares comprises the green strength that this probe groups is calculated.The background value that deduction calculates from each cell (mensuration) value obtains gene expression data.For removing negative intensity level, used noise compensation fraction based on the local noise value of the standard deviation of minimum 2% background value.
With GeneChip
TMAll .CEL file applications that produce are in specific quality metric canonical parameter.
Some modules are recommended by Affymetrix is conventional, can be used as GeneChip
TMA part and the Affymetrix internal contrast that provides is measured.Other module rule of thumb with many GeneChip
TMProcessing and decide.
Analyze GeneChip
TMData
Three kinds of exemplary method that can be used for data normalization are:
● Affymetrix MAS 5 algorithms.
● the reliable multicore sheet of Irizarry is analyzed (Robust Multi-chip Analysis) (RMA) algorithm (Irizarray etc., 2002, Biostatistics (in the printing)).
● reliable multicore sheet is analyzed reserving model (Robust Multi-chip Analysis Saved model) (RMAS)
Those skilled in the art should know and can adopt many other methods and can materially affect not arranged to the present invention.
Acquiescence " whole world calibration (Global Scaling) " option to .CEL file applications MAS 5 algorithms is realized Affymetrix MAS 5 stdn.This method has been deducted the reliable estimated value of probe value distribution center, again divided by the variable reliable estimated value of probe.This has produced a core assembly sheet that has common location and demarcation in the probe level.
By all probes reliable equalization method is obtained gene expression index to certain given gene.The result is forced to non-feminine gender.
In view of being demarcates in the probe level rather than at gene level, so even overall gene expression dose also may there are differences between chip after the stdn.After standard MAS 5 stdn, make each genic value go trend (de-trend) according to chip intensity intermediate value.That is, each genic value returns according to chip intensity intermediate value, calculates residual error.Get these residual errors and go the estimated value of trend as each genetic expression.
With Affymetrix MAS5 arithmetic calculation chip median intensity, but calibration factor fixedly is one.
RMA analyzes
Except setting up probe weight and target fractile (quantile) with the long-term library of chip.cel file and not to these specificity chips again outside the double counting, this method is identical with the RMA method.The probe level is carried out stdn once more.
Produce the PCR in real time data
(2000, J Mol Endocrinol can obtain to carry out the background information of PCR in real time in 25:169-193) in the summary of for example http://dorakmt.tripod.com/genetics/realtime.html and Bustin SA.
TaqMan
TMPrimer and probe design guide:
1.Primer Express
TM(ABI) software design melting temperature(Tm) (Tm) be probe more than 10 ℃ for 58-60 ℃ primer and Tm value.The Tm of two kinds of primers should be identical;
2. primer should a long 15-30 base;
3.G+C the preferred 30-80% of content.Can't avoid if G+C content is higher, then need to adopt high annealing and melting temperature(Tm), use cosolvent, for example glycerine, DMSO or 7-denitrogenation are mixed-dGTP;
4. should avoid the identical Nucleotide of bunchiness.This is even more important for G, and the G string more than 4 cannot be arranged;
5. the sum of G and C should be no more than 2 (this software of more recent version has the option that automatically performs this function) in last 5 Nucleotide of primer 3 ' end.Thereby this helps to reduce non-specific sensitization in 3 ' the terminal relative instability of introducing of primer.The primer condition is identical with SYBR Green test;
6. the length of maximum amplicon should not surpass 400 bp (preferred 50-150 base).Less amplicon can obtain more consistent result because PCR is more effective and reaction conditions more tolerated require the short function of length irrelevant with 5 ' nuclease);
7. this probe should not contain the identical Nucleotide (the particularly continuous G more than 4) of bunchiness, and G+C content should be 30-80%, and C should be more than G, and 5 ' end should not be G.The quantity of C is many more, and the Δ Rn of generation is high more.Should select probe earlier;
8. be the false positive due to the contaminative genomic dna in the cDNA preparation of having avoided gene-amplification, primer should be crossed over exon-exon joining region.So can amplifying genom DNA (the PDAR test kit that is used for people GAPDH amplification is equipped with this primer);
9. if design TaqMan
TMProbe is distinguished allelotrope, and the Nucleotide of mispairing (pleomorphism site) should be at probe centre rather than two ends;
10. can utilize near the primer that contains dA Nucleotide the 3 ' end to pass through AmpErase
TMDegrade effectively (see EZ RT-PCR test kit handbook the 9th page of any primer dimer of being produced of UNG; P/N 402877).If can not be chosen near the primer that contains dA Nucleotide two ends, then should consider to utilize primer with 3 ' terminal dU-Nucleotide.
(also can referring to the general principle of " PCR design of primers " (PCR Primer Design) of Invitrogen).
Universal method:
1. (not containing oligomerization-dT) is cDNA with total RNA reverse transcription with random hexamer.With oligomerization-dT, then should avoid the upstream that two kilobase above long mRNA transcript or amplicon are arranged if having to, 18S RNA can not be used as standard substance;
2. multiplex PCR only has in limited time at the contrast primer and can correctly carry out (primer that the ABI contrast agents does not limit them);
3. target cDNA amount ranges is 10ng-1g.If with DNA (being mainly used in the allelotrope Study on Identification), optimum amount is 100ng-1g;
4. the most handy DNA enzyme that does not contain the RNA enzyme is handled each RNA goods and is polluted to avoid genomic dna.Even best RNA extracting method also can produce some genomic dnas.Certainly the not primer of amplifying genom DNA is preferably arranged, but this does not accomplish sometimes;
5. for obtaining optimum, reagent (before preparation PCR mixture) and PCR mixture itself (before the application of sample) should fully vibrate (vortex) with mix.Otherwise the Rn value may have drift in the early stage round (0-5) of PCR.Earlier probe is added the damping fluid component make its at room temperature balance the reagent preparation mixture is also very important again.
TaqMan
TMPrimer and probe:
Order TaqMan from ABI medium-scale (midi-scale)
TMIt when probe is received the suspension of 100 μ M.If prepare 1/20 diluent, then obtain 5 μ M solution.This stock solution should be divided into equal portions, freezing, black out preservation.Its consumption is the 100nM final concentration that 1 μ L obtains recommending in 50 μ L reaction volumes.
Be freeze dried when primer is received, content is marked on (for example 150.000pmol equals 150nmol) on the test tube with pmol.If the primer of X nmol is resuspended in the X μ L water, the solution that obtains is 1mM.It is freezing preferably this storing solution to be divided into equal portions.When the 1mM storing solution was diluted 100 times, the working solution that obtains was 10 μ M.For making the 50-900nM of final primer concentration for recommending in the 50 μ L reaction volumes, 0.25-4.50 μ L (500nM final concentration with 2.5 μ L) is used in each reaction.
PDAR primer and probe provide to be stored in a mixture in the test tube.Their consumptions in 50 μ L reaction volumes are 2.5 μ L.
One step TaqMan is set
TMReaction:
One step PCR in real time is used as template with RNA (opposite with cDNA).Preferred this method if the RNA strength of solution is low, but only when carrying out the substance reaction.Shortcoming is that the RNA hangover makes enzyme AmpErase can not be used for single step reaction.In this method, reverse transcription and PCR in real time occur in the same test tube.The downstream PCR primer also is used as the primer (random hexamer or oligomerization-dT can not be used for the reverse transcription of an one step RT-PCR) of reversed transcriptive enzyme.Single step reaction needs higher dNTP concentration (more than or equal to 300mM and 200mM), because this reaction has merged a kind of of two kinds of reactions needing dNTP.It is as follows that one of Gold RT-PCR test kit goes on foot the used type reaction mixture of PCR:
Reagent | Volume |
H 2O+RNA:10X TaqMan damping fluid: MgCl 2(25mM): dATP (10mM): dCTP (10mM): dGTP (10mM): dUTP (20mM): primers F (10 μ M) *: primer R (10 μ M) *: the TaqMan probe *: AmpliTaq Gold: reversed transcriptive enzyme: RNA enzyme inhibitors: | 20.5 μ L[24 μ L is if use PDAR] 5.0 μ L, 11.0 μ L, 1.5 μ L[final concentrations are 300 μ M] 1.5 μ L[final concentrations are 300 μ M] 1.5 μ L[final concentrations are 300 μ M] 1.5 μ L[final concentrations are 600 μ M] 2.5 μ L[final concentrations are 500nM] 2.5 μ L[final concentrations are 500nM] 1.0 μ L[final concentrations are 100nM] 0.25 μ L[can increase to obtain higher efficient] 0.25 μ L, 1.00 μ L |
If use PDAR, then use primer+probe mixture of 2.5 μ L.
10pg-100ng RNA is preferably used in this reaction.Attention is reduced to 50ng with the template consumption from 100ng will make the CT value increase by 1.For making the CT value reduce by 3, initial template consumption should increase by 8 times.ABI declares that this system can detect the RNA of 2 piks, and the maximum consumption of RNA can be 1 microgram.For carrying out routine analysis, the RNA of available 10pg-100ng and 100pg-1 μ g genomic dna.
The loop parameter of one step PCR:
Reverse transcription (MuLV), 48 ℃ 30 minutes.
AmpliTaq activation, 95 ℃ 10 minutes.
PCR:95 ℃ of sex change 15 seconds, 1 minute (repeating 40 times) (on ABI 7700, the minimal maintenance time is 15 seconds) of 60 ℃ of annealing/extensions.
The EZ one-step of up-to-date introduction
TMThe RT-PCR test kit can utilize UNG, because utilized the thermostability reversed transcriptive enzyme to make that the cultivation time of reverse transcription is 60 ℃.This temperature also is the better selection of avoiding in 48 ℃ of formation primer dimers and non-specific binding.
Operation A BI 7700:
Should confirm following item before bringing into operation:
1. Yun Hang loop parameter is correct;
2. the selection of spectrally compensating correct (off is selected in the substance reaction, and multiple reaction selects on);
3.Analysis " Number of PCR Stages (the PCR stage numbers) " among the Options box (analysis option frame) (Analysis (analysis)/Options (option)) selects correct.If do not have data among the amplification figure, but in orthographic plan as seen, and the X-axle indication range 0-1 wheel of amplification (figure), then manually setting this (parameter) after operation once.
4. template contrasts (Template Control) mark (being accurate calculation Δ Rn) like this;
5. should correctly select dye component before the data analysis;
6. you must entitle (can not keep unnamed) before the operation beginning and preserve;
7. when end of run, preserve data earlier and begin again to analyze;
It is extremely careful that (use) ABI software needs.Press down do not attempt behind Run (operation) button out of service.You have problem and if desired during the switch machine, must grade just can restart operation at least 1 hour.
When analytical data, remember that the baseline setting of giving tacit consent to is 3-15.If any CT value<15 should change baseline (baseline stop to be worth should than the little 1-2 of CT value of minimum) thereupon." ABI baseline and threshold value are provided with guide " (ABI Tutorial on Setting Baselines andThresholds) seen in the useful discussion of this problem.(interesting is that TaqMan is seen in the best discussion of this problem
TMIn the handbook of human endogenous control board (Human Endogenous Control Plate)).
If the result is nonsensical, check that original spectrum sees that run duration CDC photographic camera (whether) may be saturated.Utilize optical cover (optical cap) rather than optics viscosity cover (optical adhesive cover) can prevent that the CDC photographic camera is saturated.When utilizing SYBR Green I, multiple (reaction) and higher concentration probes, (the CDC photographic camera is saturated) more may take place.
The result resolves:
When each reaction finished, the fluorescence intensity that is write down was used for following calculating:
Rn
+It is the Rn value of reacting when containing all components; Rn-is the Rn value (value that detects among baseline value or the NTC) of unreacted sample.Δ Rn is Rn
+And the difference between the Rn-.It is the number of signals magnitude index that PCR produces.
Quantitative assay template content has three kinds of exemplary method:
1. absolute standard method: in this method, with the known standard substance of content, for example in vitro translated RNA (cRNA).
2. relative standard's method: the target nucleic acid that comprises known quantity in the test design of each run;
3. comparative CT method: this method is without the known standard substance of content, but the relative quantity of target sequence and any reference value of selection are made comparisons, the amount that the result provides with respect to reference value (for example expression level of tranquillization lymphocyte or standard cell lines system).
The comparative CT method (Δ Δ CT) that the genetic expression relative quantification is measured:
This method need not production standard curve quantitative assay template relatively and improves quantity of sample handling when the expression level of observing with respect to active reference contrast (standard substance).Be successful implementation this method, should make the dynamicrange of target and reference substance similar.The sensitive method of controlling this (dynamicrange) is to observe Δ C
THow (same starting template consumption is made the difference between two CT values of twice PCR gained) change with the extent of dilution of template.If the efficient of two kinds of amplicons about equally, with the logarithm and the Δ C of input
TMapping obtains the line (slope<0.10) near level.It is identical that this is illustrated in the twice PCR efficient of carrying out in the starting template amount ranges.If this figure display efficiency is unequal, should adopt the typical curve method to come quantitative measurement of gene expression.Should measure the accurate minimum of (1) target result's accurate minimum and maximum concentration and (2) two kinds of gene content results and the dynamicrange of the two the most at high proportion.In conventional competitive RT-PCR, this dynamicrange is limited in target-competition thing ratio and is about 10: 1-1: 10 (1: 1 ratio can obtain best accuracy).PCR in real time can realize dynamicrange widely.
Amplification target and endogenous contrast in different test tubes adopt the typical curve method to need hardly to optimize and checking.Adopt the advantage of comparative CT method to be need not production standard curve (sample can utilize more hole).The negative impact of issuable any dilution error when this method has also been eliminated production standard curve sample.
As long as target has similar dynamicrange with standard substance, comparative CT method (Δ Δ CT method) is the most practical method.Estimate the expression level height (therefore, CT value lower) of standard substance than target.Begin quantitative Analysis from the difference (Δ CT) between the CT value that obtains target and standard substance:
Δ CT=CT (target)-CT (standard substance)
This value of quantitative each sample is treated in calculating, and (unless the expression level of target is higher than standard substance, this value should positive value.If feminine gender is also harmless).Relatively should select one of these samples as reference product (baseline) at every turn.Comparative Δ Δ CT calculates and comprises the difference that finds between each sample Δ CT and the baseline Δ CT.If baseline value is represented minimum expression level, estimate that then Δ Δ CT value is negative (because the Δ CT of baseline sample has maximum CT value but maximum because of it).Increase if express in some samples, and reduce in other, Δ Δ CT value will be the mixed number of negative and positive numerical value.The final step of quantitative assay is that these numerical value are converted into absolute value.This calculation formula is:
Comparative expression level=2-Δ Δ CT
With regard to expression, compare with baseline values, (sample) increases about 23=8 doubly, and reduces the 2-3=1/8 that is about the reference product level.By import simply the CT value with the Excel of Microsoft carry out these calculating (ABI at http://www.appliedbiosystems.com/support/tutorials/7700amp/ relevant for utilizing extension layer program (spread sheet program) to produce the online guide of amplification figure; TaqMan
TMHuman endogenous control board (Human Endogenous Control Plate) method also comprises the relevant detailed description of carrying out the PCR in real time data analysis with MSExcel).
Is other (definitely) quantivative approach summarized in ABI user's bulletin (http://docs.appliedbiosystems.com/search.taf? _ UserReference=A8658327189850A13A0C598E).Bulletin # 2 and #5 are to complete understanding PCR in real time and quantitatively the most useful.
Recommend method:
1. utilize normotopia displacement liquid pipe (positive-displacement pipette) to avoid moving the liquid out of true;
2. the sensitivity of PCR in real time can detect the target among the total RNA of 2pg.The copy number that reacts used total RNA preferably should promptly be enough to produce signal (preferably being lower than 100ng) by the 25-30 wheel.For realizing that this purpose should reduce or increase consumption;
3. the optimum concn of each reagent is as follows;
I. the concentration of magnesium chloride should be 4-7mM.For the primer/probe the best with Primer Express software (primer expression software) design is 5.5mM;
Ii. except that dUTP (if you are using), the concentration of each dNTP is answered balance.Replace the dTTP twice that to control the residual dUTP of the needs concentration of PCR product be other dNTP with dUTP.Though the optimum range of dNTP concentration is 500 μ M-1mM (one step RT-PCRs), the various dNTP of typical TaqMan reaction (just PCR) adopt 200 μ M (dUTP of 400 μ M);
Iii. in per 50 μ L reactants, add 0.25 μ L (1.25 U) AmpliTaq archaeal dna polymerase (5.0U/ μ L) usually.This is minimum requirements.If desired, this amount can be increased 0.25U and reach optimum;
Iv. best concentration and probe concentration is 50-200nM, and primer concentration is 100-900nM, tackle three kinds of differing tempss (TaqMan primer 58,60 and 62 ℃) and three kinds of concentration (50,300,900nM) various Combinatorial Optimizations each to primer.This means to be provided with different three groups (three kinds of temperature), every group is utilized the target template of fixed amount that nine kinds of reactions (50/50mM, 50/300mM, 50/900,300/50,300/300,300/900,900/50,900/300,900/900mM) are arranged.If desired, can (carry out) second takes turns to optimize and improves the result.Selection can provide the primer concentration of minimum CT and the highest Δ Rn to realize optimum performance.Similarly, concentration and probe concentration should be optimized for 25-225nM;
4. if with AmpliTaq Gold archaeal dna polymerase, need be for realizing this purpose in 92-95 ℃ of heating 9-12 minute before PCR.If with AmpliTaq Gold archaeal dna polymerase, need be in reaction on ice.Typical TaqMan reaction comprises that 50 ℃ of UNG (vide infra) cultivated 2 minutes; 95 ℃ of activated polymerization enzymes 10 minutes; Take turns and 60 ℃ 1 minute (annealing and extension) with 95 ℃ of (sex change) 40 in 15 seconds.If parent material is total RNA, before the TaqMan reaction, should carry out the reverse transcription circulation usually, this circulation (cDNA synthetic) is by 25 ℃ 10 minutes (primer cultivations), 48 ℃ 30 minutes (carrying out reverse transcription with conventional reversed transcriptive enzyme) and 95 ℃ 5 minutes (deactivation reversed transcriptive enzyme);
5. in this reaction, add AmpErase uridylic-N-glycosylase (UNG) and remove any uridylic of mixing in the amplicon in case residual PCR product increases again.This is a reason of using dUTP rather than dTTP in the PCR reaction why.UNG does not cut the single stranded DNA that contains terminal dU Nucleotide inoperative more than 55 ℃.Unless reverse transcription and PCR adopt the rTth archaeal dna polymerase, an one step RT-PCR should not use the main mixture (TaqMan EZ RT-PCR test kit) that contains UNG;
6. must comprise in every deblocking reaction flat board at least three parts of non-amplifications contrasts (NAC) and three parts of non-template contrasts (NTC) (for the target amplification of determining+/-reach 99.7% confidence level in the threshold value, must carry out sextuplicate NTC).The NAC model contains sample, does not contain enzyme.Need to get rid of in the sample or the existing of fluorescence pollutent (these pollutents can cause false positive) in the heat block (heating block) of thermal cycler.If may there be the fluorescence pollutent greater than NTC in the absolute fluorescence of NAC in the sample or in the heat block of thermal cycler behind the PCR.
7. if Δ Δ CT method is used for relative quantification measures, should verify the dynamicrange of primer/probe system and standard substance thereof.Realize this verification by carry out (in triplicate) reaction with 5 kinds of RNA concentration (for example, 0.80pg/ μ L, 400pg/ μ L, 2ng/ μ L and 50ng/ μ L).For identical total rna concentration scope, logarithm and the CT value mapping (typical curve) of carrying out the initial content that the real-time RT-PCR of target and standard substance obtains should be (approaching) straight lines;
8. passive reference substance is the dyestuff (ROX) (being present in the TaqMan universal PC R master mixture) that adds in the reaction.It does not participate in the reaction of 5 ' nuclease.It provides the inside reference substance of background emission fluorescence.Available its comes stdn acceptor-dye signal.To (concentration or volume difference) between the Kong Yukong or the non-PCR fluorescence associated fluctuation that change to take place in time carry out this stdn, be different from the stdn that cDNA consumption or PCR efficient are carried out.The emitted luminescence intensity of report dyestuff is carried out stdn divided by the emitted luminescence intensity of passive reference substance.The ratio that obtains is defined as Rn;
9. if carry out multiple (reaction), abundanter target will exhaust all reacted constituents before other target is increased.For avoiding this kind situation, should limit the concentration of its primer to abundanter target material;
10.TaqMan universal PC R master mixture should be stored in 2-8 ℃ (not being-20 ℃);
11., use VIC mark Pre-Developed TaqMan with the GAPDH probe that JOE report dye marker TaqMan Gold RT-PCR test kit provides
TMThe same probe that Assay Reagents (PDAR) test kit provides.The primer of these people GAPDH test of design can amplifying genom DNA;
12. residual for preventing enzyme, need an one step RT-PCR method of 48 ℃ of cultivations can not utilize AmpErase UNG, but available in the EZ RT-PCR test kit;
13. substance reaction can only be with an one step RT-PCR method, it (is not random hexamer or oligomerization-dT) that the reverse transcription method can only be selected downstream primer;
Control and move the liquid error 14. preferably carry out duplicate (reaction), but this unavoidably can increase cost;
15. if, before operation, should verify spectrally compensating option (in AdvancedOptions (Advanced Options)) carry out multiple (reaction);
16. utilizing the passive reference substance (ROX) in the reaction is diverse ways with fluorescence fluctuation (value) stdn with endogenous contrast (for example GAPDH, active reference substance) with the efficiency standardization of cDNA/PCR consumption;
7700 also can be used for terminal point PCR 17.ABI not only can be used for quantitative RT-PCR.The latter comprises existence/do not exist test or allelotrope telling test (for example SNP somatotype);
18.PCR former wheel the (0-5 wheel) in the Rn value drift to represent to react all components uneven at first, but do not influence net result, as long as reset the lower value of baseline scope;
19. if notice amplification figure unusual (CT value<15 detect the round of amplified signal in former the wheel), should reduce the higher limit of baseline scope, answer dilute sample to improve CT value (pollution also may improve the CT value);
20. Δ Rn value low the CT value of expectation (or be higher than) shows that PCR efficient copy number not good or target is low;
21.CT showing, the standard deviation of value>0.16 moves the liquid out of true;
22. the color green clauses and subclauses of SYBR (SYBR Greenentry) that are provided with in (Pure Dye Setup) of pure color are abbreviated as " SYBR " with capitalization.Any other abbreviation or lowercase can have problems;
23.ABI having with 8.1 editions Macintosh operating system, 7700 SDS software conflicts.Should be on this computer analytical data.
24.ABI 7700 do not answer Long-time Shut-down.If it is closed, before operation, answer preheating at least 1 hour.Recommendation is being driven instrument at any time, and this is useful to laser.If just start shooting before the operation, the frame of makeing mistakes of display operation system version conflict may appear.If this situation takes place, select " AutoDownload (downloading automatically) " option.
25.ABI a kind of in 7700 real-time PCR systems that just can buy, other comprises the system of BioRad, Cepheid, Corbett Research, Roche and Stratagene.
Gene type assay
Many methods can be used for the genotype of analyzing DNA.The summary of allelotrope discrimination method is seen (Biotechniques, 30 (2): 318-322, (2001)) such as Kristensen.This paper has only described a kind of method, allele-specific PCR method.
Design of primers
Can utilize the computer program that arbitrarily obtains, for example Primer3 (http://frodo.wi.mit.edu/primer3/primer3_code.html) designs concrete allelic specificity upstream and downstream PCR primer.Perhaps, can utilize such as ClustalW (http://www.ebi.ac.uk/clustalw/) program with at there being dna sequence dna difference but keep enough specificitys and the Auele Specific Primer of the zone design of the correct amplicon of guaranteeing to increase is compared each allelic dna sequence dna.Pcr amplification of preferred design has restriction enzyme site in an allelotrope, and does not have in other allelotrope.Long usually 18-25 the base pair of primer has similar melting temperature(Tm).
Pcr amplification
The description that PCR reaction is formed be seen everywhere (" clinical application of PCR " (ClinicalApplications of PCR), Dennis Lo (volume), Blackwell Publishing, 1998).In brief, this reaction contains primer, DNA, damping fluid and thermostability polysaccharase.Be reflected at thermal cycler, for example on the PTC-96V type MJ Research thermal cycler, the temperature step of extending by sex change, hybridization and DNA circulate (maximum 50 times).
DNA analysis
Can in all sorts of ways, comprise that carrying out molecular size with mass spectrum, capillary gel electrophoresis and agarose gel electrophoresis differentiates and analyze the PCR product.If pcr amplification of design contains different restriction enzyme sites, the DNA in available DNA-column or the deposition and purification PCR reaction, water is resuspended, carries out restricted cutting with suitable Restriction Enzyme then.DNA with restricted cutting makes agarose gel electrophoresis then, utilizes electric current that DNA is carried out size separation.Whether the various allelotrope bases of certain gene contain restriction site has different sizes.
The priority ordering of identification diagnosis marker gene and these genes
Just organize with regard to 1, according to the empirical Bayes method of Lonnstedt and Speed (Lonnstedt and Speed, 2002, Statistica Sinica, 12:31-46) analyzing animal is in the difference that infects genetic expression before and after the EHV.Time point is analyzed before relatively infecting each time point of back and infecting.Utilize the multiple term of each animal effect, clinical state (infecting before and after the EHV) term fits to general linear model according to each gene.Back time property difference (posterior odds) according to all genes differential expression between each clinical state group sorts to them.Only write down those genes that statistics significantly changes (rule of thumb property Bayes dwindle standard deviation (shrunken standard deviation) add up with t assess).Utilize the Holm of p value to proofread and correct (Holm, S., 1979, Scandinavian Journal of Statistics 6:65-70) keeps the strong control of 1 type specific inaccuracy.Before and after metainfective every day EHV being infected, show that the statistics gene that there were significant differences is tabulating.
In addition, clinical affected animal (clinical sign that confirmation has EHV to infect) is made comparisons with healthy animal; To regard animal with " reactivity virus infection " and healthy animal (animal of " reactivity virus infection " be usually included in known EHV metainfective about 7 day period) as makes comparisons and analyzes.
Table 5 has shown at these analyzes the gene of back according to p value ordering significant difference.This analyzes once more and compares according to proofreaied and correct the p value through the Holm method two groups." effect size (effectsize) " in these forms (M) represents logarithmic value, shows the multiple that genetic expression compared with the control changes.The negative value representative is reduced and is raised on the occasion of representative.The t statistics is a meaningful value as herein described with the p value.B statistics is a time property logarithm difference (Bayesian posterior log odds of differentialexpression) behind the differentially expressed Bayesian.
Table 6 has shown at these analyzes the gene of back according to T value ordering significant difference.Mark shows which kind of gene raises and which kind of gene downward modulation (negative or positive " difference " and t value), and " difference " shows the amplitude of reaction.This analyzes once more and compares according to proofread and correct the p value through the Holm method two groups.
Proof has the diagnosis potentiality to measuring herpesvirus infection
Main ingredient scoring (Jolliffe according to genetic expression calculating, I.T., " main ingredient analysis " (Principal components analysis), Springer-Verlag, 1986) adopt discrimination analysis (Venables and Ripley, 2002, " modern Application of statistics in S " (Modern AppliedStatistics in S) Springer) assessed the diagnosis potentiality of whole group of gene of each time point after the infection.Entire method is through cross validation.Each removal (drop) animal carries out cross validation (rather than once observing).Sensitivity and specificity are priority (uniform prior) as calculated.This may be interpreted as a kind of adjusting of dwindling of form, and these estimated values are narrowed down in the scope (reduced space) that reduces.
Utilize the other function score of debating of cross validation (discriminant function scores) to estimate the receptor operating curve.Crucial threshold value moved along the axle of discriminant function scoring calculate the receptor operating curve.Calculate two kinds of original inspectability ROC, and the method smoothing ROC of employing Lloyd (Lloyd C.J., 1998, Journal of the American Statistical Association, 93:1356-1364).The curve that calculates is used for the comparison of clinical feminine gender and clinical positive animal.Different curves were calculated in the genetic expression of every day after utilization was infected.Adopt trapezoidal rule, calculate area under the receptor operating curve, be applied to the ROC of empirical ROC and smoothing.
Available ROC sums up the diagnosis potentiality of certain test.Perfectly the ROC of diagnostic test is a sea line that is equal to 1 point by sensitivity and specificity.Area is 1 under the ROC of this perfect diagnosis (test).The ROC of useless diagnostic test is 45 degree lines by initial point.The area of this no information diagnosis (test) is 0.5.
Table 8 has shown area under sensitivity, selectivity and the ROC that organizes the sample of obtaining in the 2nd, 4,13 and 20 day 1 each young coltfoal infection back.As can be known from these results, evidence suggests that to infect the 2nd and 4 day the diagnosis potentiality in back strong, and evidence suggests that seldom the diagnosis potentiality were arranged at the 13rd or the 20th day.
In addition, after having symptom and asymptomatic time point corresponding infection the 0th, 13 and 20 day period of back and infect, group 1 young coltfoal makes comparisons between the 2nd, 4 and 6 day.Fig. 1 shows the ROC that is used for comparison.ROC sensitivity and specificity relatively is respectively 1 and 0.867.Experience is respectively 0.892 and 0.952 with the area of smoothing under the ROC.These (results) are for providing strong evidence corresponding to the otherness genetic expression that has symptom EHV to infect.
In addition, utilize the selected gene of clinical infection animal to obtain ROC curve (Fig. 2).Utilize this check sensitivity and the specificity of genetic expression mark all outstanding.
In addition, utilization has the selected gene of reactivity virus infection animal to obtain ROC curve (Fig. 3).Utilize the sensitivity and the specificity of this check of genetic expression mark all outstanding.
In addition, utilize all genes of clinical infection animal to obtain ROC curve (Fig. 4).Utilize the sensitivity and the specificity of this check of genetic expression mark all good.
In addition, utilization has all genes of reactivity virus infection animal to obtain ROC curve (Fig. 5).Utilize the sensitivity and the specificity of check of genetic expression mark all good.
According to the estimated value of dwindling of whole group gene on the chip, the receptor operating curve of Ji Suaning is guarded in this way, that is, they tend to underestimate the diagnosis potentiality.In the operability diagnosis, should be able to obtain better diagnosis performance according to selected gene subgroup.
Table 7 provided organize 1 young coltfoal the 2nd, 4,6,13 with the hematology and the biological chemistry result that compared with the 0th day in 20 days, the significance,statistical of clinical parameter (heart rate (HR) and respiration rate (RR)) and these parameters.All detected values except PCV (hematocrit cell volume) all have significance,statistical, and these detected value most probables have reflected the associated change of herpesvirus infection.Yet these variations are nonspecific, also may be relevant with many other illnesss.These parameters of organizing 2 young coltfoals do not provide analog result, and they do not have significant difference, though these young coltfoals are subjected to subclinical infection through managing in fact.
Fig. 6 is gene expression index (Log volume unit), serum EHV Ab level (450nm absorbancy), date, the fate (D=days) of group 1 young coltfoal, the figure of clinical sign.Organize 1 young coltfoal in inoculation on March 18th, 2003 (experimental infection).The variation of gene expression index is corresponding with existing of clinical sign, than serum anti--the Zao 10-14 of appearance days of EHV-1 antibody.This may be of practical significance to treatment and control than the Zao 10-14 of antibody test days diagnosis herpesvirus infections during clinical sign occurring especially.For example, present medicine is exactly the most effective during this period, and for many herpesvirus infections, the also during this period tool infectivity of animal.
Fig. 7 comprises that utilization organizes the figure of preceding 4 kinds of main ingredient genetic expressions of 1 young all genes of coltfoal.Each component is mapped according to postvaccinal fate.From these figure obviously as can be known the main variation of genetic expression occur in during behind the inoculation simplexvirus 10 days.During this also corresponding with existing of clinical sign (referring to Fig. 2).
Because group 2 young coltfoals experience uncontrolled natural infection in different time points, be the EHV Infection Status that prediction group 2 young coltfoals are trained to the genetic expression classification (classifier) of each sample in the basis with the data of organizing 1 young coltfoal.This prediction comprises the maximum back time property probability (posterior probability) of prediction and the Discrimination Functions scoring (it is the linear combination of each gene of sample) of prediction.Table 9 has shown the type (EHV infects positive and negative) of prediction and has differentiated scoring.
Utilize serum EHV-1Ab result, determine that 4 young coltfoals (360,364,368 and 369: see Table 9) all may be subjected to natural infection (i.e. preceding 4 days of experiment beginning (the 0th day)) at-4 days.In these animals, clinical sign appearred respectively in young coltfoal 364 and 368 at the 0th and the 2nd day and the 2nd day.Divide time-like when we utilize this genetic method, it should be noted that some day or all 4 days these the young coltfoals between the 0th and the 4th day are determined infected by EHV-1 separately.This shows the diagnosis (index) that this EHV-1 gene expression characteristics can be EHV-1, no matter and whether animal shows clinical sign.Utilize serum EHV-1Ab result, determine that young coltfoal 362 was subjected to natural infection at-1 day, this means should be able to be between the-1 day and the 6th day any moment detect feature.Utilize this gene sorting method, all observed positive findings (meaning " infected ") at the 0th, 2 and 6 day in this young coltfoal.But clinical sign does not appear in this animal.According to serum EHV-1Ab result, young coltfoal 375 is diagnosed infected about the 6th day.Observe positive classification results at the 2nd, 4 and 6 day, but also clinical sign do not occur.Utilize serum EHV-1Ab result, can not determine still that until the 14th day young coltfoal 366 is subjected to natural infection, this means that seropositive conversion will occur in the 27th or 28 day.Should note testing 2 animal at the 21st day all under fire (challenged).Therefore, this young coltfoal was a seronegativity at the 21st day.Except having the slight clinical sign at the 23rd day, young coltfoal 366 does not produce any clinical sign.These results show serum Ab level (humoral immunity) experiment attack in (the 21st day) almost be enough to watch for animals and can not produce the obvious sign of clinical disease.Therefore, when we do not observe any positive findings when using this genetic expression sorting technique experimental postvaccinal period.
Therefore, even be with or without in the presence of the clinical sign (or hematology and biochemical any remarkable change) and all can identifying the early stage natural infection of EHV-1 when group 2 young coltfoals demonstrate the preliminary classification indication that obtains of group 1 young coltfoal.
What have estimated performance respectively organizes gene
Though identify about 63 kinds of genes with diagnosis potentiality, common acceptable diagnosis performance only needs the seldom gene of number.
Table 10 shows cross validation classification results, sensitivity and the specificity that obtains according to the linear discriminant analysis that is selected from two kinds of genes in the group with diagnosis potentiality gene.The all of proposition is to produce the gene that maximum prefetch is surveyed the result to gene, and many other gene pairss produce acceptable classification results.Those skilled in the art are not difficult to identify other gene pairs.The right technology of identified gene includes, but is not limited to the forward mutability and selects (Venables W.N. and Ripley B.D., " modern Application of statistics in S " (ModernApplied Statistics in S), the 4th edition, 2002., Springer), best subgroup is selected, oppositely (backward) eliminates (Venables W.N. and Ripley B.D., 2002, the same), progressively (stepwise) selects (Venables W.N. and Ripley B.D., 2002, the same) and variable at random elimination (FigueradoM.A., " adaptability of supervised learning is sparse " (Adaptive Sparseness for SupervisedLearning)).
Table 11 shows that basis is selected from three kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of three kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to three kinds of HVI marker gene selects.
Table 12 shows that basis is selected from four kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of four kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to three kinds of HVI marker gene selects.
Table 13 shows that basis is selected from five kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of five kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to five kinds of HVI marker gene selects.
Table 14 shows that basis is selected from six kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of six kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to six kinds of HVI marker gene selects.
Table 15 shows that basis is selected from seven kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of seven kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to seven kinds of HVI marker gene selects.
Table 16 shows that basis is selected from eight kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of eight kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to eight kinds of HVI marker gene selects.
Table 17 shows that basis is selected from nine kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of nine kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to eight kinds of HVI marker gene selects.
Table 18 shows that basis is selected from ten kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of ten kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to ten kinds of HVI marker gene selects.
Table 19 shows that basis is selected from 20 kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of 20 kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to 20 kinds of HVI marker gene selects.
Table 20 shows that basis is selected from 30 kinds of genes of diagnostic bank and carries out the cross validation classification results that linear discriminant analysis obtains.20 groups of 20 kinds of genes only are provided.Those skilled in the art are not difficult to understand that can make other suitable diagnosis according to 20 kinds of HVI marker gene selects.
Other gene may be introduced noise (decreasing the sensitivity and the specificity of cross validation) by overfitting (over-fitting).
Specific confirmation
By only training classification and to surpassing 850 GeneChip according to testing data
TMThis classification of big gene expression data transporting something containerized row, checked the specificity of described simplexvirus mark.Gene expression results in this database derives from the horse sample of suffering from various diseases and illness, and described disease and illness comprise: the acute and chronic EPM of clinical inductive, herpesvirus infection, degenerative osteoarthritis, stress, the animal and the clinical normal animal of rhodococcus infection, endotoxemia (endotoxaemia), laminitis, stomach ulcer syndrome, training.
Two kinds of classification results have been obtained.The two is according to the reactivity virus infection and comparisons clinical normal horses.The former has utilized GeneChip
TMOn all genes.The latter has only utilized those listed genes of table 1.The latter's mark can be identified all known EHV-infected animals.Also identify other horses of 25 unknown EHV states, comprise as another clinical trial part be in stress under animal, have the rhodococcus horse and infect sick 5 the young coltfoals that decrease of relevant known lung.
Utilize the genetic marker of this method and 63 kinds of genes, the specificity that detects herpesvirus infection from a group sample more than 850 is 95%, and sensitivity is 100%.
Gene ontology
For gene being divided into groups, adopt BLAST algorithm (Altschul, S.F. according to function, metabolic process or cellular component, Gish, W., Miller, W., Myers, E.W. and Lipman, D.J., (1990), " the basic gopher of local sequence alignment " (Basic local alignment search tool), J.Mol.Biol., 215:403-410) gene order and GeneBank database are made comparisons, carry out the retrieval of dna homolog and gene ontology.According to these standards, table 21 has been listed the grouping of these genes.Some situation does not have available information (NA).Also referring to the table 1 of the sequence information that contains each gene.
The content of every piece of patent, patent application and publication that this paper quotes is included this paper in as a reference in full.
Any reference that this paper quoted should not be construed as admits that this reference is that the application can profit " prior art ".
The purpose of entire description is the particular combinations of describing the preferred embodiments of the invention rather than the present invention being limited to a certain embodiment or feature.Those skilled in the art should know in view of this paper content and can make various improvement and change and do not depart from the scope of the present invention the specific embodiments of demonstration.All this improvement will be included in the scope of additional claims with change.
Table 1
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
B1961481.V1.3_AT | No homology | 1 ACTGACAGTTGAAACGATCAATGGAATGATCAGCACAAACAGAAAATATTACTGTTACTG 61 TAATATTATGTGATATCCTCTATATCTAAGATATATATTATATATATGATGTAAGATAAG 121 ATATATATTAAATATATAATGTAATATATATTATATAACATGTACTCTCTCTATATATAC 181 ATATGTATCACGTAATGTATATATATAATGTAATATAATATTGCTGTTACTGGAAAGATG 241 ACCGCAAGAAGTTGATTTTTTATCTACCAGAAGTTTTCTTCGCTGTGTTTTAAGTCGGCG 301 ATCTGCTTTGATCGTTTTGTTCGCTTCTGCTGTTTGAGAAGAACGATTGAAAGGAGCCA | SEQ?ID?NO:a) |
WBC026C03_V1.3_AT | Homo sapiens (Homo sapiens) Interferon, rabbit, γ-inducible protein matter 16, mRNA. | 1 GCAGAATAGGAGCAAGCCAGCACTAGTCAGCTAACTAAGTGACTCAACCAAGGCCTTTTT 61 TCCTTGTTATCTTTGCAGATACTTCATTTTCTTAGCGTTTCTGGAGATTACAACATCCTG 121 CGGTTCCGTTTCTGGGAACTTTACTGATTTATCTCCCCCCTCACACAAATAAGCATTGAT 181 TCCTGCATTTCTGAAGATCTCAAGATCTGGACTACTGTTGAAAAAATTTCCAGTGAGGCT 241 CACTTATGTCTGTAAAGATGGGAAAAAAATACAAGAACATTGTTCTACTAAAAGGATTAG 301 AGGTCATCAATGATTATCATTTTAGAATGGTTAAGTCCTTACTGAGCAACGATTTAAAAC 361 TTAATTTAAAAATGAGAGAAGAGTATGACAAAATTCAGATTGCTGACTTGATGGAAGAAA 421 AGTTCCGAGGTGATGCTGGTTTGGGCAAACTAATAAAAATTTTCGAAGATATACCAACGC 481 TTGAAGACCTGGCTGAAACTCTTAAAAAAGAAAAGTTAAAAGTAAAAGGACCAGCCCTAT 541 CAAGAAAGAGGAAGAAGGAAGTGGATGCTACTTCACCTGCACCCTCCACAAGCAGCACTG 601 TCAAAACTGAAGGAGCAGAGGCAACTCCTGGAGCTCAGAAAAGAAAAAAATCAACCAAAG 661 AAAAGGCTGGACCCAAAGGGAGTAAGGTGTCCGAGGAACAGACTCAGCCTCCCTCTCCTG 721 CAGGAGCCGGCATGTCCACAGCCATGGGCCGTTCCCCATCTCCCAAGACCTCATTGTCAG 781 CTCCACCCAACACTTCTTCAACTGAGAACCCGAAAACAGTGGCCAAATGTCAGGTAACTC 841 CCAGAAGAAATGTTCTCCAAAAACGCCCAGTGATAGTGAAGGTACTGAGTACAACAAAGC 901 CATTTGAATATGAGACCCCAGAAATGGAGAAAAAAATAATGTTTCATGCTACAGTGGCTA 961 CACAGACACAGTTCTTCCATGTGAAGGTTTTAAACACCAGCTTGAAGGAGAAATTCAATG 1021?GAAAGAAAATCATCATCATATCAGATTATTTGGAATATGATAGTCTCCTAGAGGTCAATG 1081?AAGAATCTACTGTATCTGAAGCTGGTCCTAACCAAACGTTTGAGGTTCCAAATAAAATCA 1141?TCAACAGAGCAAAGGAAACTCTGAAGATTGATATTCTTCACAAACAAGCTTCAGGAAATA 1201?TTGTATATGGGGTATTTATGCTACATAAGAAA?CAGTAAATCAGAAGACCACAATCTACG 1261?AAATTCAGGATGATAGAGGAAAAATGGATGTAGTGGGGACAGGACAATGTCACAATATCC 1321?CCTGTGAAGAAGGAGATAAGCTCCAACTTTTCTGCTTTCGACTTAGAAAAAAGAACCAGA 1381?TGTCAAAACTGATTTCAGAAATGCATAGTTTTATCCAGATAAAGAAAAAAACAAACCCGA 1441?GAAACAATGACCCCAAGAGCATGAAGCTACCCCAGGAACAGAGTCAGCTTCCAAATCCTT 1501?CAGAGGCCAGCACAACCTTCCCTGAGAGCCATCTTCGGACTCCTCAGATGCCACCAACAA 1561?CTCCATCCAGCAGTTTCTTCACCAAGAAAAGTGAAGACACAATCTCCAAAATGAATGACT 1621?TCATGAGGATGCAGATACTGAAGGAAGGGAGTCATTTTCCAGGACCGTTCATGACCAGCA 1681?TAGGCCCAGCTGAGAGCCATCCCCACACTCCTCAGGTGCCACCACCAACCCCATCCAGCA 1741?GTTCCTTAATCAAGAAGAAACCAAGATTGAAGGCTGTACCTAAAGAAGCTTCCAAAGAAG 1801?AGGGTCTACAGACGGACCCCAAAGAAGTGATGGTACTGAAGGCAACAGAACCATTTGCAT 1861?ATGAGCCCAAAGAGCAGAAGAAAATGTTCCATGCCACAGTGGCTACTGAGAGCCAGTTCT 1921?TCCGAGTGAAGGTTTTTGATGTCAGTCTGAAGCAGAAGTTCATCCCAAAGAAAATCATTG 1981?CCATATCAGATTATATTGGCCGCAATGGGTTCCTGGAGGTGTACAGTGCCTCATCTGTGT | SEQ?ID?NO:b) |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2041?CTGATGTTAATGCTGACCGAAAGATGGAGGTCTCAAAAAGACTGATTGCAAATGCAAATG 2101?CAACTCCTAAAATCAATCATCTGTGCTCACAAGCTCCAGGAACATTTGTGAATGGGGTGT 2161?ATGAGGTGCATAAGAAAATAGTGTGGAATGATTTCATATATTATGAAATACAAGATGATA 2221?CAGGGAAGATGGAAGTCATGGTGTATGGACGACTGACCAAAATCAACTGCGAGGAAAGAG 2281?ATAAACTTCAACTCATCTGCTTTGAATTGGCACCGAAAAGTGGGAATACCGGGGAGTTGA 2341?GATCTGTAATTCACAGTTTCATCAAGGTCATCAAGGCCAGGTAAAGCAAGAAAGACATAC 2401?TCAATCCTGATTCAAGTATGGAAACTTCACCAGACTTTTTCTTCTAAAATCTGGATGTCA 2461?TTGACGATAATGTTTATGGAGATAAGGTCTAAGTGCCTAAAAAAATGTACATATACCTGG 2521?TTGAAATACAACACTATACATACACACCACCATATATACTAGCTGTTAATCCTATGGAAT 2581?GGGGTATTGGGAGTGCTTTTTTAATTTTTCATAGTTTTTTTTTAATAAAATGGCATATTT 2641?TGCATCTACAACTTCTATAATTTGAAAAAATAAATAAACATTATCTTTTTTGTGAAAAAA 2701?AAAAAAAAA 1 M G K K Y K N I V L L K G L E V I N D Y 1 ATGGGAAAAAAATACAAGAACATTGTTCTACTAAAAGGATTAGAGGTCATCAATGATTAT 21 H F R M V K S L L S N D L K L N L K M R 61 CATTTTAGAATGGTTAAGTCCTTACTGAGCAACGATTTAAAACTTAATTTAAAAATGAGA 41 E E Y D K I Q I A D L M E E K F R G D A 121 GAAGAGTATGACAAAATTCAGATTGCTGACTTGATGGAAGAAAAGTTCCGAGGTGATGCT 61 G L G K L I K I F E D I P T L E D L A E 181 GGTTTGGGCAAACTAATAAAAATTTTCGAAGATATACCAACGCTTGAAGACCTGGCTGAA 81 T L K K E K L K V K G P A L S R K R K K 241 ACTCTTAAAAAAGAAAAGTTAAAAGTAAAAGGACCAGCCCTATCAAGAAAGAGGAAGAAG 101 E V D A T S P A P S T S S T V K T E G A 301 GAAGTGGATGCTACTTCACCTGCACCCTCCACAAGCAGCACTGTCAAAACTGAAGGAGCA 121 E A T P G A Q K R K K S T K E K A G P K 361 GAGGCAACTCCTGGAGCTCAGAAAAGAAAAAAATCAACCAAAGAAAAGGCTGGACCCAAA 141 G S K V S E E Q T Q P P S P A G A G M S 421 GGGAGTAAGGTGTCCGAGGAACAGACTCAGCCTCCCTCTCCTGCAGGAGCCGGCATGTCC 161 T A M G R S P S P K T S L S A P P N T S 481 ACAGCCATGGGCCGTTCCCCATCTCCCAAGACCTCATTGTCAGCTCCACCCAACACTTCT 181 S T E N P K T V A K C Q V T P R R N V L 541 TCAACTGAGAACCCGAAAACAGTGGCCAAATGTCAGGTAACTCCCAGAAGAAATGTTCTC 201 Q K R P V I V K V L S T T K P F E Y E T 601 CAAAAACGCCCAGTGATAGTGAAGGTACTGAGTACAACAAAGCCATTTGAATATGAGACC 221 P E M E K K I M F H A T V A T Q T Q F F 661 CCAGAAATGGAGAAAAAAATAATGTTTCATGCTACAGTGGCTACACAGACACAGTTCTTC | SEQ?ID?NO:c) |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
241 H V K V L N T S L K E K F N G K K I I I 721 CATGTGAAGGTTTTAAACACCAGCTTGAAGGAGAAATTCAATGGAAAGAAAATCATCATC 261 I S D Y L E Y D S L L E V N E E S T V S 781 ATATCAGATTATTTGGAATATGATAGTCTCCTAGAGGTCAATGAAGAATCTACTGTATCT 281 E A G P N Q T F E V P N K I I N R A K E 841 GAAGCTGGTCCTAACCAAACGTTTGAGGTTCCAAATAAAATCATCAACAGAGCAAAGGAA 301 T L K I D I L H K Q A S G N I V Y G V F 901 ACTCTGAAGATTGATATTCTTCACAAACAAGCTTCAGGAAATATTGTATATGGGGTATTT 321 M L H K K T V N Q K T T I Y E I Q D D R 961 ATGCTACATAAGAAAACAGTAAATCAGAAGACCACAATCTACGAAATTCAGGATGATAGA 341 G K M D V V G T G Q C H N I P C E E G D 1021?GGAAAAATGGATGTAGTGGGGACAGGACAATGTCACAATATCCCCTGTGAAGAAGGAGAT 361 K L Q L F C F R L R K K N Q M S K L I S 1081?AAGCTCCAACTTTTCTGCTTTCGACTTAGAAAAAAGAACCAGATGTCAAAACTGATTTCA 381 E M H S F I Q I K K K T N P R N N D P K 1141?GAAATGCATAGTTTTATCCAGATAAAGAAAAAAACAAACCCGAGAAACAATGACCCCAAG 401 S M K L P Q E Q S Q L P N P S E A S T T 1201?AGCATGAAGCTACCCCAGGAACAGAGTCAGCTTCCAAATCCTTCAGAGGCCAGCACAACC 421 F P E S H L R T P Q M P P T T P S S S F 1261?TTCCCTGAGAGCCATCTTCGGACTCCTCAGATGCCACCAACAACTCCATCCAGCAGTTTC 441 F T K K S E D T I S K M N D F M R M Q I 1321?TTCACCAAGAAAAGTGAAGACACAATCTCCAAAATGAATGACTTCATGAGGATGCAGATA 461 L K E G S H F P G P F M T S I G P A E S 1381?CTGAAGGAAGGGAGTCATTTTCCAGGACCGTTCATGACCAGCATAGGCCCAGCTGAGAGC 481 H P H T P Q V P P P T P S S S S L I K K 1441?CATCCCCACACTCCTCAGGTGCCACCACCAACCCCATCCAGCAGTTCCTTAATCAAGAAG 501 K P R L K A V P K E A S K E E G L Q T D 1501?AAACCAAGATTGAAGGCTGTACCTAAAGAAGCTTCCAAAGAAGAGGGTCTACAGACGGAC 521 P K E V M V L K A T E P F A Y E P K E Q 1561?CCCAAAGAAGTGATGGTACTGAAGGCAACAGAACCATTTGCATATGAGCCCAAAGAGCAG 541 K K M F H A T V A T E S Q F F R V K V F 1621?AAGAAAATGTTCCATGCCACAGTGGCTACTGAGAGCCAGTTCTTCCGAGTGAAGGTTTTT |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
561 D V S L K Q K F I P K K I I A I S D Y I 1681?GATGTCAGTCTGAAGCAGAAGTTCATCCCAAAGAAAATCATTGCCATATCAGATTATATT 581 G R N G F L E V Y S A S S V S D V N A D 1741?GGCCGCAATGGGTTCCTGGAGGTGTACAGTGCCTCATCTGTGTCTGATGTTAATGCTGAC 601 R K M E V S K R L I A N A N A T P K I N 1801?CGAAAGATGGAGGTCTCAAAAAGACTGATTGCAAATGCAAATGCAACTCCTAAAATCAAT 621 H L C S Q A P G T F V N G V Y E V H K K 1861?CATCTGTGCTCACAAGCTCCAGGAACATTTGTGAATGGGGTGTATGAGGTGCATAAGAAA 641 I V W N D F I Y Y E I Q D D T G K M E V 1921?ATAGTGTGGAATGATTTCATATATTATGAAATACAAGATGATACAGGGAAGATGGAAGTC 661 M V Y G R L T K I N C E E R D K L Q L I 1981?ATGGTGTATGGACGACTGACCAAAATCAACTGCGAGGAAAGAGATAAACTTCAACTCATC 681 C F E L A P K S G N T G E L R S V I H S 2041?TGCTTTGAATTGGCACCGAAAAGTGGGAATACCGGGGAGTTGAGATCTGTAATTCACAGT 701 F I K V I K A R - 2101?TTCATCAAGGTCATCAAGGCCAGGTAA | |||
WBC005G04_V1.3_AT | Homo sapiens's myelocyte nuclear differentiation antigen mRNA, code sequence stream fully. | 1 ATTGAGAGTGGCTCTAACAAGTGCCATTTTTCCTTGTTAGCTTTCATTTCTCAGCCCTTT 61 ACAAGATTAAAATAGTCTGCAGTTTAATCTCTCCAAAGCTTTACGGACAGTGATTCTGTC 121 CTAAACAAGACAGTGACTCCAGGATTTCTGAAGACTATTGTGGAAGAAGCATCCATTAAG 181 GCCAAGCTATAACATCAGAAATGGTGAATGAATACAAGAAAATTCTTTTGCTGAAAGGAT 241 TTGAGCTCATGGATGATTATCATTTTACATCAATTAAGTCCTTACTGGCCTATGATTTAG 301 GACTAACTACAAAAATGCAAGAGGAATACAACAGAATTAAGATTACAGATTTGATGGAAA 361 AAAAGTTCCAAGGCGTTGCCTGTCTAGACAAACTAATAGAACTTGCCAAAGATATGCCAT 421 CACTTAAAAACCTTGTTAACAATCTTCGAAAAGAGAAGTCAAAAGTTGCTAAGAAAATTA 481 AAACACAAGAAAAAGCTCCAGTGAAAAAAATAAACCAGGAAGAAGTGGGTCTTGCGGCAC 541 CTGCACCCACCGCAAGAAACAAACTGACATCGGAAGCAAGAGGGAGGATTCCTGTAGCTC 601 AGAAAAGAAAAACTCCAAACAAAGAAAAGACTGAAGCCAAAAGGAATAAGGTGTCCCAAG 661 AGCAGAGTAAGCCCCCAGGTCCCTCAGGAGCCAGCACATCTGCAGCTGTGGATCATCCCC 721 CACTACCCCAGACCTCATCATCAACTCCATCCAACACTTCGTTTACTCCGAATCAGGAAA 781 CCCAGGCCCAACGGCAGGTGGATGCAAGAAGAAATGTTCCCCAAAACGACCCAGTGACAG 841 TGGTGGTACTGAAAGCAACAGCGCCATTTAAATACGAGTCCCCAGAAAATGGGAAAAGCA 901 CAATGTTTCATGCTACAGTGGCCAGTAAGACTCAATATTTCCATGTGAAAGTCTTCGACA 961 TCAACTTGAAAGAGAAATTTGTAAGGAAGAAGGTCATTACTATATCAGATTACTTTGAAT 1021?GTAAAGGAATCCTGGAGGTAAATGAAGCATCATCTGTATCTGAAGCTGGTATTGATCCAA 1081?AGATTGAGGTCCCTACCAGAATTATCAAAAGAGCAAATCAAACTCCCAAGATTGATAATC 1141?TTCACAAACAAGCATCGGGAACATTTGTTTATGGGTTGTTTGTGTTACATCAGAAAAAAG 1201?TGAATAACAAGAACACGATCTATGAAATAGAGGATAAAACAGGAAAGATGGATGTAGTGG 1261?GGAATGGAAAATGGCACAATATCAAGTGTGAGGAAGGAGATAAACTTCGACTCTTCTGCT 1321?TTCAATTGAGAACACTTGACAAGAGGCTGAAACTGACATGTGGAAATCACAGTTTCATTC 1381?AGGTCATCAAGGCTAAGAAAAACAAGGAAGGACCAATGAATGTTAATTGAAATATGAAAG | SEQ?ID?NO:d) |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1441?CTGAAATGCAACAAACAACTTCCGCTTAAAACAATTAAGTTGTTAATAACTGTGATTTTG 1501?TAAATTTCAGTAATTCATTTAAATGATGTTTCAGTAGATATATTCTAGCATATTAAGAGC 1561?TTTTATAACTGAGTTATAGATTAGTTTGCTTTCTGGAATAAAATTTTCTTCTTATACTCT 1621?TCCTTTTTTTTAGATATTACATTTTGCTTTTATGACATTCACGAGGCAAAAAACCG 1 M V N E Y K K I L L L K G F E L M D D Y 1 ATGGTGAATGAATACAAGAAAATTCTTTTGCTGAAAGGATTTGAGCTCATGGATGATTAT 21 H F T S I K S L L A Y D L G L T T K M Q 61 CATTTTACATCAATTAAGTCCTTACTGGCCTATGATTTAGGACTAACTACAAAAATGCAA 41 E E Y N R I K I T D L M E K K F Q G V A 121 GAGGAATACAACAGAATTAAGATTACAGATTTGATGGAAAAAAAGTTCCAAGGCGTTGCC 61 C L D K L I E L A K D M P S L K N L V N 181 TGTCTAGACAAACTAATAGAACTTGCCAAAGATATGCCATCACTTAAAAACCTTGTTAAC 81 N L R K E K S K V A K K I K T Q E K A P 241 AATCTTCGAAAAGAGAAGTCAAAAGTTGCTAAGAAAATTAAAACACAAGAAAAAGCTCCA 101 V K K I N Q E E V G L A A P A P T A R N 301 GTGAAAAAAATAAACCAGGAAGAAGTGGGTCTTGCGGCACCTGCACCCACCGCAAGAAAC 121 K L T S E A R G R I P V A Q K R K T P N 361 AAACTGACATCGGAAGCAAGAGGGAGGATTCCTGTAGCTCAGAAAAGAAAAACTCCAAAC 141 K E K T E A K R N K V S Q E Q S K P P G 421 AAAGAAAAGACTGAAGCCAAAAGGAATAAGGTGTCCCAAGAGCAGAGTAAGCCCCCAGGT 161 P S G A S T S A A V D H P P L P Q T S S 481 CCCTCAGGAGCCAGCACATCTGCAGCTGTGGATCATCCCCCACTACCCCAGACCTCATCA 181 S T P S N T S F T P N Q E T Q A Q R Q V 541 TCAACTCCATCCAACACTTCGTTTACTCCGAATCAGGAAACCCAGGCCCAACGGCAGGTG 201 D A R R N V P Q N D P V T V V V L K A T 601 GATGCAAGAAGAAATGTTCCCCAAAACGACCCAGTGACAGTGGTGGTACTGAAAGCAACA 221 A P F K Y E S P E N G K S T M F H A T V 661 GCGCCATTTAAATACGAGTCCCCAGAAAATGGGAAAAGCACAATGTTTCATGCTACAGTG 241 A S K T Q Y F H V K V F D I N L K E K F 721 GCCAGTAAGACTCAATATTTCCATGTGAAAGTCTTCGACATCAACTTGAAAGAGAAATTT 261 V R K K V I T I S D Y F E C K G I L E V 781 GTAAGGAAGAAGGTCATTACTATATCAGATTACTTTGAATGTAAAGGAATCCTGGAGGTA 281 N E A S S V S E A G I D P K I E V P T R | SEQ?ID?NO:e) |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
841 AATGAAGCATCATCTGTATCTGAAGCTGGTATTGATCCAAAGATTGAGGTCCCTACCAGA 301 I I K R A N Q T P K I D N L H K Q A S G 901 ATTATCAAAAGAGCAAATCAAACTCCCAAGATTGATAATCTTCACAAACAAGCATCGGGA 321 T F V Y G L F V L H Q K K V N N K N T I 961 ACATTTGTTTATGGGTTGTTTGTGTTACATCAGAAAAAAGTGAATAACAAGAACACGATC 341 Y E I E D K T G K M D V V G N G K W H N 1021?TATGAAATAGAGGATAAAACAGGAAAGATGGATGTAGTGGGGAATGGAAAATGGCACAAT 361 I K C E E G D K L R L F C F Q L R T L D 1081?ATCAAGTGTGAGGAAGGAGATAAACTTCGACTCTTCTGCTTTCAATTGAGAACACTTGAC 381 K R L K L T C G N H S F I Q V I K A K K 1141?AAGAGGCTGAAACTGACATGTGGAAATCACAGTTTCATTCAGGTCATCAAGGCTAAGAAA 401 N K E G P M N V N - 1201?AACAAGGAAGGACCAATGAATGTTAATTGA | |||
WBC020C09_V1.3_AT | No homology | 1 TCATGATCCTGGGACAATGAGGAGCTGGGAACAGTGGTAGGAACCACGGCAGTGTACCGG 61 TAGGCCTGACTCAGTCACTGGTCCTCAACCTTTAGTGCCTATGAAATGAGCCTCTGGTGA 121 GCCCTGCTTTGCCTGACTCAAGGTAGCACTGAGGATCACAGAGGTAATCTTCATAAAGGT 181 CTCGTCAGGCTTCCTTCAGAGCTTCACCATGAGGCAGGTTAGGAGCAGGCTCCTGCTGGC 241 CCAGAGGAGACCTAGAGTCACAACCCAGGCCCCACACTCCCTCACCCACTTGCTTGCTCT 301 CTGAGCAGGGCAGCTACCACCACCCCTCTCAACCTGGGTTCTGCCTTAGAGGGCAGAGTT 361 TGCTTCACTCATCTGGTTTCCACAAGGCCTGCAAGATAGGAGTTGTAGTCTTTGCTGTAA 421 AAAACTGAGGCTCAAAGAGGTGAAGCGACTTGCCCAAGGGCACACAGCTGGTAAGTAGCA 481 TACCTGAGGTGTATCTAACTCCAAAGCCTACATTGTTTAATGACTATGGAGATGCTTCCT 541 AGAACCATGGTCCAGATTCTACCTCAAATTCTGCTGCTGCCTTCTCCCTGATGGTTTAAA 601 ATGACTGATTAGTGCTACTGAGTCCCCATTTAGGAAGAAAACCTTAAGCTAATATGGTGC 661 TTTGAATGGTGGAATCCAAGCAATATGGAAAATATGGGGGCCTTTTCTGGCACCTCTGAA 721 GTCACTCCACAAAAGTGGCCACCTCCTGTCAAGCTTGGACCTATCACAGCCCAAACCTAG 781 ACTCAAATGTGGGGAGTCTCCCCTGGCACAGGAGAGGTGCCTGACACACCGTTGTTGGCT 841 GATGGTAGGCAACAGGAAGCAAATGTGGTCTGCACAGGCCCAGCTGGGCCTAGAGGCAGG 901 GACTCCCACAGGCCACGGTG 1 GCACAGACAAGGGACTTAAGGCTGGCGAGGGAGAAACCAAAGCCATTCCAGCATGTGTGT 61 CCTTTGTGCTGCCTCTAATCTAAGCTGGGTGAGTTTGTGGGAAGCGACCCTCGAGATTCT 121 GATGACAGTTTTGCCACTGAGCCGTGTGAGGCCTGGGACAAGTATTTTCTTCTCTGCTTC 181 AGTTTTCCTGAGTACAGTGTCACCATATCACACTAGAGACAGCCCCTTGTAAAGATCGTG 241 TGTTATGAGAAATCAGCAGAGCTGGGGACCCTCAGGCTACACAGCACTGCCCCGTGCTAT 301 CACAGTGGGAGCACAGAGGCTCTGAACCCTCAGGGACCCGGCCATGCCCACAAAGCCAGG 361 ACAGGGACCCAAGTCCTTGGCTACTTGGGCCCTGCCCTTCCCTCTGCTCCACAGAAGGGC 421 TACATGATGCTCCTCTGCCTCCCACACACACTCTCCTGGGTGTAGCTGGAGGACAGGAAA 481 TAAATCTTTATTGCGTCAGTTTAAAAAAAAAAAAAAAAAAAAA | SEQ?ID?NO:f) SEQ?ID?NO:g) |
WBC007A05_V1.3_AT | Homo sapiens G albumen-link coupled acceptor |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
65,mRNA | 1 TTCTTGACTTGATGCAGGCACAGATTTATCAAGCTCCTCAGTCAACAAACACATCACCGG 61 AAGAAACATGGAAGGAAAGGAATTTTAAAAAGAGATGTCAATCTCTGTAAAAATAAAGCC 121 TTATGTATTCATGTTTGCACTAATCTACTGTGAGATTTATGAAGAAAAACAAATTGCGGA 181 CAACTCTCTATGTACACTTACAAATGCCTCAGTTGATGCTTGTGGGCTGTTTGTCAGCAT 241 TCTGTGACAATGAGCGCATGGACTTCAGCTCATTAAAATCGACTGACCACTTTAGCTAAC 301 AGCCAGGAGCCTGGATTCTGACTTCCAACCATCGATATCTGTGTGAAAATTGATCTACAC 361 CCACCCTTTAAAAGCATTGATGAATTAATAAGAACTTTTGAAAACAAAGAAAAATGGAAT 421 AAATCTTAGTAAAAGAGAATTGAATGTTGAAAACAAACTACAACGAGGCAAGACTTACTT 481 TGCTATTTATCCTCTAAGAACAGATGTAATTGCTACCTTAAAAAGAAAAGATGAACAGCA 541 CATGTATTGAAGAACAGCATGACCTGGATCACTATTTGTTTCCGATTGTCTACGTCATTG 601 TGGTCATAGTCAGCATTCCAGCCAATATTGGATCTCTCTGTGTGTCTTTTCTGCAAGTAA 661 AAAAGGAAAATGAATTGGGAATTTACCTCTTCAGTTTATCACTGTCAGATCTGCTGTATA 721 CATTAACTCTCCCTCTATGGATTGATTATACTTGGAATAAAGACAACTGGACTTTCTCTC 781 CTGCCTTGTGCAAAGGGAGTGCTTTTCTCATGTACATGAATTTTTACAGCAGCACAGCAT 841 TCCTCACCTGCATTGCCGTTGATCGGTATTTGGCTGTTGTCTACCCTTTGAAGTTTTTTT 901 TCCTAAGGACAAGAAGATTTGCACTCATGGTCAGCCTGTCCATCTGGATATTGGAAACCA 961 TCTTCAATGCTGTCATGTTGTGGGAAGATGAAACAGTTGTTGAATATTGCGATGCCGAAA 1021?AGTCTAATTTTACTTTATGCTATGACAAATACCCTTTAGAGAAATGGCAAATCAACCTCA 1081?ACTTGTTTAGAACGTGTGCATGCTATGCCATACCTCTGGTCATCATAATGGTTTGCAACC 1141?TGAAGGTCTACCAAGCTGTGCAGCATAATCGAGCCACGGAAGACAGTGAAAAGAAGAGAA 1201?TCATAAAACTACTTGTTAGTATCACATTGACTTTTATCTTGTGTTTTACTCCCTTTCATG 1261?TGATGTTGCTGATTCGCTGCATTCTAGAGCATGCTGTGAACTTCGAAGACCACAGCAATT 1321?CTGGGAAGCGAACTTACACAATGTATAGAATCACGGTTGCTTTAACAAGCTTAAATTGTG 1381?TTGCGGATCCAATTCTGTACTGTTTTGTGACTGAAACAGGAAGATCTGATATGTGGAATG 1441?TACTAAAATTCTGTACTGGGAGGCTCAACACATCACAAAGACAAAGAAAACGCATACCGT 1501?CTATGTCTACAAAAGATACTGTAGAATTAGAGGTCCTTGAGTAGAACCAAGGATGTTTTG 1561?AAGGGAAGGGAAGTTTAAGTTATGCATTATTATATCACCAAGATTGCGTTTTGAAAAGGA 1621?AATCTAGCATGTGAGGGGACTAAGTGTTCTCAGAGTGATGTTTTAATCCAGTCCAATAAA 1681?AATATCTTAAAACTGCATTGTACAGCTCCCTCCCTGCGTTTTATTAAATGATGTATATTA 1741?AACAAAGATCAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1 M N S T C I E E Q H D L D H Y L F P I V 1 ATGAACAGCACATGTATTGAAGAACAGCATGACCTGGATCACTATTTGTTTCCGATTGTC 21 Y V I V V I V S I P A N I G S L C V S F 61 TACGTCATTGTGGTCATAGTCAGCATTCCAGCCAATATTGGATCTCTCTGTGTGTCTTTT 41 L Q V K K E N E L G I Y L F S L S L S D 121 CTGCAAGTAAAAAAGGAAAATGAATTGGGAATTTACCTCTTCAGTTTATCACTGTCAGAT 61 L L Y T L T L P L W I D Y T W N K D N W 181 CTGCTGTATACATTAACTCTCCCTCTATGGATTGATTATACTTGGAATAAAGACAACTGG 81 T F S P A L C K G S A F L M Y M N F Y S 241 ACTTTCTCTCCTGCCTTGTGCAAAGGGAGTGCTTTTCTCATGTACATGAATTTTTACAGC 101 S T A F L T C I A V D R Y L A V V Y P L 301 AGCACAGCATTCCTCACCTGCATTGCCGTTGATCGGTATTTGGCTGTTGTCTACCCTTTG | SEQ?ID?NO:h) SEQ?ID?NO:i) |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
121 K F F F L R T R R F A L M V S L S I W I 361 AAGTTTTTTTTCCTAAGGACAAGAAGATTTGCACTCATGGTCAGCCTGTCCATCTGGATA 141 L E T I F N A V M L W E D E T V V E Y C 421 TTGGAAACCATCTTCAATGCTGTCATGTTGTGGGAAGATGAAACAGTTGTTGAATATTGC 161 D A E K S N F T L C Y D K Y P L E K W Q 481 GATGCCGAAAAGTCTAATTTTACTTTATGCTATGACAAATACCCTTTAGAGAAATGGCAA 181 I N L N L F R T C A C Y A I P L V I I M 541 ATCAACCTCAACTTGTTTAGAACGTGTGCATGCTATGCCATACCTCTGGTCATCATAATG 201 V C N L K V Y Q A V Q H N R A T E D S E 601 GTTTGCAACCTGAAGGTCTACCAAGCTGTGCAGCATAATCGAGCCACGGAAGACAGTGAA 221 K K R I I K L L V S I T L T F I L C F T 661 AAGAAGAGAATCATAAAACTACTTGTTAGTATCACATTGACTTTTATCTTGTGTTTTACT 241 P F H V M L L I R C I L E H A V N F E D 721 CCCTTTCATGTGATGTTGCTGATTCGCTGCATTCTAGAGCATGCTGTGAACTTCGAAGAC 261 H S N S G K R T Y T M Y R I T V A L T S 781 CACAGCAATTCTGGGAAGCGAACTTACACAATGTATAGAATCACGGTTGCTTTAACAAGC 281 L N C V A D P I L Y C F V T E T G R S D 841 TTAAATTGTGTTGCGGATCCAATTCTGTACTGTTTTGTGACTGAAACAGGAAGATCTGAT 301 M W N V L K F C T G R L N T S Q R Q R K 901 ATGTGGAATGTACTAAAATTCTGTACTGGGAGGCTCAACACATCACAAAGACAAAGAAAA 321 R I P S M S T K D T V E L E V L E - 961 CGCATACCGTCTATGTCTACAAAAGATACTGTAGAATTAGAGGTCCTTGAGTAG | |||
B1961581 | Homo sapiens NAD kinases accession number BC001709 | 1 GTAGACGTGGCGGGCGGACCCGGGGGCGCCCTCCGGACGCGGCAGGCATCAGTGTTTTTC 61 TGACCGAAGTTCTCATTTCCTGACAATGGAAATGGAACAAGAAAAAATGACCATGAATAA 121 GGAATTGAGTCCAGACGCGGCTGCTTACTGCTGCTCGGCCTGCCACGGCGATGAGACCTG 181 GAGTTACAACCACCCCATCCGGGGCCGGGCCAAGTCTCGCAGCCTGTCTGCCTCGCCCGC 241 CCTGGGGAGCACCAAGGAGTTCAGGAGGACACGCTCTCTTCATGGGCCATGCCCGGTGAC 301 CACTTTTGGACCAAAGGCCTGTGTGCTGCAGAACCCCCAGACCATCATGCACATTCAGGA 361 CCCCGCGAGCCAGCGGCTGACGTGGAACAAGTCCCCAAAGAGCGTCCTTGTCATCAAGAA 421 GATGAGAGATGCCAGCCTACTGCAGCCGTTCAAGGAGCTCTGCACGCACCTCATGGAGGA 481 GAACATGATCGTGTATGTGGAAAAGAAAGTGCTAGAAGACCCTGCCATCGCCAGCGATGA 541 AAGCTTTGGGGCAGTGAAGAAGAAATTCTGTACCTTTCGAGAAGATTATGATGACATTTC 601 CAATCAGATAGACTTCATCATCTGCCTGGGGGGAGACGGGACGCTGCTGTACGCTTCCTC 661 GCTTTTCCAGGGCAGCGTCCCTCCGGTCATGGCCTTCCACCTGGGCTCCCTGGGCTTCCT 721 GACCCCATTCAGCTTTGAGAACTTTCAGTCCCAAGTTACTCAGGTGATAGAGGGGAACGC 781 AGCTGTTGTTCTCCGGAGTCGGCTGAAGGTCAGGGTGGTGAAGGAGCTCCGGGGGAAGAA | SEQ?ID?NO:10 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
841 GACGGCCGTGCACAATGGGCTGGGTGAGAAAGGCTCGCAGGCTGCAGGCCTGGACATGGA 901 TGTCGGGAAGCAGGCCATGCAGTACCAGGTCCTGAATGAGGTGGTGATTGACAGAGGCCC 961 CTCCTCCTACCTGTCCAATGTGGATGTCTACCTGGACGGACACCTCATCACCACGGTGCA 1021?GGGCGACGGAGTGATCGTGTCCACCCCGACGGGCAGCACGGCGTATGCGGCCGCGGCCGG 1081?GGCCTCCATGATCCACCCCAACGTGCCGGCCATCATGATCACGCCCATCTGCCCCCACTC 1141?GCTGTCCTTCCGGCCCATCGTGGTCCCCGCAGGGGTCGAGCTGAAGATCATGCTGTCACC 1201?TGAAGCAAGGAACACAGCATGGGTGTCCTTTGATGGACGGAAGAGACAAGAGATCCGCCA 1261?TGGAGACAGCATCAGCATCACTACCTCATGCTACCCGCTCCCCTCCATCTGTGTGCGGGA 1321?CCCCGTGAGCGACTGGTTTGAGAGCCTCGCCCAGTGCCTGCATTGGAACGTCCGGAAGAA 1381?GCAAGCCCACTTCGAGGAGGAGGAGGAGGAGGAGGAGGAGGGCTAGGTCAAGCCCCTATC 1441?CAGGCCCGAATCCTTCCGCTGCCCTCCAAGCGCCCTCTGGGGACAGACCAATCTGCGTGT 1501?GTCTGTGACCGCCTGTCTCAGTGGCACGGCCACTTCCTTTCTGTAGCTGGGTTAGAGCCT 1561?GGGTCTGCCTTTTGTCCAGATCAGCTGTTTTTTTAAAATGTCTGACTTTTTTTGCATTTC 1621?TAAAGAAGCGTGAGAAATGGGCTGGGAGTGCTTCTGTCCTGCTGACACCCCGCGGTGGGT 1681?CCCTGGAGCGCGGCCTCCAGCTGCCGCAATTTCCATGCCAGGATATTTTTCCGCAAATCA 1741?GTCGGTTGAAATTCAGAGGAGTCAGAATGACTCGACCTGTCCTTCAATGTTGATAATAAA 1801?TGTCTCAGCCAAAAACCTTCCTTGAGCTGCCATGCTTTTCCCCTTGACCTGCACCTCTTC 1861?CCCTAAAACTTCTGCAGGGAAGCCCCTGGCGGAGGCGCCATTGAAAGCATGGTCTTGCCA 1921?GTGGCTGGCAAGGCGGTTTTGTTCTGCTCAGTTTCTGGAGAGGGTTGGATGCGTCCCCTG 1981?CCATCCAGCCCTCCCCGCTTGAGGCCAGCACTGAGTCTGGGACACTCAGCGGGAAGGGGG 2041?CTGGCATCGCCAGCGACCCACACATTCCTCACGTAGCTTCTGCTCCCAGGAAGGTAGTTT 2101?AAATCCTGTATATACTTTTTAGAGACTCTTTTAAACTTTCTGAAGTGCTGATGTACATAC 2161?TTTCTCGTACACACTTTTGTGAAGATTTCAAGGGGAAGGGAGTTGTCTGCCATTCAATGT 2221?TTACATTTATGTTCTGCAAGACGCTGTCCTCAGGGACCATTAGGGGACCATTCTGTTCAG 2281?TGCGACCCTGATGGTCCGGGAGATGAGGGTTTCCGGGGCTAGTGATCGTGATCCCTTTTA 2341?TTTGCAACTGTAATGAGAATTTTTCACACTAACACAGCGAGGGACTCAACACGCTGATTC 2401?TCCTCCTGCCTCTCCCGTGAGTCTCCAGCCTGCCCAGCACCAGCAGCTGTGGAGCACGTG 2461?GATGCTGCCTACCCCGGCGCCCGCGTCTTCCACGGGCACAGGTGTGTGGAGGCCGTGGTC 2521?GGACCCTGGTGTCCTGGTTACTGCTGCCCGGGTGTCTTTTTTTTGAGTAACTGCTCTCTG 2581?AGTTTTGCACACGAAGTTGCCCTCATCTGCTGGAGATCGATAAGGAAGGCACAAGACGTT 2641?CTCCTCTGCCCGTGAGGAGCTTCCCGCAGCCGCCTGGCCCAGCCTGGGCACGTTCTCCGA 2701?GGCATGTGTCTCCCTGCTCACCCTCGTCTGGGCACCTCAGCATCTGTGGACTTGAGCGTC 2761?CAAAAACCCTGAGTGTGATTCTGGGCAGCCGGCCTGGCTTGAAGTCCGCCATGACCCTGG 2821?GCACAGGGGAAGCCCAGCCGTGGGCTTAGGAGAGAGGGACCAGCGCCCAGCGTTAGGGCT 2881?GGAAGACGGCAGTGTTCAGAATTCCAGCCGCTCATCTGAACACAGAAGGTGTGAACTGAC 2941?CTCTAAAGCAGCGTGAGATGGGAATGATCTAGAAAACTTTGGATTTTTGAAGTAAATTTT 3001?AATGTTTCATATTAATTTCTTGAAAATGTATTAAATGTCATTGAAAGCCTTATTACGCTT 3061?TTCAGATCCTTTCAATAAACAAGACTTGTAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3121?AAAAAAAAAAAAAAAAAAAA 1 MEMEQEKMTMNKELSPDAAAYCCSACHGDETWSYNHPIRGRAKSRSLSASPALGSTKEFR 61 RTRSLHGPCPVTTFGPKACVLQNPQTIMHIQDPASQRLTWNKSPKSVLVIKKMRDASLLQ 121 PFKELCTHLMEENMIVYVEKKVLEDPAIASDESFGAVKKKFCTFREDYDDISNQIDFIIC 181 LGGDGTLLYASSLFQGSVPPVMAFHLGSLGFLTPFSFENFQSQVTQVIEGNAAVVLRSRL 241 KVRVVKELRGKKTAVHNGLGEKGSQAAGLDMDVGKQAMQYQVLNEVVIDRGPSSYLSNVD | SEQ?ID?NO:11 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
301 VYLDGHLITTVQGDGVIVSTPTGSTAYAAAAGASMIHPNVPAIMITPICPHSLSFRPIVV 361 PAGVELKIMLSPEARNTAWVSFDGRKRQEIRHGDSISITTSCYPLPSICVRDPVSDWFES 421 LAQCLHWNVRKKQAHFEEEEEEEEEG- | |||
BM735170.V1.3_AT | No homology | 1 TCGTCCTCACTGTTTTTACCTTGACTTCAACTGCCCACCCATTCAGCTGAGCAGCTGGGG 61 ATGACTGGTTTTTTTCTGTCATTATTTACATATATTTGCTGGAGCTGATTACTGAACTCG 121 TATTTAATCTCTATTGCCAGTGAAATGTTACATTATTTTTCTGATTGGTTTCCCCTCTTA 181 TTGGAAGTATAATTCCAGCAATGTTAGTAGGATAGAAAAGGAGGGAATCATTTGAGGCTT 241 TCAGGTTAGCAAGAGCTATGGGCGTTACATGCTTGTTTTTTCCAAGCAGCTAATTTTTAT 301 CTACTTCTCAGATTAGGTTTGGGGGAGCTTTGGCATCTTTTTAGATTTTAATCTCTATTT 361 TCTTAATCCAGGGTACAAATGTGAGCAAAAGAAAAAAAGAAATCTTTTATACTTTTTTAA 421 ATAAATTTATAAATAAATTTTGAGCTGCTTCGGT | SEQ?ID?NO:12 |
WBC010C05 | The ox analogue (LOC529385) of putative protein matter | <1 ATTTCTGCTCCTAATGAATTTGATCTTATGTTCACACTGGAGGTTCCCCGAATTCAGCTG 61 GAAGAATATTGCCACAATACTGATGTCATTATGGAGAGGAAGAAAAGAGGGAGCCCTGCT 121 GTAACACTTCTGATTAGAAAACCTAGAGAAATATCTGTGGATATAATCCTGGCTTTGGAG 181 TCAAAAAGCAGCTGGCCTGCTAGCACCCAGAAAGGCCTGCCCATCAGTAACTGGCTTGGA 241 ACAAAAGTTAAGGACAATCTAAAACGACAGCCATTTTACCTGGTACCCAAGCACGCAAAG 301 GAAGGAAGTCTTTTCCAAGAAGAAACATGGCGGCTGTCCTTCTCTCACATTGAAAAGGCC 361 ATTTTGACAAATCATGGACAAACTAAAACATGCTGTGAAACTGAAGGAGTAAAATGTTGC 421 AGGAAAGAGTGTTTAAAGCTGATGAAATACCTTTTAGAACAACTGAAAAAAAAGTTTGGA 481 AAGCAAAGGGGACTGGATAAGTTCTGTTCTTATCATGTGAAGACTGCCTTCCTTCATGTC 541 TGTACCCAGAACCCGCATGACAGTTGGTGGCTCTACAAAGACCTGGAGCTCTGCTTTGAT 601 AACTGTGTGACATACTTTCTTCAGTGTCTCAAGACAGAACACCTTGAGCACTATTTCATT 661 CCTGATGTCAATCTCTTCTCTCGAGACGAAATTGGCAAGCCAAGTAAAGAATTTCTGTCA 721 AAGCAAATTGAATATGAGCAAAACAATGGATTTCCGGTTTTTGATGAGTTTTGA <1 I S A P N E F D L M F T L E V P R I Q L 1 ATTTCTGCTCCTAATGAATTTGATCTTATGTTCACACTGGAGGTTCCCCGAATTCAGCTG 21 E E Y C H N T D V I M E R K K R G S P A 61 GAAGAATATTGCCACAATACTGATGTCATTATGGAGAGGAAGAAAAGAGGGAGCCCTGCT 41 V T L L I R K P R E I S V D I I L A L E 121 GTAACACTTCTGATTAGAAAACCTAGAGAAATATCTGTGGATATAATCCTGGCTTTGGAG 61 S K S S W P A S T Q K G L P I S N W L G 181 TCAAAAAGCAGCTGGCCTGCTAGCACCCAGAAAGGCCTGCCCATCAGTAACTGGCTTGGA 81 T K V K D N L K R Q P F Y L V P K H A K 241 ACAAAAGTTAAGGACAATCTAAAACGACAGCCATTTTACCTGGTACCCAAGCACGCAAAG 101 E G S L F Q E E T W R L S F S H I E K A 301 GAAGGAAGTCTTTTCCAAGAAGAAACATGGCGGCTGTCCTTCTCTCACATTGAAAAGGCC | SEQ?ID?NO:13 SEQ?ID?NO:14 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
121 I L T N H G Q T K T C C E T E G V K C C 361 ATTTTGACAAATCATGGACAAACTAAAACATGCTGTGAAACTGAAGGAGTAAAATGTTGC 141 R K E C L K L M K Y L L E Q L K K K F G 421 AGGAAAGAGTGTTTAAAGCTGATGAAATACCTTTTAGAACAACTGAAAAAAAAGTTTGGA 161 K Q R G L D K F C S Y H V K T A F L H V 481 AAGCAAAGGGGACTGGATAAGTTCTGTTCTTATCATGTGAAGACTGCCTTCCTTCATGTC 181 C T Q N P H D S W W L Y K D L E L C F D 541 TGTACCCAGAACCCGCATGACAGTTGGTGGCTCTACAAAGACCTGGAGCTCTGCTTTGAT 201 N C V T Y F L Q C L K T E H L E H Y F I 601 AACTGTGTGACATACTTTCTTCAGTGTCTCAAGACAGAACACCTTGAGCACTATTTCATT 221 P D V N L F S R D E I G K P S K E F L S 661 CCTGATGTCAATCTCTTCTCTCGAGACGAAATTGGCAAGCCAAGTAAAGAATTTCTGTCA 241 K Q I E Y E Q N N G F P V F D E F - 721 AAGCAAATTGAATATGAGCAAAACAATGGATTTCCGGTTTTTGATGAGTTTTGA | |||
WBC009D04_V1.3_AT | Be positioned at the people mRNA of the X-CGD gene that relates to the granuloma disease on the chromosome x | 1 CTTCCTCTGCCACCATCGGGGAACTGGGCTGTGAATGAGGGGCTCTCCATTTTTGCTATT 61 CTGGTTTGGCTGGGGTTGAACGTCTTCCTCTTTGTCTGGTATTACCGGGTTTATGATATT 121 CCACCTAAGTTCTTTTACACAAGAAAACTTCTTGGGTCAGCACTGGCACTGGCCAGGGCC 181 CCTGCAGCCTGCCTGAATTTCAACTGCATGCTGATTCTCTTGCCAGTCTGTCGAAATCTG 241 CTGTCCTTCCTCAGGGGTTCCAGTGCGTGCTGCTCAACAAGAGTTCGAAGACAACTGGAC 301 AGGAATCTCACCTTTCATAAAATGGTGGCATGGATGATTGCACTTCACTCTGCGATTCAC 361 ACCATTGCACATCTATTTAATGTGGAATGGTGTGTGAATGCCCGAGTCAATAATTCTGAT 421 CCTTATTCAGTAGCACTCTCTGAACTTGGAGACAGGCAAAATGAAAGTTATCTCAATTTT 481 GCTCGAAAGAGAATAAAGAACCCTGAAGGAGGCCTGTACCTGGCTGTGACCCTGTTGGCA 541 GGCATCACTGGAGTTGTCATCACGCTGTGCCTCATATTAATTATCACTTCCTCCACCAAA 601 ACCATCCGGAGGTCTTACTTTGAAGTCTTTTGGTACACACATCATCTCTTTGTGATCTTC 661 TTCATTGGCCTTGCCATCCATGGAGCTGAACGAATTGTACGTGGGCAGACCGCAGAGAGT 721 TTGGCTGTGCATAATATAACAGTTTGTGAACAAAAAATCTCAGAATGGGGAAAAATAAAG 781 GAATGCCCAATCCCTCAGTTTGCTGGAAACCCTCCTATGACTTGGAAATGGATAGTGGGT 841 CCCATGTTTCTGTATCTCTGTGAGAGGTTGGTGCGGTTTTGGCGATCTCAACAGAAGGTG 901 GTCATCACCAAGGTGGTCACTCACCCTTTCAAAACCATCGAGCTACAGATGAAGAAGAAG 961 GGGTTCAAAATGGAAGTGGGACAATACATTTTTGTCAAGTGCCCAAAGGTGTCCAAGCTG 1021?GAGTGGCACCCTTTTACACTGACATCCGCCCCTGAGGAAGACTTCTTTAGTATCCATATC 1081?CGCATCGTTGGGGACTGGACAGAGGGGCTGTTCAATGCTTGTGGCTGTGATAAGCAGGAG 1141?TTTCAAGATGCGTGGAAACTACCTAAGATAGCGGTTGATGGGCCCTTTGGCACTGCCAGT 1201?GAAGATGTGTTCAGCTATGAGGTGGTGATGTTAGTGGGAGCAGGGATTGGGGTCACACCC 1261?TTCGCATCCATTCTCAAGTCAGTCTGGTACAAATATTGCAATAACGCCACCAATCTGAAG 1321?CTCAAAAAGATCTACTTCTACTGGCTGTGCCGGGACACACATGCCTTTGAGTGGTTTGCA 1381?GATCTGCTGCAACTGCTGGAGAGCCAGATGCAGGAAAGGAACAATGCCGGCTTCCTCAGC 1441?TACAACATCTACCTCACTGGCTGGGATGAGTCTCAGGCCAATCACTTTGCTGTGCACCAT 1501?GATGAGGAGAAAGATGTGATCACAGGCCTGAAACAAAAGACTTTGTATGGACGGCCCAAC | SEQ?ID?NO:15 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1561?TGGGATAATGAATTCAAGACAATTGCAAGTCAACACCCTAATACCAGAATAGGAGTTTTC 1621?CTCTGTGGACCTGAAGCCTTGGCTGAAACCCTGAGTAAACAAAGCATCTCCAACTCTGAG 1681?TCTGGCCCTCGGGGAGTGCATTTCATTTTCAACAAGGAAAACTTCTAACTTGTCTCTTCC 1741?ATGAGGAAATAAATGTGGGTTGTGCTGCCAAATGCTCAAATAATGCTAATTGATAATATA 1801?AATACCCCCTGCTTAAAAATGGACAAAAAGAAACTATAATGTAATGGTTTTCCCTTAAAG 1861?GAATGTCAAAGATTGTTTGATAGTGATAAGTTACATTTATGTGGAGCTCTATGGTTTTGA 1921?GAGCACTTTTACAAACATTATTTCATTTTTTTCCTCTCAGTAATGTCAGTGGAAGTTAGG 1981?GAAAAGATTCTTGGACTCAATTTTAGAATCAAAAGGGAAAGGATCAAAAGGTTCAGTAAC 2041?TTCCCTAAGATTATGAAACTGTGACCAGATCTAGCCCATCTTACTCCAGGTTTGATACTC 2101?TTTCCACAATACTGAGCTGCCTCAGAATCCTCAAAATCAGTTTTTATATTCCCCAAAAGA 2161?AGAAGGAAACCAAGGAGTAGCTATATATTTCTACTTTGTGTCATTTTTGCCATCATTATT 2221?ATCATACTGAAGGAAATTTTCCAGATCATTAGGACATAATACATGTTGAGAGTGTCTCAA 2281?CACTTATTAGTGACAGTATTGACATCTGAGCATACTCCAGTTTACTAATACAGCAGGGTA 2341?ACTGGGCCAGATGTTCTTTCTACAGAAGAATATTGGATTGATTGGAGTTAATGTAATACT 2401?CATCATTTACCACTGTGCTTGGCAGAGAGCGGATACTCAAGTAAGTTTTGTTAAATGAAT 2461?GAATGAATTTAGAACCATGCAATGCCAGGGTAGAATTAATTTAAGGCCTTAAAGAGAAAT 2521?ATCTAAGGAAATAACTTCTGTTACTCTTACAGACCAAAGGAACCCGATTCTTCTGACAGT 2581?AGAGAACAGGCTAAAGATAGTAACCAATAGGATGTCCTGGAGGTTCCCTCACATTCTTGT 2641?TTGAAGCATGGAGGAAAGGGAGATGGAGGCAGAGAATGGACCTCCTACCATAACTGGCTG 2701?GCTCCTCTAGTCCTGCTCCCCGTGCCATGAAAGAAATGCAAACTGATTTACTGCCTGAAA 2761?GGGTCTCCTCCAGCCAGCACTTGTGAATTTGAAATTAAGAATTGTGACAAATATGTGTCT 2821?GATATGCCCATCTGCTTTAAATAGCATCCACCCCTTGTTTTACTTAAATACACACACAAA 2881?ATGGATCGCATCTGTGTGACTAATGGTTTATTTGTATTATATCATCATCATCATCCTAAA 2941?ATTAACAACCCAGAAACAAAAATCTCTATACAGAGATCAAATTCACACTCAATAGTATGT 3001?TCTGAATATATGTTCAAGAGAGAGTCTCTAAATCACTGTTAGTGTGGCCAAGAGCAGGGT 3061?TTTCTTTTTGTTCTTAGAACTGCTCTTATTTCTGGGAACTATAAACAGATTTGTTGGCCC 3121?CACCCTCTGGAACCACAGATATTTAGAGCTATTTAAATTTGGTAATGCGGAAGAAGGAGA 3181?AAGAGCTGGGGGAAGGGCAGAAGACTGGTTTAGGAGGAAAAGGAAATAAGGAGAAAAGAG 3241?AATGGGAGAGTGAGAGAAAATAAAAAAGGCAAAAGGGAGAGAGAGGGGAAGGGGGTCTCA 3301?TATTGGTCATTCCCTGCCCCAGATTTCTTAAAGTTTGATATGTATAGAATATAATTGAAG 3361?GAGGTATACACATACTGATGTTGTTTTGATTATCTATGGTATTGAATCTTTTAAAATCTG 3421?GTCACAAATTTTGATGCTGAGGGGGATTATTCAAGGGACTAGGATGAACTAAATAAGAAC 3481?TCAGTTGTTCTTTGTCATACTACTATTCCTTTCGTCTCCCAGAATCCTCAGGGCACTGAG 3541?GGTAGGTCTGACAAATAAGGCCTGCTGTGCGAATATAGCCTTTCTGAAATGTACCAGGAT 3601?GGTTTCTGCTTATAGACACTTAGGTCCAGCCTGTTCACACTGCACCTCGAGTATCAGTTC 3661?ATTCATTCAACAAATTTTTATTGTGCTGTTACCATGACTCACGCTCTGTTTATTGTTTCA 3721?ATTCTTTACACCAAAGTATGAACTGGAGAGGGTACCTCAGTTATAAGGAGCCTGAGAATC 3781?TTGGTCCCTCCAACCTATGTGGCCCAAGTAAAACCAACTCCATTTGTTGCTCTGAAAATG 3841?TTTCTCCAGGGTTTTCTATCTTCAAAACCAACTAAGTTATGAAAGTAGAGAGATCTGCCC 3901?TGTGTTATCCAGTTATGAGATAAAAAATGAGTATAAAAGTGCTTGTCATTATAAAAGTTT 3961?CCTTTTTATCTCTCAAGCCACCAGCTGCCAGCCACCACGAGCCAGCTGCCAGCCTAGCTT 4021?TTTTTTTTTTTTTTTTTTTAGCACTTAGCATTTAGCATTTAGTAACAGGTACTGAGAGAA 4081?CGATTAAGCATTGTTTTTAATCTCAAGGCTATGAAGGCTTTTTTTAGTTCTCCTGCTTTT 4141?GCAATATTGCGTTTATGAAATTTGAATGCTTGTAGGTGTTGTGTGTGAATAATTTTGGGG 4201?GGCCTGGGAGATATTCCTAGGAAGAACTATTAAAATTGTGCTCAACTATTAAAATGAATG 4261?AGCTTTC 1 M L I L L P V C R N L L S F L R G S S A | SEQ?ID?NO:16 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1 ATGCTGATTCTCTTGCCAGTCTGTCGAAATCTGCTGTCCTTCCTCAGGGGTTCCAGTGCG 21 C C S T R V R R Q L D R N L T F H K M V 61 TGCTGCTCAACAAGAGTTCGAAGACAACTGGACAGGAATCTCACCTTTCATAAAATGGTG 41 A W M I A L H S A I H T I A H L F N V E 121 GCATGGATGATTGCACTTCACTCTGCGATTCACACCATTGCACATCTATTTAATGTGGAA 61 W C V N A R V N N S D P Y S V A L S E L 181 TGGTGTGTGAATGCCCGAGTCAATAATTCTGATCCTTATTCAGTAGCACTCTCTGAACTT 81 G D R Q N E S Y L N F A R K R I K N P E 241 GGAGACAGGCAAAATGAAAGTTATCTCAATTTTGCTCGAAAGAGAATAAAGAACCCTGAA 101 G G L Y L A V T L L A G I T G V V I T L 301 GGAGGCCTGTACCTGGCTGTGACCCTGTTGGCAGGCATCACTGGAGTTGTCATCACGCTG 121 C L I L I I T S S T K T I R R S Y F E V 361 TGCCTCATATTAATTATCACTTCCTCCACCAAAACCATCCGGAGGTCTTACTTTGAAGTC 141 F W Y T H H L F V I F F I G L A I H G A 421 TTTTGGTACACACATCATCTCTTTGTGATCTTCTTCATTGGCCTTGCCATCCATGGAGCT 161 E R I V R G Q T A E S L A V H N I T V C 481 GAACGAATTGTACGTGGGCAGACCGCAGAGAGTTTGGCTGTGCATAATATAACAGTTTGT 181 E Q K I S E W G K I K E C P I P Q F A G 541 GAACAAAAAATCTCAGAATGGGGAAAAATAAAGGAATGCCCAATCCCTCAGTTTGCTGGA 201 N P P M T W K W I V G P M F L Y L C E R 601 AACCCTCCTATGACTTGGAAATGGATAGTGGGTCCCATGTTTCTGTATCTCTGTGAGAGG 221 L V R F W R S Q Q K V V I T K V V T H P 661 TTGGTGCGGTTTTGGCGATCTCAACAGAAGGTGGTCATCACCAAGGTGGTCACTCACCCT 241 F K T I E L Q M K K K G F K M E V G Q Y 721 TTCAAAACCATCGAGCTACAGATGAAGAAGAAGGGGTTCAAAATGGAAGTGGGACAATAC 261 I F V K C P K V S K L E W H P F T L T S 781 ATTTTTGTCAAGTGCCCAAAGGTGTCCAAGCTGGAGTGGCACCCTTTTACACTGACATCC 281 A P E E D F F S I H I R I V G D W T E G 841 GCCCCTGAGGAAGACTTCTTTAGTATCCATATCCGCATCGTTGGGGACTGGACAGAGGGG 301 L F N A C G C D K Q E F Q D A W K L P K 901 CTGTTCAATGCTTGTGGCTGTGATAAGCAGGAGTTTCAAGATGCGTGGAAACTACCTAAG 321 I A V D G P F G T A S E D V F S Y E V V 961 ATAGCGGTTGATGGGCCCTTTGGCACTGCCAGTGAAGATGTGTTCAGCTATGAGGTGGTG |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
341 M L V G A G I G V T P F A S I L K S V W 1021?ATGTTAGTGGGAGCAGGGATTGGGGTCACACCCTTCGCATCCATTCTCAAGTCAGTCTGG 361 Y K Y C N N A T N L K L K K I Y F Y W L 1081?TACAAATATTGCAATAACGCCACCAATCTGAAGCTCAAAAAGATCTACTTCTACTGGCTG 381 C R D T H A F E W F A D L L Q L L E S Q 1141?TGCCGGGACACACATGCCTTTGAGTGGTTTGCAGATCTGCTGCAACTGCTGGAGAGCCAG 401 M Q E R N N A G F L S Y N I Y L T G W D 1201?ATGCAGGAAAGGAACAATGCCGGCTTCCTCAGCTACAACATCTACCTCACTGGCTGGGAT 421 E S Q A N H F A V H H D E E K D V I T G 1261?GAGTCTCAGGCCAATCACTTTGCTGTGCACCATGATGAGGAGAAAGATGTGATCACAGGC 441 L K Q K T L Y G R P N W D N E F K T I A 1321?CTGAAACAAAAGACTTTGTATGGACGGCCCAACTGGGATAATGAATTCAAGACAATTGCA 461 S Q H P N T R I G V F L C G P E A L A E 1381?AGTCAACACCCTAATACCAGAATAGGAGTTTTCCTCTGTGGACCTGAAGCCTTGGCTGAA 481 T L S K Q S I S N S E S G P R G V H F I 1441?ACCCTGAGTAAACAAAGCATCTCCAACTCTGAGTCTGGCCCTCGGGGAGTGCATTTCATT 501 F N K E N F - 1501?TTCAACAAGGAAAACTTCTAA | |||
B1961434.V1.3_AT/ B1961054.V1.3_AT B1961434.V1.3_S_AT | But the IP-10mRNA of interferon--induced protein-10 | 61 AGCACCATGAACACAAGTGGTTTTCTTATTTTCTGCCTTATCCTTCTGACTCTGAGTCAA 121 GGCATACCTCTCTCTAGGAATACACGCTGTACCTGCATCGAGATCAGTAATGGATCTGTT 181 AATCCAAGGTCCTTAGAAAAACTTGAACTGATTCCTGCAAGTCAATCCTGCCCACGTGTT 241 GAGATCATTGCCACAATGAAAAAGAATGGGGAGAAAAGATGTCTGAATCCAGAGTCCAAG 301 ACCGTCAAGAATTTACTGAAAGCAATTAGCAAGCAAAGGTCTAAAAGATCTCCTCGAACA 361 CTGAGAGAAGTATAATTACGGTACTACTGATAGGATGGCCCAGAGAGAGGCCGCCTCTGC 421 CATCATTTCCCTGCATACAGTATATGTCAAGCCCTAATTGTCCCCGGATTGCAGTTCTCC 481 TAAAAGATGACCAAGCCAGTCACCTAATTAGCTGCTACTACTCCTGCAGGGGGTGGATGG 541 TTCATCATCCTGAGCTGTTCAGTAGTAACTCTGCCTTGGCACTATGACTATAAACTATGC 601 TGAGGTGCTACATTCTTAGTAAATGTGCCAAGACCTAGTCCTGCTACTGACACTTTCCTC 661 GCCTTGCCATACTCTAAAGGTTCTCAACGGATCTTTCCACCTCTGGGCTTATCAGAGTTC 721 TCAGGATCTCAAATAACTAAAAGGTAATCAAAGCAATAATACAATCTGCTTTTTTAAGAA 781 AGATCTTCACTCCATGGACTTCACTGCCATCCCCCCAAGGAGCCCATATTCTTCCAGGTT 841 ATATACACAAAATTCCAAATACATAGAAGAAGCTAGAAATGTCTGGAAATGTACGTGAAA 901 ACAGTATTATTTAATGGAAAGCTATACAAAATAGAAGTCTTAGATGTACATATTTCTTAC 961 ATTGTTTTCAGTGTTTATGGAATAACTTACGTGATTAAGTACTACACATGAATGACCAAT 1021?AGGAGAAAATTTTTGAAATCTAGATATATGTTCTGCATGATATGTAAGACAAAATATGCT 1081?GGATGTTTTTCAAAATAGAAATAATGTGCTCTCCCAGAAATATTAAGA | SEQ?ID?NO:17 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1 M N T S G F L I F C L I L L T L S Q G I 1 ATGAACACAAGTGGTTTTCTTATTTTCTGCCTTATCCTTCTGACTCTGAGTCAAGGCATA 21 P L S R N T R C T C I E I S N G S V N P 61 CCTCTCTCTAGGAATACACGCTGTACCTGCATCGAGATCAGTAATGGATCTGTTAATCCA 41 R S L E K L E L I P A S Q S C P R V E I 121 AGGTCCTTAGAAAAACTTGAACTGATTCCTGCAAGTCAATCCTGCCCACGTGTTGAGATC 61 I A T M K K N G E K R C L N P E S K T V 181 ATTGCCACAATGAAAAAGAATGGGGAGAAAAGATGTCTGAATCCAGAGTCCAAGACCGTC 81 K N L L K A I S K Q R S K R S P R T L R 241 AAGAATTTACTGAAAGCAATTAGCAAGCAAAGGTCTAAAAGATCTCCTCGAACACTGAGA 101 E V - 301 GAAGTATAA | SEQ?ID?NO:18 | ||
BM780886.V1.3_AT | Homo sapiens 6-phosphogluconolactonase, mRNA (cDNA clone MGC:20013 IMAGE:4053022) | 1 CTCCTCCCCGCCGCCGCCCTCGCCATGGCCGCGCCGGCCCCGGGCCTCATCTCGGTGTTC 61 TCGAGTTCCCAGGAGCTGGGTGCGGCGCTAGCGCAGCTGGTGGCCCAGCGCGCAGCATGC 121 TGCCTGGCAGGGGCCCGCGCCCGTTTCGCGCTCGGCTTGTCGGGCGGGAGCCTCGTCTCG 181 ATGCTAGCCCGCGAGCTACCCGCCGCCGTCGCCCCTGCCGGGCCAGCTAGCTTAGCGCGC 241 TGGACGCTGGGCTTCTGCGACGAGCGCCTCGTGCCCTTCGATCACGCCGAGAGCACGTAC 301 GGCCTCTACCGGACGCATCTTCTCTCCAGACTGCCGATCCCAGAAAGCCAGGTGATCACC 361 ATTAACCCCGAGCTGCCTGTGGAGGAGGCGGCTGAGGACTACGCCAAGAAGCTGAGACAG 421 GCATTCCAAGGGGACTCCATCCCGGTTTTCGACCTGCTGATCCTGGGGGTGGGCCCCGAT 481 GGTCACACCTGCTCACTCTTCCCAGACCACCCCCTCCTACAGGAGCGGGAGAAGATTGTG 541 GCTCCCATCAGTGACTCCCCGAAGCCACCGCCACAGCGTGTGACCCTCACGCTACCTGTC 601 CTGAATGCAGCACGAACTGTCATCTTTGTGGCAACTGGAGAAGGCAAGGCAGCTGTTCTG 661 AAGCGCATTTTGGAGGACAAGGAGGAAAACCCGCTCCCCGCCGCCCTGGTCCAGCCCCAC 721 ACTGGGAAACTCTGCTGGTTCCTGGACGAGGCAGCGGCCCGACTCCTGACCGTGCCCTTC 781 GAGAAGCATTCCACTTTGTAGCTGGCCAGAGGGACGCCGCAGCTGGGACCAGGCACGCGG 841 CCCATGGGGCTGGGCCCCTGCTGGCCGCCACTCTCCGGGCTCTCCTTTCAAAAAGCCACG 901 TCGTGCTGCTGCTGGAAGCCAACAGCCTCCGGCCAGCAGCCCTACCCGGGGCTCAACACA 961 CAGGCTGTGGCTCTGGACATCCGGATATTAAAAGGAGCGTTGCTGGAAAAAAAAAAAAAA 1021?AAAAAAAAAAAAAA 1 M A A P A P G L I S V F S S S Q E L G A 1 ATGGCCGCGCCGGCCCCGGGCCTCATCTCGGTGTTCTCGAGTTCCCAGGAGCTGGGTGCG 21 A L A Q L V A Q R A A C C L A G A R A R 61 GCGCTAGCGCAGCTGGTGGCCCAGCGCGCAGCATGCTGCCTGGCAGGGGCCCGCGCCCGT 41 F A L G L S G G S L V S M L A R E L P A 121 TTCGCGCTCGGCTTGTCGGGCGGGAGCCTCGTCTCGATGCTAGCCCGCGAGCTACCCGCC 61 A V A P A G P A S L A R W T L G F C D E | SEQ?ID?NO:19 SEQ?ID?NO:20 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
181 GCCGTCGCCCCTGCCGGGCCAGCTAGCTTAGCGCGCTGGACGCTGGGCTTCTGCGACGAG 81 R L V P F D H A E S T Y G L Y R T H L L 241 CGCCTCGTGCCCTTCGATCACGCCGAGAGCACGTACGGCCTCTACCGGACGCATCTTCTC 101 S R L P I P E S Q V I T I N P E L P V E 301 TCCAGACTGCCGATCCCAGAAAGCCAGGTGATCACCATTAACCCCGAGCTGCCTGTGGAG 121 E A A E D Y A K K L R Q A F Q G D S I P 361 GAGGCGGCTGAGGACTACGCCAAGAAGCTGAGACAGGCATTCCAAGGGGACTCCATCCCG 141 V F D L L I L G V G P D G H T C S L F P 421 GTTTTCGACCTGCTGATCCTGGGGGTGGGCCCCGATGGTCACACCTGCTCACTCTTCCCA 161 D H P L L Q E R E K I V A P I S D S P K 481 GACCACCCCCTCCTACAGGAGCGGGAGAAGATTGTGGCTCCCATCAGTGACTCCCCGAAG 181 P P P Q R V T L T L P V L N A A R T V I 541 CCACCGCCACAGCGTGTGACCCTCACGCTACCTGTCCTGAATGCAGCACGAACTGTCATC 201 F V A T G E G K A A V L K R I L E D K E 601 TTTGTGGCAACTGGAGAAGGCAAGGCAGCTGTTCTGAAGCGCATTTTGGAGGACAAGGAG 221 E N P L P A A L V Q P H T G K L C W F L 661 GAAAACCCGCTCCCCGCCGCCCTGGTCCAGCCCCACACTGGGAAACTCTGCTGGTTCCTG 241 D E A A A R L L T V P F E K H S T L - 721 GACGAGGCAGCGGCCCGACTCCTGACCGTGCCCTTCGAGAAGCATTCCACTTTGTAG | |||
WBC004E01_V1.3_AT | Homo sapiens Apo-2 ligand mRNA, encoding sequence completely | 1 TTTCCTCACTGACTATAAAAGAATAGAGAAGGAAGGGCTTCAGTGACCGGCTGCCTGGCT 61 GACTTACAGCAGTCAGACTCTGACAGGATCATGGCTATGATGGAGGTCCAGGGGGGACCC 121 AGCCTGGGACAGACCTGCGTGCTGATCGTGATCTTCACAGTGCTCCTGCAGTCTCTCTGT 181 GTGGCTGTAACTTACGTGTACTTTACCAACGAGCTGAAGCAGATGCAGATCAAATACTCC 241 AAAAGTGGCATTGCCTGTTTCTTAAAGGAAGATGACAGCGATTGGGACCCAAATGACGAA 301 GAGAGTATGAACAGCCCCTGCTGGCAAGTCAAGTGGCAGCTGCGTCAGTTTGTTAGAAAG 361 ATGATTTTGAGAACCTATGAGGAATCCATTCCTACAACTTCAGAAAAGCGACAAAATATT 421 CCTCCCTTAGTAAGAGAAAGAGGTCTTCAGAGAGTAGCAGCTCACATAACTGGGACCAGT 481 CGGAGAAGAAGCACAGTCTCAATTCCACGCTCCAAGAATGAAAAAGCACTGGGCCAGAAA 541 ATAAACGCCTGGGAGACATCAAGAAAAGGACATTCGTTCTTGAATAATTTACACTTGAGG 601 AATGGAGAGCTGGTTATCCATCAAACAGGGTTTTATTACATCTATTCCCAAACATACTTT 661 CGATTTCAGGAGGAAATAAAAGAAAACACAAAGAACGACAAACAAATGGTACAATATATT 721 TACAAAAGCACAGACTATCCTGACCCTATACTGCTGATGAAAAGTGCTAGAAATAGTTGT 781 TGGTCTAAAGATTCAGAATATGGACTCTATTCCATCTATCAAGGTGGAATATTTGAGCTT 841 AAGGAAAATGACAGAATTTTTGTCTCTGTAACTAATGAGCAATTGATTGACATGGACCAA 901 GAAGCCAGTTTCTTCGGGGCCTTTTTAGTTGGCTAACTGACCTGGAAAGAAAAAGCAATA 961 ACCTCAAAGTGACTATTCAGTTTTCAGGATGATACACTATGAAGATGTTTCAAAAAATCT 1021?GACCAAAACAAACAAACAGAAA | SEQ?ID?NO:21 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1 M A M M E V Q G G P S L G Q T C V L I V 1 ATGGCTATGATGGAGGTCCAGGGGGGACCCAGCCTGGGACAGACCTGCGTGCTGATCGTG 21 I F T V L L Q S L C V A V T Y V Y F T N 61 ATCTTCACAGTGCTCCTGCAGTCTCTCTGTGTGGCTGTAACTTACGTGTACTTTACCAAC 41 E L K Q M Q I K Y S K S G I A C F L K E 121 GAGCTGAAGCAGATGCAGATCAAATACTCCAAAAGTGGCATTGCCTGTTTCTTAAAGGAA 61 D D S D W D P N D E E S M N S P C W Q V 181 GATGACAGCGATTGGGACCCAAATGACGAAGAGAGTATGAACAGCCCCTGCTGGCAAGTC 81 K W Q L R Q F V R K M I L R T Y E E S I 241 AAGTGGCAGCTGCGTCAGTTTGTTAGAAAGATGATTTGAGAACCTATGAGGAATCCATT 101 P T T S E K R Q N I P P L V R E R G L Q 301 CCTACAACTTCAGAAAAGCGACAAAATATTCCTCCCTTAGTAAGAGAAAGAGGTCTTCAG 121 R V A A H I T G T S R R R S T V S I P R 361 AGAGTAGCAGCTCACATAACTGGGACCAGTCGGAGAAGAAGCACAGTCTCAATTCCACGC 141 S K N E K A L G Q K I N A W E T S R K G 421 TCCAAGAATGAAAAAGCACTGGGCCAGAAAATAAACGCCTGGGAGACATCAAGAAAAGGA 161 H S F L N N L H L R N G E L V I H Q T G 481 CATTCGTTCTTGAATAATTTACACTTGAGGAATGGAGAGCTGGTTATCCATCAAACAGGG 181 F Y Y I Y S Q T Y F R F Q E E I K E N T 541 TTTTATTACATCTATTCCCAAACATACTTTCGATTTCAGGAGGAAATAAAAGAAAACACA 201 K N D K Q M V Q Y I Y K S T D Y P D P I 601 AAGAACGACAAACAAATGGTACAATATATTTACAAAAGCACAGACTATCCTGACCCTATA 221 L L M K S A R N S C W S K D S E Y G L Y 661 CTGCTGATGAAAAGTGCTAGAAATAGTTGTTGGTCTAAAGATTCAGAATATGGACTCTAT 241 S I Y Q G G I F E L K E N D R I F V S V 721 TCCATCTATCAAGGTGGAATATTTGAGCTTAAGGAAAATGACAGAATTTTTGTCTCTGTA 261 T N E Q L I D M D Q E A S F F G A F L V 781 ACTAATGAGCAATTGATTGACATGGACCAAGAAGCCAGTTTCTTCGGGGCCTTTTTAGTT 281 G - 841 GGCTAA | SEQ?ID?NO:22 | ||
B1961659.V1.3_AT | No homology | 1 GCACGAGGACCATCCATATCAAATATGCCCATTCAAACATTACCCAGCATCATGGCTTAT 61 GATCAGGAACTCCGGTCCTTATGTCTAGTAGCATTTTGAATCCTTTATGCCATGATAGTG | SEQ?ID?NO:23 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
121 CCGCAGTATCGAGAGGATTTTATGGAGAATTGGAATAGTCTCCATGACCACAGCTAAATA 181 AAGGACAAGCAGCCTGTCTTGGGGTTTTGAAAAGGTTATTCTTAACAATCTTTTTTTTTT 241 CCTACCCAGGGACTTTCTGACAGTATGACTGTTACCTTACTTGAAAAGCAGTACCCAATT 301 GCTTTATTATTTTAAATAGATTCACATTAACCAACATAATTTTTTAGATTGTTTAGGATT 361 AGCCTGAGTTTCTAAGTCAGCTTCCAGCTGTGTTTCATCTCCTTCACCTGCATTTTATTT 421 GGTGTTTGTCTGAAGGAAAGAGGAAAGCAAATGTGAATTGTACTATTTGTACTAATCTTT 481 GGAATTTATTGGTAAATTTATTTCAGGATAGGGTATCAGAAAAAG?AAAACTTTGTTTCT 541 TAGACTGAAGGTCTAACTGATTAATAATTTGACTTATAAGCATGGTTTGTTCACTCCTTC 601 AAATGAATTTACTTTG?AAACAAATGAAGAGCTGCTCTCCTTCTTTCCTCCACTAAGCAG 661 ATGATCCTGCTGGATTCCCGCTGGAGCAGTGCTACCCTCTGTTCCGGTGATTGGTTTGTT 721 CCTTTCTTGTATCCCCCAAAGTGGACACAAACAACTACACGATCCCAGAGACATATCTAG 781 TTAATTCCAGCTGACGAGAGACCAGAAAATTGTAAATGGATGGTTTGATATTACTGCA | |||
WBC008B04 | No homology | 1 GACAATAGCAGTTATTAAATTGGGTCTCTCATCTGTATGTTTTTGTTACACTGAGGTTAA 61 GAGGCCGGATTCTTGGCAGCCAGGTCCCTCTTCAGGATCACGTTGGCTGCAACGTGAGTT 121 ATATTGGAGCACTTTAATCTGAAGGATGATACTGTAACTTGATTTATCTAATTAGCTTTT 181 AATTATCTATAGCGATTTTATTTAATCCTCTCCTACAGTCCTGGGGACCTCTGTAAACTT 241 CTCAGATGACTCGTATTTTTGTAGTGCTACGAAATTTATTTACAGACCTATAAAGAAAGC 301 TGTTTATTCACTTGAAGTCTGAAAATGTACACAGATATGTTTATTCTGCAATCTGTTTTG 361 TACTTGATAGAAATATATTTTGACTGTGATAACCCAAGTGCCCTGGGGCAGGGGTACTCG 421 GCATGGTTCCTCCTCTGAAGAGCGGGTGTGGAAACCTCAACTGCTCACGAGAAGTGCTTG 481 GTTTGGGGACAGCTGCTGCTAGGACGTGGGGGATGTGACTTGGTCAGGGTGTGAGAGGGG 541 CGTCTGGCTGGAGGAGAGTTCCTGTGCTCTGAAATGCCACTTGGGAACTCTGGAGATTGA 601 AGGACAATTTACTTCAAGGGTGTCTGGTTTCTACCACTGCTGGAAAAAAATTCGGTTTGT 661 AGCATTCCTGCACCTCACAAGTAGATCGCCTGGAGGTCATTAGTTAATAGCTGTCTGTGA 721 GGACTCTGCTTTCAGGGAGAATTTATCT Non?contiguous 1 AAAATGTCAGTCCTTTGCCTGGTTGTTCCATCTCATCTCATTCCTTGGACTTTGACAGAT 61 ATCCTGCCCTGTGTTTTATTCCTGTGTGTTAACCTCATCAGGGAAGCAGAATGGAGGAGC 121 AAGAAAGTCTGCCCTTTGCCATGCCAAACAGCTCTCAGCCCTGTGTGGTGAGGCGTGTGC 181 GCACGTACATGCATGAGTGGGGTGCATGGGTGTGGTTTCCAGCTTTGCTGACAGTGGGAG 241 CTCAGCAGAGCGTAGAGGCAGGAAGGTCCATGGCACTCAGCCACACACTATTGAAGGCTA 301 GAGGCGGTTTAGTGTTAGATTATGCGGGATCTTCCCTCCCTGGGTCACTTCTCCCAATCA 361 ACCTTTTTTTCTTTTTTAGAACTACTAATTAATGATTCCTCAAGGCCGAAAGGTTAATTT 421 CCTTGGGAGGAGAACTTAGCCTCCTAGTATCCACACCAGTCTCAACTCTGGTTTCTCAAG 481 ATCTGTCACGTTGGCCTACTAACTTGACGTCTTCCCCCCTCCCACTGAAGGATCGCCCAG 541 CGTTTTTAGATTGTAGAATTATCTCTTGCTTTGTTACTTTGGGAATTTTGAATTTCTTTG 601 GTTTTGTTTTTAAGAAGTAACCTAAAATTTCCTACAACACTAAATAAAATGGTACTACCT 661 TTCAAAAAAAAAAAAAAAAAAA | SEQ?ID?NO:24 SEQ?ID?NO:25 |
BM735449.V1.3_AT | No homology | 1 AATNTCAGTTACTTCAGAAAGTTTTAATTTAGAGTAATTCCAATTCATGCATATAAGCAT 61 GAATTGAAAAGATAACTATGATTGTTCTTATATAAAAATATGATTGCCATAGAAGTTAAT 121 GAATACACTTATAAGAATGTAATATGATTTCCCTTTACTTCCTACCCTTCTGTTAAACTG 181 CTGCTACTGGAGTTCGCCTTTAAAAAATACTTGTTCTTAGCTTTACAGAAGTTGAGATTT 241 GAAGTCCTTGGCATCCTGAAGTATGTTATATGCCATGTGCTTGTTATGAAGATTATGGTA 301 TGCCAGGAGACATTCTCCTGATTTTCATTATATAGAGAATCATATTTGAGAATGCTGTTC 361 TTCTTATCTTTTATAACATCAATTTCCGTTGTTTCGCTTGTCTTTTTTTAAATGTCGTCG | SEQ?ID?NO:26 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
421 GTTTAAAGAGTTTACTTCATTAAACACTTTACTTCAGCAGTTTGAATAGTAGATGGAAAA 481 ATAGGCCCCGGTCTACATTAATTTTCCCCAGTCTGCATTAGAATATTTTTGAAGATTATA 541 CTTTTCCAAACAAAGAAAATAATTTGTATTTGTGTCTAAAATTAAACTTTGTTTAAAAC 601 TCTG | |||
WBC029A01 | Homo sapiens's apoptosis 10 (PDCD10) is transcribed variant 3 | 1 TGCAAGGTGGGAAGTGAAGTCAGTGCCTCAGTTGCTGATCAGTGTGTTTTTTGTGTCCAA 61 TTCTTTTATCACCAAAAAAGAGAAGAAATATTGCAGTGAATGAAGATTCCTCTGCATTTT 121 AGCACTGCTTTTTCAACTGTAGTTGGCTTTTGAATGAGGATGACAATGGAAGAGATGAAG 181 AATGAAGCTGAGACCACATCCATGGTTTCTATGCCCCTCTATGCAGTCATGTATCCTGTG 241 TTTAATGAGCTAGAACGAGTAAATCTGTCTGCAGCCCAGACACTGAGAGCCGCTTTCATC 301 AAGGCTGAAAAAGAAAATCCAGGTCTCACACAAGACATCATTATGAAAATTTTAGAGAAA 361 AAAAGCGTGGAAGTTAACTTCACGGAGTCCCTTCTTCGTATGGCAGCTGATGATGTAGAA 421 GAGTATATGATTGAACGACCAGAGCCAGAATTCCAAGACCTAAACGAAAAGGCACGAGCA 481 CTTAAACAAATTCTCAGTAAGATCCCAGATGAGATCAATGACAGAGTGAGGTTTCTGCAG 541 ACAATCAAGGATATAGCTAGTGCAATAAAAGAACTTCTTGATACAGTGAATAATGTCTTC 601 AAGAAATATCAATACCAGAACCGCAGGGCACTTGAACACCAAAAGAAAGAATTTGTAAAG 661 TACTCCAAAAGTTTCAGTGATACTCTGAAAACGTATTTTAAAGATGGCAAGGCAATAAAT 721 GTGTTCGTAAGTGCCAACCGACTAATTCATCAAACCAACTTAATACTTCAGACCTTCAAA 781 ACTGTGGCCTGAAAGTTGTATATGTTAAGAGATGTACTTCTCAGTGGCAGTATTGAACTG 841 CCTTTATCTGTAAATTTTAAAGTTTGACTGTATAAATTATCAGTCCCTCCTGAAGGGATC 901 TAATCCAGGATGTTGAATGGGATTATTGCCATCTTACACCATATTTTTGTAAAATGTAGC 961 TTAATCATAATCTCACACTGAAGATTTTGCATCACTTTTGCTATTATCATTCTTTTAAGA 1021?ATTATAAGCCAAAAGAATTTACGCCTTAATGTGTCATTATATAACATTCCTTAAAAGAAT 1081?TGTAAATATTGGTGTTTGTTTCTGACATTTTAACTTGAAAGCGATATGCTGCAAGATAAT 1141?GTATTTAACAATATTTGGTGGCAAATATTCAATAAATAGTTTACATCTGTTAAAAAAAAA 1201?AAAAAAAAAAAA 1 M R M T M E E M K N E A E T T S M V S M 1 ATGAGGATGACAATGGAAGAGATGAAGAATGAAGCTGAGACCACATCCATGGTTTCTATG 21 P L Y A V M Y P V F N E L E R V N L S A 61 CCCCTCTATGCAGTCATGTATCCTGTGTTTAATGAGCTAGAACGAGTAAATCTGTCTGCA 41 A Q T L R A A F I K A E K E N P G L T Q 121 GCCCAGACACTGAGAGCCGCTTTCATCAAGGCTGAAAAAGAAAATCCAGGTCTCACACAA 61 D I I M K I L E K K S V E V N F T E S L 181 GACATCATTATGAAAATTTTAGAGAAAAAAAGCGTGGAAGTTAACTTCACGGAGTCCCTT 81 L R M A A D D V E E Y M I E R P E P E F 241 CTTCGTATGGCAGCTGATGATGTAGAAGAGTATATGATTGAACGACCAGAGCCAGAATTC 101 Q D L N E K A R A L K Q I L S K I P D E 301 CAAGACCTAAACGAAAAGGCACGAGCACTTAAACAAATTCTCAGTAAGATCCCAGATGAG 121 I N D R V R F L Q T I K D I A S A I K E 361 ATCAATGACAGAGTGAGGTTTCTGCAGACAATCAAGGATATAGCTAGTGCAATAAAAGAA | SEQ?ID?NO:27 SEQ?ID?NO:28 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
141 L L D T V N N V F K K Y Q Y Q N R R A L 421 CTTCTTGATACAGTGAATAATGTCTTCAAGAAATATCAATACCAGAACCGCAGGGCACTT 161 E H Q K K E F V K Y S K S F S D T L K T 481 GAACACCAAAAGAAAGAATTTGTAAAGTACTCCAAAAGTTTCAGTGATACTCTGAAAACG 181 Y F K D G K A I N V F V S A N R L I H Q 541 TATTTTAAAGATGGCAAGGCAATAAATGTGTTCGTAAGTGCCAACCGACTAATTCATCAA 201 T N L I L Q T F K T V A - 601 ACCAACTTAATACTTCAGACCTTCAAAACTGTGGCCTGA | |||
BM781436.V1.3_AT | Homo sapiens SH3 structural domain associativity is rich in the albumen sample 3 of L-glutamic acid, mRNA | 1 GGGAAGGGGCCTCTGGCGTGCGGGGCGGTGTCGCGCAGGTCCCACCCCGCCTGCCCGCGC 61 CGCCCATTGGTCCCGAGCGCGATGACTTGGCGGGCGGAGCAGGAAGGAAACCGCTCCCGA 121 GCACGGCGGCGGCGTCGTCTCCCGGCAGTGCAGCTGCCGCTACCGCCGCCCTCTGCCCGC 181 CGGCCCGTCTGTCTACCCCCAGCATGAGCGGCCTGCGCGTCTACAGCACGTCGGTCACCG 241 GCTCCCGCGAAATCAAGTCCCAGCAGAGCGAGGTGACCCGAATCCTGGATGGGAAGCGCA 301 TCCAGTACCAGCTAGTGGACATCTCTCAGGACAACGCCCTGCGGGATGAGATGCGAGCCT 361 TGGCAGGCAACCCTAAGGCCACCCCACCCCAGATTGTCAACGGGGACCAGTACTGTGGGG 421 ACTATGAGCTCTTCGTGGAGGCTGTGGAGCAAAACACGCTGCAGGAGTTCCTGAAACTGG 481 CTTGAGTCAAGCCTGTCCAGAGTTCCCCTGCTGGACTCCATCACCACATTCCCCCCAGCC 541 TTCACCTGGCCATGAAGGACCTTTTGACCAACTCCCTGTCATTCCTAACCTAACCTTAGA 601 GTCCCTCCCCCAATGCAGGCCACTTCTCCTCCCTCCTCTCTAAATGTAGTCCCCTCTCCT 661 CCATCTAAAGGCCACATTCCTTACCCACTAGTCTCAGAAATTGTCTTAAGCAACAGCCCA 721 AGTGCTGGCTGTCCTCAGCCAGGCCCTGGGGCTGCCACCCTGCCTGACACTGGCTGATGG 781 GCACCTATGTTGGTTCCATTAGCCAGGGCTCTGCCAAAGGCCCCGCAATCCCTCTCCCAG 841 GAGGACCCTAGAGGCAATTAAATGATGTCCTGTTCCATTGGCAAAAAAAAAAAAAAAA 1 M S G L R V Y S T S V T G S R E I K S Q 1 ATGAGCGGCCTGCGCGTCTACAGCACGTCGGTCACCGGCTCCCGCGAAATCAAGTCCCAG 21 Q S E V T R I L D G K R I Q Y Q L V D I 61 CAGAGCGAGGTGACCCGAATCCTGGATGGGAAGCGCATCCAGTACCAGCTAGTGGACATC 41 S Q D N A L R D E M R A L A G N P K A T 121 TCTCAGGACAACGCCCTGCGGGATGAGATGCGAGCCTTGGCAGGCAACCCTAAGGCCACC 61 P P Q I V N G D Q Y C G D Y E L F V E A 181 CCACCCCAGATTGTCAACGGGGACCAGTACTGTGGGGACTATGAGCTCTTCGTGGAGGCT 81 V E Q N T L Q E F L K L A - 241 GTGGAGCAAAACACGCTGCAGGAGTTCCTGAAACTGGCTTGA | SEQ?ID?NO:29 SEQ?ID?NO:30 |
BM735054.V1.3_AT | Homo sapiens family with sequence similarity 14, member A, mRNA | 1 CCGGACGGCCTCACCATGATGAAACGGGCAGCTGCTGCTGCAGTGGGAGGAGCCCTGACC 61 GTGGGGGCTGTCCCCGTGGTGCTCGGCGCCATGGGCTTCACTGGGGCAGGAATCACCGCC | SEQ?ID?NO:31 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
(cDNA clone MGC:44913 IMAGE:5229498). | 121 TCGTCCTTAGCGGCCAAGATGATGTCCACGGCCGCCATTGCCAACGGGGGTGGAGTTGCG 181 GCCGGCAGCCTGGTGGCCACTCTACAGTCCGTGGGAGCGGCTGGACTCTCCACATCATCC 241 AACATCCTCCTGGCCTCTGTTGGGTCAGTGTTGGGGGCCTGCTTGGGGAATTCACCTTCT 301 TCTTCTCTCCCAGCTGAACCCGAGGCTAAAGAAGATGAGGCAAGAGAAAATGTACCCCAA 361 GGTGAACCTCCAAAACCCCCACTCAAGTCAGAGAAACATGAGGAATAAAGGTCACATGCA 421 GATGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 481 AAAAAAAAAAAAAAA 1 M M K R A A A A A V G G A L T V G A V P 1 ATGATGAAACGGGCAGCTGCTGCTGCAGTGGGAGGAGCCCTGACCGTGGGGGCTGTCCCC 21 V V L G A M G F T G A G I T A S S L A A 61 GTGGTGCTCGGCGCCATGGGCTTCACTGGGGCAGGAATCACCGCCTCGTCCTTAGCGGCC 41 K M M S T A A I A N G G G V A A G S L V 121 AAGATGATGTCCACGGCCGCCATTGCCAACGGGGGTGGAGTTGCGGCCGGCAGCCTGGTG 61 A T L Q S V G A A G L S T S S N I L L A 181 GCCACTCTACAGTCCGTGGGAGCGGCTGGACTCTCCACATCATCCAACATCCTCCTGGCC 81 S V G S V L G A C L G N S P S S S L P A 241 TCTGTTGGGTCAGTGTTGGGGGCCTGCTTGGGGAATTCACCTTCTTCTTCTCTCCCAGCT 101 E P E A K E D E A R E N V P Q G E P P K 301 GAACCCGAGGCTAAAGAAGATGAGGCAAGAGAAAATGTACCCCAAGGTGAACCTCCAAAA 121 P P L K S E K H E E - 361 CCCCCACTCAAGTCAGAGAAACATGAGGAATAA | SEQ?ID?NO:32 | |
WBC31 | No homology | 1 GGCTTTTGAAGAGGTTTGGAGACAAGTTTTGTTTGTCGCGAGGACTTGGGGCTCCTACTG 61 GCGTGTAGCGGGCAGGGACTAGGGGTTCTAAACAGCCTGCCATGCGTCTGTGCAATGAAG 121 AGTTGGCCCACCCCCTGGATCCCCCTTGAGAGACTCTGGCAGCTGATGTGGCTCCTTGTG 181 GAAACAAGAGGAACAGGGAATAAGGATTCCCACCTCTCCTGTCAGGAAAGCGTTGACACT 241 GACCTACTCTGGGAATGGACGGGGAAAGATTCTGGGAGCTGGGAGTCACTGCTGAAACTG 301 GCAAACAATTACTAGGCATTAAGTCTGCGGAGGGCCATTTGCTGTGCAGAACCAAGGAAC 361 ACAAACAATAAGAAGACCGTCCGTACCCGTCCTGAAGGAGTTCACGGTCAGGCTGGGAGA 421 AATAATAGCAATAATAATAACGCATTAAGTTTCTGCTGAATACCGGATGTGTTTACATCC 481 ATCTTTTCACTTGATGCAGTCCTGAATCTGGTTCTATGATCAGCCCCCAGGTACAGAGGA 541 GGACACTGAGGCTCAGCGGTTACATGACATACGTCATGTAACCCCTCATGTATGTGATGT 601 AACACAGAAGTATGGGACCGAGCTGGGATTTGAACCCAGGTCTCACACCAAGGCCCGTGA 661 TTTTTCTACCAGACCTCACTGCCTCTGTGCTTAGGGAAGAGATCATATCTGCCCCAGCTG 721 GATGTTTCGAGGATCCTCCTCCCTCTAGACATTGGGAGAAAGATTCTTTGGAACCCCCCC 781 CAAACACACACACACACCAAGTTGAGTGACCTAAAGAAAAGGGGACAAGGTGGCCAATGC 841 AAATTGAGAGCTCCCTGTCCTCAGCCCTGAACTGGGAATTGCTGAATGGGAGCAATAAAA 901 TGGAAAAAGGCCAAGTGGCTGCTTGGAAAGGTGG NON?CONTIGUOUS 1 TCTAGACATTGGGAGAAAGATTCTTTGGAACCCCCCCCACACACACACACACACCAAGTT | SEQ?ID?NO:33 SEQ?ID?NO:34 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
61 GAGTGACCTAAAGAAAAGGGGACAAGGTGGCCAATGCAGATTGAGAGCTCCCTGTCCTCA 121 GCCCTGAACTGGGAATTGCTGAATGGGAGCAATAAGATGGAGAGAGGCCAAGTGGCTGCT 181 TGGAGAGGTGGTCACAGGGGTAGGAGACTTAGCTCTACACGCTCAAACTCCCAGGGTCCT 241 GGGCTTCCCAAGGGCCACAGTCTCTAGCCAACCAAACTCACAAGAGCCTGATGTATAAGC 301 CAGAGGCCCAGTGTTTCCACCAGGCGTGGAGTAAGCAGATAAGAGCTCAGCTCTGGAGCT 361 GTTAGTGCCTGGTGTAACTCTTGCCTCCACCAATCACTAGCCCTGTGATTCTGTGCAAGT 421 TATTGATTGATCTCTCTAAGCCTCAATTTCCTCATCTGTGAAATGGCAATAAAATGTTCA 481 ATACAAAAAAAAAAAAAAAAA | |||
BM734900 | Homo sapiens's matrix metalloproteinase 9 (gelatinase B, the 92kDa gelatinase, 92kDa IV Collagen Type VI enzyme), mRNA (cDNA clone MGC:12688 IMAGE:4054882) | 1 TCACCATGAGCCTCTGGCAGCCCCTGGTCCTGGTGCTCCTGGTGCTGGGCTGCTGCTTTG 61 CTGCCCCCAGACAGCGCCAGTCCACCCTTGTGCTCTTCCCTGGAGACCTGAGAACCAATC 121 TCACCGACAGGCAGCTGGCAGAGGAATACCTGTACCGCTATGGTTACACTCGGGTGGCAG 181 AGATGCGTGGAGAGTCGAAATCTCTGGGGCCTGCGCTGCTGCTTCTCCAGAAGCAACTGT 241 CCCTGCCCGAGACCGGTGAGCTGGATAGCGCCACGCTGAAGGCCATGCGAACCCCACGGT 301 GCGGGGTCCCAGACCTGGGCAGATTCCAAACCTTTGAGGGCGACCTCAAGTGGCACCACC 361 ACAACATCACCTATTGGATCCAAAACTACTCGGAAGACTTGCCGCGGGCGGTGATTGACG 421 ACGCCTTTGCCCGCGCCTTCGCACTGTGGAGCGCGGTGACGCCGCTCACCTTCACTCGCG 481 TGTACAGCCGGGACGCAGACATCGTCATCCAGTTTGGTGTCGCGGAGCACGGAGACGGGT 541 ATCCCTTCGACGGGAAGGACGGGCTCCTGGCACACGCCTTTCCTCCTGGCCCCGGCATTC 601 AGGGAGACGCCCATTTCGACGATGACGAGTTGTGGTCCCTGGGCAAGGGCGTCGTGGTTC 661 CAACTCGGTTTGGAAACGCAGATGGCGCGGCCTGCCACTTCCCCTTCATCTTCGAGGGCC 721 GCTCCTACTCTGCCTGCACCACCGACGGTCGCTCCGACGGCTTGCCCTGGTGCAGTACCA 781 CGGCCAACTACGACACCGACGACCGGTTTGGCTTCTGCCCCAGCGAGAGACTCTACACCC 841 GGGACGGCAATGCTGATGGGAAACCCTGCCAGTTTCCATTCATCTTCCAAGGCCAATCCT 901 ACTCCGCCTGCACCACGGACGGTCGCTCCGACGGCTACCGCTGGTGCGCCACCACCGCCA 961 ACTACGACCGGGACAAGCTCTTCGGCTTCTGCCCGACCCGAGCTGACTCGACGGTGATGG 1021?GGGGCAACTCGGCGGGGGAGCTGTGCGTCTTCCCCTTCACTTTCCTGGGTAAGGAGTACT 1081?CGACCTGTACCAGCGAGGGCCGCGGAGATGGGCGCCTCTGGTGCGCTACCACCTCGAACT 1141?TTGACAGCGACAAGAAGTGGGGCTTCTGCCCGGACCAAGGATACAGTTTGTTCCTCGTGG 1201?CGGCGCATGAGTTCGGCCACGCGCTGGGCTTAGATCATTCCTCAGTGCCGGAGGCGCTCA 1261?TGTACCCTATGTACCGCTTCACTGAGGGGCCCCCCTTGCATAAGGACGACGTGAATGGCA 1321?TCCGGCACCTCTATGGTCCTCGCCCTGAACCTGAGCCACGGCCTCCAACCACCACCACAC 1381?CGCAGCCCACGGCTCCCCCGACGGTCTGCCCCACCGGACCCCCCACTGTCCACCCCTCAG 1441?AGCGCCCCACAGCTGGCCCCACAGGTCCCCCCTCAGCTGGCCCCACAGGTCCCCCCACTG 1501?CTGGCCCTTCTACGGCCACTACTGTGCCTTTGAGTCCGGTGGACGATGCCTGCAACGTGA 1561?ACATCTTCGACGCCATCGCGGAGATTGGGAACCAGCTGTATTTGTTCAAGGATGGGAAGT 1621?ACTGGCGATTCTCTGAGGGCAGGGGGAGCCGGCCGCAGGGCCCCTTCCTTATCGCCGACA 1681?AGTGGCCCGCGCTGCCCCGCAAGCTGGACTCGGTCTTTGAGGAGCCGCTCTCCAAGAAGC 1741?TTTTCTTCTTCTCTGGGCGCCAGGTGTGGGTGTACACAGGCGCGTCGGTGCTGGGCCCGA 1801?GGCGTCTGGACAAGCTGGGCCTGGGAGCCGACGTGGCCCAGGTGACCGGGGCCCTCCGGA 1861?GTGGCAGGGGGAAGATGCTGCTGTTCAGCGGGCGGCGCCTCTGGAGGTTCGACGTGAAGG 1921?CGCAGATGGTGGATCCCCGGAGCGCCAGCGAGGTGGACCGGATGTTCCCCGGGGTGCCTT 1981?TGGACACGCACGACGTCTTCCAGTACCGAGAGAAAGCCTATTTCTGCCAGGACCGCTTCT 2041?ACTGGCGCGTGAGTTCCCGGAGTGAGTTGAACCAGGTGGACCAAGTGGGCTACGTGACCT 2101?ATGACATCCTGCAGTGCCCTGAGGACTAGGGCTCCCGTCCTGCTTTGGCAGTGCCATGTA 2161?AATCCCCACTGGGACCAACCCTGGGGAAGGAGCCAGTTTGCCGGATACAAACTGGTATTC 2221?TGTTCTGGAGGAAAGGGAGGAGTGGAGGTGGGCTGGGCCCTCTCTTCTCACCTTTGTTTT 2281?TTGTTGGAGTGTTTCTAATAAACTTGGATTCTCTAACCTTTAAAAAAAAAAAAAAAAAAA | SEQ?ID?NO:35 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2341?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1 M S L W Q P L V L V L L V L G C C F A A 1 ATGAGCCTCTGGCAGCCCCTGGTCCTGGTGCTCCTGGTGCTGGGCTGCTGCTTTGCTGCC 21 P R Q R Q S T L V L F P G D L R T N L T 61 CCCAGACAGCGCCAGTCCACCCTTGTGCTCTTCCCTGGAGACCTGAGAACCAATCTCACC 41 D R Q L A E E Y L Y R Y G Y T R V A E M 121 GACAGGCAGCTGGCAGAGGAATACCTGTACCGCTATGGTTACACTCGGGTGGCAGAGATG 61 R G E S K S L G P A L L L L Q K Q L S L 181 CGTGGAGAGTCGAAATCTCTGGGGCCTGCGCTGCTGCTTCTCCAGAAGCAACTGTCCCTG 81 P E T G E L D S A T L K A M R T P R C G 241 CCCGAGACCGGTGAGCTGGATAGCGCCACGCTGAAGGCCATGCGAACCCCACGGTGCGGG 101 V P D L G R F Q T F E G D L K W H H H N 301 GTCCCAGACCTGGGCAGATTCCAAACCTTTGAGGGCGACCTCAAGTGGCACCACCACAAC 121 I T Y W I Q N Y S E D L P R A V I D D A 361 ATCACCTATTGGATCCAAAACTACTCGGAAGACTTGCCGCGGGCGGTGATTGACGACGCC 141 F A R A F A L W S A V T P L T F T R V Y 421 TTTGCCCGCGCCTTCGCACTGTGGAGCGCGGTGACGCCGCTCACCTTCACTCGCGTGTAC 161 S R D A D I V I Q F G V A E H G D G Y P 481 AGCCGGGACGCAGACATCGTCATCCAGTTTGGTGTCGCGGAGCACGGAGACGGGTATCCC 181 F D G K D G L L A H A F P P G P G I Q G 541 TTCGACGGGAAGGACGGGCTCCTGGCACACGCCTTTCCTCCTGGCCCCGGCATTCAGGGA 201 D A H F D D D E L W S L G K G V V V P T 601 GACGCCCATTTCGACGATGACGAGTTGTGGTCCCTGGGCAAGGGCGTCGTGGTTCCAACT 221 R F G N A D G A A C H F P F I F E G R S 661 CGGTTTGGAAACGCAGATGGCGCGGCCTGCCACTTCCCCTTCATCTTCGAGGGCCGCTCC 241 Y S A C T T D G R S D G L P W C S T T A 721 TACTCTGCCTGCACCACCGACGGTCGCTCCGACGGCTTGCCCTGGTGCAGTACCACGGCC 261 N Y D T D D R F G F C P S E R L Y T R D 781 AACTACGACACCGACGACCGGTTTGGCTTCTGCCCCAGCGAGAGACTCTACACCCGGGAC 281 G N A D G K P C Q F P F I F Q G Q S Y S 841 GGCAATGCTGATGGGAAACCCTGCCAGTTTCCATTCATCTTCCAAGGCCAATCCTACTCC 301 A C T T D G R S D G Y R W C A T T A N Y 901 GCCTGCACCACGGACGGTCGCTCCGACGGCTACCGCTGGTGCGCCACCACCGCCAACTAC | SEQ?ID?NO:36 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
321 D R D K L F G F C P T R A D S T V M G G 961 GACCGGGACAAGCTCTTCGGCTTCTGCCCGACCCGAGCTGACTCGACGGTGATGGGGGGC 341 N S A G E L C V F P F T F L G K E Y S T 1021?AACTCGGCGGGGGAGCTGTGCGTCTTCCCCTTCACTTTCCTGGGTAAGGAGTACTCGACC 361 C T S E G R G D G R L W C A T T S N F D 1081?TGTACCAGCGAGGGCCGCGGAGATGGGCGCCTCTGGTGCGCTACCACCTCGAACTTTGAC 381 S D K K W G F C P D Q G Y S L F L V A A 1141?AGCGACAAGAAGTGGGGCTTCTGCCCGGACCAAGGATACAGTTTGTTCCTCGTGGCGGCG 401 H E F G H A L G L D H S S V P E A L M Y 1201?CATGAGTTCGGCCACGCGCTGGGCTTAGATCATTCCTCAGTGCCGGAGGCGCTCATGTAC 421 P M Y R F T E G P P L H K D D V N G I R 1261?CCTATGTACCGCTTCACTGAGGGGCCCCCCTTGCATAAGGACGACGTGAATGGCATCCGG 441 H L Y G P R P E P E P R P P T T T T P Q 1321?CACCTCTATGGTCCTCGCCCTGAACCTGAGCCACGGCCTCCAACCACCACCACACCGCAG 461 P T A P P T V C P T G P P T V H P S E R 1381?CCCACGGCTCCCCCGACGGTCTGCCCCACCGGACCCCCCACTGTCCACCCCTCAGAGCGC 481 P T A G P T G P P S A G P T G P P T A G 1441?CCCACAGCTGGCCCCACAGGTCCCCCCTCAGCTGGCCCCACAGGTCCCCCCACTGCTGGC 501 P S T A T T V P L S P V D D A C N V N I 1501?CCTTCTACGGCCACTACTGTGCCTTTGAGTCCGGTGGACGATGCCTGCAACGTGAACATC 521 F D A I A E I G N Q L Y L F K D G K Y W 1561?TTCGACGCCATCGCGGAGATTGGGAACCAGCTGTATTTGTTCAAGGATGGGAAGTACTGG 541 R F S E G R G S R P Q G P F L I A D K W 1621?CGATTCTCTGAGGGCAGGGGGAGCCGGCCGCAGGGCCCCTTCCTTATCGCCGACAAGTGG 561 P A L P R K L D S V F E E P L S K K L F 1681?CCCGCGCTGCCCCGCAAGCTGGACTCGGTCTTTGAGGAGCCGCTCTCCAAGAAGCTTTTC 581 F F S G R Q V W V Y T G A S V L G P R R 1741?TTCTTCTCTGGGCGCCAGGTGTGGGTGTACACAGGCGCGTCGGTGCTGGGCCCGAGGCGT 601 L D K L G L G A D V A Q V T G A L R S G 1801?CTGGACAAGCTGGGCCTGGGAGCCGACGTGGCCCAGGTGACCGGGGCCCTCCGGAGTGGC 621 R G K M L L F S G R R L W R F D V K A Q 1861?AGGGGGAAGATGCTGCTGTTCAGCGGGCGGCGCCTCTGGAGGTTCGACGTGAAGGCGCAG |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
641 M V D P R S A S E V D R M F P G V P L D 1921?ATGGTGGATCCCCGGAGCGCCAGCGAGGTGGACCGGATGTTCCCCGGGGTGCCTTTGGAC 661 T H D V F Q Y R E K A Y F C Q D R F Y W 1981?ACGCACGACGTCTTCCAGTACCGAGAGAAAGCCTATTTCTGCCAGGACCGCTTCTACTGG 681 R V S S R S E L N Q V D Q V G Y V T Y D 2041?CGCGTGAGTTCCCGGAGTGAGTTGAACCAGGTGGACCAAGTGGGCTACGTGACCTATGAC 701 I L Q C P E D - 2101?ATCCTGCAGTGCCCTGAGGACTAG | |||
B1961438 | No homology | 1 GCACGAGGCAGCCAGCAGCTTTGGAGCCCCCACAACCTGGACACTCACATCGAAGTCTCT 61 GCCTAGCCACCCTCTCCCTGAGCCCATCTCAGATGCCCCTCCCCCCCAGGCTGCCAGGTG 121 GCTGGGGTGAGGTCAGGTGGCAGGCCCAGAATAGGCCCAGTCATCCACTCCCCTCCCTCT 181 CAGGATTGCAGGAGTCTGAGCTATTCCCGGCCACCTCTATCTCCCACCCCACCTTCTCCA 241 CCATAGCCAGGGGCTGGGCCCCGTAGGTGAAACAAGCGGGTGAAACCCCTCTGGGGCCCA 301 GACATGCAAACCTCTGGCACCACTGGGTCCTGGCTGAACCCCTGGGTGGTGTGCAGCTTC 361 CCCTCTGGTCTCAGTTTCCTTTCCTGAAAAGCGAGGAGTTGGAGGCAACGTTCTCCTCCT 421 GGCCTGTGGCCCTCAGAGGAGAAGGACTGGAAGGAACTTCAGAGAATCCTCACTCCCCTC 481 ATTTTACAGATGAGGAAACT Non?contiguous 1 CCTTTCCTGAAAAGCGAGGAGTTGGAGGCAACGTTCTCCTCCTGGCCTGTGGCCCTCAGA 61 GGAGAAGGACTGGAAGGAACTTCAGAGAATCCTCACTCCCCTCATTTTACAGATGAGGAA 121 ACTGAGGCCCAGAGTGGGCAGAGACTTGGCATCATTGTCATCCAGCAAATAACAGAAGGG 181 AAGTTCCTTGGGGAAGAACCAGGAGCAGAGGTCTGGGGAGAGGTGGGCAAGGAGGGGGTC 241 AGTCTCCCCTAGTCCAGAAAAGGGCCTCACCTGCCAGGGGCCTCCAGTCTCTGGCCCTCT 301 GTCCTGCGCATTGCTTTCCAAGGAGCCTTCTTGAGGTCACTGCATTTGATCTTCATGGCG 361 GCACCTGGAAGAGAGACATGAGCGTTTGTGTTTGCTTTAAAAAAAGCATTTTTCATTTTA 421 AAAAATCAAGGTGTGCTTTGTAGACACTTTGGAAAGTTCAGGAGAGTAATCCAGGGTGGA 481 GTCTATGCAGAAATGACCCATAATCCAGCAACGCCAGGCCCCTGAGTGGTGGCTTCTATG 541 TAGCTGTAATCGTACTATACAT | SEQ?ID?NO:37 SEQ?ID?NO:38 |
B1961550.V1.3_AT | Homo sapiens cDNA FLJ40597 fis, clone THYMU2011118 | 1 ATTGTTATCAACTCTTTGATATCTGATGATCAATGCTCCAAAGAATTGGATTAATATTTT 61 TACACAATATTGTTGTAGTCAGTAACTGTTTCTATTTCCAGGCATTTTTAGATGAATTCA 121 CTAACTGGTCAAGAATAAATCCCAACAAGGCCAGGATTCCCATGGCAGGAGATACCCAAG 181 GTGTGGTCGGGACTGTCTCTAAGCCTTGTTTCACAGCATATGAAATGAAAATCGGTGCAA 241 TTACTTTTCAGGTTGCTACTGGAGATATAGCCACTGAACAGGTAGATGTTATTGTAAACT 301 CAACAGCAAGGACATTTAATCGGAAATCAGGTGTGTCAAGAGCTATTTTAGAAGGTGCTG 361 GACAAGCTGTGGAAAGTGAATGTGCTGTACTAGCTGCACAGCCTCACAGAGATTTTATAA 421 TTACACCAGGTGGATGCTTAAAGTGCAAAATAATAATTCATGTTCCTGGGGGAAAAGATG 481 TCAGGAAAACGGTCACCAGTGTTCTAGAAGAGTGTGAACAGAGGAAGTACACATCGGTTT 541 CCCTTCCAGCCATTGGAACAGGAAATGCCGGAAAAAACCCTATCACAGTTGCTGATAACA 601 TAATCGATGCTATTGTAGACTTCTCATCACAACATTCCACCCCATCATTAAAAACAGTTA 661 AAGTTGTCATTTTTCAACCTGAGCTGCTAAATATATTCTACGACAGCATGAAAAAAAGAG 721 ACCTCTCTGCATCACTGAACTTTCAGTCCACATTCTCCATGACTACATGTAATCTTCCTG 781 AACACTGGACTGACATGAATCATCAGCTGTTTTGCATGGTCCAGCTAGAGCCAGGACAAT | SEQ?ID?NO:39 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
841 CAGAATATAATACCATAAAGGACAAGTTCACCCGAACTTGTTCTTCCCACGAAATAGAGA 901 AGATTGAGAGGATACAGAATGTATTTCTCTGGGAGAGCTACCAGGTAAAGAAAAACCACA 961 TGGACACCAAGAATGGCCATACCAATAACGAGAGACAACTCTTCCACGGCACAGATGCAG 1021?ACACAGTGCCGTACATCAATCAGCACGGCTTTAATCGCAGTTATGCTGGGAAGAACGCTA 1081?CAGTCTTTGGAAAAGGAACGTATTTCGCTGTTGATGCCAGTTATTCTGCTAACGATGCAT 1141?ACTCCAGAGCAGACAGCAGTGGGAGAAAGCATATTTACGTTGTGCGAGTACTTACAGGAG 1201?TCTACACAGTTGGACACGCAGCAATAAAAAGCCCTCCACCAAAGAACCCTGACAACCCTA 1261?CGGATCTGTTTGACTCTGTCACAGATGATACACGGCATCCAAAGCTATTTGTGGTATTCT 1321?CTGATCATCAAGCTTACCCAGAATATCTCATAACTTTCACGGCTTAAAAATATTTTTATC 1381?ATCAAAGAGATGATTTAAGTCATCTGTAAGAACAACATGCAATCTTTGTCTTTGCTTCTG 1441?GCCTGTGTAAGCAGATGAAAGTTTCCCTTTTAGGTGCCAAAATGCTGAAAATTACCTTTT 1501?TAAAGTGCTCTATTGCTGCGATTTGTAGCATACCTTTTTTTCTCAGCAAATTGATGGGTG 1561?GAAGCTGAGAAATGTATGGTAAATGTCACAGAGCTACAACCATTCACAGACACCAAATCT 1621?CTAGGAGAATAAAAAGCACATTATTCTTTTTCTATCAGAAAAAAACAAGATGCATCACCT 1681?TAAAACCAAGATGACATTGTTCTTCTTGGAACATGTTAAGACATCGAATGGTGGCGGGTT 1741?AAACTGTACTGCTTAAGTGGAGCGGCTACCGTTATGCATCTATCACAGTTGGGGATTTTG 1801?CCTTATTAAGGAAAACTTGTCAATAGTTCAGCTGAAATGACTGAATCACAGAATATTAAC 1861?TCTGTTATGGAACAAATCATAACAGATTTTACCTGTTTACATTTCAGGTAAAAATGTATC 1921?GCATTGTTATCTAATATTAAAAAATTACCCCCAATT 1 M L Q R I G L I F L H N I V V V S N C F 1 ATGCTCCAAAGAATTGGATTAATATTTTTACACAATATTGTTGTAGTCAGTAACTGTTTC 21 Y F Q A F L D E F T N W S R I N P N K A 61 TATTTCCAGGCATTTTTAGATGAATTCACTAACTGGTCAAGAATAAATCCCAACAAGGCC 41 R I P M A G D T Q G V V G T V S K P C F 121 AGGATTCCCATGGCAGGAGATACCCAAGGTGTGGTCGGGACTGTCTCTAAGCCTTGTTTC 61 T A Y E M K I G A I T F Q V A T G D I A 181 ACAGCATATGAAATGAAAATCGGTGCAATTACTTTTCAGGTTGCTACTGGAGATATAGCC 81 T E Q V D V I V N S T A R T F N R K S G 241 ACTGAACAGGTAGATGTTATTGTAAACTCAACAGCAAGGACATTTAATCGGAAATCAGGT 101 V S R A I L E G A G Q A V E S E C A V L 301 GTGTCAAGAGCTATTTTAGAAGGTGCTGGACAAGCTGTGGAAAGTGAATGTGCTGTACTA 121 A A Q P H R D F I I T P G G C L K C K I 361 GCTGCACAGCCTCACAGAGATTTTATAATTACACCAGGTGGATGCTTAAAGTGCAAAATA 141 I I H V P G G K D V R K T V T S V L E E 421 ATAATTCATGTTCCTGGGGGAAAAGATGTCAGGAAAACGGTCACCAGTGTTCTAGAAGAG 161 C E Q R K Y T S V S L P A I G T G N A G 481 TGTGAACAGAGGAAGTACACATCGGTTTCCCTTCCAGCCATTGGAACAGGAAATGCCGGA 181 K N P I T V A D N I I D A I V D F S S Q | SEQ?ID?NO:40 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
541 AAAAACCCTATCACAGTTGCTGATAACATAATCGATGCTATTGTAGACTTCTCATCACAA 201 H S T P S L K T V K V V I F Q P E L L N 601 CATTCCACCCCATCATTAAAAACAGTTAAAGTTGTCATTTTTCAACCTGAGCTGCTAAAT 221 I F Y D S M K K R D L S A S L N F Q S T 661 ATATTCTACGACAGCATGAAAAAAAGAGACCTCTCTGCATCACTGAACTTTCAGTCCACA 241 F S M T T C N L P E H W T D M N H Q L F 721 TTCTCCATGACTACATGTAATCTTCCTGAACACTGGACTGACATGAATCATCAGCTGTTT 261 C M V Q L E P G Q S E Y N T I K D K F T 781 TGCATGGTCCAGCTAGAGCCAGGACAATCAGAATATAATACCATAAAGGACAAGTTCACC 281 R T C S S H E I E K I E R I Q N V F L W 841 CGAACTTGTTCTTCCCACGAAATAGAGAAGATTGAGAGGATACAGAATGTATTTCTCTGG 301 E S Y Q V K K N H M D T K N G H T N N E 901 GAGAGCTACCAGGTAAAGAAAAACCACATGGACACCAAGAATGGCCATACCAATAACGAG 321 R Q L F H G T D A D T V P Y I N Q H G F 961 AGACAACTCTTCCACGGCACAGATGCAGACACAGTGCCGTACATCAATCAGCACGGCTTT 341 N R S Y A G K N A T V F G K G T Y F A V 1021?AATCGCAGTTATGCTGGGAAGAACGCTACAGTCTTTGGAAAAGGAACGTATTTCGCTGTT 361 D A S Y S A N D A Y S R A D S S G R K H 1081?GATGCCAGTTATTCTGCTAACGATGCATACTCCAGAGCAGACAGCAGTGGGAGAAAGCAT 381 I Y V V R V L T G V Y T V G H A A I K S 1141?ATTTACGTTGTGCGAGTACTTACAGGAGTCTACACAGTTGGACACGCAGCAATAAAAAGC 401 P P P K N P D N P T D L F D S V T D D T 1201?CCTCCACCAAAGAACCCTGACAACCCTACGGATCTGTTTGACTCTGTCACAGATGATACA 421 R H P K L F V V F S D H Q A Y P E Y L I 1261?CGGCATCCAAAGCTATTTGTGGTATTCTCTGATCATCAAGCTTACCCAGAATATCTCATA 441 T F T A - 1321?ACTTTCACGGCTTAA | |||
BM734862.V1.3_AT | The homo sapiens who is expressed on the myelocyte 1 triggers acceptor, mRNA | 1 GTCCCGGGAGCCCTCAGCAGCAGTTGGAGCTGGTGCACAGGAAGGATGAGGAAGACCAGG 61 CTCTGGGGGCTGCTGTGGATGCTCTTTGTCTCAGAACTCCGAGCTGCAACTAAATTAACT 121 GAGGAAAAGTATGAACTGAAAGAGGGGCAGACCCTGGATGTGAAATGTGACTACACGCTA 181 GAGAAGTTTGCCAGCAGCCAGAAAGCTTGGCAGATAATAAGGGACGGAGAGATGCCCAAG 241 ACCCTGGCATGCACAGAGAGGCCTTCAAAGAATTCCCATCCAGTCCAAGTGGGGAGGATC 301 ATACTAGAAGACTACCATGATCATGGTTTACTGCGCGTCCGAATGGTCAACCTTCAAGTG 361 GAAGATTCTGGACTGTATCAGTGTGTGATCTACCAGCCTCCCAAGGAGCCTCACATGCTG | SEQ?ID?NO:41 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
421 TTCGATCGCATCCGCTTGGTGGTGACCAAGGGTTTTTCAGGGACCCCTGGCTCCAATGAG 481 AATTCTACCCAGAATGTGTATAAGATTCCTCCTACCACCACTAAGGCCTTGTGCCCACTC 541 TATACCAGCCCCAGAACTGTGACCCAACCCCCACCCAAGTCAACTGCCGGTGTCTCCCGC 601 CCTGGACTTGAAGTCAACCCCACACATGTGACAGACGTCACCAGGATCTCTGTGTTCAGC 661 ATTGTCATTCCTGTGGCGTGCGCACTCGTGACTAAGAGCCTGGTCCTTACTGTCCTGTTT 721 GCTGTCACACAGAAGTCATTTGGATCCTAGGCCCATGGACCCATGAGGATGACCTCTGAT 781 CTCCATCTACATCCATCTGGCAGTTGTGCCAAGGGAGGAGGGAGGAGGTAAAAGGCAGGG 841 AGTTAATAACATGAATTAAATCTGTAATCACCGCCAAAAAAAAAAAAAAAAAAAAAAAAA 901 AAAAA 1 M R K T R L W G L L W M L F V S E L R A 1 ATGAGGAAGACCAGGCTCTGGGGGCTGCTGTGGATGCTCTTTGTCTCAGAACTCCGAGCT 21 A T K L T E E K Y E L K E G Q T L D V K 61 GCAACTAAATTAACTGAGGAAAAGTATGAACTGAAAGAGGGGCAGACCCTGGATGTGAAA 41 C D Y T L E K F A S S Q K A W Q I I R D 121 TGTGACTACACGCTAGAGAAGTTTGCCAGCAGCCAGAAAGCTTGGCAGATAATAAGGGAC 61 G E M P K T L A C T E R P S K N S H P V 181 GGAGAGATGCCCAAGACCCTGGCATGCACAGAGAGGCCTTCAAAGAATTCCCATCCAGTC 81 Q V G R I I L E D Y H D H G L L R V R M 241 CAAGTGGGGAGGATCATACTAGAAGACTACCATGATCATGGTTTACTGCGCGTCCGAATG 101 V N L Q V E D S G L Y Q C V I Y Q P P K 301 GTCAACCTTCAAGTGGAAGATTCTGGACTGTATCAGTGTGTGATCTACCAGCCTCCCAAG 121 E P H M L F D R I R L V V T K G F S G T 361 GAGCCTCACATGCTGTTCGATCGCATCCGCTTGGTGGTGACCAAGGGTTTTTCAGGGACC 141 P G S N E N S T Q N V Y K I P P T T T K 421 CCTGGCTCCAATGAGAATTCTACCCAGAATGTGTATAAGATTCCTCCTACCACCACTAAG 161 A L C P L Y T S P R T V T Q P P P K S T 481 GCCTTGTGCCCACTCTATACCAGCCCCAGAACTGTGACCCAACCCCCACCCAAGTCAACT 181 A G V S R P G L E V N P T H V T D V T R 541 GCCGGTGTCTCCCGCCCTGGACTTGAAGTCAACCCCACACATGTGACAGACGTCACCAGG 201 I S V F S I V I P V A C A L V T K S L V 601 ATCTCTGTGTTCAGCATTGTCATTCCTGTGGCGTGCGCACTCGTGACTAAGAGCCTGGTC 221 L T V L F A V T Q K S F G S - 661 CTTACTGTCCTGTTTGCTGTCACACAGAAGTCATTTGGATCCTAG | SEQ?ID?NO:42 | ||
WBC041B04_V1.3_AT | The proteinic people mRNA of interferon-induced 56Kda | 1 CCAGATCTCAGAGGAGCCTGGCTAAGCAAAACCCTGCAGAACGGCTGCCTAATTTACAGC | SEQ?ID?NO:43 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
61 AACCATGAGTACAAATGGTGATGATCATCAGGTCAAGGATAGTCTGGAGCAATTGAGATG 121 TCACTTTACATGGGAGTTATCCATTGATGACGATGAAATGCCTGATTTAGAAAACAGAGT 181 CTTGGATCAGATTGAATTCCTAGACACCAAATACAGTGTGGGAATACACAACCTACTAGC 241 CTATGTGAAACACCTGAAAGGCCAGAATGAGGAAGCCCTGAAGAGCTTAAAAGAAGCTGA 301 AAACTTAATGCAGGAAGAACATGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTGGGG 361 CAACTTTGCCTGGATGTATTACCACATGGGCAGACTGGCAGAAGCTCAGACTTACCTGGA 421 CAAGGTGGAGAACACTTGCAAGAAGTTTGCAAATCCCTCCAGCTATAGAATCGACTGTCC 481 TCAGATGGACTGTGAGGAAGGATGGGCCTTGCTGAAATGTGGAGGAAAGAATTATAAACG 541 GGCCAAGGCCTGCTTTGAAAAGGCTCTGGAAGTGGACCCAGAAAACCCTGAATTCAGCAC 601 TGGGTATGCAATCACCGCCTATCGCCTGGACGGCTTTAAATTAGCCACAAAAAATCACAA 661 GCCATTTTCTTTGCTTCCCCTAAGGCAGGCTGTCCGCTTAAATCCAGACAATGGATATAT 721 TAAGGTTCTCCTTGCCCTGAAGCTTCAGGATGTAGGACAAGAAGCTGAAGGAGAAAAGTA 781 CATTGAAGAAGCGCTGACCAACACGTCCTCGCAGACCTATGTCCTTCGATATGCGGCCAA 841 GTTTTACAGAAAAAAAGGCTCTCTGGATAAAGCTCTTCAGCTCTTTAAAAAGGCCTTGAA 901 AGCAACACCCTCCTCTGCCTTCGTGCATCACCAGATAGGGCTTTGCTACAGAGGACAAGT 961 GATTCAAATGAAGAAAGCTGCAAACTGGCAGCCTAGAGGACAGGATAGAAAAAATGTTGA 1021?GAGAATTGCAAGATTAGCCATATCTCATTTGGAATTTGCTCTGGAAGAAAAACCCACACT 1081?TGATATTGCTTATGTAGACCTGGCAGAAATGTATATAGAAGCAGGTGACCACAGAAAAGC 1141?TGAAGACACTTATCAAAAAGTGTTAACCATGAAAGTACTCGAAGAAGAAAAGCTGCAAAG 1201?GGTACATTTCTCCTATGGCCGATTTCAGGAATTTCAAAATAAATCTGAAGACCATGCAAT 1261?TATCCATTATTTAAAAGCAGCAGAAATAGAAAACGCATCTTTTCTAAGAGATAAAAGTAT 1321?CAGGTCTTTGGAGAAATTGGCTTTAAAGAAACTTCAGAGAAACCAGTGGTAGAAGAAACA 1381?ATGCAAGACATACATTTCTACTATGGTCGGTTTCAGGAATTTCAAAAGAAATCTGACGTC 1441?AATGCAATTATCCATTATTTAAAAGCTATAAAAATAGAACAGGCATCATTAACAAGGGAT 1501?AAAAGTATCAATTCTTTGAAGAAATTGGTTTTAAGGAAACTTCGGAGAAAGGCATTAGAT 1561?CTGGAAAGCTTGAGCCTCCTTGGGTTCGTCTACAAATTGGAAGGAAATATGAATGAAGCC 1621?CTGGAGTACTATGAGCGGGCCCTGAGACTGGCTGCTGACTTTGAGAACTCTGTGAGACAA 1681?GGTCCTTAGGCACCCAGATATCAGCCACTTTCACATTTTATGTTAACACATACTAATCAT 1741?CTTACCTGCTTGCTGCTTTCAGAACATGTTATGTAATTTACTGTAATGATGCAATTTTTG 1801?AATAATAAATCTGACAAAATATT 1 M S T N G D D H Q V K D S L E Q L R C H 1 ATGAGTACAAATGGTGATGATCATCAGGTCAAGGATAGTCTGGAGCAATTGAGATGTCAC 21 F T W E L S I D D D E M P D L E N R V L 61 TTTACATGGGAGTTATCCATTGATGACGATGAAATGCCTGATTTAGAAAACAGAGTCTTG 41 D Q I E F L D T K Y S V G I H N L L A Y 121 GATCAGATTGAATTCCTAGACACCAAATACAGTGTGGGAATACACAACCTACTAGCCTAT 61 V K H L K G Q N E E A L K S L K E A E N 181 GTGAAACACCTGAAAGGCCAGAATGAGGAAGCCCTGAAGAGCTTAAAAGAAGCTGAAAAC 81 L M Q E E H D N Q A N V R S L V T W G N 241 TTAATGCAGGAAGAACATGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTGGGGCAAC 101 F A W M Y Y H M G R L A E A Q T Y L D K 301 TTTGCCTGGATGTATTACCACATGGGCAGACTGGCAGAAGCTCAGACTTACCTGGACAAG | SEQ?ID?NO:44 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
121 V E N T C K K F A N P S S Y R I D C P Q 361 GTGGAGAACACTTGCAAGAAGTTTGCAAATCCCTCCAGCTATAGAATCGACTGTCCTCAG 141 M D C E E G W A L L K C G G K N Y K R A 421 ATGGACTGTGAGGAAGGATGGGCCTTGCTGAAATGTGGAGGAAAGAATTATAAACGGGCC 161 K A C F E K A L E V D P E N P E F S T G 481 AAGGCCTGCTTTGAAAAGGCTCTGGAAGTGGACCCAGAAAACCCTGAATTCAGCACTGGG 181 Y A I T A Y R L D G F K L A T K N H K P 541 TATGCAATCACCGCCTATCGCCTGGACGGCTTTAAATTAGCCACAAAAAATCACAAGCCA 201 F S L L P L R Q A V R L N P D N G Y I K 601 TTTTCTTTGCTTCCCCTAAGGCAGGCTGTCCGCTTAAATCCAGACAATGGATATATTAAG 221 V L L A L K L Q D V G Q E A E G E K Y I 661 GTTCTCCTTGCCCTGAAGCTTCAGGATGTAGGACAAGAAGCTGAAGGAGAAAAGTACATT 241 E E A L T N T S S Q T Y V L R Y A A K F 721 GAAGAAGCGCTGACCAACACGTCCTCGCAGACCTATGTCCTTCGATATGCGGCCAAGTTT 261 Y R K K G S L D K A L Q L F K K A L K A 781 TACAGAAAAAAAGGCTCTCTGGATAAAGCTCTTCAGCTCTTTAAAAAGGCCTTGAAAGCA 281 T P S S A F V H H Q I G L C Y R G Q V I 841 ACACCCTCCTCTGCCTTCGTGCATCACCAGATAGGGCTTTGCTACAGAGGACAAGTGATT 301 Q M K K A A N W Q P R G Q D R K N V E R 901 CAAATGAAGAAAGCTGCAAACTGGCAGCCTAGAGGACAGGATAGAAAAAATGTTGAGAGA 321 I A R L A I S H L E F A L E E K P T L D 961 ATTGCAAGATTAGCCATATCTCATTTGGAATTTGCTCTGGAAGAAAAACCCACACTTGAT 341 I A Y V D L A E M Y I E A G D H R K A E 1021?ATTGCTTATGTAGACCTGGCAGAAATGTATATAGAAGCAGGTGACCACAGAAAAGCTGAA 361 D T Y Q K V L T M K V L E E E K L Q R V 1081?GACACTTATCAAAAAGTGTTAACCATGAAAGTACTCGAAGAAGAAAAGCTGCAAAGGGTA 381 H F S Y G R F Q E F Q N K S E D H A I I 1141?CATTTCTCCTATGGCCGATTTCAGGAATTTCAAAATAAATCTGAAGACCATGCAATTATC 401 H Y L K A A E I E N A S F L R D K S I R 1201?CATTATTTAAAAGCAGCAGAAATAGAAAACGCATCTTTTCTAAGAGATAAAAGTATCAGG 421 S L E K L A L K K L Q R N Q W - 1261?TCTTTGGAGAAATTGGCTTTAAAGAAACTTCAGAGAAACCAGTGGTAG |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
WBC422.GRSP.V1.3_AT | Homo sapiens's guanine nucleotide binding protein 5, mRNA. | 1 CTCCAGGCTGTGGAACCTTTGTTCTTTCACTCTTTGCAATAAATCTTGCTGCTGCTCACT 61 CTTTGGGTCCACACTGCCTTTATGAGCTGTAACACTCACTGGGAATGTCTGCAGCTTCAC 121 TCCTGAAGCCAGCGAGACCACGAACCCACCAGGAGGAACAAACAACTCCAGACGCGCAGC 181 CTTAAGAGCTGTAACACTCACCGCGAAGGTCTGCAGCTTCACTCCTGAGCCAGCCAGACC 241 ACGAACCCACCAGAAGGAAGAAACTCCAAACACATCCGAACATCAGAAGGAGCAAACTCC 301 TGACACGCCACCTTTAAGAACCGTGACACTCAACGCTAGGGTCCGCGGCTTCATTCTTGA 361 AGTCAGTGAGACCAAGAACCCACCAATTCCGGACACGCTAATTGTTGTAGATCATCACTT 421 CAAGGTGCCCATATCTTTCTAGTGGAAAAATTATTCTGGCCTCCGCTGCATACAAATCAG 481 GCAACCAGAATTCTACATATATAAGGCAAAGTAACATCCTAGACATGGCTTTAGAGATCC 541 ACATGTCAGACCCCATGTGCCTCATCGAGAACTTTAATGAGCAGCTGAAGGTTAATCAGG 601 AAGCTTTGGAGATCCTGTCTGCCATTACGCAACCTGTAGTTGTGGTAGCGATTGTGGGCC 661 TCTATCGCACTGGCAAATCCTACCTGATGAACAAGCTGGCTGGGAAGAACAAGGGCTTCT 721 CTGTTGCATCTACGGTGCAGTCTCACACCAAGGGAATTTGGATATGGTGTGTGCCTCATC 781 CCAACTGGCCAAATCACACATTAGTTCTGCTTGACACCGAGGGCCTGGGAGATGTAGAGA 841 AGGCTGACAACAAGAATGATATCCAGATCTTTGCACTGGCACTCTTACTGAGCAGCACCT 901 TTGTGTACAATACTGTGAACAAAATTGATCAGGGTGCTATCGACCTACTGCACAATGTGA 961 CAGAACTGACAGATCTGCTCAAGGCAAGAAACTCACCCGACCTTGACAGGGTTGAAGATC 1021?CTGCTGACTCTGCGAGCTTCTTCCCAGACTTAGTGTGGACTCTGAGAGATTTCTACCTAG 1081?CCCTGGAAGCAGATGGGCAACTCGTCACAGCCGATGAATACCTGGAGAATTCGCTGAGGC 1141?AAAAGCAAGGCACCGATCGAAGTCTCCAAAATTTCAATTTGCCCCGTCTGTGTATACAGA 1201?AATTCTTTCCAAGAAAGAAATGCTTTATTTTTGACTTGCCCACTCACCGGAAGAAGCTTG 1261?CCCACCTCGAGACACTGCATAATGATGAGCTGGATTCTGACTTTGTGCAACAAGTGGCAG 1321?AATTCTGTTCATACGTCTTCAAGCATTCCAAGACTAAAACCCTTTCAGGAGGCATTAAAG 1381?TCAATGGACCTCAATTAGAGAGCCTGGTGCTGACCTATGTCAACGCCATCAGCCGTGGGT 1441?ATCTGCCCTGCATGGAGAACTCAGTCTTGGCCTTGGCTCAGATCAAGAACTCAGCAGCAG 1501?TGCAAAAGGCCATTGCTCACTATGACCAGCAGATGGGCCGGAAGCTGCAGCTGCCCACGG 1561?AAACCCTCCAGGAGCTGCTAGACCTGCACAGGGCCAGTGAGAAAGAAGCCATTGCCGTCT 1621?TCATGAAGAACTCTTTCAAGGATGTGAACCAAAGTTTCCAGAAAAAATTACGGACCCAGC 1681?TAGAAGCAAAACAGGATGACTTTTATCAACAGAACTTGGAGGCATCACTGGATCGTTGCT 1741?CAGCTTTACTTCAGGATCTTTTTGGTCCTCTAGAAGAAGCAGTGAAGCAGGGAATTTATT 1801?CTAAGCCAGGAGGCCATAATCTCTTCATTCAGAAAACAGAAGAACTGAAGGCAAAGTACT 1861?ATCGGGAGCCTCGGAAAGGAATACAGGCTGAAGAAGTTCTGCAGAAATATTTAAAGTCCA 1921?AGGAGTCTGTGAGTCATGCAATATTACAGACTGACCAGGCTCTCACAGAGACGGAAAAAA 1981?AGAAGAAAGAGGCACAAGTGAAAGCAGAAGCTGAAAAGGCTGAAGCGCAAAGGTTGGCGG 2041?CGATTCAAAGGCAGAACGAGCAAATGATGCAGGAGAGGGAGAGACTCCATCAGGAACAAG 2101?TGAGACAAATGGAGATAGCCAAACAAAATTGGCTGGCAGAGCAACAGAAAATGCAGGAAC 2161?AACAGATGCAGGAACAGGCTGCACAGCTCAGCACAACATTCCAAGCTCAAAATAGAAGCC 2221?TTCTCAGTGAGCTCCAGCACGCCCAGAGGACTGTTAATAACGATGATCCATGTGTTTTAC 2281?TCTAAAGTGCTAAATATGGGAGTTTCCTTTTTTTACTCTTTGTCACTGATGACACAACAG 2341?AAAAGAAACTGTAGACCTTGGGACAATCAACATTTAAATAAACTTTATAATTATTTTTTC 2401?AAACTTTAAAAAAAAAAAAAAAAAAAAAAAA 1 M A L E I H M S D P M C L I E N F N E Q 1 ATGGCTTTAGAGATCCACATGTCAGACCCCATGTGCCTCATCGAGAACTTTAATGAGCAG 21 L K V N Q E A L E I L S A I T Q P V V V 61 CTGAAGGTTAATCAGGAAGCTTTGGAGATCCTGTCTGCCATTACGCAACCTGTAGTTGTG | SEQ?ID?NO:45 SEQ?ID?NO:46 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
41 V A I V G L Y R T G K S Y L M N K L A G 121 GTAGCGATTGTGGGCCTCTATCGCACTGGCAAATCCTACCTGATGAACAAGCTGGCTGGG 61 K N K G F S V A S T V Q S H T K G I W I 181 AAGAACAAGGGCTTCTCTGTTGCATCTACGGTGCAGTCTCACACCAAGGGAATTTGGATA 81 W C V P H P N W P N H T L V L L D T E G 241 TGGTGTGTGCCTCATCCCAACTGGCCAAATCACACATTAGTTCTGCTTGACACCGAGGGC 101 L G D V E K A D N K N D I Q I F A L A L 301 CTGGGAGATGTAGAGAAGGCTGACAACAAGAATGATATCCAGATCTTTGCACTGGCACTC 121 L L S S T F V Y N T V N K I D Q G A I D 361 TTACTGAGCAGCACCTTTGTGTACAATACTGTGAACAAAATTGATCAGGGTGCTATCGAC 141 L L H N V T E L T D L L K A R N S P D L 421 CTACTGCACAATGTGACAGAACTGACAGATCTGCTCAAGGCAAGAAACTCACCCGACCTT 161 D R V E D P A D S A S F F P D L V W T L 481 GACAGGGTTGAAGATCCTGCTGACTCTGCGAGCTTCTTCCCAGACTTAGTGTGGACTCTG 181 R D F Y L A L E A D G Q L V T A D E Y L 541 AGAGATTTCTACCTAGCCCTGGAAGCAGATGGGCAACTCGTCACAGCCGATGAATACCTG 201 E N S L R Q K Q G T D R S L Q N F N L P 601 GAGAATTCGCTGAGGCAAAAGCAAGGCACCGATCGAAGTCTCCAAAATTTCAATTTGCCC 221 R L C I Q K F F P R K K C F I F D L P T 661 CGTCTGTGTATACAGAAATTCTTTCCAAGAAAGAAATGCTTTATTTTTGACTTGCCCACT 241 H R K K L A H L E T L H N D E L D S D F 721 CACCGGAAGAAGCTTGCCCACCTCGAGACACTGCATAATGATGAGCTGGATTCTGACTTT 261 V Q Q V A E F C S Y V F K H S K T K T L 781 GTGCAACAAGTGGCAGAATTCTGTTCATACGTCTTCAAGCATTCCAAGACTAAAACCCTT 281 S G G I K V N G P Q L E S L V L T Y V N 841 TCAGGAGGCATTAAAGTCAATGGACCTCAATTAGAGAGCCTGGTGCTGACCTATGTCAAC 301 A I S R G Y L P C M E N S V L A L A Q I 901 GCCATCAGCCGTGGGTATCTGCCCTGCATGGAGAACTCAGTCTTGGCCTTGGCTCAGATC 321 K N S A A V Q K A I A H Y D Q Q M G R K 961 AAGAACTCAGCAGCAGTGCAAAAGGCCATTGCTCACTATGACCAGCAGATGGGCCGGAAG 341 L Q L P T E T L Q E L L D L H R A S E K 1021?CTGCAGCTGCCCACGGAAACCCTCCAGGAGCTGCTAGACCTGCACAGGGCCAGTGAGAAA |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
361 E A I A V F M K N S F K D V N Q S F Q K 1081?GAAGCCATTGCCGTCTTCATGAAGAACTCTTTCAAGGATGTGAACCAAAGTTTCCAGAAA 381 K L R T Q L E A K Q D D F Y Q Q N L E A 1141?AAATTACGGACCCAGCTAGAAGCAAAACAGGATGACTTTTATCAACAGAACTTGGAGGCA 401 S L D R C S A L L Q D L F G P L E E A V 1201?TCACTGGATCGTTGCTCAGCTTTACTTCAGGATCTTTTTGGTCCTCTAGAAGAAGCAGTG 421 K Q G I Y S K P G G H N L F I Q K T E E 1261?AAGCAGGGAATTTATTCTAAGCCAGGAGGCCATAATCTCTTCATTCAGAAAACAGAAGAA 441 L K A K Y Y R E P R K G I Q A E E V L Q 1321?CTGAAGGCAAAGTACTATCGGGAGCCTCGGAAAGGAATACAGGCTGAAGAAGTTCTGCAG 461 K Y L K S K E S V S H A I L Q T D Q A L 1381?AAATATTTAAAGTCCAAGGAGTCTGTGAGTCATGCAATATTACAGACTGACCAGGCTCTC 481 T E T E K K K K E A Q V K A E A E K A E 1441?ACAGAGACGGAAAAAAAGAAGAAAGAGGCACAAGTGAAAGCAGAAGCTGAAAAGGCTGAA 501 A Q R L A A I Q R Q N E Q M M Q E R E R 1501?GCGCAAAGGTTGGCGGCGATTCAAAGGCAGAACGAGCAAATGATGCAGGAGAGGGAGAGA 521 L H Q E Q V R Q M E I A K Q N W L A E Q 1561?CTCCATCAGGAACAAGTGAGACAAATGGAGATAGCCAAACAAAATTGGCTGGCAGAGCAA 541 Q K M Q E Q Q M Q E Q A A Q L S T T F Q 1621?CAGAAAATGCAGGAACAACAGATGCAGGAACAGGCTGCACAGCTCAGCACAACATTCCAA 561 A Q N R S L L S E L Q H A Q R T V N N D 1681?GCTCAAAATAGAAGCCTTCTCAGTGAGCTCCAGCACGCCCAGAGGACTGTTAATAACGAT 581 D P C V L L - 1741?GATCCATGTGTTTTACTCTAA | |||
WBC007E09 | Homo sapiens's sterol-C5-desaturase (ERG3 delta-5-desaturase homologue, fungi)-and sample, transcript variant 2 | 1 AGAGACTTCAGCGCCTGGGACTCGGGTGGGCGAGGCGGAAGGTGTCCTCGCAGCACGGCT 61 TTTCTCCGCGCCGCGGTTGGTTAGCGAGTGCCCTCTGGGTGCTAGGCGTTGGGCGGATGG 121 TAGGATCGCGGTAGCATACGGATCCGAGTCCTGCGCCGAGTGAGAGGAGAGGCTGGCAGG 181 GGCTAAGTGATGGATCTTGTACTCCGTGTTGCAGATTACTATTTTTTTACACCATACGTG 241 TATCCAGCCACATGGCCAGAAGATGACATCTTCCGACAAGCTATTAGTCTTCTGATTGTA 301 ACAAATGTTGGTGCTTACATCCTTTATTTCTTCTGTGCAACACTGAGCTATTATTTTGTC 361 TTCGATCATGCATTAATGAAACATCCACAATTTTTAAAGAATCAAGTCCGTCGAGAGATT 421 AAGTTTACTGTCCAGGCATTGCCATGGATAAGTATTCTTACTGTTGCACTGTTCTTGCTG 481 GAGATAAGAGGTTACAGCAAATTACATGATGACCTAGGAGAGTTTCCATATGGATTGTTT 541 GAACTTGTCGTTAGTATAATATCTTTCCTCTTTTTCACTGACATGTTCATCTACTGGATT 601 CACAGAGGCCTTCATCATAGACTGGTATATAAGCGCCTACATAAACCTCACCATATTTGG 661 AAGATTCCTACTCCATTTGCAAGTCATGCTTTTCACCCTATTGATGGCTTTCTTCAGAGT | SEQ?ID?NO:47 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
721 CTACCTTACCATATATACCCTTTTATCTTTCCATTACACAAGGTGGTTTATTTAAGTCTG 781 TACATCTTGGTTAATATCTGGACAATTTCCATTCATGACGGTGATTTTCGTGTCCCCCAA 841 ATCTTACAGCCATTTATTAATGGCTCAGCTCATCATACAGACCACCATATGTTCTTTGAC 901 TATAATTATGGACAATATTTCACTTTGTGGGATAGGATTGGCGGCTCATTCAAAAATCCT 961 TCATCCTTTGAGGGGAAGGGACCGCTCAGTTATGTGAAGGAGATGACAGAGGGAAAGCGC 1021?AGCAGCCATTCAGGAAATGGCTGTAAGAATGAAAAATTATTCAATGGAGAGTTTACAAAG 1081?ACTGAATAGATTATTGCCCAGTTATTCTTAAGTAAGGACAAAGAAGGAAATATCATCGTA 1141?TTTCTTTTTTTTAATAAGGAAAAAATAATATCCATACAGTCAAGATACATAGTAAATGGT 1201?ATCATTTGGAAATCAGCATCGTGGGCACTGCTGAGGAATGATCCTAGTGGTAGGTCAGAA 1261?GAAGATGCTGTGAACACCAGGACTTTAATCTTATGCTTAAAATGCCAGATGTTGTTCGGG 1321?GGACAACTTGTATCTTTCTAGCAGCAGATCTGTAGTTTGTATAGCCTCAACAACAATTTT 1381?AAATAAGATGGAGAATAAATTATTGAGGGGACTAGGCTATATGCATTTGCCTTCATCCAC 1441?CCATGTTTATTAAGAATCATTGTGCTTAATAATACCAAGACTAAGCACCATAACCAAGAA 1501?ATACTAATGTAAAGATTGTTTCTTGTTTCAGGAATGGTTAATTCTTCAACGTTGGTATGA 1561?TAATGATAACTTGTTTTGACTTGAATAAAGTACTACATCAGTGTGGAAAAAAATTCTGAT 1621?ACATTAGCAGCTATGTAAATGACCTAATTGATAGCAGGTGTAATAAGACTATCGTCTTCC 1681?TACACATAGGAGGCTCATTCTCTGGACACACTATCACCTATTACATTTTACTGATTAACA 1741?AATAAATTGGAATTTAAAAATATCGATATCACCATGATTTAATCCAGATCTGGGATTATG 1801?TAGCTAAACATTGTGATGATTATTATTTAAAACCATTATTTAATAAGAGTAAAAATATGT 1861?GAATCTGGATATATTTAAAAAAAGAAATTTGATGCCCAGATAATATATTAGGCACTACTG 1921?ATTTTTTAGTTAAATTGATGCACTACACTTTTGATGTTTGAAGTTACAAACCTGTAATTT 1981?TTTTGTAAAGGAAATAATTGCCAAATACCTAGGCCCATTGCTGACGATTAGTTCTAAAAT 2041?CTTATTCCTCCTCTTCTCCCCTCACTTTTCCCTACTTCCTCTGCAAAAAGATTTAACAAA 2101?TACATTCATAAGGAAATGTGTGTTGTAACAAATATATTGCAAAAACATAGTTTGTAAAGG 2161?CATTCTATAAGCTATTTATGTAAAATCAATAAAAGTTGATCATAATTAAAAAAAAAAAAA 2221?AAAAAAAA 1 MDLVLRVADYYFFTPYVYPATWPEDDIFRQAISLLIVTNVGAYILYFFCATLSYYFVFDH 61 ALMKHPQFLKNQVRREIKFTVQALPWISILTVALFLLEIRGYSKLHDDLGEFPYGLFELV 121 VSIISFLFFTDMFIYWIHRGLHHRLVYKRLHKPHHIWKIPTPFASHAFHPIDGFLQSLPY 181 HIYPFIFPLHKVVYLSLYILVNIWTISIHDGDFRVPQILQPFINGSAHHTDHHMFFDYNY 241 GQYFTLWDRIGGSFKNPSSFEGKGPLSYVKEMTEGKRSSHSGNGCKNEKLFNGEFTKTE- | SEQ?ID?NO:48 | ||
BM735031.V1.3_AT | Homo sapiens N-myc (and STAT) interactant (interactor), mRNA (cDNA clone MGC:5050 IMAGE:3452659). | 1 GGCGCGCTGGGCCTTGGGGAGCTGCGCTCGGCGGGCGGACGCGGGGGATCATGGAAGCTG 61 ATAAAGATGACACACAACAAATTCTTAAGGAGCATTCGCCAGATGAATTTATAAAAGATG 121 AACAAAATAAGGGACTAATTGATGAAATTACAAAGAAAAATATTCAACTAAAGAAGGAGA 181 TCCAAAAGCTTGAAACGGAGTTACAAGAGGCTACCAAAGAATTCCAGATTAAAGAGGATA 241 TTCCTGAAACAAAGATGAAATTCTTATCAGTTGAAACTCCTGAGAATGACAGCCAGTTGT 301 CAAATATCTCCTGTTCATTTCAAGTGAGCTCGAAAGTTCCTTATGAGATACAAAAAGGAC 361 AAGCACTTATCACCTTTGAAAAAGAAGAAGTTGCTCAAAATGTGGTAAGCATGAGTAAAC 421 ATCATGTACAGATAAAAGATGTAAATCTGGAGGTTACGGCCAAGCCAGTTCCATTAAATT 481 CAGGAGTCAGATTCCAGGTTTATGTAGAAGTTTCTAAAATGAAAATCAATGTTACTGAAA 541 TTCCTGACACATTGCGTGAAGATCAAATGAGAGACAAGCTAGAACTGAGCTTTTGTAAGT 601 CCCGACACGGAGGAGGAGAGGTGGAATGCGTGAAGTACGATAAGCGGTCTGGAAGTGCTG | SEQ?ID?NO:49 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
661 TCATCACGTTTGTGGAAACTGGAGTTGCTGACGAGATTTTGAAGAAGAAAGACTATCCTC 721 TTTATACAGATCATAGCTGCCATAGAGTTACTGTTTCTCCGTACATAGAAAAACACTTGA 781 AAAAGTTTCAGGTATTTTCAGGAATATCTAAGAGGACAGTGCTTCTGACTGGAATGGAAG 841 GCCTTGATATGATGGATGAAGAAACTGTGGAGGATTTAGTTAGCATTCACTTTCAACGGG 901 AGAAGAATGGAGGTGGTGAAGTCGATGTGGTCAAATGTTCTCTAGGTCAACCTTACATAG 961 CATACTTTGAAGAATAGACTTAACAGAATCATGAAAACTATAGCTTTTTAACCCGGATTA 1021?CTGTAAATGTTTGACAAAAATGAGTATCCTTTTCCTTAAAAAAATGAAAACTTTAATTCT 1081?TTACTATCATTTATTTTTAGATACAAAATATGTTTCCACGTTTTTGAATTCTTCTTTCTT 1141?TCAAACTGTGCTGCATGTTCACAAATGCAATAAGTGCACTGAATTAAAAAGTTTTGTTTA 1201?TAGAAAAAAAAAAAAAAAAAAAAAAA 1 M E A D K D D T Q Q I L K E H S P D E F 1 ATGGAAGCTGATAAAGATGACACACAACAAATTCTTAAGGAGCATTCGCCAGATGAATTT 21 I K D E Q N K G L I D E I T K K N I Q L 61 ATAAAAGATGAACAAAATAAGGGACTAATTGATGAAATTACAAAGAAAAATATTCAACTA 41 K K E I Q K L E T E L Q E A T K E F Q I 121 AAGAAGGAGATCCAAAAGCTTGAAACGGAGTTACAAGAGGCTACCAAAGAATTCCAGATT 61 K E D I P E T K M K F L S V E T P E N D 181 AAAGAGGATATTCCTGAAACAAAGATGAAATTCTTATCAGTTGAAACTCCTGAGAATGAC 81 S Q L S N I S C S F Q V S S K V P Y E I 241 AGCCAGTTGTCAAATATCTCCTGTTCATTTCAAGTGAGCTCGAAAGTTCCTTATGAGATA 101 Q K G Q A L I T F E K E E V A Q N V V S 301 CAAAAAGGACAAGCACTTATCACCTTTGAAAAAGAAGAAGTTGCTCAAAATGTGGTAAGC 121 M S K H H V Q I K D V N L E V T A K P V 361 ATGAGTAAACATCATGTACAGATAAAAGATGTAAATCTGGAGGTTACGGCCAAGCCAGTT 141 P L N S G V R F Q V Y V E V S K M K I N 421 CCATTAAATTCAGGAGTCAGATTCCAGGTTTATGTAGAAGTTTCTAAAATGAAAATCAAT 161 V T E I P D T L R E D Q M R D K L E L S 481 GTTACTGAAATTCCTGACACATTGCGTGAAGATCAAATGAGAGACAAGCTAGAACTGAGC 181 F C K S R H G G G E V E C V K Y D K R S 541 TTTTGTAAGTCCCGACACGGAGGAGGAGAGGTGGAATGCGTGAAGTACGATAAGCGGTCT 201 G S A V I T F V E T G V A D E I L K K K 601 GGAAGTGCTGTCATCACGTTTGTGGAAACTGGAGTTGCTGACGAGATTTTGAAGAAGAAA 221 D Y P L Y T D H S C H R V T V S P Y I E 661 GACTATCCTCTTTATACAGATCATAGCTGCCATAGAGTTACTGTTTCTCCGTACATAGAA 241 K H L K K F Q V F S G I S K R T V L L T | SEQ?ID?NO:50 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
721 AAACACTTGAAAAAGTTTCAGGTATTTTCAGGAATATCTAAGAGGACAGTGCTTCTGACT 261 G M E G L D M M D E E T V E D L V S I H 781 GGAATGGAAGGCCTTGATATGATGGATGAAGAAACTGTGGAGGATTTAGTTAGCATTCAC 281 F Q R E K N G G G E V D V V K C S L G Q 841 TTTCAACGGGAGAAGAATGGAGGTGGTGAAGTCGATGTGGTCAAATGTTCTCTAGGTCAA 301 P Y I A Y F E E - 901 CCTTACATAGCATACTTTGAAGAATAG | |||
WBC013G08_V1.3_AT | Homo sapiens cDNA FLJ16386 fis, clone TRACH2000862 mediumly is similar to the purine nucleoside acid binding protein mRNA that mouse is inferred | 1 AGAACTCACATCGGATGATTCAGGCATGGCTCTGCTAACACTTTATTAAAAGCATGGATT 61 AATTTTACTTCCAAGTTTATTTTTACTGCACCGTCCCATTTGTGGAAACAACTAGCTTAC 121 TCAGCTTTTTTTTCCTTTTATAAAGGAAAGAACAGAAAAGTAAAAGGAGGAAAGAAAACA 181 AGAGGTGAGTGAGGCAACTGAAAACTGTTCTTGGACCTGCGGTGCTATAGAGCAGGCTCT 241 TCTAGGTTGGCAGTTGCCATGGAATCTGGACCCAAAATGTTGGCCCCCGTTTGCCTGGTG 301 GAAAATAACAATGAGCAGCTATTGGTGAACCAGCAAGCTATACAGATTCTTGAAAAGATT 361 TCTCAGCCAGTGGTGGTGGTGGCCATTGTAGGACTGTACCGTACAGGGAAATCCTACTTG 421 ATGAACCATCTGGCAGGACAGAATCATGGCTTCCCTCTGGGCTCCACGGTGCAGTCTGAA 481 ACCAAGGGCATCTGGATGTGGTGCGTGCCCCACCCATCCAAGCCAAACCACACCCTGGTC 541 CTTCTGGACACCGAAGGTCTGGGCGATGTGGAAAAGGGTGACCCTAAGAATGACTCCTGG 601 ATCTTTGCCCTGGCTGTGCTCCTGTGCAGCACCTTTGTCTACAACAGCATGAGCACCATC 661 AACCACCAGGCCCTGGAGCAGCTGCATTATGTGACAGAGCTCACAGAGCTCATCAGGGCA 721 AAGTCTTCCCCAAGACCTGATGAAGTACAAGATTCCACAGAGTTTGTGAGTTTCTTTCCA 781 GACTTTATCTGGACTGTACGGGATTTCACCCTGGAGCTGAAGTTAGACGGTCACCCTATC 841 ACAGAAGATGAGTACTTGGAGAATGCCTTGAAGCTGATTCCAGGCAAGAATCCCAAAGTC 901 CAAGCGTCCAATCTACCCAGAGAGTGCATCAGGCTATTCTTTCCAAAACGGAAATGTTTT 961 GTATTTGACCGGCCAATAAACGACAAAGCACTCCTAGCTGACATTGAGAATGTGTCTGAA 1021?AACGAACTGGATTCTAAATTCCAAGAACAAATAAACAAGTTCTGTTCTCACATCTTCACC 1081?CATGCAAGACCTAAGACTCTTAGAGAGGGAATCATGGTCACTGGGAATCGGCTGAGGACT 1141?CTGGTGGTGACCTATGTGGATACCATCAATACTGGAGCAGTGCCTTGTTTGGAGAATGCA 1201?GTGAGAACTCTGGCCCAACTTGAGAACTCAGTGGCCATGCAGAAGGCAGCGGACCATTAC 1261?AGTGAGCAGATGGCCGAGAAATTGAAGTTGCCCACAGACACACTCCAGGAGCTGCTGGAC 1321?GTGCACACAGCCTGTGAGAGAGAGGCCATTGCATTTTTCATGGAGCACTCCTTCAAGGAT 1381?GAAAATCAGGAATTCCAGAAGAAGTTCATGGAAACCACAATGAATAAGAAGGGGGATTTC 1441?TTGCTGCAGAATGAAGAGTCATCTGTTCAATACTGCCAGGCTAAACTCAATGAGCTCTCA 1501?AAGGGACTAATGGAAAGTATCTCAGCAGGAAGTTTCTCTGTTCCTGGAGGGCACAAGCTC 1561?TACATGGAAACAAAGGAAAGGATTGAACAGGACTATTGGCAAGTTCCCAGGAAAGGAGTA 1621?AAGGCAAAAGAGGTCTTCCAGAGGTTCCTGGAGTCACAGATGGTGATAGAGGAATCCATC 1681?TTGCAGTCAGATAAAGCCCTCACTGATAGAGAGAAGGCAGTAGCAGTGGATCGGGCCAAG 1741?AAGGAGGCAGCTGAGAAGGAACAGGAACTTTTAAAACAGAAATTACAGGAGCAGCAGCAA 1801?CAGATGGAGGCTCAAGATAAGAGTCGCAAGGAAAACATAGCCCAACTGAAGGAGAAGCTG 1861?CAGATGGAGAGAGAACACCTACTGAGAGAGCAGATTATGATGTTGGAGCACACGCAGAAG 1921?GTCCAAAATGATTGGCTTCATGAAGGATTTAAGAAGAAGTATGAGGAGATGAATGCAGAG 1981?ATAAGTCAATTTAAACGTATGATTGATACTACAAAAAATGATGATACTCCCTGGATTGCA 2041?CGAACCTTGGACAACCTTGCCGATGAGCTAACTGCAATATTGTCTGCTCCTGCTAAATTA 2101?ATTGGTCATGGTGTCAAAGGTGTGAGCTCACTCTTTAAAAAGCATAAGCTCCCCTTTTAA 2161?GGATATTATAGATTGTACATATATGCTTTGGACTATTTTTGATCTGTATGTTTTTCATTT | SEQ?ID?NO:51 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2221?TCATTCAGCAAGTTTTTTTTTTTTTCAGAGTCTTACTCTGTTGCCCAGGCTGGAGTACAG 2281?TGGTGCAATCTCAGCTCACTGCAACCTCTGCCTCCTGGGTTCAAGAGATTCACCTGCCTC 2341?AGCCCCCTAGTAGCTGGGATTATAGGTGTACACCACCACACCCAGCTAATTTTTGTATTT 2401?TTAGTAGAGATGGGGTTTCACTATGTTGGCCAGGCTGGTCTCGAACTCTTGACCTCAAAT 2461?GATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGTTTACAGGCATGAGCCACCATGCCCAG 2521?CCCTCATTTAGCAAAGTTTTAAACATGAAAAGTGCTTATTAGAGGATATCAGTGCCTGGC 2581?CCACATGAGAGAACAGATCCATACACACTTTGAAAAACTTTGTTCACTTTTAGGAAATAT 2641?AATTTTGAAAAATCATTTACATACAAGAGGTCCACTGAGGCATTGCTTTTAATGGCAAAA 2701?TATTGCAATGTACTTGAATGTCCTTCACATTAGATTGGTAAGATAAATTTTAGTATGTGC 2761?ATGTACTGGAATATTATATAGCCAGTAAACAAATTGACAATGAAGCTCTATTTGTACCAG 2821?TAAAGAATGGTCTTGAAGAGACATTGTAAAATGA 1 | SEQ?ID?NO:52 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
241 N D K A L L A D I E N V S E N E L D S K 721 AACGACAAAGCACTCCTAGCTGACATTGAGAATGTGTCTGAAAACGAACTGGATTCTAAA 261 F Q E Q I N K F C S H I F T H A R P K T 781 TTCCAAGAACAAATAAACAAGTTCTGTTCTCACATCTTCACCCATGCAAGACCTAAGACT 281 L R E G I M V T G N R L R T L V V T Y V 841 CTTAGAGAGGGAATCATGGTCACTGGGAATCGGCTGAGGACTCTGGTGGTGACCTATGTG 301 D T I N T G A V P C L E N A V R T L A Q 901 GATACCATCAATACTGGAGCAGTGCCTTGTTTGGAGAATGCAGTGAGAACTCTGGCCCAA 321 L E N S V A M Q K A A D H Y S E Q M A E 961 CTTGAGAACTCAGTGGCCATGCAGAAGGCAGCGGACCATTACAGTGAGCAGATGGCCGAG 341 K L K L P T D T L Q E L L D V H T A C E 1021?AAATTGAAGTTGCCCACAGACACACTCCAGGAGCTGCTGGACGTGCACACAGCCTGTGAG 361 R E A I A F F M E H S F K D E N Q E F Q 1081?AGAGAGGCCATTGCATTTTTCATGGAGCACTCCTTCAAGGATGAAAATCAGGAATTCCAG 381 K K F M E T T M N K K G D F L L Q N E E 1141?AAGAAGTTCATGGAAACCACAATGAATAAGAAGGGGGATTTCTTGCTGCAGAATGAAGAG 401 S S V Q Y C Q A K L N E L S K G L M E S 1201?TCATCTGTTCAATACTGCCAGGCTAAACTCAATGAGCTCTCAAAGGGACTAATGGAAAGT 421 I S A G S F S V P G G H K L Y M E T K E 1261?ATCTCAGCAGGAAGTTTCTCTGTTCCTGGAGGGCACAAGCTCTACATGGAAACAAAGGAA 441 R I E Q D Y W Q V P R K G V K A K E V F 1321?AGGATTGAACAGGACTATTGGCAAGTTCCCAGGAAAGGAGTAAAGGCAAAAGAGGTCTTC 461 Q R F L E S Q M V I E E S I L Q S D K A 1381?CAGAGGTTCCTGGAGTCACAGATGGTGATAGAGGAATCCATCTTGCAGTCAGATAAAGCC 481 L T D R E K A V A V D R A K K E A A E K 1441?CTCACTGATAGAGAGAAGGCAGTAGCAGTGGATCGGGCCAAGAAGGAGGCAGCTGAGAAG 501 E Q E L L K Q K L Q E Q Q Q Q M E A Q D 1501?GAACAGGAACTTTTAAAACAGAAATTACAGGAGCAGCAGCAACAGATGGAGGCTCAAGAT 521 K S R K E N I A Q L K E K L Q M E R E H 1561?AAGAGTCGCAAGGAAAACATAGCCCAACTGAAGGAGAAGCTGCAGATGGAGAGAGAACAC 541 L L R E Q I M M L E H T Q K V Q N D W L 1621?CTACTGAGAGAGCAGATTATGATGTTGGAGCACACGCAGAAGGTCCAAAATGATTGGCTT 561 H E G F K K K Y E E M N A E I S Q F K R |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1681?CATGAAGGATTTAAGAAGAAGTATGAGGAGATGAATGCAGAGATAAGTCAATTTAAACGT 581 M I D T T K N D D T P W I A R T L D N L 1741?ATGATTGATACTACAAAAAATGATGATACTCCCTGGATTGCACGAACCTTGGACAACCTT 601 A D E L T A I L S A P A K L I G H G V K 1801?GCCGATGAGCTAACTGCAATATTGTCTGCTCCTGCTAAATTAATTGGTCATGGTGTCAAA 621 G V S S L F K K H K L P F - 1861?GGTGTGAGCTCACTCTTTAAAAAGCATAAGCTCCCCTTTTAA | |||
BM735096 | Homo sapiens CD79A antigen (immunoglobulin (Ig) be correlated with α) (CD79A), | 1 ATGCCTGGGGGTCCAGGAGTCCTCCAAGCTCTGCCTGCCACCATCTTCCTCCTCTTCCTG 61 CTGTCTGCTGTCTACCTGGGCCCTGGGTGCCAGGCCCTGTGGATGCACAAGGTCCCAGCA 121 TCATTGATGGTGAGCCTGGGGGAAGACGCCCACTTCCAATGCCCGCACAATAGCAGCAAC 181 AACGCCAACGTCACCTGGTGGCGCGTCCTCCATGGCAACTACACGTGGCCCCCTGAGTTC 241 TTGGGCCCGGGCGAGGACCCCAATGAGCCGCTCCCCAGACCCTTCCTGGACATGGGGGAG 301 GGCACCAAGAACAACATCATCACAGCCGAGGGGATCATCCTGCTGTTCTGCGCAGTGGTG 361 CCTGGGACGCTGCTGCTGTTCAGGAAACGATGGCAGAACTTGAAGTTCGGGCCAGACATC 421 CAGGATGACTACGAAGATGAGAATCTTTATGAGGGCCTGAACCTCGATGACTGTTCCATG 481 TACGAGGACATCTCCCGGGGCCTCCAGGGCACCTACCAGGACGTGGGCAGCCTCCACATC 541 GGAGACGTCCAGCTGGAGAAGCCGTGA 1 | SEQ?ID?NO:53 SEQ?ID?NO:54 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
481 TACGAGGACATCTCCCGGGGCCTCCAGGGCACCTACCAGGACGTGGGCAGCCTCCACATC 181 G D V Q L E K P - 541 GGAGACGTCCAGCTGGAGAAGCCGTGA | |||
GI1305528.V1.3_AT | Horse Mx albumen homology thing mRNA. | 1 GGCACGAGTGGAGAACAGCTCTGCATTTCTGTCCAAGCAGTCAGCGGTCCATCGTCAAGT 61 AAAGGAAGCTATATTGGAGATAACTGAACCGATAAAGGAAGAAGATGGTTCATTCTGAAG 121 CGAAAATGACAAGACCTGATTCAGCTTCCGCATCCAAGCAACAATTACTAAATGGAAATG 181 CTGACATACAGGAGACAAATCAGAAAAGAAGCATTGAGAAAAACCTGTGTAGCCAGTATG 241 AGGAGAAGGTACGCCCATGCATTGATCTCATCGACTCCCTGCGGGCTCTGGGTGTGGAGC 301 AGGACCTGGCCCTGCCTGCCATCGCCGTCATCGGGGACCAGAGCTCGGGCAAGAGCTCTG 361 TGCTGGAAGCTCTTTCAGGGGTCGCCCTTCCCAGAGGCAGTGGTATTGTGACAAGATGTC 421 CTCTGGTGCTGAAACTGAAAAGACTGGTGAAAGAAGATGAGTGGAAAGGCAAAGTCAGCT 481 ACCGGGATATCGAGGTTGAGATTTCAAATGCTTTGGATGTGGAAGAGCAAGTCAGAAAAG 541 CCCAGAATGTCCTTGCTGGGGAAGGAGTGGGAATCAGTCAGGAGCTAGTCACTCTGGAAG 601 TCAGCTCTCCTCATGTCCCGGATCTGACCCTGATCGACCTTCCTGGCATCACCAGGGTGG 661 CCGTGGGCAATCAGCCAGCCGACATCGGACGTCAGATCAAGACACTCATCAGGAAGTACA 721 TCCAGAGGCAAGAGACGATCAACCTGGTGGTGGTCCCCAGTAACGTGGACATCGCCACCA 781 CGGAGGCGCTGAGCATGGCTCAGGAGGTGGACCCCGAGGGAGACAGGACCATAGGAATCT 841 TGACAAAGCCTGACCTGGTGGACAAAGGCACCGAGGAGCAGGTGGTAGACGTGGTGCGAA 901 ACCTCATCTGCCACCTGAAGAAGGGTTATATGATCGTCAAGTGCCGGGGCCAGCAGGACA 961 TCCAGGACCGACTGAGCCTGGCTGAGGCTCTGCAGAGAGAGAAGGCCTTCTTTGAGGAAA 1021?ACCCATATTTCAGGGGCCTTCTGGAGGAAGGAAGAGCCTCGGTCCCCTGCCTGGCGGAGA 1081?GGCTGACCACTGAACTCATCACGCACATCAGTAAATCTCTGCCCCTGTTAGAAAATCAAA 1141?TAAAGGAAAGTTACCAGAATCTATCAGACGAGTTACAAAAATATGGCACCGACATCCCAG 1201?AAGATGAAACTGAAAAAACGTTCTTCCTGATAGTGAAAATTACTACATTTAATCAGAACA 1261?TCACCTCTTTCGTACAAGGGGAGGAACTTGTAGGACCCAATGACACTCGGCTGTTTAACA 1321?AAATCCGACAGGAGTTCCAGAAATGGAGTGGGGTGATTGAAAACAATTTCCGAAAAGGTG 1381?GCGAAGCTATCCGTAGACAGATCTGGACATTTGAAAATCAGTATCGTGGCAGAGAGCTAC 1441?CAGGATTTGTGAATTACAGGACATTTGAGACGATCATCAAACAGCAAATCCAGTTGCTGG 1501?AAGAGCCAGCCATTGATATGCTGCACAGGATAAGTGATCTGGTCCGGGATACCTTCACAA 1561?AAGTTTCAGAAAAAAATTTCAGTGAATTTTTCAACCTCCACAGAACCACCAAGTCCAAAC 1621?TTGAAGACATTAAATTAGAACAAGAAAATGAAGCTGAGAAGTCGATCCGACTCCACTTCC 1681?AAATGGAGAAGATCGTCTACTGCCAAGACCACGTTTACCGGGGCACGTTACAGAAGGTCA 1741?GAGAGAATGAAATGGAGGAGGAGAAGAAGAAAAAAACAATCAACGTCTGGGGTCAAAACA 1801?CTTCCACAGAGTCCTCGATGGCAGAAATCTTGGAGCATCTCAACGCCTACCAGCACGAGG 1861?CCGGCAACCGCCTCTCGACCCACATCCCCTTGATCATCCAGTTCTTCGTCCTCCAGACAT 1921?TCGGCCAGCAGCTGCAGAAGTCCATGCTGCAGCTCCTGCAGGACAGGGACACCTACGACT 1981?GGCTCCTGAAGGAGCGCAACGACACCTGTGACAAGAGGAAGTTCCTGAAGGAGCGGCTTG 2041?CTCGGCTGGCCCAGGCTCGGCGCCGGTTAGCCAAGTTCCCGGGTTAAATCGGGCTCTCTG 2101?TCTCAGCCTCATGTCTCCATGCACATCTCCAGGGAGCGGAGGCCCAGCATCTCTCCCCAA 2161?CAGCCACACCATCATTAGTTACCCATTCACAGATACCCGAGCGGTTACGGGTCAGGCTTG 2221?GTGGTCACTGTCTGTGCTTGTCCTTTAGTGGATAAGGATGCGCTAAGAACCTGTGATGAG 2281?CGATTTGGTTTCAAGCATTGAGACTAGAGCCCCGCCTTCATGTAGCATATGCTTTAGACT 2341?GAATGAGCAGTGCCATTTTCTGGTTAGGAGAAATGGTTTTCTACCCCCAGGATTGGTCCT 2401?CGTCTCCAGACTCTCTCCATCTCTTTATCAGAGACCGATGTACGTGCAGCATCATGGAAC 2461?GGTTATTTTCGGTTTTTTTGTGTTGTCCTTTCGCATACCCAGTGTTTTAGGCGTGTGAGT 2521?GCTGCTTGTGTGAATGCTTGTAGATGCCATGTTTCATCTATTTGTAATAAACTTTTTTCT | SEQ?ID?NO:55 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2581?ACTAGAAAAAAAAAAAAAAAAAAAAAAA 1 | SEQ?ID?NO:56 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
901 GCCTTCTTTGAGGAAAACCCATATTTCAGGGGCCTTCTGGAGGAAGGAAGAGCCTCGGTC 321 P C L A E R L T T E L I T H I S K S L P 961 CCCTGCCTGGCGGAGAGGCTGACCACTGAACTCATCACGCACATCAGTAAATCTCTGCCC 341 L L E N Q I K E S Y Q N L S D E L Q K Y 1021?CTGTTAGAAAATCAAATAAAGGAAAGTTACCAGAATCTATCAGACGAGTTACAAAAATAT 361 G T D I P E D E T E K T F F L I V K I T 1081?GGCACCGACATCCCAGAAGATGAAACTGAAAAAACGTTCTTCCTGATAGTGAAAATTACT 381 T F N Q N I T S F V Q G E E L V G P N D 1141?ACATTTAATCAGAACATCACCTCTTTCGTACAAGGGGAGGAACTTGTAGGACCCAATGAC 401 T R L F N K I R Q E F Q K W S G V I E N 1201?ACTCGGCTGTTTAACAAAATCCGACAGGAGTTCCAGAAATGGAGTGGGGTGATTGAAAAC 421 N F R K G G E A I R R Q I W T F E N Q Y 1261?AATTTCCGAAAAGGTGGCGAAGCTATCCGTAGACAGATCTGGACATTTGAAAATCAGTAT 441 R G R E L P G F V N Y R T F E T I I K Q 1321?CGTGGCAGAGAGCTACCAGGATTTGTGAATTACAGGACATTTGAGACGATCATCAAACAG 461 Q I Q L L E E P A I D M L H R I S D L V 1381?CAAATCCAGTTGCTGGAAGAGCCAGCCATTGATATGCTGCACAGGATAAGTGATCTGGTC 481 R D T F T K V S E K N F S E F F N L H R 1441?CGGGATACCTTCACAAAAGTTTCAGAAAAAAATTTCAGTGAATTTTTCAACCTCCACAGA 501 T T K S K L E D I K L E Q E N E A E K S 1501?ACCACCAAGTCCAAACTTGAAGACATTAAATTAGAACAAGAAAATGAAGCTGAGAAGTCG 521 I R L H F Q M E K I V Y C Q D H V Y R G 1561?ATCCGACTCCACTTCCAAATGGAGAAGATCGTCTACTGCCAAGACCACGTTTACCGGGGC 541 T L Q K V R E N E M E E E K K K K T I N 1621?ACGTTACAGAAGGTCAGAGAGAATGAAATGGAGGAGGAGAAGAAGAAAAAAACAATCAAC 561 V W G Q N T S T E S S M A E I L E H L N 1681?GTCTGGGGTCAAAACACTTCCACAGAGTCCTCGATGGCAGAAATCTTGGAGCATCTCAAC 581 A Y Q H E A G N R L S T H I P L I I Q F 1741?GCCTACCAGCACGAGGCCGGCAACCGCCTCTCGACCCACATCCCCTTGATCATCCAGTTC 601 F V L Q T F G Q Q L Q K S M L Q L L Q D 1801?TTCGTCCTCCAGACATTCGGCCAGCAGCTGCAGAAGTCCATGCTGCAGCTCCTGCAGGAC 621 R D T Y D W L L K E R N D T C D K R K F 1861?AGGGACACCTACGACTGGCTCCTGAAGGAGCGCAACGACACCTGTGACAAGAGGAAGTTC |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
641 L K E R L A R L A Q A R R R L A K F P G 1921?CTGAAGGAGCGGCTTGCTCGGCTGGCCCAGGCTCGGCGCCGGTTAGCCAAGTTCCCGGGT 661 - 1981?TAA | |||
WBC881.GRSP.V1.3_AT | Homo sapiens makorin, ring finger protein, 1, mRNA | 1 AGCGCTCAGATACGCGACGCGTAGCAGGCGGGGACCGAACGGGTGCCTCAGTGTCCTTCC 61 CCTCCCCTCGCCTGGCCTCGCCGTCCTCTCCCCGCAGCCGGACCGGAACTATGTGATCCC 121 GGAAGTTCCGGGGCCTTTGCTGTGTGGGATAAACAGTAATGGCGGAGGCTGCAACTCCCG 181 GAACAACAGCCACAACATCAGGAGCAGGAGCGGCAGCGGCGACGGCGGCAGCAGCCTCCC 241 CCACCCCGATCCCCACAGTCACCGCCCCGTCCCTGGGGGCGGGCGGAGGGGGCGGCGGCA 301 GCGACGGCAGCGGCGGCGGCTGGACTAAACAGGTCACCTGCAGGTATTTTATGCATGGGG 361 TTTGTAAGGAAGGAGACAACTGTCGCTACTCGCATGACCTCTCTGACAGTCCGTATAGTG 421 TAGTGTGCAAGTATTTTCAGCGAGGGTACTGTATTTATGGAGACCGCTGCAGATATGAAC 481 ATAGCAAACCATTGAAACAGGAAGAAGCAACTGCTACAGAGCTAACTACAAAGTCATCCC 541 TTGCTGCTTCCTCAAGTCTCTCATCGATAGTTGGACCACTTGTTGAAATGAATACAGGCG 601 AAGCTGAGTCAAGAAATTCAAACTTTGCAACTGTAGGAGCAGGTTCAGAGGACTGGGTGA 661 ATGCTATTGAGTTTGTTCCTGGGCAACCCTACTGTGGCCGTACTGCGCCTTCCTGCACTG 721 AAGCACCCCTGCAGGGCTCAGTGACCAAGGAAGAATCAGAGAAAGAGCAAACCGCCGTGG 781 AGACAAAGAAGCAGCTGTGCCCCTATGCTGCAGTGGGAGAGTGCCGATACGGGGAGAACT 841 GTGTGTATCTCCACGGAGATTCTTGTGACATGTGTGGGCTGCAGCTCCTGCATCCAATGG 901 ATGCTGCCCAGAGATCGCAGCATATCAAATCGTGCATTGAGGCCCATGAGAAGGACATGG 961 AGCTCTCATTTGCCGTGCAGCGCAGCAAGGACATGGTGTGTGGGATCTGCATGGAGGTGG 1021?TCTATGAGAAAGCCAACCCCAGTGAGCGCCGCTTCGGGATCCTCTCCAACTGCAACCACA 1081?CCTACTGTCTCAAGTGCATTCGCAAGTGGAGGAGTGCTAAGCAATTTGAGAGCAAGATCA 1141?TAAAGTCCTGCCCAGAATGCCGGATCACATCTAACTTTGTCATTCCAAGTGAGTACTGGG 1201?TGGAGGAGAAAGAAGAGAAGCAGAAACTCATTCTGAAATACAAGGAGGCAATGAGCAACA 1261?AGGCGTGCAGGTATTTTGATGAAGGACGTGGGAGCTGCCCATTTGGAGGGAACTGTTTTT 1321?ACAAGCATGCGTACCCTGATGGCCGTAGAGAGGAGCCACAGAGACAGAAAGTGGGAACAT 1381?CAAGCAGATACCGGGCCCAACGAAGGAACCACTTCTGGGAACTCATTGAGGAAAGAGAGA 1441?ACAGCAACCCCTTTGACAACGATGAAGAAGAGGTTGTCACCTTTGAGCTGGGCGAGATGT 1501?TGCTTATGCTTTTGGCTGCAGGTGGGGACGACGAACTAACAGACTCTGAAGATGAGTGGG 1561?ACTTGTTTCATGATGAGCTGGAAGATTTTTATGACTTGGATCTATAGCAACCTTGCGTGG 1621?CGTGTGAACTGGTCTGCTGACCTCAGACAGCAGCTGTCCCCTGTGGTGGTGTGGCAGTGC 1681?CTGTGTTCTCTCCTAGGCAGGCCTCTCAACTCCAGGTGCTGTCCTAAGAATTTTTACCCA 1741?GGGCCTGTCTTCTCAACCCCTCACCTTTCCCTGAGGAGTGTGTTGTTTTCCCTGTTGAAA 1801?AAAGTTACAAAAATAAATCTTAAAGTTAGTTTTTTGTAACACGAATTTAACTGTCAGACA 1861?GTTAGTGTAGGTGTGTTGCGTCATCTGTTTTCAACCAGATTGCATTTATGGACTTTTCAC 1921?ACACTCATTTTGAGGACCCCAGGTTCAAAAGTAAAAGCAGTGGCCCTGCTTTGGGGTCCA 1981?AGAATAGGAGTGATGGGTGAAGGGACCTAAGCTGGCCAATAGCCCTCTGCCCCAGACATG 2041?GGATGTGGATCCTTGAGGTTTCTGGTGAAATCTGCACATCTGTGTTTTTATATCTGTTCC 2101?CTACCCTGTAATCCCTACCACGTGCACTTGTTCTGTGGTTTTGGTCTCTTGTTTAATTGC 2161?ACACAAGTAATACTACTGGGTAACCAGAATCAGGTGTGAATGTGTTGAGATTTTTTACTG 2221?TTTTGCATGATAGGAAAATTGAGAAAGAATACGTATAAAAGATAGAGAGGCATAACATCA 2281?ATGCAGAGTTGGAAGTTGGCTCCCAAGGGCTGACATGGTGTGAGTGTGTGGGTGTGTGAT 2341?AAGCTTCTCATCCCTGCATAGATGCAGTATTCTTAGCCTTAGTAGAAAAACCTGGTTTAG 2401?TGGTTTAAGCCTTGTGTGGCAGATAGATCTTAAAGGGCAAAGCAGTATATTGGTAGTTGT | SEQ?ID?NO:57 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2461?CAATATAGCAGTGCTAGCTCTGTCTATATAAATAGAGAAATGGGGTTAGCCATAGAGGTT 2521?AAAACTACCTGGTTATCCCATATAATAACACAAACTGGGTCTCGAATACACAGTTGTATT 2581?TAATGTTTTCTGATCCCCCAGCCGTCCCAGCCCACGCACTTTTTCACAAACGTTTGTCCT 2641?CGTTGAGGGTTTCGTTCTCGGGTTTTTGTGTTTGTTTTTGTGGGTATTGCCTCATTCCAT 2701?CCCTGAGCTTTGCAGGTAGACAGATGTGATTCAGAACTATGTTCCAGGGTGTTCCTTGTA 2761?GGAGTAATTGGTTTGCAGTAAGAAGTCACACTTTTCCACTAAAGGGGAGGAGGTGGTAAT 2821?CTACGAGACAAGCTAAAGTTAAGTTGTTAGAAGAATTCCTTGATTGGAATTTTAGCTTTG 2881?CATTTTGTTGCTCTCTTTCCTGGAAATAATTCGGAGACGCTCCTGATTTGTCCATCTACT 2941?GCTTTGGTTCCTTGGATCCACCCATTCTTTCACTTTAAGAAAAACAAGTAATTGTTGCAG 3001?AGGTCTCTGTATTTTGCAGCTGCCCTTTTGTAAGAAGCACTTTTCCCAAATAAAACAATG 3061?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1 | SEQ?ID?NO:58 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
241 L Q L L H P M D A A Q R S Q H I K S C I 721 CTGCAGCTCCTGCATCCAATGGATGCTGCCCAGAGATCGCAGCATATCAAATCGTGCATT 261 E A H E K D M E L S F A V Q R S K D M V 781 GAGGCCCATGAGAAGGACATGGAGCTCTCATTTGCCGTGCAGCGCAGCAAGGACATGGTG 281 C G I C M E V V Y E K A N P S E R R F G 841 TGTGGGATCTGCATGGAGGTGGTCTATGAGAAAGCCAACCCCAGTGAGCGCCGCTTCGGG 301 I L S N C N H T Y C L K C I R K W R S A 901 ATCCTCTCCAACTGCAACCACACCTACTGTCTCAAGTGCATTCGCAAGTGGAGGAGTGCT 321 K Q F E S K I I K S C P E C R I T S N F 961 AAGCAATTTGAGAGCAAGATCATAAAGTCCTGCCCAGAATGCCGGATCACATCTAACTTT 341 V I P S E Y W V E E K E E K Q K L I L K 1021?GTCATTCCAAGTGAGTACTGGGTGGAGGAGAAAGAAGAGAAGCAGAAACTCATTCTGAAA 361 Y K E A M S N K A C R Y F D E G R G S C 1081?TACAAGGAGGCAATGAGCAACAAGGCGTGCAGGTATTTTGATGAAGGACGTGGGAGCTGC 381 P F G G N C F Y K H A Y P D G R R E E P 1141?CCATTTGGAGGGAACTGTTTTTACAAGCATGCGTACCCTGATGGCCGTAGAGAGGAGCCA 401 Q R Q K V G T S S R Y R A Q R R N H F W 1201?CAGAGACAGAAAGTGGGAACATCAAGCAGATACCGGGCCCAACGAAGGAACCACTTCTGG 421 E L I E E R E N S N P F D N D E E E V V 1261?GAACTCATTGAGGAAAGAGAGAACAGCAACCCCTTTGACAACGATGAAGAAGAGGTTGTC 441 T F E L G E M L L M L L A A G G D D E L 1321?ACCTTTGAGCTGGGCGAGATGTTGCTTATGCTTTTGGCTGCAGGTGGGGACGACGAACTA 461 T D S E D E W D L F H D E L E D F Y D L 1381?ACAGACTCTGAAGATGAGTGGGACTTGTTTCATGATGAGCTGGAAGATTTTTATGACTTG 481 D L - 1441?GATCTATAG | |||
WBC44.V1.3_AT | Homo sapiens B aggressive lymphoma gene, mRNA. | 1 GAGCGGCCTGCCGGAAGTGGGCCACCATATCTGGAAACTACAGTCTATGCTTTGAAGCGC 61 AAAAGGGAATAAACATTTAAAGACTCCCCCGGGGACCTGGAGGATGGACTTTTCCATGGT 121 GGCCGGAGCAGCAGCTTACAATGAAAAATCAGAGACTGGTGCTCTTGGAGAAAACTATAG 181 TTGGCAAATTCCCATTAACCACAATGACTTCAAAATTTTAAAAAATAATGAGCGTCAGCT 241 GTGTGAAGTCCTCCAGAATAAGTTTGGCTGTATCTCTACCCTGGTCTCTCCAGTTCAGGA 301 AGGCAACAGCAAATCTCTGCAAGTGTTCAGAAAAATGCTGACTCCTAGGATAGAGTTATC 361 AGTCTGGAAAGATGACCTCACCACACATGCTGTTGATGCTGTGGTGAATGCAGCCAATGA 421 AGATCTTCTGCATGGGGGAGGCCTGGCCCTGGCCCTGGTAAAAGCTGGTGGATTTGAAAT 481 CCAAGAAGAGAGCAAACAGTTTGTTGCCAGATATGGTAAAGTGTCAGCTGGTGAGATAGC | SEQ?ID?NO:59 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
541 TGTCACGGGAGCAGGGAGGCTTCCCTGCAAACAGATCATCCATGCTGTTGGGCCTCGGTG 601 GATGGAATGGGATAAACAGGGATGTACTGGAAAGCTGCAGAGGGCCATTGTAAGTATTCT 661 GAATTATGTCATCTATAAAAATACTCACATTAAGACAGTAGCAATTCCAGCCTTGAGCTC 721 TGGGATTTTTCAGTTCCCTCTGAATTTGTGTACAAAGACTATTGTAGAGACTATCCGGGT 781 TAGTTTGCAAGGGAAGCCAATGATGAGTAATTTGAAAGAAATTCACCTGGTGAGCAATGA 841 GGACCCTACTGTTGCTGCCTTTAAAGCTGCTTCAGAATTCATCCTAGGGAAGAGTGAGCT 901 GGGACAAGAAACCACCCCTTCTTTCAATGCAATGGTCGTGAACAACCTGACCCTCCAGAT 961 TGTCCAGGGCCACATTGAATGGCAGACGGCAGATGTAATTGTTAATTCTGTAAACCCACA 1021?TGATATTACAGTTGGACCTGTGGCAAAGTCAATTCTACAACAAGCAGGAGTTGAAATGAA 1081?ATCGGAATTTCTTGCCACAAAGGCTAAACAGTTTCAACGGTCCCAGTTGGTACTGGTCAC 1141?AAAAGGATTTAACTTGTTCTGTAAATATATATACCATGTACTGTGGCATTCAGAATTTCC 1201?TAAACCTCAGATATTAAAACATGCAATGAAGGAGTGTTTGGAAAAATGCATTGAGCAAAA 1261?TATAACTTCCATTTCCTTTCCTGCCCTTGGGACTGGAAACATGGAAATAAAGAAGGAAAC 1321?AGCAGCAGAGATTTTGTTTGATGAAGTTTTAACATTTGCCAAAGACCATGTAAAACACCA 1381?GTTAACTGTAAAATTTGTGATCTTTCCAACAGATTTGGAGATATATAAGGCTTTCAGTTC 1441?TGAAATGGCAAAGAGGTCCAAGATGCTGAGTTTGAACAATTACAGTGTCCCCCAGTCAAC 1501?CAGAGAGGAGAAAAGAGAAAATGGGCTTGAAGCTAGATCTCCTGCCATCAATCTGATGGG 1561?ATTCAACGTGGAAGAGATGTATGAGGCCCACGCATGGATCCAAAGAATCCTGAGTCTCCA 1621?GAACCACCACATCATTGAGAATAATCATATTCTGTACCTTGGGAGAAAGGAACATGACAT 1681?TTTGTCTCAGCTTCAGAAAACTTCAAGTGTCTCCATCACAGAAATTATCAGCCCAGGAAG 1741?GACAGAGTTAGAGATTGAAGGAGCCCGGGCTGACCTCATTGAGGTGGTTATGAACATTGA 1801?AGATATGCTTTGTAAAGTACAGGAGGAAATGGCAAGGAAAAAGGAGCGAGGCCTTTGGCG 1861?CTCGTTAGGACAGTGGACTATTCAGCAACAAAAAACCCAAGACGAAATGAAAGAAAATAT 1921?CATATTTCTGAAATGTCCTGTGCCTCCAACTCAAGAGCTTCTAGATCAAAAGAAACAGTT 1981?TGAAAAATGTGGTTTGCAGGTTCTAAAGGTGGAGAAGATAGACAATGAGGTCCTTATGGC 2041?TGCCTTTCAAAGAAAGAAGAAAATGATGGAAGAAAAACTGCACAGGCAACCTGTGAGCCA 2101?TAGGCTGTTTCAGCAAGTCCCATACCAGTTCTGTGAAGTGGTTTGCAGAGTTGGCTTTCA 2161?AAGAATGTACTCGGTGCCCCACGACCCAAAGTATGGACCTGGCATATACTTCACCAAGAA 2221?TCTCAAAAATCTAGCATCCCAGTTCAAGAAAACGTCTGCCACAGATAAGCTGATCTATGT 2281?GTTTGAGGCTGAAGTACTCACAGGCTCCTTCTGTGAGGGTCATCAGTTAAATATTGTTCC 2341?CCCACGATTGAGTACTGATGCCATAGATAGCCATGACAGTGTGGTTGACAATGTCTCCAG 2401?CCCTGAAACCTTTGTTATTTTTAGTGGCACGCAGGCTATGCCCCAATATTTGTGGACTTG 2461?CACCCAGGATCATGTAGGGCCAGAGGATTACTCATTAGGACAAATGTTGCCGTCTCCACA 2521?GCAGCTTGGGAAGAGATTCGTAAGTGGCAGCCCTGTTGACTAACTTCTGCATAATTTTAA 2581?CAACTGGCATGGCCCTGCTTTGGAGAAACTAACGAAATATTGACCATCAATGACTCAAAG 2641?ACTGGTCTGAATATGTCAAATGGCTCTGGATAGACTGAATGGGTTACTGAAGGGGCCAGC 2701?CACATACTAGCATCTTGGTGCCTTCGTCTTTGTTTTCATCTCTTGGGGGTGGGGTGGGTA 2761?GATACTAACTAAAACACTCTCAGGACCTTCCTTCCTCTTGCAGTTGTTCTTTAATCTCCT 2821?TTACTAGAGGAGATAAATATTTTGCATATAATGAAGAAATTTTTCTAGTATATAATTCAA 2881?GCCCTCTATTTTTTAAAATGGTGATAGTATAAAAATGTTAGGATAACAGAATGATTTTAG 2941?ATTTTCCAGAGAATATTATAAAGTGCTTTAGGTATGAAAATAAATCATCTTTGTCTGATT 3001?AAAAAAAAAAAAAAAA 1 M D F S M V A G A A A Y N E K S E T G A 1 ATGGACTTTTCCATGGTGGCCGGAGCAGCAGCTTACAATGAAAAATCAGAGACTGGTGCT 21 L G E N Y S W Q I P I N H N D F K I L K 61 CTTGGAGAAAACTATAGTTGGCAAATTCCCATTAACCACAATGACTTCAAAATTTTAAAA | SEQ?ID?NO:60 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
41 N N E R Q L C E V L Q N K F G C I S T L 121 AATAATGAGCGTCAGCTGTGTGAAGTCCTCCAGAATAAGTTTGGCTGTATCTCTACCCTG 61 V S P V Q E G N S K S L Q V F R K M L T 181 GTCTCTCCAGTTCAGGAAGGCAACAGCAAATCTCTGCAAGTGTTCAGAAAAATGCTGACT 81 P R I E L S V W K D D L T T H A V D A V 241 CCTAGGATAGAGTTATCAGTCTGGAAAGATGACCTCACCACACATGCTGTTGATGCTGTG 101 V N A A N E D L L H G G G L A L A L V K 301 GTGAATGCAGCCAATGAAGATCTTCTGCATGGGGGAGGCCTGGCCCTGGCCCTGGTAAAA 121 A G G F E I Q E E S K Q F V A R Y G K V 361 GCTGGTGGATTTGAAATCCAAGAAGAGAGCAAACAGTTTGTTGCCAGATATGGTAAAGTG 141 S A G E I A V T G A G R L P C K Q I I H 421 TCAGCTGGTGAGATAGCTGTCACGGGAGCAGGGAGGCTTCCCTGCAAACAGATCATCCAT 161 A V G P R W M E W D K Q G C T G K L Q R 481 GCTGTTGGGCCTCGGTGGATGGAATGGGATAAACAGGGATGTACTGGAAAGCTGCAGAGG 181 A I V S I L N Y V I Y K N T H I K T V A 541 GCCATTGTAAGTATTCTGAATTATGTCATCTATAAAAATACTCACATTAAGACAGTAGCA 201 I P A L S S G I F Q F P L N L C T K T I 601 ATTCCAGCCTTGAGCTCTGGGATTTTTCAGTTCCCTCTGAATTTGTGTACAAAGACTATT 221 V E T I R V S L Q G K P M M S N L K E I 661 GTAGAGACTATCCGGGTTAGTTTGCAAGGGAAGCCAATGATGAGTAATTTGAAAGAAATT 241 H L V S N E D P T V A A F K A A S E F I 721 CACCTGGTGAGCAATGAGGACCCTACTGTTGCTGCCTTTAAAGCTGCTTCAGAATTCATC 261 L G K S E L G Q E T T P S F N A M V V N 781 CTAGGGAAGAGTGAGCTGGGACAAGAAACCACCCCTTCTTTCAATGCAATGGTCGTGAAC 281 N L T L Q I V Q G H I E W Q T A D V I V 841 AACCTGACCCTCCAGATTGTCCAGGGCCACATTGAATGGCAGACGGCAGATGTAATTGTT 301 N S V N P H D I T V G P V A K S I L Q Q 901 AATTCTGTAAACCCACATGATATTACAGTTGGACCTGTGGCAAAGTCAATTCTACAACAA 321 A G V E M K S E F L A T K A K Q F Q R S 961 GCAGGAGTTGAAATGAAATCGGAATTTCTTGCCACAAAGGCTAAACAGTTTCAACGGTCC 341 Q L V L V T K G F N L F C K Y I Y H V L 1021?CAGTTGGTACTGGTCACAAAAGGATTTAACTTGTTCTGTAAATATATATACCATGTACTG |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
361 W H S E F P K P Q I L K H A M K E C L E 1081?TGGCATTCAGAATTTCCTAAACCTCAGATATTAAAACATGCAATGAAGGAGTGTTTGGAA 381 K C I E Q N I T S I S F P A L G T G N M 1141?AAATGCATTGAGCAAAATATAACTTCCATTTCCTTTCCTGCCCTTGGGACTGGAAACATG 401 E I K K E T A A E I L F D E V L T F A K 1201?GAAATAAAGAAGGAAACAGCAGCAGAGATTTTGTTTGATGAAGTTTTAACATTTGCCAAA 421 D H V K H Q L T V K F V I F P T D L E I 1261?GACCATGTAAAACACCAGTTAACTGTAAAATTTGTGATCTTTCCAACAGATTTGGAGATA 441 Y K A F S S E M A K R S K M L S L N N Y 1321?TATAAGGCTTTCAGTTCTGAAATGGCAAAGAGGTCCAAGATGCTGAGTTTGAACAATTAC 461 S V P Q S T R E E K R E N G L E A R S P 1381?AGTGTCCCCCAGTCAACCAGAGAGGAGAAAAGAGAAAATGGGCTTGAAGCTAGATCTCCT 481 A I N L M G F N V E E M Y E A H A W I Q 1441?GCCATCAATCTGATGGGATTCAACGTGGAAGAGATGTATGAGGCCCACGCATGGATCCAA 501 R I L S L Q N H H I I E N N H I L Y L G 1501?AGAATCCTGAGTCTCCAGAACCACCACATCATTGAGAATAATCATATTCTGTACCTTGGG 521 R K E H D I L S Q L Q K T S S V S I T E 1561?AGAAAGGAACATGACATTTTGTCTCAGCTTCAGAAAACTTCAAGTGTCTCCATCACAGAA 541 I I S P G R T E L E I E G A R A D L I E 1621?ATTATCAGCCCAGGAAGGACAGAGTTAGAGATTGAAGGAGCCCGGGCTGACCTCATTGAG 561 V V M N I E D M L C K V Q E E M A R K K 1681?GTGGTTATGAACATTGAAGATATGCTTTGTAAAGTACAGGAGGAAATGGCAAGGAAAAAG 581 E R G L W R S L G Q W T I Q Q Q K T Q D 1741?GAGCGAGGCCTTTGGCGCTCGTTAGGACAGTGGACTATTCAGCAACAAAAAACCCAAGAC 601 E M K E N I I F L K C P V P P T Q E L L 1801?GAAATGAAAGAAAATATCATATTTCTGAAATGTCCTGTGCCTCCAACTCAAGAGCTTCTA 621 D Q K K Q F E K C G L Q V L K V E K I D 1861?GATCAAAAGAAACAGTTTGAAAAATGTGGTTTGCAGGTTCTAAAGGTGGAGAAGATAGAC 641 N E V L M A A F Q R K K K M M E E K L H 1921?AATGAGGTCCTTATGGCTGCCTTTCAAAGAAAGAAGAAAATGATGGAAGAAAAACTGCAC 661 R Q P V S H R L F Q Q V P Y Q F C E V V 1981?AGGCAACCTGTGAGCCATAGGCTGTTTCAGCAAGTCCCATACCAGTTCTGTGAAGTGGTT 681 C R V G F Q R M Y S V P H D P K Y G P G |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2041?TGCAGAGTTGGCTTTCAAAGAATGTACTCGGTGCCCCACGACCCAAAGTATGGACCTGGC 701 I Y F T K N L K N L A S Q F K K T S A T 2101?ATATACTTCACCAAGAATCTCAAAAATCTAGCATCCCAGTTCAAGAAAACGTCTGCCACA 721 D K L I Y V F E A E V L T G S F C E G H 2161?GATAAGCTGATCTATGTGTTTGAGGCTGAAGTACTCACAGGCTCCTTCTGTGAGGGTCAT 741 Q L N I V P P R L S T D A I D S H D S V 2221?CAGTTAAATATTGTTCCCCCACGATTGAGTACTGATGCCATAGATAGCCATGACAGTGTG 761 V D N V S S P E T F V I F S G T Q A M P 2281?GTTGACAATGTCTCCAGCCCTGAAACCTTTGTTATTTTTAGTGGCACGCAGGCTATGCCC 781 Q Y L W T C T Q D H V G P E D Y S L G Q 2341?CAATATTTGTGGACTTGCACCCAGGATCATGTAGGGCCAGAGGATTACTCATTAGGACAA 801 M L P S P Q Q L G K R F V S G S P V D - 2401?ATGTTGCCGTCTCCACAGCAGCTTGGGAAGAGATTCGTAAGTGGCAGCCCTGTTGACTAA | |||
WBC041C11 | Homo sapiens copine I | 1 ACCAGGCAAATATTCCATTCAGCATTACAAAGATGGATGTTCTTCAGTTCCTAGAAGGAA 61 TCCCAGTGGATGAAAATGCTGTACATGTTCTTGTTGATAACAATGGGCAAGGTCTAGGAC 121 AGGCATTGGTTCAGTTTAAAAATGAAGATGATGCACATGGCCCACTGCGTGACCTTGGTT 181 CAGCTGTCCATTTCCTGTGACCATCTCATTGACAAGGACATCGGCTCCAAGTCTGACCCA 241 CTCTGCGTCCTTTTACAGGATGTGGGAGGGGGCAGCTGGGCTGAGCTTGGCCGGACTGAA 301 CGGGTGCGGAACTGCTCAAGCCCTGAGTTCTCCAAGACTCTACAGCTTGAGTACCGCTTT 361 GAGACAGTCCAGAAGCTACGCTTTGGAATCTATGACATAGACAACAAGACGCCAGAGCTG 421 AGGGATGATGACTTCCTAGGGGGTGCTGAGTGTTCCCTAGGACAGATTGTGTCCAGCCAG 481 GTACTGACTCTCCCCTTGATGCTGAAGCCTGGAAAACCTGCTGGGCGGGGGACCATCACG 541 GTCTCAGCTCAGGAATTAAAGGACAATCGTGTAGTAACCATGGAGGTAGAGGCCAGAAAC 601 CTAGATAAGAAGGACTTCCTGGGAAAATCAGATCCATTTCTGGAGTTCTTCCGCCAGGGT 661 GATGGGAAATGGCACCTGGTGTACAGATCTGAGGTCATCAAGAACAACCTGAACCCTACA 721 TGGAAGCGTTTCTCAGTCCCCGTTCAGCATTTCTGTGGTGGGAACCCCAGCACACCCATC 781 CAGGTGCAATGCTCCGATTATGACAGTGACGGGTCACATGATCTCATCGGTACCTTCCAC 841 ACCAGCTTGGCCCAGCTGCAGGCAGTCCCGGCTGAGTTTGAATGCATCCACCCTGAGAAG 901 CAGCAGAAAAAGAAAAGCTACAAGAACTCTGGAACTATCCGTGTCAAGATTTGTCGGGTA 961 GAAACAGAGTACTCCTTTCTGGACTATGTGATGGGAGGCTGTCAGATCAACTTCACTGTG 1021?GGCGTGGACTTCACTGGCTCCAATGGAGACCCCTCCTCACCTGACTCCCTACACTACCTG 1081?AGTCCAACAGGGGTCAATGAGTACCTGATGGCACTGTGGAGTGTGGGCAGCGTGGTTCAG 1141?GACTATGACTCAGACAAGCTGTTCCCTGCATTTGGATTTGGGGCCCAGGTTCCCCCTGAC 1201?TGGCAGGTCTCGCATGAATTTGCCTTGAATTTCAACCCCAGTAACCCCTACTGTGCAGGC 1261?ATCCAGGGCATTGTGGATGCCTACCGCCAAGCCCTGCCCCAAGTTCGCCTCTATGGCCCT 1321?ACCAACTTTGCACCCATCATCAACCATGTGGCCAGGTTTGCAGCCCAGGCTGCACATCAG 1381?GGGACTGCCTCGCAATACTTCATGCTGTTGCTGCTGACTGATGGTGCTGTGACGGATGTG 1441?GAAGCCACACGTGAGGCTGTGGTGCGTGCCTCGAACCTGCCCATGTCAGTGATCATTGTG 1501?GGTGTGGGTGGTGCTGACTTTGAGGCCATGGAGCAGCTGGACGCTGATGGTGGACCCCTG 1561?CATACACGTTCTGGGCAGGCTGCTGCCCGCGACATTGTGCAGTTTGTACCCTACCGCCGG 1621?TTCCAGAATGCCCCTCGGGAGGCATTGGCACAGACCGTGCTCGCAGAAGTGCCCACACAA | SEQ?ID?NO:61 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1681?CTGGTCTCATACTTCAGGGCCCAGGGTTGGGCCCCGCTCAAGCCACTTCCACCCTCAGCC 1741?AAGGATCCTGCACAGGCCCCCCAGGCCTAGGTTCCCTTGGAGGCTGTGGCAAGTCCTCAA 1801?TCCTGTGTCCCAGAGGTCCCTNTGGGCCACAACCCAACCCTTCTCACTCTCCTCAGTGCT 1861?AGCACTTTGTATTTTTTGATACTTTTATACTTGTTTCTGCTTTTGCTGCTCTTGATCCCA 1921?CCTTTGCTCCTGACAACCCTCATTCAATAAAGACCAGTGAAGACCAAAAAAAAAAAAAAA 1981?AAAAA 1 | SEQ?ID?NO:62 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
281 G C Q I N F T V G V D F T G S N G D P S 841 GGCTGTCAGATCAACTTCACTGTGGGCGTGGACTTCACTGGCTCCAATGGAGACCCCTCC 301 S P D S L H Y L S P T G V N E Y L M A L 901 TCACCTGACTCCCTACACTACCTGAGTCCAACAGGGGTCAATGAGTACCTGATGGCACTG 321 W S V G S V V Q D Y D S D K L F P A F G 961 TGGAGTGTGGGCAGCGTGGTTCAGGACTATGACTCAGACAAGCTGTTCCCTGCATTTGGA 341 F G A Q V P P D W Q V S H E F A L N F N 1021?TTTGGGGCCCAGGTTCCCCCTGACTGGCAGGTCTCGCATGAATTTGCCTTGAATTTCAAC 361 P S N P Y C A G I Q G I V D A Y R Q A L 1081?CCCAGTAACCCCTACTGTGCAGGCATCCAGGGCATTGTGGATGCCTACCGCCAAGCCCTG 381 P Q V R L Y G P T N F A P I I N H V A R 1141?CCCCAAGTTCGCCTCTATGGCCCTACCAACTTTGCACCCATCATCAACCATGTGGCCAGG 401 F A A Q A A H Q G T A S Q Y F M L L L L 1201?TTTGCAGCCCAGGCTGCACATCAGGGGACTGCCTCGCAATACTTCATGCTGTTGCTGCTG 421 T D G A V T D V E A T R E A V V R A S N 1261?ACTGATGGTGCTGTGACGGATGTGGAAGCCACACGTGAGGCTGTGGTGCGTGCCTCGAAC 441 L P M S V I I V G V G G A D F E A M E Q 1321?CTGCCCATGTCAGTGATCATTGTGGGTGTGGGTGGTGCTGACTTTGAGGCCATGGAGCAG 461 L D A D G G P L H T R S G Q A A A R D I 1381?CTGGACGCTGATGGTGGACCCCTGCATACACGTTCTGGGCAGGCTGCTGCCCGCGACATT 481 V Q F V P Y R R F Q N A P R E A L A Q T 1441?GTGCAGTTTGTACCCTACCGCCGGTTCCAGAATGCCCCTCGGGAGGCATTGGCACAGACC 501 V L A E V P T Q L V S Y F R A Q G W A P 1501?GTGCTCGCAGAAGTGCCCACACAACTGGTCTCATACTTCAGGGCCCAGGGTTGGGCCCCG 521 L K P L P P S A K D P A Q A P Q A - 1561?CTCAAGCCACTTCCACCCTCAGCCAAGGATCCTGCACAGGCCCCCCAGGCCTAG | |||
WBC036C09_V1.3_AT | Homo sapiens delta sleep inducing peptide, immunoreactant, mRNA. | 1 GAAGGCCGGAAGCTTACCAGCCGAGAAGGAATTCCTAGCTAGCTTCAGAGCCGGTGCCTC 61 CGGAGCCAGCGTGGTGGCCATAGACAACAAGATCGAACAGGCCATGGATCTGGTGAAGAA 121 TCATCTGATGTATGCTGTGAGAGAGGAGGTGGAGATCCTGAAGGAGCAGATCCGAGAGCT 181 GGTGGAGAAGAACTCCCAGCTAGAGCGTGAGAACACCCTGTTGAAGACCCTGGCAAGCCC 241 AGAGCAGCTGGAGAAGTTCCAGTCCTGTCTGAGCCCTGAAGAGCCAGCTCCCGAATCCCC 301 ACAAGTGCCCGAGGCCCCTGGTGGTTCTGCGGTGTAAGTGGCTCTGTCCTCAGGGTGGGC 361 AGAGCCACTAAACTTGTTTTACCTAGTTCTTTCCAGTTTGTTTTTGGCTCCCCAAGCATC 421 ATCTCACGAGGAGAACTTTACACCTAGCACAGCTGGTGCCAAGAGATGTCCCAAGGACAT 481 GGCCACCTGGGTCCACTCCAGTGACAGACCCCTGACAAAGAGCAAGTCCCTGGAGGCTGA | SEQ?ID?NO:63 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
541 GTTGCATGGGGTCTTGTCACCCCAAGCCAGTGAGCCTCTAATGCCACCGCGCCCTAGGGG 601 CTCCCAGAGCCTGGGCAACTTAGCTGTGACTGGCAAAGGAGAAAGGTAGTTTGAGATGTG 661 ACGCCAGTTAGTTCCAGAAAGTATCAGGGGTCTGTTTTTCATTTCCATGGACATCTTCAG 721 CAGCTTCACCTGACAATGACTGTTCCTATGAAGAAGCCACTTGTGTTTTAAGCAGAGGCA 781 ACCTCTCTCTTTTCCCCCGCCTCGCCAAGGCAGGGCCACAGATGGGAGAGATTGAGCCAA 841 GTCAGCCTTCTGTTGGTTAATATGGTCTAATGCATGGCTTTGTGCACAGCCCAGTGTGGG 901 ATTACGGCTTTGGGATGACCGCTTACAAAGTTCTGTTTGGTTAGTATTGGCATAGTTTTT 961 CTATATAGCCATACATGCGTATATATACCCATAGGGCTAGATCTATATCTTAGTGTAGCG 1021?ATGTATACATATACACATACACCTACGTGTCGAAGGGCCTAACCAGCTTTGGGAATATTG 1081?ACTGGTTCCTTATCTCTTAAGGCTAATTCTTTGACTGTGTTCATTTACCAAGTTGATCCA 1141?GTTTGTCCTTTAGGTTAAATAAGACTAAAGCGTAAAGACAGGGAGGGGGCCAGCCTCTGA 1201?ATGTGGCCACAGATGCCTTGCTGCTGCAACCCTTGCCCCATCTGTCCCCTGAAGACTTGT 1261?GAGGTCCTCTTTTGAAAGCCAAACCCACCATTCACTGGTGCTGACTACAAAGAATGGGTT 1321?TGAGAGAAGATCAGCTAGGACTTCACAGTGTCATTTGAAAACGTTTTTTGTTTTGTTTTG 1381?TAATTATTGTGGAAAACTTTCAAGTGAACAGAAGGATGGTGTCCTACTGTGGATGAGGGA 1441?TGAACAAGGGGATGGCTTTGATCCAATGGAGCCTGGGAGGTGTGCCCAGAAAGCTTGTCT 1501?GTAGCGGGTTTTGTGAGAGTGAACACTTTCCACTTTCTGACACCTGATCCTGATGTATGT 1561?TTCCAGGATTTGGATTTTGATTTTTCAGATGTAGCTTGAAATTTCAATAAACTTTGCTCT 1621?GTTTTTCTAAAAATAAAAAAAAAAAAAAA 1 | SEQ?ID?NO:64 | ||
WBC285 | No | 1 CTCAGAAAATGCACTCAGACACCGTAATCAGTGGAGCTGCGATCTTATGTACATTTCTAC 61 TCTAAAACCTATTTTAAATTTTATCATCTACCGCATGCTATTTCATCTCCTCTCGTCCTC 121 TCCCCCTTGTATTTATTAGAGGCTGGCTATGGATTTCTGTCCCTGAGAGCACCTTCCTAA 181 CAATGAAGTGTACTTGGCAGTCGCTCACGGTGAATAAGGATTGGAGGATATTCTGCAAGG 241 AAAATGGATAGCCTTGTTTCCTCTGTATGAGAGAAATATTTGAGGTAAAATAGACTAATA 301 ATTTCTCAAAGTAGAAGTTTTGAGGGTTGCTTTTGCATAGAGAAGTTGGAAACTCCTTGA 361 AGTGATAGAAAGCGTGTGGGATATTATAATTATTGTTATTTCCCGCCCTGGCAGGCCGCC 421 GCGGGTTTTCTCTTTCCGTGTGCCAGCATCCTTCGAGGTTCAAGGCCACTTCATGTTTTT 481 CTTCTGCTTTCTCCACACTGACTTTTTTTGATTTTCATGAGGGGTCTGAGAGAGAAAGCC 541 TCCCAGAACCCACTCTCAGTGCTTCCAGCCCTCATTCTTTGATGGATGTTCATGCAATTT 601 TCTCATTATTTTTCTGTCAGCATTCACAGAAACAGTGTAAAGTACTTTATTTCAAAGCCA 661 TTATGTTAGTTTACTCCATAATAATCTAAGCTGTGTATTCCTTTTCTGATTTGAATTTAG 721 TAATAACATATTTTTAAAGATAAGTCGAAAAGATTTCCTGAATAAATTTTCGATGACAAC 781 TGCTTAAGGTTCAGTTTTTTCCCCTCCTTTAATCTCTCTTATTGGACCGCGGGTTTATCT 841 ACTTGATTTAAGTTATCATTTCTTTCTGCACACTTTTAAAACAAACCCTGTGAACTTCTC | SEQ?ID?NO:65 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
901 TTGGGA NON? | SEQ?ID?NO:66 | ||
WBC030G08_V1.3_AT | Homo | 1 GGGGGCCCTCTGCCCGGGTTGTCCAAGATGGAGGGCGCTCCACCGGGGTCGCTCGCCCTC 61 CGGCTCCTGCTGTTCGTGGCGCTACCCGCCTCCGGCTGGCTGACGACGGGCGCCCCCGAG 121 CCGCCGCCGCTGTCCGGAGCCCCACAGGACGGCATCAGAATTAATGTAACTACACTGAAA 181 GATGATGGGGACATATCTAAACAGCAGGTTGTTCTTAACATAACCTATGAGAGTGGACAG 241 GTCTATGTAAATGACCTCCCTGTAAATAGTGGGGTCACCCGAATCAGCTGTCAGACTTTG 301 ATAGTGAAGAATGAAAATCTAGGAAATTTGGAGGAAAAAGAATATTTTGGAATTGTCACT 361 GTAAGGATTTTAGTTCATGAGTGGCCTATGACATCTGGTTCCAGTTTGCAACTAATTGTC 421 ATTCAAGAAGAAGTAGTAGAGATTGATGGAAAACAAGCTCAACAAAAGGATGTCACTGAA 481 ATTGATATTTTAGTTAAGAACCAGGGAGTAATCAGACATACAAACTACACCCTGCCTTTG 541 GAAGAAAGCATGCTGTACTCCATTTCCCGAGACAATGACGTTTTGTTTACCCTTCCCAAC 601 CTCTCCAAAAAAGTAGAAAGTGTTAGTTCGTTGCAGACCACCAGCCAGTACCCCATCAGG 661 AGCGTGGAGACCACCGTAGAAGGAGAGGCTCTACCTGGCAAATTACCTGAGACTCCTCTC 721 AGAGCAGAGCCTCCGTTTCCCTATAAGGTGATGTGTCAGTGGATGGAGAGGTTCAGGAAG 781 GACCTGTGCAGGTTCTGGAGCAGCGTTTGCCCAGTGTTCTTCATGTTTTTGAATGTCATG 841 GTGGTCGGAAATATAGGAGCAGCTGTGGTCATAACCATCTTAAAGGTGCTTTTCCCAGTT 901 TGTGAATACAAAGGAATTCTTCAGTTGGATAAAGTGAATGTTATACCTGTGACAGCTATC 961 AACGTACATCCAGATGGTCCTGAGAAAACAGTGGAAAACCGTGGAGATAAAACATGTGTT 1021?TAAAACACCGTCTCAAATCATTGACTTTGAATTAGTCTTTTGGCTCTAAATTTGCCACTT 1081?GAATATAATTTTCTTTAAATCATTAAGAATCAGTTTCAAAAAAAAAAAAAAAAAAAAAAA 1141? | SEQ?ID?NO:67 SEQ?ID?NO:68 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
81 S G V T R I S C Q T L I V K N E N L G N 241 AGTGGGGTCACCCGAATCAGCTGTCAGACTTTGATAGTGAAGAATGAAAATCTAGGAAAT 101 L E E K E Y F G I V T V R I L V H E W P 301 TTGGAGGAAAAAGAATATTTTGGAATTGTCACTGTAAGGATTTTAGTTCATGAGTGGCCT 121 M T S G S S L Q L I V I Q E E V V E I D 361 ATGACATCTGGTTCCAGTTTGCAACTAATTGTCATTCAAGAAGAAGTAGTAGAGATTGAT 141 G K Q A Q Q K D V T E I D I L V K N Q G 421 GGAAAACAAGCTCAACAAAAGGATGTCACTGAAATTGATATTTTAGTTAAGAACCAGGGA 161 V I R H T N Y T L P L E E S M L Y S I S 481 GTAATCAGACATACAAACTACACCCTGCCTTTGGAAGAAAGCATGCTGTACTCCATTTCC 181 R D N D V L F T L P N L S K K V E S V S 541 CGAGACAATGACGTTTTGTTTACCCTTCCCAACCTCTCCAAAAAAGTAGAAAGTGTTAGT 201 S L Q T T S Q Y P I R S V E T T V E G E 601 TCGTTGCAGACCACCAGCCAGTACCCCATCAGGAGCGTGGAGACCACCGTAGAAGGAGAG 221 A L P G K L P E T P L R A E P P F P Y K 661 GCTCTACCTGGCAAATTACCTGAGACTCCTCTCAGAGCAGAGCCTCCGTTTCCCTATAAG 241 V M C Q W M E R F R K D L C R F W S S V 721 GTGATGTGTCAGTGGATGGAGAGGTTCAGGAAGGACCTGTGCAGGTTCTGGAGCAGCGTT 261 C P V F F M F L N V M V V G N I G A A V 781 TGCCCAGTGTTCTTCATGTTTTTGAATGTCATGGTGGTCGGAAATATAGGAGCAGCTGTG 281 V I T I L K V L F P V C E Y K G I L Q L 841 GTCATAACCATCTTAAAGGTGCTTTTCCCAGTTTGTGAATACAAAGGAATTCTTCAGTTG 301 D K V N V I P V T A I N V H P D G P E K 901 GATAAAGTGAATGTTATACCTGTGACAGCTATCAACGTACATCCAGATGGTCCTGAGAAA 321 T V E N R G D K T C V - 961 ACAGTGGAAAACCGTGGAGATAAAACATGTGTTTAA | |||
WBC024D07 | Homo sapiens's heat shock 70kDa albumen 8, | 1 CTCTTGGGTTTTTTGTGGCTTCCTTCGTTATTGGAGCCAGGCCTACACGCCAGCAACCAT 61 GTCCAAGGGACCTGCAGTTGGTATTGATCTTGGCACCACCTACTCTTGTGTGGGTGTTTT 121 CCAGCACGGAAAAGTCGAGATAATTGCCAATGATCAGGGAAACCGAACCACTCCAAGCTA 181 TGTCGCCTTTACGGACACTGAACGGTTGATCGGTGATGCCGCAAAGAATCAAGTTGCAAT 241 GAACCCCACCAACACAGTTTTTGATGCCAAACGTCTGATTGGACGCAGATTTGATGATGC 301 TGTTGTCCAGTCTGATATGAAACATTGGCCCTTTATGGTGGTGAATGATGCTGGCAGGCC 361 CAAGGTCCAAGTAGAATACAAGGGAGAGACCAAAAGCTTCTATCCAGAGGAGGTGTCTTC 421 TATGGTTCTGACAAAGATGAAGGAAATTGCAGAAGCCTACCTTGGGAAGACTGTTACCAA | SEQ?ID?NO:69 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
481 TGCTGTGGTCACAGTGCCAGCTTACTTTAATGACTCTCAGCGTCAGGCTACCAAAGATGC 541 TGGAACTATTGCTGGTCTCAATGTACTTAGAATTATTAATGAGCCAACTGCTGCTGCTAT 601 TGCTTACGGCTTAGACAAAAAGGTTGGAGCAGAAAGAAACGTGCTCATCTTTGACCTGGG 661 AGGTGGCACTTTTGATGTGTCAATCCTCACTATTGAGGATGGAATCTTTGAGGTCAAGTC 721 TACAGCTGGAGACACCCACTTGGGTGGAGAAGATTTTGACAACCGAATGGTCAACCATTT 781 TATTGCTGAGTTTAAGCGCAAGCATAAGAAGGACATCAGTGAGAACAAGAGAGCTGTAAG 841 ACGCCTCCGTACTGCTTGTGAACGTGCTAAGCGTACCCTCTCTTCCAGCACCCAGGCCAG 901 TATTGAGATCGATTCTCTCTATGAAGGAATCGACTTCTATACCTCCATTACCCGTGCCCG 961 ATTTGAAGAACTGAATGCTGACCTGTTCCGTGGCACCCTGGACCCAGTAGAGAAAGCCCT 1021?TCGAGATGCCAAACTAGACAAGTCACAGATTCATGATATTGTCCTGGTTGGTGGTTCTAC 1081?TCGTATCCCCAAGATTCAGAAGCTTCTCCAAGACTTCTTCAATGGAAAAGAACTGAATAA 1141?GAGCATCAACCCTGATGAAGCTGTTGCTTATGGTGCAGCTGTCCAGGCAGCCATCTTGTC 1201?TGGAGACAAGTCTGAGAATGTTCAAGATTTGCTGCTCTTGGATGTCACTCCTCTTTCCCT 1261?TGGTATTGAAACTGCTGGTGGAGTCATGACTGTCCTCATCAAGCGTAATACCACCATTCC 1321?TACCAAGCAGACACAGACCTTCACTACCTATTCTGACAACCAGCCTGGTGTGCTTATTCA 1381?GGTTTATGAAGGCGAGCGTGCCATGACAAAGGATAACAACCTGCTTGGCAAGTTTGAACT 1441?CACAGGCATACCTCCTGCACCCCGAGGTGTTCCTCAGATTGAAGTCACTTTTGACATTGA 1501?TGCCAATGGTATACTCAATGTCTCTGCTGTGGACAAGAGTACGGGAAAAGAGAACAAGAT 1561?TACTATCACTAATGACAAGGGCCGTTTGAGCAAGGAAGACATTGAACGTATGGTCCAGGA 1621?AGCTGAGAAGTACAAAGCTGAAGATGAGAAGCAGAGGGACAAGGTGTCATCCAAGAATTC 1681?ACTTGAGTCCTATGCCTTCAACATGAAAGCAACTGTTGAAGATGAGAAACTTCAAGGCAA 1741?GATTAACGATGAGGACAAACAGAAGATTCTGGACAAGTGTAATGAAATTATCAACTGGCT 1801?TGATAAGAATCAGACTGCCGAGAAGGAAGAATTTGAACATCAACAGAAAGAGCTGGAGAA 1861?AGTTTGCAACCCCATCATCACCAAGCTGTACCAGAGTGCAGGAGGCATGCCAGGAGGAAT 1921?GCCTGGGGGATTTCCTGGTGGTGGAGCTCCTCCCTCTGGTGGTGCTTCCTCAGGGCCCAC 1981?CATTGAAGAGGTTGATTAAGCCAACCAAGTGTAGATGTAGCATTGTTCCACACATTTAAA 2041?ACATTTGAAGGACCTAAATTCGTAGCAAATTCTGTGGCAGTTTTAAAAAGTTAAGCTGCT 2101?ATAGTAAGTTACTGGGCATTCTCAATACTTGAATATGGAACATATGCACAGGGGAAGGAA 2161?ATAACATTGCACTTTATAAACACTGTATTGTAAGTGGAAAATGCAATGTCTTAAATAAAA 2221?CTATTTAAAATTGGCACCATAAACAAAAAAAAAAAAAAA 1 M S K G P A V G I D L G T T Y S C V G V 1 ATGTCCAAGGGACCTGCAGTTGGTATTGATCTTGGCACCACCTACTCTTGTGTGGGTGTT 21 F Q H G K V E I I A N D Q G N R T T P S 61 TTCCAGCACGGAAAAGTCGAGATAATTGCCAATGATCAGGGAAACCGAACCACTCCAAGC 41 Y V A F T D T E R L I G D A A K N Q V A 121 TATGTCGCCTTTACGGACACTGAACGGTTGATCGGTGATGCCGCAAAGAATCAAGTTGCA 61 M N P T N T V F D A K R L I G R R F D D 181 ATGAACCCCACCAACACAGTTTTTGATGCCAAACGTCTGATTGGACGCAGATTTGATGAT 81 A V V Q S D M K H W P F M V V N D A G R 241 GCTGTTGTCCAGTCTGATATGAAACATTGGCCCTTTATGGTGGTGAATGATGCTGGCAGG 101 P K V Q V E Y K G E T K S F Y P E E V S 301 CCCAAGGTCCAAGTAGAATACAAGGGAGAGACCAAAAGCTTCTATCCAGAGGAGGTGTCT | SEQ?ID?NO:70 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
121 S M V L T K M K E I A E A Y L G K T V T 361 TCTATGGTTCTGACAAAGATGAAGGAAATTGCAGAAGCCTACCTTGGGAAGACTGTTACC 141 N A V V T V P A Y F N D S Q R Q A T K D 421 AATGCTGTGGTCACAGTGCCAGCTTACTTTAATGACTCTCAGCGTCAGGCTACCAAAGAT 161 A G T I A G L N V L R I I N E P T A A A 481 GCTGGAACTATTGCTGGTCTCAATGTACTTAGAATTATTAATGAGCCAACTGCTGCTGCT 181 I A Y G L D K K V G A E R N V L I F D L 541 ATTGCTTACGGCTTAGACAAAAAGGTTGGAGCAGAAAGAAACGTGCTCATCTTTGACCTG 201 G G G T F D V S I L T I E D G I F E V K 601 GGAGGTGGCACTTTTGATGTGTCAATCCTCACTATTGAGGATGGAATCTTTGAGGTCAAG 221 S T A G D T H L G G E D F D N R M V N H 661 TCTACAGCTGGAGACACCCACTTGGGTGGAGAAGATTTTGACAACCGAATGGTCAACCAT 241 F I A E F K R K H K K D I S E N K R A V 721 TTTATTGCTGAGTTTAAGCGCAAGCATAAGAAGGACATCAGTGAGAACAAGAGAGCTGTA 261 R R L R T A C E R A K R T L S S S T Q A 781 AGACGCCTCCGTACTGCTTGTGAACGTGCTAAGCGTACCCTCTCTTCCAGCACCCAGGCC 281 S I E I D S L Y E G I D F Y T S I T R A 841 AGTATTGAGATCGATTCTCTCTATGAAGGAATCGACTTCTATACCTCCATTACCCGTGCC 301 R F E E L N A D L F R G T L D P V E K A 901 CGATTTGAAGAACTGAATGCTGACCTGTTCCGTGGCACCCTGGACCCAGTAGAGAAAGCC 321 L R D A K L D K S Q I H D I V L V G G S 961 CTTCGAGATGCCAAACTAGACAAGTCACAGATTCATGATATTGTCCTGGTTGGTGGTTCT 341 T R I P K I Q K L L Q D F F N G K E L N 1021?ACTCGTATCCCCAAGATTCAGAAGCTTCTCCAAGACTTCTTCAATGGAAAAGAACTGAAT 361 K S I N P D E A V A Y G A A V Q A A I L 1081?AAGAGCATCAACCCTGATGAAGCTGTTGCTTATGGTGCAGCTGTCCAGGCAGCCATCTTG 381 S G D K S E N V Q D L L L L D V T P L S 1141?TCTGGAGACAAGTCTGAGAATGTTCAAGATTTGCTGCTCTTGGATGTCACTCCTCTTTCC 401 L G I E T A G G V M T V L I K R N T T I 1201?CTTGGTATTGAAACTGCTGGTGGAGTCATGACTGTCCTCATCAAGCGTAATACCACCATT 421 P T K Q T Q T F T T Y S D N Q P G V L I 1261?CCTACCAAGCAGACACAGACCTTCACTACCTATTCTGACAACCAGCCTGGTGTGCTTATT 441 Q V Y E G E R A M T K D N N L L G K F E |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1321?CAGGTTTATGAAGGCGAGCGTGCCATGACAAAGGATAACAACCTGCTTGGCAAGTTTGAA 461 L T G I P P A P R G V P Q I E V T F D I 1381?CTCACAGGCATACCTCCTGCACCCCGAGGTGTTCCTCAGATTGAAGTCACTTTTGACATT 481 D A N G I L N V S A V D K S T G K E N K 1441?GATGCCAATGGTATACTCAATGTCTCTGCTGTGGACAAGAGTACGGGAAAAGAGAACAAG 501 I T I T N D K G R L S K E D I E R M V Q 1501?ATTACTATCACTAATGACAAGGGCCGTTTGAGCAAGGAAGACATTGAACGTATGGTCCAG 521 E A E K Y K A E D E K Q R D K V S S K N 1561?GAAGCTGAGAAGTACAAAGCTGAAGATGAGAAGCAGAGGGACAAGGTGTCATCCAAGAAT 541 S L E S Y A F N M K A T V E D E K L Q G 1621?TCACTTGAGTCCTATGCCTTCAACATGAAAGCAACTGTTGAAGATGAGAAACTTCAAGGC 561 K I N D E D K Q K I L D K C N E I I N W 1681?AAGATTAACGATGAGGACAAACAGAAGATTCTGGACAAGTGTAATGAAATTATCAACTGG 581 L D K N Q T A E K E E F E H Q Q K E L E 1741?CTTGATAAGAATCAGACTGCCGAGAAGGAAGAATTTGAACATCAACAGAAAGAGCTGGAG 601 K V C N P I I T K L Y Q S A G G M P G G 1801?AAAGTTTGCAACCCCATCATCACCAAGCTGTACCAGAGTGCAGGAGGCATGCCAGGAGGA 621 M P G G F P G G G A P P S G G A S S G P 1861?ATGCCTGGGGGATTTCCTGGTGGTGGAGCTCCTCCCTCTGGTGGTGCTTCCTCAGGGCCC 641 T I E E V D - 1921?ACCATTGAAGAGGTTGATTAA | |||
WBC031E09_V1.3_AT | People EV12 protein gene, | 1 TAATAGAAATTAAAATGCTTCTTCATACATAGCTGAATAGAAAAGAATTTGTTGAGAAGG 61 AATTCAGGGTAGCGAATATTAGGCATAAGCTTGTAGTTTACTTGTAACATCTCAACACTA 121 TCTTTTAACTACAATTACCAAAAACTAGGATCCATTATTCTTTCACAAACTAACAAATTA 181 TATTGCTATCCCAACAGATTGCCAAGTATGCCCACGGACATGGAACACACAGGACATTAC 241 CTACATCTTGCCTTTCTGATGACAACAGTTTTTTCTTTGTCTCCTGGAACAAAAGCAAAC 301 TATACCCGTCTGTGGGCTAACAGTACTTCTTCCTGGGATTCAGTTATTCAAAACAAGACA 361 GGCAGAAACAAAAATGAAAACATTAATATAAACCCTGCAACTCCTGAAGTAGATAAAAAA 421 GATAACTCTACAAGCATGCCTGAAATAGCAACATCAGCTCACATTGTACCCTTAACTCCT 481 AAATCTCAACCGGAGCTTTATATACCTTCTGTTGTCAGGAACAGTTCTCCAACAGTACAG 541 AGCATTGAAAACACAAGCAAGAGTCACAGTGAAATTTTCAAAAAAGATGTCTGTGAGGAA 601 AACTACAACAAAATCGCTATGCTAGTTTGTGTAATTATAATTGCAGTGCTTTTTCTTATC 661 TGTACCCTTCTATTTCTATCAACTGTGGTTCTGGCAAACAAAGTCTCATCTCTCAGACGA 721 TCAAAACAAGCAGGCAAACGTCAGCCTAGAAGCAACGGCGATTTTCTGGCAAGCAGTGGT 781 CTATGGCCTGCTGACTCAGATACTTGGAAAAGAGCAAAACAGCTCACAGGGCCCCACCTA 841 ATGATGCCATCTACTGGAGCACTCACAGCTACAATGGAAAGAAAAGATGAAGAAAGAACT 901 GAAAAACTCACTAACTGATGCTTTAGTGAAGAAAAATGCAAAGTGGCTATGAGAAAGTTT | SEQ?ID?NO:71 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
961 AGAGTAAAAATGAAGTCAGTTTGATATTTAATGCCAACAGGTTGGTCTGATGGTCTGAAA 1021?TCTGATGGGCAGGCCTTGCGATTTAAAATGAAGCAGGTGAGAAGGGGAGAAGCATGCCTG 1081?CTTACTTAATGACTGAAACTGTGCACTTTTGTTCTGACACTGAATATCTTAAAGAGCAAA 1141?TAATAAAACAACCAAGCATCTGGGGAAGGTTTTGAAGATGACTTGAAGGAACTGACTAAT 1201?AGAAAGGGTCAATTAAATAAATATTTCCTGTTCCATAATAGTAGTTAGATGATCTTTGTT 1261?CGAATGTAATTAAATTTTGAAAAGTTTTAGCATGTCCTTAGAGGCAAGTATATGCTTCAA 1321?CACCTAACAGAAGTAAAAATTCTAATGCATAGAGATGAACTGTATAGTTTAATGGTACCT 1381?TCTTTGCTGAATGTGACAGAATCCATACCAGCTCATGTATCAACACAGCTAATTTTAAGC 1441?AGGATGTTTTCATCTTTACATATGGCACATATAAAAAGGTGCTTTTCTACTATTAATATT 1501?AAATTAAAACCTTTACTTTTGTATAATAAATTAAAACTCAGAATAAACCTGTGACCACGT 1561?ATATTTGCATTCACTTTATTACTTTAGAGAACACATTGTAAAGATCAATAAGAAATAGAG 1621?CACAACTAAAATAAATAAGATTTATAGCCACACCAATAGGCTAGTGTAAACGAAAGTATG 1681?TTTCACTGTTTATGATTAATAATATTCATCTTTTCTATAAATACTACTTACTGGAACATT 1741?AACAACAAGTCCAAAGGTTGATTAATTTTGACTCAGGAGCAGAGCTATGATTATA 1 M P T D M E H T G H Y L H L A F L M T T 1 ATGCCCACGGACATGGAACACACAGGACATTACCTACATCTTGCCTTTCTGATGACAACA 21 V F S L S P G T K A N Y T R L W A N S T 61 GTTTTTTCTTTGTCTCCTGGAACAAAAGCAAACTATACCCGTCTGTGGGCTAACAGTACT 41 S S W D S V I Q N K T G R N K N E N I N 121 TCTTCCTGGGATTCAGTTATTCAAAACAAGACAGGCAGAAACAAAAATGAAAACATTAAT 61 I N P A T P E V D K K D N S T S M P E I 181 ATAAACCCTGCAACTCCTGAAGTAGATAAAAAAGATAACTCTACAAGCATGCCTGAAATA 81 A T S A H I V P L T P K S Q P E L Y I P 241 GCAACATCAGCTCACATTGTACCCTTAACTCCTAAATCTCAACCGGAGCTTTATATACCT 101 S V V R N S S P T V Q S I E N T S K S H 301 TCTGTTGTCAGGAACAGTTCTCCAACAGTACAGAGCATTGAAAACACAAGCAAGAGTCAC 121 S E I F K K D V C E E N Y N K I A M L V 361 AGTGAAATTTTCAAAAAAGATGTCTGTGAGGAAAACTACAACAAAATCGCTATGCTAGTT 141 C V I I I A V L F L I C T L L F L S T V 421 TGTGTAATTATAATTGCAGTGCTTTTTCTTATCTGTACCCTTCTATTTCTATCAACTGTG 161 V L A N K V S S L R R S K Q A G K R Q P 481 GTTCTGGCAAACAAAGTCTCATCTCTCAGACGATCAAAACAAGCAGGCAAACGTCAGCCT 181 R S N G D F L A S S G L W P A D S D T W 541 AGAAGCAACGGCGATTTTCTGGCAAGCAGTGGTCTATGGCCTGCTGACTCAGATACTTGG 201 K R A K Q L T G P H L M M P S T G A L T 601 AAAAGAGCAAAACAGCTCACAGGGCCCCACCTAATGATGCCATCTACTGGAGCACTCACA | SEQ?ID?NO:72 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
221 A T M E R K D E E R T E K L T N - 661 GCTACAATGGAAAGAAAAGATGAAGAAAGAACTGAAAAACTCACTAACTGA | |||
BM734613 | Homo sapiens's senilism protein relative protein mRNA. | 1 CGGTGCCGCGGGGATGGCGGGAGCCGGAGCTGGAGCCGGAGCTCGCGGCGGAGCGGCGGC 61 GGGGGTCGAGGCTCGAGCTCGCGATCCACCGCCCGCGCACCGCGCACATCCTCGCCACCC 121 TCGGCCTGCGGCTCAGCCCTCGGCCCGCAGGATGGATGGCGGGTCAGGGGGCCTGGGGTC 181 TGGGGACAACGCCCCGACCACTGAGGCTCTTTTCGTGGCACTGGGCGCGGGCGTGACGGC 241 GCTCAGCCATCCCCTGCTCTACGTGAAGCTGCTCATCCAGGTGGGTCATGAGCCGATGCC 301 CCCCACCCTTGGGACCAATGTGCTGGGGAGGAAGGTCCTCTATCTGCCGAGCTTCTTCAC 361 CTACGCCAAGTACATCGTGCAAGTGGATGGTAAGATAGGGCTGTTCCGAGGCCTGAGTCC 421 CCGGCTGATGTCCAACGCCCTCTCTACTGTGACTCGGGGTAGCATGAAGAAGGTTTTCCC 481 TCCAGATGAGATTGAGCAGGTTTCCAACAAGGATGATATGAAGACTTCCCTGAAGAAAGT 541 TGTGAAGGAGACCTCCTACGAGATGATGATGCAGTGTGTGTCCCGCATGTTGGCCCACCC 601 CCTGCATGTCATCTCAATGCGCTGCATGGTCCAGTTTGTGGGACGGGAGGCCAAGTACAG 661 TGGTGTGCTGAGCTCCATTGGGAAGATTTTCAAAGAGGAAGGGCTGCTGGGATTCTTCGT 721 TGGATTAATCCCTCACCTCCTGGGCGATGTGGTTTTCTTGTGGGGCTGTAACCTGCTGGC 781 CCACTTCATCAATGCCTACCTGGTGGATGACAGCGTGAGTGACACCCCAGGGGGGCTGGG 841 AAACGACCAGAATCCAGGTTCCCAGTTCAGCCAGGCCCTGGCCATCCGGAGCTATACCAA 901 GTTCGTGATGGGGATTGCAGTGAGCATGCTGACCTACCCCTTCCTGCTAGTTGGCGACCT 961 CATGGCTGTGAACAACTGCGGGCTGCAAGCTGGGCTCCCCCCTTACTCCCCAGTGTTCAA 1021?ATCCTGGATTCACTGCTGGAAGTACCTGAGTGTGCAGGGCCAGCTCTTCCGAGGCTCCAG 1081?CCTGCTTTTCCGCCGGGTGTCATCAGGATCATGCTTTGCCCTGGAGTAACCTGAATCATC 1141?TAAAAAACACGGTCTCAACCTGGCCACCGTGGGTGAGGCCTGACCACCTTGGGACACCTG 1201?CAAGACGACTCCAACCCAACAACAACCAGATGTGCTCCAGCCCAGCCGGGCTTCAGTTCC 1261?ATATTTGCCATGTGTCTGTCCAGATGTGGGGTTGAGCGGGGGTGGGGCTGCACCCAGTGG 1321?ATTGGGTCACCCGGCAGACCTAGGGAAGGTGAGGCGAGGTGGGGAGTTGGCAGAATCCCC 1381?ATACCTCGCAGATTTGCTGAGTCTGTCTTGTGCAGAGGGCCAGAGAACGACTTGTGGAGG 1441?CCTAGGTTGGATGGGAAAGGCTCGCGGGGTCAGGTCCCACCCCGTCTACCCCTCCAGTCA 1501?GCCCAGCGCCCATCCTGCAGCTCAGCTGGGAGCACTGCCCTCCTGCTTTGTACATAGGGC 1561?GTGATCCCCTTTCACCAGGCCACCACCATGTCCAGGCCTGTGCCAGGAAGCCATTGCTCA 1621?GTTCTACCTTTGTTTTTCTCAACACTACCTTTTTGATACGAAGGCAGCACCTTCGGAATG 1681?TGAAATCATGTACTGCTCAGAATGTGTCCCTCTCATCAAGTGCTCATTGGTTTAATGGTG 1741?ACGCCTCCTGTGCAGGATCTGGTCACCTGTGCATTTGTGAACACCCAGGAATTAGGCAGA 1801?TCACCGTCTCTTGTCTACCCAGTTTAACAATTTGTGATAAGATTTGACCGTTTCTCCCTC 1861?AAATAAATGTATTGGTGATTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1 M A G A G A G A G A R G G A A A G V E A 1 ATGGCGGGAGCCGGAGCTGGAGCCGGAGCTCGCGGCGGAGCGGCGGCGGGGGTCGAGGCT 21 R A R D P P P A H R A H P R H P R P A A 61 CGAGCTCGCGATCCACCGCCCGCGCACCGCGCACATCCTCGCCACCCTCGGCCTGCGGCT 41 Q P S A R R M D G G S G G L G S G D N A 121 CAGCCCTCGGCCCGCAGGATGGATGGCGGGTCAGGGGGCCTGGGGTCTGGGGACAACGCC 61 P T T E A L F V A L G A G V T A L S H P 181 CCGACCACTGAGGCTCTTTTCGTGGCACTGGGCGCGGGCGTGACGGCGCTCAGCCATCCC | SEQ?ID?NO:73 SEQ?ID?NO:74 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
81 L L Y V K L L I Q V G H E P M P P T L G 241 CTGCTCTACGTGAAGCTGCTCATCCAGGTGGGTCATGAGCCGATGCCCCCCACCCTTGGG 101 T N V L G R K V L Y L P S F F T Y A K Y 301 ACCAATGTGCTGGGGAGGAAGGTCCTCTATCTGCCGAGCTTCTTCACCTACGCCAAGTAC 121 I V Q V D G K I G L F R G L S P R L M S 361 ATCGTGCAAGTGGATGGTAAGATAGGGCTGTTCCGAGGCCTGAGTCCCCGGCTGATGTCC 141 N A L S T V T R G S M K K V F P P D E I 421 AACGCCCTCTCTACTGTGACTCGGGGTAGCATGAAGAAGGTTTTCCCTCCAGATGAGATT 161 E Q V S N K D D M K T S L K K V V K E T 481 GAGCAGGTTTCCAACAAGGATGATATGAAGACTTCCCTGAAGAAAGTTGTGAAGGAGACC 181 S Y E M M M Q C V S R M L A H P L H V I 541 TCCTACGAGATGATGATGCAGTGTGTGTCCCGCATGTTGGCCCACCCCCTGCATGTCATC 201 S M R C M V Q F V G R E A K Y S G V L S 601 TCAATGCGCTGCATGGTCCAGTTTGTGGGACGGGAGGCCAAGTACAGTGGTGTGCTGAGC 221 S I G K I F K E E G L L G F F V G L I P 661 TCCATTGGGAAGATTTTCAAAGAGGAAGGGCTGCTGGGATTCTTCGTTGGATTAATCCCT 241 H L L G D V V F L W G C N L L A H F I N 721 CACCTCCTGGGCGATGTGGTTTTCTTGTGGGGCTGTAACCTGCTGGCCCACTTCATCAAT 261 A Y L V D D S V S D T P G G L G N D Q N 781 GCCTACCTGGTGGATGACAGCGTGAGTGACACCCCAGGGGGGCTGGGAAACGACCAGAAT 281 P G S Q F S Q A L A I R S Y T K F V M G 841 CCAGGTTCCCAGTTCAGCCAGGCCCTGGCCATCCGGAGCTATACCAAGTTCGTGATGGGG 301 I A V S M L T Y P F L L V G D L M A V N 901 ATTGCAGTGAGCATGCTGACCTACCCCTTCCTGCTAGTTGGCGACCTCATGGCTGTGAAC 321 N C G L Q A G L P P Y S P V F K S W I H 961 AACTGCGGGCTGCAAGCTGGGCTCCCCCCTTACTCCCCAGTGTTCAAATCCTGGATTCAC 341 C W K Y L S V Q G Q L F R G S S L L F R 1021?TGCTGGAAGTACCTGAGTGTGCAGGGCCAGCTCTTCCGAGGCTCCAGCCTGCTTTTCCGC 361 R V S S G S C F A L E - 1081?CGGGTGTCATCAGGATCATGCTTTGCCCTGGAGTAA | |||
WBC012F12_V1.3_AT | No | 1 GACCACAACTGAAATGTGCAACTGTGCACTNGGGGGGATTNTGGGGAGAAAAAAAAAGCA 61 GGAAAAAATGTATCTTTAACAGATAAGATCTTTTTAACAAAACCATGGTATCATTGTCAC 121 TTGCCAAAATTAATGATTTCCTTAATTAGCATATAATAATCAGTCTGTATTCAGTTTTCC | SEQ?ID?NO:75 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
181 TTTCAAAAATATCTTTCTGCTGGTTGTTTAAATGAGGATCCAACACTGCATTTAGTTGCT 241 GTCTCTTTTACTCTATAACATTGACCCCTGTCTTTAATTTCTTTCCTCTTCCCAGTTATT 301 TGAGAAGGGAACTGGATCATATATCCTGTAGAATTTCCTTCGTTCAGGTTTTGACTGACG 361 GTATCCACATGATGTCTAGTTAGAACTAGAAGGTTGATTTGATTCTGGTTCAAAAATTTT 421 TTCCAAGAATACTCCATAGGTGATGCTATATACTTTCTTTTGCATCACGTCCTGAGGAAC 481 ACGATGTCTGGTTGTTCCACTGTTGGTGATGTCTGGATTGATCGGTGGTTTCTAGTGGTG 541 TCATCTACTATAAAGCTTCCTATCTATCTTTCACCCAATGGTTTGAGCAACCATTGATGA 601 TTGTTACCTGAATCCATTATTTTATTAGGGGTTGCAAAACAGTGACTTTTGGATTCTATC 661 AAACCTCTTGCATTTATCATCTGTGATTCTTGTAGAAAGAAGAACTTTGTCTAAAGCTGA 721 TTGGGAAAGATGGAATAAATAATTAATTTATTCATCTTTAGAATGAGTTGGTGCCCTAAC 781 AACCTCCAAAGGTGATAAATGAGGTCTTCGTTTTCTAAGTAGGGGTATGACTAAACCAGT 841 ACTTTGAAACAGTGTGTTTTAGAATGGGCTG NON?CONTIGUOUS 1 AACAGTTGATGGACATTTGGTTTGTTTCTACTTTCCTGCTATTATGAACAATGCTACTAT 61 GAATATTCGTGTACAAGTGTCACGTGGACATATTTCCATTTCTCTCGTGTGTACACCTAG 121 CAGTGGAAATGCTGAGTCATACTGTAACTCCTTCCTCCTAACTTTGCATATCAAAGTTAT 181 GTTCGGAACTCAGATTCAGTGCTACTTCTATAGTGTTCTGCCATCTCACACTCAGAACGA 241 AACTCCCCTCTAGTACTCCCAGTGTTGAGTGCCTCAGTATTGCGCTTACCAGTTTGCCCT 301 GGAGCTGTTATTCCTGCGTGGCTGTTCTCCTCCTACTGTGAATTTCTGGAAAGCAGGGAC 361 AGGCTCTCATTTTTGTCTGTCCCAAGACAGCGACTGTACCGCCCTGCATAAAGCAGGAAC 421 TCTGTAAGTCCTTTCGAACGGGTGGGTAATACAAGTGTTAAGAATTTCATGTGCTTGATT 481 CTATAAAATGTGTTTAATATTAAATAATAATAATGTTCACTTTCAAATTTCAACAATTAA 541 ATGTTTGTCAAATAACATTTAAAGTAAAGGTGTATAAGGTAAACCAGTTTGGTACATTAA 601 AGTCTATTTTATTTTAAAAAAAAA | SEQ?ID?NO:76 | ||
BM734661 | The people UbA52 suprarenal gland mRNA of ubiquitin-52 amino | 1 GACGCAGACATGCAGATCTTTGTGAAGACCCTGACGGGCAAGACCATCACCCTCGAGGTT 61 GAGCCCAGTGACACCATTGAGAATGTTAAAGCTAAAATCCAAGACAAGGAGGGCATCCCA 121 CCTGACCAGCAGCGTTTGATTTTTGCCGGCAAACAGCTGGAGGACGGCCGCACTCTCTCA 181 GACTACAATATCCAGAAAGAGTCCACCCTGCACTTGGTGCTCCGCCTGCGGGGCGGCATC 241 ATTGAGCCTTCCCTCCGCCAGCTCGCCCAGAAATACAACTGCGACAAGATGATTTGCCGC 301 AAGTGTTATGCTCGCCTGCACCCTCGTGCTGTCAACTGCCGCAAGAAGAAGTGCGGCCAC 361 ACCAACAACCTGCGCCCCAAGAAGAAGGTCAAATAAGGTTGTTCTTTCCTTGAAGGGCAG 421 CCTCCTGCCCAGGCCCCATGGCCCTGGGGCCTCAATAAAGTTTCCCTTTCATTGACTGGA 481 | SEQ?ID?NO:77 SEQ?ID?NO:78 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
241 TCCCTCCGCCAGCTCGCCCAGAAATACAACTGCGACAAGATGATTTGCCGCAAGTGTTAT 101 A R L H P R A V N C R K K K C G H T N N 301 GCTCGCCTGCACCCTCGTGCTGTCAACTGCCGCAAGAAGAAGTGCGGCCACACCAACAAC 121 L R P K K K V K - 361 CTGCGCCCCAAGAAGAAGGTCAAATAA | |||
WBC022G05 | Homo sapiens ELOVL | 1 CCAACCCCGGCCTAGGCTCTCCACCGCATCGGATTCTGGAATTTACGATCACGAAAGTTC 61 TATTGTCCCGCGATTGGCTCCCGGGCCGCATGACATCATAGCGCTTGATTCATCCTTCGG 121 GTCCCGATTGGCTGGCCGCGCCATTGTGACGTCACGGTCAGCCCACGTTCTGATTGTAGA 181 TAGCCGGCGCCTTCCTCTTCCCATCGCGCGGGTCCTAGCCACCGGTGTCTCCTTCTACAT 241 CCGCCTCTGCGCCGGCTGCCACCCGCGCTCCCTCCGCCGCCGCCGCCTTGCTGCTGCTCA 301 AAGCTGCTGCCGCCCCTTGGGCTAAAAGGTTTTCAAATGGAACATTTTGATGCATCACTT 361 AGTACCTATTTCAAGGCATTGCTAGGCCCTCGAGATACTAGAGTAAAAGGATGGTTTCTT 421 CTGGACAATTATATACCCACATTTATCTGCTCTGTCATATATTTACTAATTGTATGGCTG 481 GGACCAAAATACATGAGGAATAAACAGCCATTCTCTTGCCGGGGGATTTTAGTGGTGTAT 541 AACCTTGGACTCACACTGCTGTCTCTGTATATGTTCTGTGAGTTAGTAACAGGAGTATGG 601 GAAGGCAAATACAACTTCTTCTGTCAGGGCACACGCACCGCAGGAGAATCAGATATGAAG 661 ATTATCCGTGTCCTCTGGTGGTACTACTTCTCCAAACTCATAGAATTTATGGACACTTTC 721 TTCTTCATCCTGCGCAAGAACAACCACCAGATCACGGTCCTGCACGTCTACCACCATGCC 781 TCGATGCTGAACATCTGGTGGTTTGTGATGAACTGGGTCCCCTGCGGCCACTCTTATTTT 841 GGTGCCACACTTAATAGCTTCATCCACGTCCTCATGTACTCTTACTATGGTTTGTCGTCA 901 GTCCCTTCCATGCGTCCATACCTCTGGTGGAAGAAGTACATCACTCAGGGGCAGCTGCTT 961 CAGTTTGTGCTGACAATCATCCAGACCAGCTGCGGGGTCATCTGGCCGTGCACATTCCCT 1021?CTTGGTTGGTTGTATTTCCAGATTGGATACATGATTTCCCTGATTGCTCTCTTCACAAAC 1081?TTCTACATTCAGACCTACAACAAGAAAGGGGCCTCCCGAAGGAAAGACCACCTGAAGGAC 1141?CACCAGAATGGGTCCATGGCTGCTGTGAATGGACACACCAACAGCTTTTCACCCCTGGAA 1201?AACAATGTGAAGCCAAGGAAGCTGCGGAAGGATTGAAGTCAAAGAATTGAAACCCTCCAA 1261?ACCACGTCATCTGATTGTAAGCACAATATGAGTTGTGCCCCAATGCTCGTTAACAGCTGC 1321?TGTAACTAGTCTGGCCTACAATAGTGTGATTCATGTAGGACTTCTTTCATCAATTCAAAA 1381?CCCCTAGAAAACGTATACAGATTATATAAGTAGGGATAAGATTTCTAACATTTCTGGGCT 1441?CTCTGACCCCTGCGCTAGACTGTGGAAAGGGAGTATTATTATAGTATACAACACTGCTGT 1501?TGCCTTATTAGTTATAACATGATAGGTGCTGAATTGTGATTCACAATTTAAAAACACTGT 1561?AATCCAAACTTTTTTTTTTAACTGTAGATCATGCATGTGATTGTAAATGTAAATTTGTAC 1621?AATGTTGTTATGGTAGAGAAACACACATGCCTTAAAATTTAAAAAGCAGGGCCCAAAGCT 1681?TATTAGTTTAAATTAGGGTATGTTTCAAGTTTGTATTAATTTGTAATAGCTCTGTTTAGA 1741?AAAAATCAAAGACCATGATTTATGAAACTAATGTGACATAATTTCCAGTGACTTGTTGAT 1801?GTGAAATCAGACACGGCACCTTCAGTTTTGTACTATTGGCTTTGAATCAAGCAGGCTCAA 1861?ATCTAGTGGAACAGTCAGTTTAACTTTTTAACAGATCTTATTTTTTTATTTTGAGTGCCA 1921?CTATTAATGTAAAAAGGGGGGGGCTCTACAGCAGTCGTGATGAAACTTAAATATATATTC 1981?TTTGTCCTCGAGATTTTAGGAAGGGTGTAGGGTGAGTAGGCCATTTTTAATTTCTGAAGT 2041?GCTAAGTGTTTTTATACAGCAAACAAAAAGTCAATTTTGCTTTCCACCAGTGCGAGAGAG 2101?GATGTATACTTTTCAAGAGAGATGATTGCCTATTTACCGTTTGACAGAGTCCCGTAGATG 2161?AGCAATGGGGAACTGGTTGCCAGGGTCTAAATTTGGATTGATTTATGCACTGTTATCTGT 2221?TTTGACACAGATTTCCTTGTAAAATGTGCCTAGTTTACCAAAATTAACAAAGGGGGGGAA 2281?AGGACCTTAGAACTTTTTAAGGTAAAATCAAATATAGCTACAGCATAAGAGAATCGAGAA 2341?ATTTGATAGAGGTAACTTGTTTAATGTAAATCTAATAGTACTTGTAATTTCTTTCTGCTT | SEQ?ID?NO:79 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2401?AGAATCTAAAGATGTGTTTAGAACCTCTTGTTTAAAAATAATAGACTGCTTATCATAAAA 2461?TCACATCTCACACATTTGAGGCAGTGGTCAAACAGGTAAAGCCTATGATGTGTGTCATTT 2521?TAAAGTGTCGGAATTTAGCCTCTGAATACCTTCTCCATTGGGGGAAAGATATTCTTGGAA 2581?CCACTCATGACATATCTTAGAAGGTCATTGACAATGTATAAACTAATTGTTGGTTTGATA 2641?TTTATGTAAATATCAGTTTACCATGCTTTAATTTTGCACATTCGTACTATAGGGAGCCTA 2701?TTGGTTCTCTATTAGTCTTGTGGGTTTTCTGTTTGAAAAGGAGTCATGGCATCTGTTTAC 2761?ATTTACCTTATCAAACCTAGAATGTGTATATTTATAAATGTATGTCTTCATTGCTAGGTA 2821?CTAATTTGCAGATGTCTTTACATATTTCAATACAGAAACTATAACATTCAATAGTGTGCT 2881?GTCAAAGTGTGCTTAGCTCACCTGGATATACCTACATTGTTAAATGTCTAAACAGTAATC 2941?ATTAAAACATTTTTGATTACCTGTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 3001? | SEQ?ID?NO:80 | ||
WBC032G11_V1.3_AT | Homo sapiens cDNA FLJ20073 fis, clone COL02320. | 1 AAAATTTGAAGACAAGATGGGCACCTACTCTACAATTCTGATAAAAACAGAGGTCATCGA 61 ATGTGGGAACTACTGTGGAGTACGCATCATTCACTCTTTGATTGCAGAGTTCTCACTGGA 121 AGAATTGAAGAAAAGCTATCACCTGAATAAAAGTCAAATTATGTTGGATATGCTAACTGA 181 GAATTTGTTCTTCGATACTGGTATGGGAAAAAGTAAATTTTTGCAAGATATGCACACACT 241 CCTACTCACAAGACACCGCGATGAACATGAAGGTGAAACAGGAAATTGGTTTTCCCCATT 301 TATTGAAGCATTACATAAAGATGAAGGAAATGAAGCAGTTGAAGCTGTATTGCTTGAAAG 361 TATCCATCGGTTCAACCCAAATGCATTCATTTGCCAAGCGTTGGCAAGACATTTCTACAT 421 TAAAAAGAAGGACTTTGGCAATGCTCTAAACTGGGCAAAACAAGCAAAAATCATAGAACC 481 TGACAATTCTTATATCTCAGATACACTGGGTCAAGTCTACAAAAGTAAAATAAGATGGTG 541 GATAGAGGAAAACGGAGGAAACGGGAACATTTCAGTTGATGATCTAATTGCTCTTTTGGA 601 TTTAGCAGAACATGCCTCAAGTGCATTCAAAGAATCTCAACAGCAAAGTGAAGATAGAGA 661 GTATGAAGTGAAGGAAAGATTGTATCCGAAGTCAAAAAGGCGGTATGATACTTACAATAT 721 AGCTGGTTATCAAGGAGAGATAGAAGTTGGGCTTTACACAATCCAAATTCTCCAGCTCAT 781 TCCTTTTTTTGATAATAAAAATGAGCTATCTAAAAGATATATGGTCAATTTTGTATCAGG 841 AAGTAGTGATATTCCAGGGGATCCAAACAATGAATATAAATTAGCCCTCAAAAACTATAT 901 TCCTTATTTAACTAAATTGAAATTTTCTTTGAAAAAGTCCTTTGATTTTTTTGATGAATA 961 CTTTGTCCTGCTAAAACCCAGGAACAATATTAAGCAAAATGAAGAGGCCAAAACTCGGAG 1021?AAAGGTGGCTGGATATTTTAAGAAATATGTAGATATATTTTGTCTCTTAGAAGAATCACA 1081?AAACAACACAGGTCTTGGATCAAAGTTCAGTGAGCCACTTCAAGTAGAGAGATGCAGGAG 1141?AAACCTAGTAGCTTTAAAAGCAGACAAGTTTTCTGGGCTCTTGGAATATCTTATCAAAAG 1201?TCAAGAGGATGCTATAAGCACTATGAAATGTATAGTGAACGAATATACTTTTCTCTTAGA 1261?ACAATGCACTGTCAAAATCCAGTCAAAAGAAAAGCTAAATTTCATCTTGGCCAACATTAT 1321?TCTCTCCTGTATCCAACCTACCTCCAGATTAGTAAAGCCAGTTGAAAAACTAAAAGATCA 1381?GCTTCGAGAAGTCTTGCAACCAATAGGACTGACTTATCAGTTTTCAGAACCGTATTTTCT 1441?AGCTTCCCTCTTATTCTGGCCAGAAAATCAACAACTAGATCAACATTCTGAACAAATGAA 1501?AGAGTATGCTCAAGCACTAAAAAATTCTTTCAAGGGGCAATATAAACATATGCATCGTAC | SEQ?ID?NO:81 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1561?AAAGCAACCAATTGCATATTTCTTTCTTGGAAAAGGTAAAAGACTGGAAAGACTTGTTCA 1621?CAAAGGAAAAATTGACCAGTGCTTTAAGAAGACACCAGATATTAATTCCTTGTGGCAGAG 1681?TGGAGATGTGTGGAAGGAGGAAAAAGTCCAAGAACTTTTGCTTCGTTTACAAGGTCGAGC 1741?TGAAAACAATTGTTTATATATAGAATATGGAATCAATGAAAAAATCACAATACCCATCAC 1801?TCCCGCTTTTTTAGGTCAACTTAGAAGTGGCAGAAGCATAGAGAAGGTGTCTTTTTACCT 1861?GGGATTTCCCATTGGAGGCCCACTTGCTTATGACATTGAAATTGTTTAAGAGCCTGATAT 1921?TCTTCCTCCAAGAATTTGATCTCAGTACCCATTTAATTTTTTTGGACTCAAGATCTATGC 1981?TTTAAACCGGCAAGGTTATAGATACAGCCTCTAGCTCTTCAGATCTGTACATGCAGTATT 2041?TAATTTCCTCTTAAACATGTTATGAGTTCTACAAGGACAATAGTGAAAAAGGAAGGAGTG 2101?AGATATATGAAAAGTAGCAAATATGTTCCTTGGTTTGGTTAACATCATTGATGACAAAAT 2161?AATAAGGAGCTATGACTGGAGTCAGGAGAAGTTAGTGTAATAAGCTGGCTACACAGAACC 2221?CCACTACTTACCAGGCATGGATTGAAGAAGATTGTCTACTCAAATGGCATTTAGACATTA 2281?GAATGTCTGGGAAAATATTTCTCAAAGACAGCAAAAACCTCTCAAACTGAGGAGCAACAT 2341?TTATTCTTACTAAGCAGATCATCAATGTATCATGTGCTTGGCACTCAAGGATCTTCCAAA 2401?ACAGAGGACCAACCAGTCTTCTGAAGGTCATGCCCACAGAAGTCATCGGACCTTACCAAA 2461?GTAGGTTGGAGAATTAGATTGCCTTTTCATGCAGTGAGATTCAGTTAAGCAAAAATGAAA 2521?TTTGTCTCTATAGCTAATTAGCTTATCAACTCCCCTCCAAACAAACAATTAAAAAAAAAA 2581?CATACAGACACTCAAATTCCACAAGCTAATGAATAAAAAGGATTCCTGTGAAAAGGCTAA 2641?TGAGTCACCCATCCAGGAGATCCCAACGTACTAGCAAGTATACATATAACCTACACACTG 2701?AACAAGCACAATCACTGAGATGTAATCAAAATGTAATTTTCCCTAATAAAATTATGGATA 2761?TGGGCAATTGTCAATGGTTGCCAAAACCATTAAGTGGAAAGCTGATTAAAAAACAAAAAT 2821?TTCTAATGGATTTATCAGACTGTCCTAAATCCTGATCAATATTAACACTGCAGAGAGACA 2881?GCCAGACATTGTGGGCCTCGAAGTGCTACAGGAGTGCACACATCACCTGGAGATAGTCTT 2941?GCCAAATAATTGAACCTGAATCTGATCAAGCCTCTGGATCTTATTTGCAATTCAAAAGAA 3001?ATTTTAAAAAAATCCTACTAACACCACCACAAATATGCAATCAGCAATATCCAGAAAGGG 3061?GAAATTCACAGGACAAAAACCTGGTTTTCTTTTTTGGTTTCTTCAACCAAAAAAGAAAGA 3121?AATTGCAAAGGACCAAAAAAATGTTGGGGAATCTATACATTATAAGGGACTTAACAACTA 3181?AAGGGCAACATATAGACTTTAGATCCTAATTTGAGCAAAATCTAAAATCAATTATTAGGC 3241?AATCAGAAAAATTTGAACACAGACTAGATATTTGAGGATATTAAGGTACTATATTATTGA 3301?AGATTCCATGGTTATGTTTTTTAAAGAGTTCATGCCTTTTAGAGATACATACTAAAGTAT 3361?TTGTAAATAAATGACATGATCTAGAAAAAAAAAAAAAAAA 1 | SEQ?ID?NO:82 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
301 AAAGATGAAGGAAATGAAGCAGTTGAAGCTGTATTGCTTGAAAGTATCCATCGGTTCAAC 121 P N A F I C Q A L A R H F Y I K K K D F 361 CCAAATGCATTCATTTGCCAAGCGTTGGCAAGACATTTCTACATTAAAAAGAAGGACTTT 141 G N A L N W A K Q A K I I E P D N S Y I 421 GGCAATGCTCTAAACTGGGCAAAACAAGCAAAAATCATAGAACCTGACAATTCTTATATC 161 S D T L G Q V Y K S K I R W W I E E N G 481 TCAGATACACTGGGTCAAGTCTACAAAAGTAAAATAAGATGGTGGATAGAGGAAAACGGA 181 G N G N I S V D D L I A L L D L A E H A 541 GGAAACGGGAACATTTCAGTTGATGATCTAATTGCTCTTTTGGATTTAGCAGAACATGCC 201 S S A F K E S Q Q Q S E D R E Y E V K E 601 TCAAGTGCATTCAAAGAATCTCAACAGCAAAGTGAAGATAGAGAGTATGAAGTGAAGGAA 221 R L Y P K S K R R Y D T Y N I A G Y Q G 661 AGATTGTATCCGAAGTCAAAAAGGCGGTATGATACTTACAATATAGCTGGTTATCAAGGA 241 E I E V G L Y T I Q I L Q L I P F F D N 721 GAGATAGAAGTTGGGCTTTACACAATCCAAATTCTCCAGCTCATTCCTTTTTTTGATAAT 261 K N E L S K R Y M V N F V S G S S D I P 781 AAAAATGAGCTATCTAAAAGATATATGGTCAATTTTGTATCAGGAAGTAGTGATATTCCA 281 G D P N N E Y K L A L K N Y I P Y L T K 841 GGGGATCCAAACAATGAATATAAATTAGCCCTCAAAAACTATATTCCTTATTTAACTAAA 301 L K F S L K K S F D F F D E Y F V L L K 901 TTGAAATTTTCTTTGAAAAAGTCCTTTGATTTTTTTGATGAATACTTTGTCCTGCTAAAA 321 P R N N I K Q N E E A K T R R K V A G Y 961 CCCAGGAACAATATTAAGCAAAATGAAGAGGCCAAAACTCGGAGAAAGGTGGCTGGATAT 341 F K K Y V D I F C L L E E S Q N N T G L 1021?TTTAAGAAATATGTAGATATATTTTGTCTCTTAGAAGAATCACAAAACAACACAGGTCTT 361 G S K F S E P L Q V E R C R R N L V A L 1081?GGATCAAAGTTCAGTGAGCCACTTCAAGTAGAGAGATGCAGGAGAAACCTAGTAGCTTTA 381 K A D K F S G L L E Y L I K S Q E D A I 1141?AAAGCAGACAAGTTTTCTGGGCTCTTGGAATATCTTATCAAAAGTCAAGAGGATGCTATA 401 S T M K C I V N E Y T F L L E Q C T V K 1201?AGCACTATGAAATGTATAGTGAACGAATATACTTTTCTCTTAGAACAATGCACTGTCAAA 421 I Q S K E K L N F I L A N I I L S C I Q 1261?ATCCAGTCAAAAGAAAAGCTAAATTTCATCTTGGCCAACATTATTCTCTCCTGTATCCAA |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
441 P T S R L V K P V E K L K D Q L R E V L 1321?CCTACCTCCAGATTAGTAAAGCCAGTTGAAAAACTAAAAGATCAGCTTCGAGAAGTCTTG 461 Q P I G L T Y Q F S E P Y F L A S L L F 1381?CAACCAATAGGACTGACTTATCAGTTTTCAGAACCGTATTTTCTAGCTTCCCTCTTATTC 481 W P E N Q Q L D Q H S E Q M K E Y A Q A 1441?TGGCCAGAAAATCAACAACTAGATCAACATTCTGAACAAATGAAAGAGTATGCTCAAGCA 501 L K N S F K G Q Y K H M H R T K Q P I A 1501?CTAAAAAATTCTTTCAAGGGGCAATATAAACATATGCATCGTACAAAGCAACCAATTGCA 521 Y F F L G K G K R L E R L V H K G K I D 1561?TATTTCTTTCTTGGAAAAGGTAAAAGACTGGAAAGACTTGTTCACAAAGGAAAAATTGAC 541 Q C F K K T P D I N S L W Q S G D V W K 1621?CAGTGCTTTAAGAAGACACCAGATATTAATTCCTTGTGGCAGAGTGGAGATGTGTGGAAG 561 E E K V Q E L L L R L Q G R A E N N C L 1681?GAGGAAAAAGTCCAAGAACTTTTGCTTCGTTTACAAGGTCGAGCTGAAAACAATTGTTTA 581 Y I E Y G I N E K I T I P I T P A F L G 1741?TATATAGAATATGGAATCAATGAAAAAATCACAATACCCATCACTCCCGCTTTTTTAGGT 601 Q L R S G R S I E K V S F Y L G F P I G 1801?CAACTTAGAAGTGGCAGAAGCATAGAGAAGGTGTCTTTTTACCTGGGATTTCCCATTGGA 621 G P L A Y D I E I V - 1861?GGCCCACTTGCTTATGACATTGAAATTGTTTAA | |||
WBC028A02 | No | 1 CTCACACAGTAGCCATAGTGGTCTTTCTAAAGGCTTAATCAGAGTAGATCATTTCTTTGC 61 TTAAAACCTTTCAACGGTTTTCTGTTACGCTAAGAATAAAAACCCAAACTCTTAAGTATA 121 GCCAGCAAGGCCCCACTTCCCTGGCTGTCTCTCTGACTCCTTTGCGTCCTGCTTACTGTG 181 CTTCAGCCACGCTGGCTTCCTTGCTGCTGATCCTGCTTGATCACCAGCTTGATCCTGTCC 241 CGCTGGTGTACTCCAAGATAACTGGTCAGTTGGTCCTGTCCCAGGGGCTTTGTCCTTCTG 301 TCTTCTTTTTCAGTCTGCTTCCCCTAGATGCTCGCCAGCTGCTTCCTTTTCCCTGTTCTA 361 GTCTCAACTCAAAGGTCACTGTGCTAGAGAAGCTTTCTTCAGCCACCCAGCAGATCAGCA 421 CCCTCTTCATCACTGTCCACCACAGTGTCTTTCTCTGTCTTCCTCATGGCTCTCAAACTG 481 TCTTATTCGTTATTGATGGGTTTTTTTTCATCTTTCTGTCCCCATTAACATATAAGCTTT 541 TTAAGAGCAGAGACTTTCTTTTCACCACGCCTAAAACAGGACCTACCACATATTGAATGT 601 TGAACAGATATTTATTGACTGACTAGTAAAAATGCATCTTTGAACTTAAAATGAATGTGT 661 TTTGTGAAGTATGGCAAAAGCCAATTTGGGAGTATTTGTGCTTTAAATTTCAAAAGTTGC 721 AAATACAGGCTGTGTTGAAGGCATTTTAGGAATCAGACAGACTCTGGGAATTTAAATCGT 781 TGTTCTGC NON? | SEQ?ID?NO:83 SEQ?ID?NO:84 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
181 CAAATTCATGTCTCCTTGGGGCCAATCTGTTCTATTTTGTGCCATGAAACTTCAGCTGTT 241 GAGCAAAGAGCAACTTAGCTGTCTCATCCCAAAAATCTAGAACAAGTCTAAAGATCTATG 301 CAGAAGAGTGGGAAGGTAAATTATGGTATCTCCTTAGGACAGAATTTTATGAATTTATTG 361 AAAGATATAGGAAAGAAGCATTTAAGAAGTCTAGAGGAGGGGCTGGCCTTGTGGCATAGT 421 GGTTAAGTTTAGTGCACTCCCCTTCAGTGACCCGGGTTCACAGATTTGGATCCTGGATGC 481 AGACCTAGGCCAGTCATCAGCCATGCTGATGACCCACATGCAAATAAAGGAAGATTGGCA 541 CAGATGTTAGCTCAGGGCTAATCTTCCTCAGCAAAAAAAAAA | |||
WBC024E03_V1.3_AT | Homo sapiens's transcription factor ISGF-3 mRNA. | 1 ATTAAACCTCTCGCCGAGCCCCTCCGCAGACTCTGCGCCGGAAAGTTTCATTTGCTGTAT 61 GCCATCCTCGAGAGCTGTCTAGGTTAACGTTCGCACTCTGTGTATATAACCTCGACAGTC 121 TTGGCACCTAACGTGCTGTGCGTAGCTGCTCCTTTGGTTGAATCCCCAGGCCCTTGTTGG 181 GGCACAAGGTGGCAGGATGTCTCAGTGGTACGAACTTCAGCAGCTTGACTCAAAATTCCT 241 GGAGCAGGTTCACCAGCTTTATGATGACAGTTTTCCCATGGAAATCAGACAGTACCTGGC 301 ACAGTGGTTAGAAAAGCAAGACTGGGAGCACGCTGCCAATGATGTTTCATTTGCCACCAT 361 CCGTTTTCATGACCTCCTGTCACAGCTGGATGATCAATATAGTCGCTTTTCTTTGGAGAA 421 TAACTTCTTGCTACAGCATAACATAAGGAAAAGCAAGCGTAATCTTCAGGATAATTTTCA 481 GGAAGACCCAATCCAGATGTCTATGATCATTTACAGCTGTCTGAAGGAAGAAAGGAAAAT 541 TCTGGAAAACGCCCAGAGATTTAATCAGGCTCAGTCGGGGAATATTCAGAGCACAGTGAT 601 GTTAGACAAACAGAAAGAGCTTGACAGTAAAGTCAGAAATGTGAAGGACAAGGTTATGTG 661 TATAGAGCATGAAATCAAGAGCCTGGAAGATTTACAAGATGAATATGACTTCAAATGCAA 721 AACCTTGCAGAACAGAGAACACGAGACCAATGGTGTGGCAAAGAGTGATCAGAAACAAGA 781 ACAGCTGTTACTCAAGAAGATGTATTTAATGCTTGACAATAAGAGAAAGGAAGTAGTTCA 841 CAAAATAATAGAGTTGCTGAATGTCACTGAACTTACCCAGAATGCCCTGATTAATGATGA 901 ACTAGTGGAGTGGAAGCGGAGACAGCAGAGCGCCTGTATTGGGGGGCCGCCCAATGCTTG 961 CTTGGATCAGCTGCAGAACTGGTTCACTATAGTTGCGGAGAGTCTGCAGCAAGTTCGGCA 1021?GCAGCTTAAAAAGTTGGAGGAATTGGAACAGAAATACACCTACGAACATGACCCTATCAC 1081?AAAAAACAAACAAGTGTTATGGGACCGCACCTTCAGTCTTTTCCAGCAGCTCATTCAGAG 1141?CTCGTTTGTGGTGGAAAGACAGCCCTGCATGCCAACGCACCCTCAGAGGCCGCTGGTCTT 1201?GAAGACAGGGGTCCAGTTCACTGTGAAGTTGAGACTGTTGGTGAAATTGCAAGAGCTGAA 1261?TTATAATTTGAAAGTCAAAGTCTTATTTGATAAAGATGTGAATGAGAGAAATACAGTAAA 1321?AGGATTTAGGAAGTTCAACATTTTGGGCACGCACACAAAAGTGATGAACATGGAGGAGTC 1381?CACCAATGGCAGTCTGGCGGCTGAATTTCGGCACCTGCAATTGAAAGAACAGAAAAATGC 1441?TGGCACCAGAACGAATGAGGGTCCTCTCATCGTTACTGAAGAGCTTCACTCCCTTAGTTT 1501?TGAAACCCAATTGTGCCAGCCTGGTTTGGTAATTGACCTCGAGACGACCTCTCTGCCCGT 1561?TGTGGTGATCTCCAACGTCAGCCAGCTCCCGAGCGGTTGGGCCTCCATCCTTTGGTACAA 1621?CATGCTGGTGGCGGAACCCAGGAATCTGTCCTTCTTCCTGACTCCACCATGTGCACGATG 1681?GGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTTCTGTCACCAAAAGAGGTCTCAA 1741?TGTGGACCAGCTGAACATGTTGGGAGAGAAGCTTCTTGGTCCTAACGCCAGCCCCGATGG 1801?TCTCATTCCGTGGACGAGGTTTTGTAAGGAAAATATAAATGATAAAAATTTTCCCTTCTG 1861?GCTTTGGATTGAAAGCATCCTAGAACTCATTAAAAAACACCTGCTCCCTCTCTGGAATGA 1921?TGGGTGCATCATGGGCTTCATCAGCAAGGAGCGAGAGCGTGCCCTGTTGAAGGACCAGCA 1981?GCCGGGGACCTTCCTGCTGCGGTTCAGTGAGAGCTCCCGGGAAGGGGCCATCACGTTCAC 2041?GTGGGTGGAGCGCTCCCAGAACGGAGGAGAGCCTTACTTTCATGCGGTCGAACCCTACAC 2101?GAAGAAAGAACTTTCTGCTGTTACTTTTCCTGATATCATTCGCAATTACAAAGTCATGGC 2161?TGCTGAAAATATTCCAGAGAATCCCCTGAAGTATCTGTATCCAAATATTGATAAGGACCA 2221?TGCCTTCGGAAAGTATTACTCCAGGCCCAAGGAAGCTCCAGAACCAATGGAACTTGATGG 2281?CCCTAAAGGAACTGGATACATCAAGACTGAATTGATTTCTGTGTCTGAAGTTCACCCTTC 2341?TCGACTTCAGACTACAGACAACCTTCTTCCCATGTCTCCTGAGGAGTTTGACGAGGTGTC | SEQ?ID?NO:85 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
2401?TCGCATAGTGGGCTCTGTGGAATTCGACATGATGAACGCAGTATAGAGCATGAATTTTAC 2461?TCATCTTCCCTGGCGACATTTTTCCCTCCCATCTGTGATTCCCTCCTGCTGGTCTGTTCC 2521?TTCACATCCTGTGTTTCTAGGGAAAGGAAAGCAAGGCTGACAAATTTGCTGCAACCTGTT 2581?GATAGCAAGTGGATTTTTCCCTCATTCAGAAACATCTGTTACTCTGAAGGGCTTCATGCA 2641?TCTTATTAAAGGTAAAATTGAGAGACCCTCTCCACAGAGTGGGTTTGACAAACGAACAAC 2701?ATTCAGATACACCCACAACCTCAGGACTAGAGTGCGAGTCCCTCGGGAAAGGGGAGAAGT 2761?CGAGCAGCGTGTGGCAAATACTATGCATAAAGTCAGTGCCCAACGGTTATGGGTTGTTGG 2821?ATAAATCAGTGGTTATTTAGGGAACTGCTTGACGTAGGAACGGTAAATTTCTGTGGGAGA 2881?ATTCTTACATGTTTTCTTTGCTTTAAGTGTAACTGGCAGTTTTCCATTGGTTTACCTGTG 2941?AAATAGTTCAAAGCCAAGTTTATATACAATTATATCAGTCCTCTTTCAAAGGTAGCCATC 3001?ATGGATCTGGTAGGGGGAAAATGTGTATTTTATTACATCTTTCACATTGGCTATTTAAAG 3061?ACAAAGACAAATTCTGTTTCTTGAGAAGAGAATATTAGCTTTTCTGTTTGTTATGGGTTT 3121?ATGATACTGGCTAATATCAATAGAAGGAAGTACCTTTTCCAAATTCACAAGTTGTGTTTG 3181?ATATCCAAAGCTGAATACATTCTGCTTTCATCTTGGTCACATACAATTATTTTTACAGTT 3241?CTCCCAAGGGAGTTAGGCTATTCACAACCACTCATTCAAAAAGTTGAAATTAATCATAGA 3301?TGTAGACAAACTCAAATCTAATTCATGTTTTTTAAATGGGTTAATTTGTCTTTATTGTTA 3361?TTAGCTGGTATTTAGTCTATTAGCCACAAAATTGGGAAAGGAGTAGAAAAAGCAGTAACT 3421?GACAACTTGAATAATACACCAGAGATAATATGAGAATCAGATCATTTCAAAACTCATTTC 3481?CTATGTAACTGCATTAAGAATTGCATATTTTTCACTGATAAATGTGTTTTTCACATTTGC 3541?GAATGGTTCCATTCTCTCTCCTGTACTTTTTCCAGACACTTTTTTGAGTGGATGATGTTT 3601?CGTGAAGTATACTGTATTTTTACCTTTTTCCTTCCTTATCACTGACACAAAAAGTAGATT 3661?AAGAGATGGGTTTGACAAGGTTCTTCCCTTTTACATACTGCTGTCTATGTGGCTGTATCT 3721?TGTTTTTCCACTACTGCTACCACAACTATATTATCATGCAAATGCTGTATTCTTCTTTGG 3781?TGGAGATAAAGATTTCTTGAGTTTTGTTTTAAAATTAAAGCTAAAGTATCTGTATTGCAT 3841?TAAATATAATATCGACACAGTGCTTTCCGTGGCACTGCATACAATCTGAGGCCTCCTCTC 3901?TCAGTTTTTATATAGATGGCGAGAACCTAAGTTTCAGTTGATTTTACAATTGAAATGACT 3961?AAAAAACAAAGAAGACAACATTAAAAACAATATTGTTTCTA 1 M S Q W Y E L Q Q L D S K F L E Q V H Q 1 ATGTCTCAGTGGTACGAACTTCAGCAGCTTGACTCAAAATTCCTGGAGCAGGTTCACCAG 21 L Y D D S F P M E I R Q Y L A Q W L E K 61 CTTTATGATGACAGTTTTCCCATGGAAATCAGACAGTACCTGGCACAGTGGTTAGAAAAG 41 Q D W E H A A N D V S F A T I R F H D L 121 CAAGACTGGGAGCACGCTGCCAATGATGTTTCATTTGCCACCATCCGTTTTCATGACCTC 61 L S Q L D D Q Y S R F S L E N N F L L Q 181 CTGTCACAGCTGGATGATCAATATAGTCGCTTTTCTTTGGAGAATAACTTCTTGCTACAG 81 H N I R K S K R N L Q D N F Q E D P I Q 241 CATAACATAAGGAAAAGCAAGCGTAATCTTCAGGATAATTTTCAGGAAGACCCAATCCAG 101 M S M I I Y S C L K E E R K I L E N A Q 301 ATGTCTATGATCATTTACAGCTGTCTGAAGGAAGAAAGGAAAATTCTGGAAAACGCCCAG 121 R F N Q A Q S G N I Q S T V M L D K Q K 361 AGATTTAATCAGGCTCAGTCGGGGAATATTCAGAGCACAGTGATGTTAGACAAACAGAAA | SEQ?ID?NO:86 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
141 E L D S K V R N V K D K V M C I E H E I 421 GAGCTTGACAGTAAAGTCAGAAATGTGAAGGACAAGGTTATGTGTATAGAGCATGAAATC 161 K S L E D L Q D E Y D F K C K T L Q N R 481 AAGAGCCTGGAAGATTTACAAGATGAATATGACTTCAAATGCAAAACCTTGCAGAACAGA 181 E H E T N G V A K S D Q K Q E Q L L L K 541 GAACACGAGACCAATGGTGTGGCAAAGAGTGATCAGAAACAAGAACAGCTGTTACTCAAG 201 K M Y L M L D N K R K E V V H K I I E L 601 AAGATGTATTTAATGCTTGACAATAAGAGAAAGGAAGTAGTTCACAAAATAATAGAGTTG 221 L N V T E L T Q N A L I N D E L V E W K 661 CTGAATGTCACTGAACTTACCCAGAATGCCCTGATTAATGATGAACTAGTGGAGTGGAAG 241 R R Q Q S A C I G G P P N A C L D Q L Q 721 CGGAGACAGCAGAGCGCCTGTATTGGGGGGCCGCCCAATGCTTGCTTGGATCAGCTGCAG 261 N W F T I V A E S L Q Q V R Q Q L K K L 781 AACTGGTTCACTATAGTTGCGGAGAGTCTGCAGCAAGTTCGGCAGCAGCTTAAAAAGTTG 281 E E L E Q K Y T Y E H D P I T K N K Q V 841 GAGGAATTGGAACAGAAATACACCTACGAACATGACCCTATCACAAAAAACAAACAAGTG 301 L W D R T F S L F Q Q L I Q S S F V V E 901 TTATGGGACCGCACCTTCAGTCTTTTCCAGCAGCTCATTCAGAGCTCGTTTGTGGTGGAA 321 R Q P C M P T H P Q R P L V L K T G V Q 961 AGACAGCCCTGCATGCCAACGCACCCTCAGAGGCCGCTGGTCTTGAAGACAGGGGTCCAG 341 F T V K L R L L V K L Q E L N Y N L K V 1021?TTCACTGTGAAGTTGAGACTGTTGGTGAAATTGCAAGAGCTGAATTATAATTTGAAAGTC 361 K V L F D K D V N E R N T V K G F R K F 1081?AAAGTCTTATTTGATAAAGATGTGAATGAGAGAAATACAGTAAAAGGATTTAGGAAGTTC 381 N I L G T H T K V M N M E E S T N G S L 1141?AACATTTTGGGCACGCACACAAAAGTGATGAACATGGAGGAGTCCACCAATGGCAGTCTG 401 A A E F R H L Q L K E Q K N A G T R T N 1201?GCGGCTGAATTTCGGCACCTGCAATTGAAAGAACAGAAAAATGCTGGCACCAGAACGAAT 421 E G P L I V T E E L H S L S F E T Q L C 1261?GAGGGTCCTCTCATCGTTACTGAAGAGCTTCACTCCCTTAGTTTTGAAACCCAATTGTGC 441 Q P G L V I D L E T T S L P V V V I S N 1321?CAGCCTGGTTTGGTAATTGACCTCGAGACGACCTCTCTGCCCGTTGTGGTGATCTCCAAC |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
461 V S Q L P S G W A S I L W Y N M L V A E 1381?GTCAGCCAGCTCCCGAGCGGTTGGGCCTCCATCCTTTGGTACAACATGCTGGTGGCGGAA 481 P R N L S F F L T P P C A R W A Q L S E 1441?CCCAGGAATCTGTCCTTCTTCCTGACTCCACCATGTGCACGATGGGCTCAGCTTTCAGAA 501 V L S W Q F S S V T K R G L N V D Q L N 1501?GTGCTGAGTTGGCAGTTTTCTTCTGTCACCAAAAGAGGTCTCAATGTGGACCAGCTGAAC 521 M L G E K L L G P N A S P D G L I P W T 1561?ATGTTGGGAGAGAAGCTTCTTGGTCCTAACGCCAGCCCCGATGGTCTCATTCCGTGGACG 541 R F C K E N I N D K N F P F W L W I E S 1621?AGGTTTTGTAAGGAAAATATAAATGATAAAAATTTTCCCTTCTGGCTTTGGATTGAAAGC 561 I L E L I K K H L L P L W N D G C I M G 1681?ATCCTAGAACTCATTAAAAAACACCTGCTCCCTCTCTGGAATGATGGGTGCATCATGGGC 581 F I S K E R E R A L L K D Q Q P G T F L 1741?TTCATCAGCAAGGAGCGAGAGCGTGCCCTGTTGAAGGACCAGCAGCCGGGGACCTTCCTG 601 L R F S E S S R E G A I T F T W V E R S 1801?CTGCGGTTCAGTGAGAGCTCCCGGGAAGGGGCCATCACGTTCACGTGGGTGGAGCGCTCC 621 Q N G G E P Y F H A V E P Y T K K E L S 1861?CAGAACGGAGGAGAGCCTTACTTTCATGCGGTCGAACCCTACACGAAGAAAGAACTTTCT 641 A V T F P D I I R N Y K V M A A E N I P 1921?GCTGTTACTTTTCCTGATATCATTCGCAATTACAAAGTCATGGCTGCTGAAAATATTCCA 661 E N P L K Y L Y P N I D K D H A F G K Y 1981?GAGAATCCCCTGAAGTATCTGTATCCAAATATTGATAAGGACCATGCCTTCGGAAAGTAT 681 Y S R P K E A P E P M E L D G P K G T G 2041?TACTCCAGGCCCAAGGAAGCTCCAGAACCAATGGAACTTGATGGCCCTAAAGGAACTGGA 701 Y I K T E L I S V S E V H P S R L Q T T 2101?TACATCAAGACTGAATTGATTTCTGTGTCTGAAGTTCACCCTTCTCGACTTCAGACTACA 721 D N L L P M S P E E F D E V S R I V G S 2161?GACAACCTTCTTCCCATGTCTCCTGAGGAGTTTGACGAGGTGTCTCGCATAGTGGGCTCT 741 V E F D M M N A V - 2221?GTGGAATTCGACATGATGAACGCAGTATAG | |||
BM734607.V1.3_AT | The homo sapiens mRNA of XIAP correlation factor-1 | 1 ATGGAAGGAGACTTCTCGGTGTGCAGGAACTGTAAAAGACATGTAGTCTCTGCCAACTTC 61 ACCCTCCATGAGGCTTACTGCCTGCGGTTCCTGGTCCTGTGTCCGGAGTGTGAGGAGCCT 121 GTCCCCAAGGAAACCATGGAGGAGCACTGCAAGCTTGAGCACCAGGAGGTCGGGTGTGCA | SEQ?ID?NO:87 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
181 ATGTGTCAGCAGAGCGTGCCGAAGCACTCGCTGGAGCTTCATGAGGCCACGGAATGCAGG 241 GACCGCCCCGTTGCGTGTCAGTTCTGTGAGCTGGCCGTGCGCCTCAGTAAGGCAGAGATC 301 CATGAGTACCACTGTGGCAGCCGGACTCAGCTCTGCCCAGACTGCGACCAGCCCATCATG 361 CTCCGAGCGCTGGCCCAGCACAAGGACGTGTGTCAGGGCAAACAGGCCCAGCTTGGGAAA 421 GGGAAGGAAATTTCAGCTCCTGAATGCAAATTCAGCTGTTGGTATTGCAACGAAATGATT 481 CCAGGAGATAAGTATTCCCACCACGTGGATAAATGTCGCACAGTCTCAGAGTCTGTGAAA 541 TATTTTCCAGTTGGAAAGCCAAGAATTCCTCCTCCATCCCTTCCAAGCCAGGCTGCTGAA 601 GATCAATCTTCCACGGCAGAGAAAGATGTCCGTCCAAAGACAAGAAGTATAAACAGATTT 661 CCTCTTCATTCTGAAAGTTCATCAAAGAAAGCACCAAGAAGCAAAAACAAAACCTTGGAT 721 CCACTTTTGATGTCAGAGCCCAAGCCCAGGACCAGCTCCCCTAGAGGAGATAAAGCAGCC 781 TATGACATTCTGAGGAGATGTTCTCAGTGTGGCATCCTGCTTCCCCTGCCGATCCTAAAT 841 CAACATCAGGAGAAATGCCGGTGGTTAGCTTCATCAAAAAGGAAAACAAGTGAGAAATTT 901 CAGCTAGATTTGGAAAAGGAAAGGTACTACAAATTCAAAAGATTTCACTTTTAACACTGG 961 CATTCCTGCCTACTTGCTGTGGTGGTCTTGTGAAAGGTGATGGGTTTTATTCGTTGGGCT 1021?TTAAAAGAAAAGGTTTGGCAGAACTAAAAACAAAACTCACGTATCATCTCAATAGATACA 1081?GAAAAGGCTTTTGATAAAATTCAACTTGACTTCATGTTAAAAACCCTCAACAAACCAGGC 1141?GTCGAAGGAACATACCTCAAAATAATAAGAGCCATCTATGACAAAACCACAGCCAACATC 1201?ATACTGAATGAGCAAAAGCTGGAGCATTACTCTTGAGAAGTAGAACAAGGCACTTCAGTC 1261?CTATTCAACATAGTACTGGAAGTCTCGCCACAGCAATCAGGCAAGAGAAAGAAGTAAAAG 1321?GCACCC 1 M E G D F S V C R N C K R H V V S A N F 1 ATGGAAGGAGACTTCTCGGTGTGCAGGAACTGTAAAAGACATGTAGTCTCTGCCAACTTC 21 T L H E A Y C L R F L V L C P E C E E P 61 ACCCTCCATGAGGCTTACTGCCTGCGGTTCCTGGTCCTGTGTCCGGAGTGTGAGGAGCCT 41 V P K E T M E E H C K L E H Q E V G C A 121 GTCCCCAAGGAAACCATGGAGGAGCACTGCAAGCTTGAGCACCAGGAGGTCGGGTGTGCA 61 M C Q Q S V P K H S L E L H E A T E C R 181 ATGTGTCAGCAGAGCGTGCCGAAGCACTCGCTGGAGCTTCATGAGGCCACGGAATGCAGG 81 D R P V A C Q F C E L A V R L S K A E I 241 GACCGCCCCGTTGCGTGTCAGTTCTGTGAGCTGGCCGTGCGCCTCAGTAAGGCAGAGATC 101 H E Y H C G S R T Q L C P D C D Q P I M 301 CATGAGTACCACTGTGGCAGCCGGACTCAGCTCTGCCCAGACTGCGACCAGCCCATCATG 121 L R A L A Q H K D V C Q G K Q A Q L G K 361 CTCCGAGCGCTGGCCCAGCACAAGGACGTGTGTCAGGGCAAACAGGCCCAGCTTGGGAAA 141 G K E I S A P E C K F S C W Y C N E M I 421 GGGAAGGAAATTTCAGCTCCTGAATGCAAATTCAGCTGTTGGTATTGCAACGAAATGATT 161 P G D K Y S H H V D K C R T V S E S V K 481 CCAGGAGATAAGTATTCCCACCACGTGGATAAATGTCGCACAGTCTCAGAGTCTGTGAAA | SEQ?ID?NO:88 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
181 Y F P V G K P R I P P P S L P S Q A A E 541 TATTTTCCAGTTGGAAAGCCAAGAATTCCTCCTCCATCCCTTCCAAGCCAGGCTGCTGAA 201 D Q S S T A E K D V R P K T R S I N R F 601 GATCAATCTTCCACGGCAGAGAAAGATGTCCGTCCAAAGACAAGAAGTATAAACAGATTT 221 P L H S E S S S K K A P R S K N K T L D 661 CCTCTTCATTCTGAAAGTTCATCAAAGAAAGCACCAAGAAGCAAAAACAAAACCTTGGAT 241 P L L M S E P K P R T S S P R G D K A A 721 CCACTTTTGATGTCAGAGCCCAAGCCCAGGACCAGCTCCCCTAGAGGAGATAAAGCAGCC 261 Y D I L R R C S Q C G I L L P L P I L N 781 TATGACATTCTGAGGAGATGTTCTCAGTGTGGCATCCTGCTTCCCCTGCCGATCCTAAAT 281 Q H Q E K C R W L A S S K R K T S E K F 841 CAACATCAGGAGAAATGCCGGTGGTTAGCTTCATCAAAAAGGAAAACAAGTGAGAAATTT 301 Q L D L E K E R Y Y K F K R F H F - 901 CAGCTAGATTTGGAAAAGGAAAGGTACTACAAATTCAAAAGATTTCACTTTTAA | |||
Foe1268 | Myo-inositol 1-phosphate synthase A1 | 1 ATGGGGATGGGGATGCTGAGGCCCAGTGGAATCCCCCGGCCCCAAGATGCCAGCAGGGAC 61 GGCTGTCCTTGTCCCATCCTCCAGCTCTCCCCGATGGAGGCCTCAGCCGAGTTCGTGGTC 121 GAGAGCCCCGACGTGGTCTACGGCCCCAGACGCCATCGAGGCTCAGTGTACCCCACGTCC 181 ACGCGCTTCACCTTTCGGACCGCCCGGCAGGTGCCCCGGCTCGGGGTCATGCTCGTCGGC 241 TGGGGCGGGAACAACGGCTCCACGCTCACCGCCGCCGTGCTGGCCAACCGGCTGCGCCTG 301 TCCTGGCCCACGCGCACCGGCCGCAAGGAGGCCAACTACTACGGCTCGCTGACGCAGGCG 361 GGCACCGTTAGCCTGGGCTTGGACGCCGAGGGCCAGGAGGTGTTCGTGCCCTTCAGCGCA 421 CTGCTGCCCATGGTGGCACCCGACGACCTCGTGTTCGACGGCTGGGACATATCGTCGCTG 481 AACCTGGCTGAGGCGATGAGGCGTGCACAGGTGCTGGACTGGGGGCTGCAGGAGCAACTG 541 TGGCCACACTTGGAGGCTCTGCGCCCTCGGCCCTCCGTCTACATCCCCGAATTCATCGCA 601 GCCAACCAGAGTGTGCGAGCTGACAATCTCATACTGTGCACGCGCGCACAGCAGCTGGAG 661 CAGATCCGTAGGGACATCCGTGACTTCCGATCCAGTGCTGGGCTAGACAAAGTCATCGTG 721 CTGTGGACCGCAAACACGGAGCGCTTCTGCGAAGTCATCCCCGGCCTCAATGATACTGCT 781 GAGAACCTGCTGCGTACCATCCAGCTGGGCCTGGAGGTGTCGCCCTCCACTCTTTTTGCT 841 GTGGCCAGCATCTTGGAGGGCTGTGCCTTCCTCAACGGGTCCCCGCAGAACACGCTGGTG 901 CCTGGGGCGCTTGAGCTCGCCCGTCAGCGACGTGTCTTCGTGGGTGGAGATGACTTCAAG 961 TCAGGCCAAACCAAGGTCAAGTCCGTGCTGGTGGACTTCCTTATCGGCTCTGGCCTCAAG 1021?ACCATGTCCATCGTGAGCTACAACCACCTGGGCAACAATGACGGGCAGAACCTGTCGGCA 1081?CCGCCGCAGTTCCGTTCCAAGGAGGTGTCCAAGAGCAGCGTGGTAGACGACATGGTGCAG 1141?AGCAACCCTGTGCTCTATGCACCCGGCGAGGAGCCCGACCACTGTGTGGTCATCAAGTAC 1201?GTGCCATACGTGGGCGACAGCAAGCGTGCGTTGGATGAGTACACCTCGGAGCTGATGCTG 1261?GGCGGCACCAACACGCTGGTGCTGCACAACACCTGTGAGGACTCCCTCCTGGCCGCACCC 1321?ATCATGCTGGACCTGGTGCTGCTGACCGAGCTGTGCCAGCGCGTGAGCTTCTGCACCGAT 1381?GCCGACCCAGAGCCGCAGGGCTTCCACTCCGTGCTGTCCCTGCTCAGCTTCCTATTCAAG 1441?GCGCCACTCGTGCCGCCGGGCAGCCCTGTGGTCAATGCCCTCTTCCGCCAGCGCAGCTGC 1501?ATCGAGAATATCCTCAGGGCCTGTGTGGGGCTCCCCCCACAGAACCACATGCTTCTGGAG 1561?CACAAGATGGAGCGCCCTGGCCTCAAGCGAGTGGGGCCTATGGTTGCTGCCTGCCCTGTG | SEQ?ID?NO:89 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1621?CCCTGCAAGAAAGGACCAGCGCCAACTGCCCCCAATGGCTGTACGGGTGATGCCAATGGG 1681?CACTCGCAGGCTGAGGCACCCCAGATGCCCACCACTTAAGGCCATGGCCATCCTTCTCCC 1741?CCCAAACTGTTGCCTCTGTTGCCCCTCAGGACCCAACCCTTCCAAGACCCTAAAGACAAT 1801?AAAACCAGTGCTACAATCA 1 MGMGMLRPSGIPRPQDASRDGCPCPILQLSPMEASAEFVVESPDVVYGPRRHRGSVYPTS 61 TRFTFRTARQVPRLGVMLVGWGGNNGSTLTAAVLANRLRLSWPTRTGRKEANYYGSLTQA 121 GTVSLGLDAEGQEVFVPFSALLPMVAPDDLVFDGWDISSLNLAEAMRRAQVLDWGLQEQL 181 WPHLEALRPRPSVYIPEFIAANQSVRADNLILCTRAQQLEQIRRDIRDFRSSAGLDKVIV 241 LWTANTERFCEVIPGLNDTAENLLRTIQLGLEVSPSTLFAVASILEGCAFLNGSPQNTLV 301 PGALELARQRRVFVGGDDFKSGQTKVKSVLVDFLIGSGLKTMSIVSYNHLGNNDGQNLSA 361 PPQFRSKEVSKSSVVDDMVQSNPVLYAPGEEPDHCVVIKYVPYVGDSKRALDEYTSELML 421 GGTNTLVLHNTCEDSLLAAPIMLDLVLLTELCQRVSFCTDADPEPQGFHSVLSLLSFLFK 481 APLVPPGSPVVNALFRQRSCIENILRACVGLPPQNHMLLEHKMERPGLKRVGPMVAACPV 541 PCKKGPAPTAPNGCTGDANGHSQAEAPQMPTT- | SEQ?ID?NO:90 | ||
WBC035E08 | Homo sapiens's ubiquitin conjugate enzyme E2D 1 (UBC4/5 homologue) | 1 GGGGACACTCGCGCACACTCGCGCTCGGGCGCACACGGAGCAGGGACCGGCGCCCGGAGC 61 GAGCCAGGGAGCGGCTAACCGGGGACCCACCGCGCGGAGCCAGCCTAGCTGCCAGCGAGC 121 CCAACCCGCGACGACCCACGCCCCTGAGCCCCGCAGCCGACCCCTGCCGGCCGGTGTCCC 181 CACCGCCATCCCTGACCCATGGCGCTGAAGAGGATTCAGAAAGAATTGAGTGATCTACAG 241 CGCGATCCACCTGCTCACTGTTCAGCTGGACCTGTGGGAGATGACTTGTTCCACTGGCAA 301 GCCACTATTATGGGGCCTCCTGATAGCGCATATCAAGGTGGAGTCTTCTTTCTCACTGTA 361 CATTTTCCGACAGATTATCCTTTTAAACCACCAAAGATTGCTTTCACAACAAAAATTTAC 421 CATCCAAACATAAACAGTAATGGAAGTATTTGTCTCGATATTCTGAGGTCACAATGGTCA 481 CCAGCTCTGACTGTATCAAAAGTTTTATTGTCCATATGTTCTCTACTTTGTGATCCTAAT 541 CCAGATGACCCCTTAGTACCAGATATTGCACAAATCTATAAATCAGACAAAGAAAAATAC 601 AACAGACATGCAAGAGAATGGACTCAGAAATATGCAATGTAAAAATCAAAAACATTTTCA 661 TATATACCAGAGTACTGTAAAATCTAGGTTTTTTTCAACATTAGCAGTAAATTGAGCACT 721 GTTTACTGTTTCATTGTACCATGAAACCATTTGATTTTTACCCATTTTAAATGTGTTTCT 781 GAAGCAAGACAAAACAAACTTCCAAAAATACCCTTAAGACTGTGATGAGAGCATTTATCA 841 TTTTGTATGCATTGAGAAAGACATTTATTATGGTTTTTAAGATACTTGGACATCTGCATC 901 TTCAGCTTACAAGATCTACAATGCAGCTGAAAAGCAACCAAATTATTTTTTGCTGAAACT 961 AGATGTTTTTACATGAGAAATACTGTATGTGTTGTCTAAGATGTCAGTTTTATAAATCTG 1021?TATTCAGATTTCATTCTTTGTTAGCTCACTTTATAATTTGTATTTTTTTACTGTATAGAC 1081?TAAATATATTCTATTTACATGTATGTCAACTCATTACTTTTTTCCTGTGAACAGTATTGA 1141?AAAACCCCAACGGCTGATAATTAAGTGAATTAACTGTGTCTCCCTTGTCTTAGGATATTC 1201?TGTAGATTGATTGCAGATTTCTTAAATCTGAAATGATCTTTACACTGTAATTCTCAGCAT | SEQ?ID?NO:91 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1261?ACTGATTATGGAGAAACACTTGTTTTGATTTTGTTATACTTGACTTAACTTTATTGCAAT 1321?GTGAATTAATTGCACTGCTAAGTAGGAAGATGTGTAACTTTTATTTGTTGCTATTCACAT 1381?TTGAATTTTTTCCTGTATAGGCAATATTATATTGACACCTTTTACAGATCTTACTGTAGC 1441?TTTTTCCATATAAATAAAATGCTTTTTCTACTATTTGTCTTGATTACTTAAAAAAATAAA 1501?AATATAAGTAAGGATTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1 M A L K R I Q K E L S D L Q R D P P A H 1 ATGGCGCTGAAGAGGATTCAGAAAGAATTGAGTGATCTACAGCGCGATCCACCTGCTCAC 21 C S A G P V G D D L F H W Q A T I M G P 61 TGTTCAGCTGGACCTGTGGGAGATGACTTGTTCCACTGGCAAGCCACTATTATGGGGCCT 41 P D S A Y Q G G V F F L T V H F P T D Y 121 CCTGATAGCGCATATCAAGGTGGAGTCTTCTTTCTCACTGTACATTTTCCGACAGATTAT 61 P F K P P K I A F T T K I Y H P N I N S 181 CCTTTTAAACCACCAAAGATTGCTTTCACAACAAAAATTTACCATCCAAACATAAACAGT 81 N G S I C L D I L R S Q W S P A L T V S 241 AATGGAAGTATTTGTCTCGATATTCTGAGGTCACAATGGTCACCAGCTCTGACTGTATCA 101 K V L L S I C S L L C D P N P D D P L V 301 AAAGTTTTATTGTCCATATGTTCTCTACTTTGTGATCCTAATCCAGATGACCCCTTAGTA 121 P D I A Q I Y K S D K E K Y N R H A R E 361 CCAGATATTGCACAAATCTATAAATCAGACAAAGAAAAATACAACAGACATGCAAGAGAA 141 W T Q K Y A M - 421 TGGACTCAGAAATATGCAATGTAA | SEQ?ID?NO:92 | ||
BM734719.V1.3_AT | No | 1 AGTCCTCTCGATGAAGCTTCTTCCCACCTAGAAAGAAGTCCTCTCTGAGACTCAAGGGCT 61 AAGGCAAGGTCTTCCAGAAAACAAGGCTTTGACTCCAAGAACAGAGGTGATGGGGAGACT 121 TCTTGGCTCGGCGGGGAAAGGAGGACGCCAATGGGTCAAACTAACTCTGAATCCCTCCCT 181 CCATCTCTCTTTTTCCACTGTCGTCAGAGCCAACAAGAAATGACAGCCTCCAAGCCTTCC 241 TAAAAGCACACTTGCCCCCGCCTGCCACCTCTCCTCAGGCTGCTGCCCTCCCAGGCGCTC 301 CACAGCGAAGGGGTGTGGTGTTTCCTGCAGGCCAGGCCAGCTGCCTCAGCCCCGCCAAAA 361 CTGTGTTCCCAGCCAGCGCTCTGGAGCAGGGATGACGTGTGGCCAGCCCTTCTCAGGTCT 421 CAGCTCTGCTGGGATGGGAGGAGAGGCCAGGGAGAAAGGTTAGGGGCCCAGGGGTGGGTG 481 ACAACGCTGGCTGCTGAAAGCCCATGAGCTGCTTCTTTGTTCTCTGTCACGGGACAAAAA 541 TCTCTCATCCTATTCTGCTTTCAGTTCATTAAGAGAGCACATTTTACTCATACACAAATA 601 AAAGTTTTCCCTTGTGGAAACAACAGCTTTAAAAGAAAGG | SEQ?ID?NO:93 |
BM781127.V1.3_AT | Homo sapiens's | 1 AGGGAATAAAGGCTCAGGGACCGGCAGTTCTACTCTAGAGCCCACCAGCCTCTCAGAGCC 61 TCCGGTGACTGGCCTGTGTCTCCCCCTGGATGGACATGTGGACGGCGCTGCTCATCCTGC 121 AAGCCTTGTTGCTACCCTCCCTGGCTGATGGTGCCACCCCTGCCCTGCGCTTTGTAGCCG 181 TGGGTGACTGGGGAGGGGTCCCCAATGCCCCATTCCACACGGCCCGGGAAATGGCCAATG 241 CCAAGGAGATCGCTCGGACTGTGCAGATCCTGGGTGCAGACTTCATCCTGTCTCTAGGGG | SEQ?ID?NO:94 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
301 ACAATTTTTACTTCACTGGTGTGCAAGACATCAATGACAAGAGGTTCCAGGAGACCTTTG 361 AGGACGTATTCTCTGACCGCTCCCTTCGCAAAGTGCCCTGGTACGTGCTAGCCGGAAACC 421 ATGACCACCTTGGCAATGTCTCTGCCCAGATTGCATACTCTAAGATCTCCAAGCGCTGGA 481 ACTTCCCCAGCCCTTTCTACCGCCTGCACTTCAAGATCCCACAGACCAATGTGTCTGTGG 541 CCATTTTTATGCTGGACACAGTGACACTATGTGGCAACTCAGATGACTTCCTCAGCCAGC 601 AGCCTGAGAGGCCCCGAGACGTGAAGCTGGCCCGCACACAGCTGTCCTGGCTCAAGAAAC 661 AGCTGGCCGCGGCCAAGGAGGACTACGTGCTGGTGGCTGGCCACTACCCAATATGGTCCA 721 TCGCGGAGCACGGGCCCACCCACTGCCTCGTCAAGCAGCTGCTGCCACTGCTGGCCATGC 781 ACAAGGTCACCGCCTACCTGTGTGGCCACGACCACAACCTGCAGTACCTTCAAGACGAGA 841 ACGGCATAGGCTTTGTGCTAAGCGGCGCTGGGAACTTCATGGACCCCTCGACGAAGCACG 901 CACGCAAGGTCCCCAATGGCTACCTGCGCTTCCACCACGGGACCAACACCTCCATGGGTG 961 GCTTTGCCTACGTGGAGATCAGCCCCAAAGAGATGACCGTCACTTACATCGAAGCTTCGG 1021?GCAAGTCCCTGTTCAAGACCAGGCTGCCCAGGAGAGCAAGGCCCTGAACTCCCATGACTG 1081?CCCAGCTCTGAGGCCCGATCTCCACTGTTGGGTGGGTGGCCTGCCGGGACCCTGCTCACA 1141?GGCAGGCTTTTCCTCCAACCTGTGGCGCTGCAGCAGGGCAGGAAGGGGAAACACAGCTGA 1201?TGAACTGTGGTGCCACGTGGCCCTTGTGGCAAGGATGCCCACGGATGTGAAACACACATG 1261?GACATGTGTCCCAGCCACAGTGTTATGCTCTGTGGCTGGCTCACCTTTGCTGAGTTCCGG 1321?GGTGCAATGGGGGAGGGAGGGAGGGAAAGCTTCCTCCTAAATCAAGCATCTTTCTGTTAC 1381?TGATGTTCAATAAAAGAATAGTTGCCAAGGCTG 1 M D M W T A L L I L Q A L L L P S L A D 1 ATGGACATGTGGACGGCGCTGCTCATCCTGCAAGCCTTGTTGCTACCCTCCCTGGCTGAT 21 G A T P A L R F V A V G D W G G V P N A 61 GGTGCCACCCCTGCCCTGCGCTTTGTAGCCGTGGGTGACTGGGGAGGGGTCCCCAATGCC 41 P F H T A R E M A N A K E I A R T V Q I 121 CCATTCCACACGGCCCGGGAAATGGCCAATGCCAAGGAGATCGCTCGGACTGTGCAGATC 61 L G A D F I L S L G D N F Y F T G V Q D 181 CTGGGTGCAGACTTCATCCTGTCTCTAGGGGACAATTTTTACTTCACTGGTGTGCAAGAC 81 I N D K R F Q E T F E D V F S D R S L R 241 ATCAATGACAAGAGGTTCCAGGAGACCTTTGAGGACGTATTCTCTGACCGCTCCCTTCGC 101 K V P W Y V L A G N H D H L G N V S A Q 301 AAAGTGCCCTGGTACGTGCTAGCCGGAAACCATGACCACCTTGGCAATGTCTCTGCCCAG 121 I A Y S K I S K R W N F P S P F Y R L H 361 ATTGCATACTCTAAGATCTCCAAGCGCTGGAACTTCCCCAGCCCTTTCTACCGCCTGCAC 141 F K I P Q T N V S V A I F M L D T V T L 421 TTCAAGATCCCACAGACCAATGTGTCTGTGGCCATTTTTATGCTGGACACAGTGACACTA 161 C G N S D D F L S Q Q P E R P R D V K L 481 TGTGGCAACTCAGATGACTTCCTCAGCCAGCAGCCTGAGAGGCCCCGAGACGTGAAGCTG 181 A R T Q L S W L K K Q L A A A K E D Y V | SEQ?ID?NO:95 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
541 GCCCGCACACAGCTGTCCTGGCTCAAGAAACAGCTGGCCGCGGCCAAGGAGGACTACGTG 201 L V A G H Y P I W S I A E H G P T H C L 601 CTGGTGGCTGGCCACTACCCAATATGGTCCATCGCGGAGCACGGGCCCACCCACTGCCTC 221 V K Q L L P L L A M H K V T A Y L C G H 661 GTCAAGCAGCTGCTGCCACTGCTGGCCATGCACAAGGTCACCGCCTACCTGTGTGGCCAC 241 D H N L Q Y L Q D E N G I G F V L S G A 721 GACCACAACCTGCAGTACCTTCAAGACGAGAACGGCATAGGCTTTGTGCTAAGCGGCGCT 261 G N F M D P S T K H A R K V P N G Y L R 781 GGGAACTTCATGGACCCCTCGACGAAGCACGCACGCAAGGTCCCCAATGGCTACCTGCGC 281 F H H G T N T S M G G F A Y V E I S P K 841 TTCCACCACGGGACCAACACCTCCATGGGTGGCTTTGCCTACGTGGAGATCAGCCCCAAA 301 E M T V T Y I E A S G K S L F K T R L P 901 GAGATGACCGTCACTTACATCGAAGCTTCGGGCAAGTCCCTGTTCAAGACCAGGCTGCCC 321 R R A R P - 961 AGGAGAGCAAGGCCCTGA | |||
WBC048H02.bFSP_20021 501.esd | Homo sapiens's guanine-nucleotide-binding protein (G albumen), beta polypeptides 2-sample 1 (GNB2L1), mRNA. | 1 CTGCAAGGCGGCGGCAGGAGAGGTTGTGGTGCTAGTTTCTCTAAGCCATCCAGTGCCATC 61 CTCGTCGCTGCAGCGACACCGCTCTCGCCGCCGCCATGACTGAGCAGATGACCCTTCGTG 121 GCACCCTCAAGGGCCACAACGGCTGGGTAACCCAGATCGCTACCACCCCGCAGTTCCCAG 181 ACATGATACTGTCGGCCTCGCGAGACAAGACCATCATCATGTGGAAGCTGACCAGGGATG 241 AGACCAACTACGGCATCCCACAGCGTGCTCTTCGAGGTCACTCCCACTTTGTTAGTGACG 301 TGGTGATCTCTTCAGATGGCCAGTTTGCCCTCTCAGGCTCCTGGGATGGAACGCTTCGCC 361 TCTGGGATCTCACAACGGGCACCACCACACGCCGATTTGTGGGCCATACCAAGGATGTGC 421 TGAGTGTGGCATTCTCCTCTGACAACCGGCAGATTGTCTCTGGCTCCCGAGATAAAACCA 481 TCAAGCTATGGAATACTCTGGGTGTATGCAAATACACTGTCCAGGATGAGAGCCACTCGG 541 AGTGGGTGTCTTGTGTCCGCTTCTCACCCAACAGTAGCAATCCCATCATTGTCTCCTGTG 601 GCTGGGACAAGCTAGTCAAGGTGTGGAATTTGGCAAACTGCAAGCTGAAGACCAATCACA 661 TCGGCCACACAGGCTACCTGAACACTGTCACTGTCTCTCCGGATGGATCCCTCTGTGCTT 721 CTGGAGGCAAGGATGGCCAGGCCATGCTTTGGGATTTAAATGAAGGCAAGCACCTTTACA 781 CACTAGATGGTGGGGACATCATCAACGCCTTGTGCTTCAGTCCCAATCGCTACTGGCTCT 841 GTGCTGCCACAGGCCCCAGCATCAAGATCTGGGACTTGGAGGGCAAGATCATTGTAGATG 901 AACTGAAGCAAGAAGTTATCAGTACCAGCAGCAAGGCAGAGCCACCCCAGTGCACTTCTC 961 TTGCCTGGTCTGCTGATGGCCAGACTCTGTTTGCTGGCTACACGGACAACCTGGTGAGAG 1021?TGTGGCAGGTGACCATCGGCACCCGCTAGAAATACATGGCAAGCTTTAGAAATAAAAAAA 1081?AAATGGCTTTTC 1 M T E Q M T L R G T L K G H N G W V T Q 1 ATGACTGAGCAGATGACCCTTCGTGGCACCCTCAAGGGCCACAACGGCTGGGTAACCCAG 21 I A T T P Q F P D M I L S A S R D K T I 61 ATCGCTACCACCCCGCAGTTCCCAGACATGATACTGTCGGCCTCGCGAGACAAGACCATC | SEQ?ID?NO:96 SEQ?ID?NO:97 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
41 I M W K L T R D E T N Y G I P Q R A L R 121 ATCATGTGGAAGCTGACCAGGGATGAGACCAACTACGGCATCCCACAGCGTGCTCTTCGA 61 G H S H F V S D V V I S S D G Q F A L S 181 GGTCACTCCCACTTTGTTAGTGACGTGGTGATCTCTTCAGATGGCCAGTTTGCCCTCTCA 81 G S W D G T L R L W D L T T G T T T R R 241 GGCTCCTGGGATGGAACGCTTCGCCTCTGGGATCTCACAACGGGCACCACCACACGCCGA 101 F V G H T K D V L S V A F S S D N R Q I 301 TTTGTGGGCCATACCAAGGATGTGCTGAGTGTGGCATTCTCCTCTGACAACCGGCAGATT 121 V S G S R D K T I K L W N T L G V C K Y 361 GTCTCTGGCTCCCGAGATAAAACCATCAAGCTATGGAATACTCTGGGTGTATGCAAATAC 141 T V Q D E S H S E W V S C V R F S P N S 421 ACTGTCCAGGATGAGAGCCACTCGGAGTGGGTGTCTTGTGTCCGCTTCTCACCCAACAGT 161 S N P I I V S C G W D K L V K V W N L A 481 AGCAATCCCATCATTGTCTCCTGTGGCTGGGACAAGCTAGTCAAGGTGTGGAATTTGGCA 181 N C K L K T N H I G H T G Y L N T V T V 541 AACTGCAAGCTGAAGACCAATCACATCGGCCACACAGGCTACCTGAACACTGTCACTGTC 201 S P D G S L C A S G G K D G Q A M L W D 601 TCTCCGGATGGATCCCTCTGTGCTTCTGGAGGCAAGGATGGCCAGGCCATGCTTTGGGAT 221 L N E G K H L Y T L D G G D I I N A L C 661 TTAAATGAAGGCAAGCACCTTTACACACTAGATGGTGGGGACATCATCAACGCCTTGTGC 241 F S P N R Y W L C A A T G P S I K I W D 721 TTCAGTCCCAATCGCTACTGGCTCTGTGCTGCCACAGGCCCCAGCATCAAGATCTGGGAC 261 L E G K I I V D E L K Q E V I S T S S K 781 TTGGAGGGCAAGATCATTGTAGATGAACTGAAGCAAGAAGTTATCAGTACCAGCAGCAAG 281 A E P P Q C T S L A W S A D G Q T L F A 841 GCAGAGCCACCCCAGTGCACTTCTCTTGCCTGGTCTGCTGATGGCCAGACTCTGTTTGCT 301 G Y T D N L V R V W Q V T I G T R - 901 GGCTACACGGACAACCTGGTGAGAGTGTGGCAGGTGACCATCGGCACCCGCTAG | |||
B1961469 | No | 1 GATTCCGGATGAGCCACCCAGCCCTTCTGGCCCTGCTGTGGCTCGCCCAAAAGTCGCCCA 61 AGAAGAAAGGATCACTCCAGCATCCAGTGACAACCTGAACCCCCAAATAAAAGTCAAAGA 121 AGACACTCAAGAAATGCCCTGTGCTCCCTCAGGCCCAGTGCAAGTGATACGAGATGATTC 181 TCCTGAACCAAATGATGCAGAAGAGCCCCAGGAGGCATCCAGCACACCTCCCACAAAGAA 241 AGGAAAGAAAAGAAAAAGAAATGTGTGGTCAATTCCAAAGAAGAGATATCATAAAAAAAG | SEQ?ID?NO:98 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
301 CCTCCCAAAAGGGACAGTCTCACCTGGGGATGAAATCCAAGAGAAGCTCCAAGTGGTGGA 361 TCAGGCAACTCAAAAGAAGGACGACTCAACCAGGAACTCAAAGGTCACGACAAGGGTCCA 421 AAAAGCCAGGACTGGATGTGCCCAAACATCTGGACCAGAGGAGGTCAGTGATGACGCTTC 481 AGAAGTG NON?CONGIGUOUS 1 GACCTTGATGTTTGGATGATTACAAACCAAAAGTGTCAGAAATAGAGTACTCTGATTTGA 61 AAAGCAAATATGGTACTGAAATAGACAAGAACAGTATGTGAAAGGGCTAGAAGATCATCC 121 TTGGTTGAACATTAAGTATACCTCAATTCAACATGCTCACTATCAGTAGCAGCAGAATGG 181 AACAATTGTTTGAACTGAGCTTTGTCTCTGCAGCACCTCCCTCCAGGTCAAAATGGCAGT 241 CATCCATTGGCTGCACCAGCTGTTCCTCCTCACCCTTCTTTATGTGCTTAGATACGTGCT 301 CCAGACACAAGTCCCATTCATGAGCTTCCTGTTAGATGTGAACCTCCAGCAGAGGCAACG 361 CTTCCTCTCCCATCTTGCCCTGAAGGCTGGCCTGCCCCTTGGCTGGATTCATTCAAAGTT 421 GATAAAGCAATGGTCCTCAATTCTGTTTATTGGTAAACCATCTTTTCCATGCTGATTTGA 481 AACACGTTAGAT | SEQ?ID?NO:99 | ||
WBC021A01 | No | 1 GACAATGTTTGTGCTTGATTGCTCCTTTAAATCCAGCGTGCCATTGATTCTGCATGCCCA 61 CCTCATCCTGGCCTTCCTGATGGAAATAGGTTAAGAGAACCAGTCCTGTCTTCACCCTCG 121 AGAGAAACTTAGGTGAGGCTGGTCAGTTCAGTGCTTTCTTAGTGCATGTCTGCTGTATGT 181 TTCTGGCACCCATGCCCAACCAGGTTTTTAGAGATTTCAGACATCTTAAAGATGCAAATG 241 CTTCCCAGCATTTTTGTTTGTGTAGCCCTGCTTGCTTTAGCGTATGCTTGAATAAAAAGC 301 ATTGCAGCTAAGGCAGCTGTAAGAAAAAGGTACTTCTTCAGAAGTAAGCAACTCATCTTT 361 AAAGCACCCTCAAATGAATTTTGTTTTTCCTTCTTATGTTGAGGTAGAGTCAAAATAGAT 421 GGTGTTTTATTTTTTGCTGTTTGGGTTACCAGCTCTGTGGACTCTCCGACCTTCCCTTCC 481 CAGTTCACACATTTCCATTAGGATGCAGCCTGCTGGATGTATGCATTTCACCCCGAGTCC 541 ATCGGTCAGCCAGTACACATTGAGTGCCTGCTTTCAGTCAAGGCAGCTGATGTGAGGGGC 601 TCATCGTGTTGGCAGCAATATCCCAGCAGCAGTCTTTTTCTATTCTCCCTGTCTTGGATG 661 CTCCGGGGGGTATCAGGCATCTTGGCTGCTTGAAGCCTGGGCCCTCAGCCCTTTGCATTC 721 TCCTTANAGAGGAGGCCTGCTGCCCTTCTCTTTCTGGGTCGGAACTTCTCATTCTTGGCA 781 TGTTTCTGGACTACATGCATATGGGCAGCTATTCATTAATCTGCAGAACCCAATGTCAGC 841 CATCCATGATGTCTGGAGCGGGTAGCATTCGTTTCAAAGAAGCCTCGTTTCTCGGGGAGG 901 GCGATTCTGTCTATACTTTGAAGGGGGTGTATTTACCCCCATACCCC NON?CONTIGUOUS 1 CTCAAACCCAAGCCAAGGGTAATTTTTACTTGAAACTAGGAGAGTGGGGAAGACACTAGA 61 GAGAAGGGGTGAGTCGTGCAGGTGGGCCACCTGCCCCTGGTGTCTGTCCACGTCACTGAG 121 TGCTGTGAGCCAGTGCCTTTCCTGCACCTGAACATGGAGCCCGCTCTTCCCGCCTGGGTG 181 AAGAGACCTCGCTGCCCAGGGGTAGACCTTGAAGAAGGTGTCTTGGAGAGCCCAGAGGAC 241 ACTCACGTATTCAGGTGCCCATTTTAAGCATCTTTAAAATATTTTATAGATAAAAGCATG 301 CCCTTTCCTGTCGGTGCCACCAGTGGTGCAGTTCCATCCATTCTGAATGGAAAAGTGGAG 361 CCTGCCAGTGCTTTCCTGGGTCACTCCTTCATCTCCCTTGATGTGGTGTCCCCTCCCCCT 421 CCCGTCCATTTCACTGTCGTGGCTGGATAGCAGAGGGCACCATGTAGTCCTGACGCAGTC 481 CTGTGTGATTCCGTGATCAGTTTTTTCTGTAACTGTCCTTCCAAACCAGTTGATGTTTGG 541 AAATTAGGGAAAAAATTAAATTCTCACCAATGGTTGCTGTTACAGTTAAATCAATAAAGA 601 TCTTGAGTATCAAAAAAAAAAAAAAAAAAAAAAA | SEQ?ID?NO:100 SEQ?ID?NO:101 |
B1961499 | Homo sapiens SUI1 | 1 CGGCACGAGCGCCGCCGAGGATTCAGCAGCCTCCCCCTTGAGCCCCCTCGCTTCCCGACG 61 TTCCGTTCCCCCCTGCCCGCCTTCTCCCGCCACCGCCGCCGCCGCCTTCCGCAGGCCGTT 121 TCCACCGAGGAAAAGGAATCGTATCGTATGTCCGCTATCCAGAACCTCCACTCTTTCGAC | SEQ?ID?NO:102 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
181 CCCTTTGCTGATGCAAGTAAGGGTGATGACCTGCTTCCTGCTGGCACTGAGGATTATATC 241 CATATAAGAATTCAACAGAGAAACGGCAGGAAGACCCTTACTACTGTCCAAGGGATCGCT 301 GATGATTACGATAAAAAGAAACTAGTGAAGGCGTTTAAGAAAAAGTTTGCCTGCAATGGT 361 ACTGTAATTGAGCATCCGGAATATGGAGAAGTAATTCAGCTACAGGGTGACCAACGCAAG 421 AACATATGCCAGTTCCTCGTAGAGATTGGACTGGCTAAGGACGATCAGCTGAAGGTTCAT 481 GGGTTTTAAGTGCTTGTGGCTCACTGAAGCTTAAGTGAGGATTTCCTTGCAATGAGTAGA 541 ATTTCCCTTCTCTCCCTTGTCACAGGTTTAAAAACCTCACAGCTTGTATAATGTAACCAT 601 TTGGGGTCCGCTTTTAACTTGGACTAGTGTAACTCCTTCATGCAATAAACTGAAAAGAGC 661 CATGCTGTCTAGTCTTGAAGTCCCTCATTTAAACAGAGGTCAAGCAATAGGCGCCTGGCA 721 GTGTCAAGCCTGAAACCAAGCAATACCGTCATGTTTCAGCCAAGCCCAGAGCCCTAAGAT 781 TACAAACAACTATGGCCGGAACCTCCTCAGCTCTCCCTCTGCAGAGTTCCCTACCCTAAG 841 AGAATGTTACCACCTGAACAGTCCTCGGTGAATCTGAGAGGAGAGGATGGGGTAAGGCAG 901 AAGCACCAGCTGTACTACTAGAAGGGAGCTTTTGGTGGTAGATCCCCTGGTGTCTCCAAC 961 CTGACTAGGTGGACAGAGCTCAAAGAGGCCCTCTTACCGCTAGCGAGGTGATAGGACATC 1021?TGGCTTGCCACAAAGGTCTGTTCGACCAGACATATCCTAGCTAAGGGATGTCCAAACATC 1081?AGAATGTGAGGCCAACCTTCTATCAGAGTTAAACTTTTGACAAGGGAACAAATCTCAAAC 1141?TGATCCATCAGTCATGTAGCTAGCTGTAGAGCTTGCAACTTAATAGCAGCAGCTGCCCAA 1201?TGCCATGTGAAGTAACAAACTGGTTTTTGGTTTTTTTTTCCCCTTCAGTTTTAATGTTAT 1261?GTGTAATGTATTTAAACCCTTATTTAAATAAAACTTGTTTTCAGAAAAAAAAAAAAAAAA 1321?AAAA 1 M S A I Q N L H S F D P F A D A S K G D 1 ATGTCCGCTATCCAGAACCTCCACTCTTTCGACCCCTTTGCTGATGCAAGTAAGGGTGAT 21 D L L P A G T E D Y I H I R I Q Q R N G 61 GACCTGCTTCCTGCTGGCACTGAGGATTATATCCATATAAGAATTCAACAGAGAAACGGC 41 R K T L T T V Q G I A D D Y D K K K L V 121 AGGAAGACCCTTACTACTGTCCAAGGGATCGCTGATGATTACGATAAAAAGAAACTAGTG 61 K A F K K K F A C N G T V I E H P E Y G 181 AAGGCGTTTAAGAAAAAGTTTGCCTGCAATGGTACTGTAATTGAGCATCCGGAATATGGA 81 E V I Q L Q G D Q R K N I C Q F L V E I 241 GAAGTAATTCAGCTACAGGGTGACCAACGCAAGAACATATGCCAGTTCCTCGTAGAGATT 101 G L A K D D Q L K V H G F - 301 GGACTGGCTAAGGACGATCAGCTGAAGGTTCATGGGTTTTAA | SEQ?ID?NO:103 | ||
B1961690.V1.3_AT | Homo sapiens's eukaryotic translation starts the | 1 ATGGCCACACCGGCGGTACCAGTAAGTGCTCCTCCGGCCACGCCAACCCCAGTCCCGGCG 61 GCGGCCCCAGCCTCAGTTCCAGCGCCAACGCCAGCACCGGCTGCGGCTCCGGTTCCCGCT 121 GCGGCTCCAGCCTCATCCTCAGACCCGGCGGCAGCGGCGACTGCGACCGCGGCTCCCGGC 181 CAGCCCCCGGCCTCGGCGCCAGCCCCAGCGCAGACCCCGGCGCAGTCTTTGCCGGGTCCT 241 GCTCTCCCGGGCCCCTTCCCCGGCGGCCGCGTGGTCCGCCTGCACCCGGTCATTTTGGCC 301 TCCATCGTGGACAGCTACGAGCGACGCAACGAGGGCGCTGCCCGCGTTATCGGGACCCTG 361 CTCGGAACCGGTGACAAGCACTCTGTGGAAGTCACCAATTGCTTTTCAGTGCCACACAAC 421 GAGTCAGAAGATGAGGTGGCTGTTGACATGGAATTTGCTAAGAACATGTATGAATTGCAC 481 AAGAAGGTCTCTCCAAATGAGCTCATCCTGGGCTGGTACGCTACGGGCCATGACATCACA | SEQ?ID?NO:104 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
541 GAGCACTCTGTGCTGATCCATGAGTACTACAGCCGGGAAGCCCCCAACCCCATTCACCTC 601 ACTGTGGACACGAGCCTCCAGAACGGCCGCATGAGCATCAAGGCCTATGTCAGCACTTTA 661 ATGGGTGTCCCTGGGAGGACCATGGGGGTGATGTTCACACCTCTGACAGTGAAATATGCA 721 TATTATGACACAGAACGCATCGGAGTTGACCTGATCATGAAGACCTGTTTTAGCCCCAAC 781 CGGGTGATCGGACTCTCAAGTGACTTGCAGCAAGTAGGAGGGGCGTCGGCTCGCATCCAG 841 GATGCCCTAAGCACAGTGTTGCAGTACGCAGAGGATGTACTGTCTGGAAAGGTGTCAGCT 901 GACAATACAGTGGGCCGCTTCTTGATGAGTCTGGTTAACCAAGTACCCAAGATAGTTCCT 961 GATGACTTCGAGACCATGCTCAACAGCAACATCAATGACCTGCTGATGGTGACCTACTTG 1021?GCCAATCTCACACAATCACAAATTGCCCTCAATGAGAAACTCGTAAACCTGTAG 1 | SEQ?ID?NO:105 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
261 R V I G L S S D L Q Q V G G A S A R I Q 781 CGGGTGATCGGACTCTCAAGTGACTTGCAGCAAGTAGGAGGGGCGTCGGCTCGCATCCAG 281 D A L S T V L Q Y A E D V L S G K V S A 841 GATGCCCTAAGCACAGTGTTGCAGTACGCAGAGGATGTACTGTCTGGAAAGGTGTCAGCT 301 D N T V G R F L M S L V N Q V P K I V P 901 GACAATACAGTGGGCCGCTTCTTGATGAGTCTGGTTAACCAAGTACCCAAGATAGTTCCT 321 D D F E T M L N S N I N D L L M V T Y L 961 GATGACTTCGAGACCATGCTCAACAGCAACATCAATGACCTGCTGATGGTGACCTACTTG 341 A N L T Q S Q I A L N E K L V N L - 1021?GCCAATCTCACACAATCACAAATTGCCCTCAATGAGAAACTCGTAAACCTGTAG | |||
WBC016C12 | No | 1 TCCCCAGGCTGCCGAAGCGGAGTGCACGAACTTAACTGCTGCACCACCAGGCTGGCCCCT 61 TGATCCATTTCTTTTTTCTTTTTTGAAGAAGATTATCCCTGAGCTAACATCCACCACCAA 121 TCCTCCTCTTTTTGCTGAGGAAGACTGGTCCTGAGCTAACATCCATGCCCATCCTCCTCT 181 ACTTTATATATGGGACGCCTACCACAGCATGGCTTGCCAAGTGGTGCCATATGGGCACCT 241 GGGATCCGAACTGGCGAACCCTGGGCCGCCGAAGCGGAACATGCGCTCTTAACTGCTGCG 301 CCACCCGGCCGGCCCCTATATGTTTCTTGACAGGGTAGATAATTTGTTTAGGGAACTACA 361 ATTCTGTTCTTTAACTATGTACCATAAAGAATGTGATTAAAGTACTTGAAAAGTAACTTC 421 TTCAAACTTAGTTTTTTATAAAATATGCAGATCTAAAAGTCACTGTCAAGATAAGTCTGA 481 ATTAGTTCTCTTATGGTCCTACTTCTAAAACTGAAGGTTTTGTGTGCAAAGGAATCCTTT 541 CTGGATAAGACGGGATTCCCTTTACCCTCTGTCCACGGGGCTTTATGTTAACTGTGAGGC 601 CGCATGTGTCCGTCACTGGCACCCCGGTCCCACCGGGATGTGTGGGAGCCTCCAGGCTGT 661 CCCAGTGTTAATTGTATTTACAGCAGGCCTACTAGACCAGCAGGAAGCATCGCACATGTC 721 ACATTGCACATGGGAGCTCAGGTCCTGAAGTCAGGCTTCTGTCTGTGCTGTCCTTCCTGT 781 TTGTGGGTTGCTGGTTCTCCACTGGGGTCCTTCAAAAGCAGCCCCACCCACACCTCCCCA 841 TTCTATTCACTCTGCTGCCTGTGTTAATATTTCTAAAAGATTTTTAATACATTAAACTCT 901 TACCTACGATTACTGTGGAATGGGATATACTGTTAATTAGAA NON?CONGIGUOUS 1 TCTGTTCTTTAACTATGTACCATAAAGAATGTGATTAAAGTACTTGAAAAGTAACTTCTT 61 CAAACTTAGTTTTTTATAAAATATGCAGATCTAAAAGTCACTGTCAAGATAAGTCTGAAT 121 TAGTTCTCTTATGGTCCTACTTCTAAAACTGAAGGTTTTGTGTGCAAAGGAATCCTTTCT 181 GGATAAGACGGGATTCCCTTTACCCTCTGTCCACGGGGCTTTATGTTAACTGTGAGGCCG 241 CATGTGTCCGTCACTGGCACCCCGGTCCCACCGGGATGTGTGGGAGCCTCCAGGCTGTCC 301 CAGTGTTAATTGTATTTACAGCAGGCCTACTAGACCAGCAGGAAGCATCGCACATGTCAC 361 ATTGCACATGGGAGCTCAGGTCCTGAAGTCAGGCTTCTGTCTGTGCTGTCCTTCCTGTTT 421 GTGGGTTGCTGGTTCTCCACTGGGGTCCTTCAGAAGCAGCCCCACCCACACCTCCCCATT 481 CTATTCACTCTGCTGCCTGTGTTAATATTTCTAAAAGATTTTTAATACATTAAACTCTTA 541 CCTACGATTACTGTGGAATGGGATATACTGTTAATTAGAAATATATTTTTATTTAAAAAA 601 ATTATATTCAGAATACAACTAGAATAGACCAAAAAAAAAAAA | SEQ?ID?NO:106 SEQ?ID?NO:107 |
WBC032C03 | No | 1 GGGAGCCCTCACAGGGCTTCAGTGTAAGGGGGACTGAGCCATCGAAAGCTCATTGCCAGA 61 AGGATACCATTTTTGGCTCTCCCTCTTCACTACCAGTACACAGTTTGACCCAGTGGCCAC | SEQ?ID?NO:108 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
121 TGGTTCACAGTACGCCACGTCACTGCCATCCCATGAAACAGTTTGTTCCCAGGCCGTGCA 181 GAATCCTGGAGTGGCATGCTGACCAGAATGGCTTGCTTCTGCAGAGGATGCTGCCCCGTG 241 ACTTAGCTGCTGCCTCCAGCTTCTTGCTTAAGAACTTACTAAAGGGACTTCCTTCCCATT 301 AAAACCCCAATAGCAACTCTCCCTAAATTTGTTGATTCTCTGCTAGGCCTGAGAATCTGA 361 ATTAACATCTCTTGAAGCCAAACTCCGCCTCTTGTGCTTTTTTTGCTTTGGATAAAGGAG 421 TTTTTCTTTAGAAACAGTGCCAAGAATGACAAGATATAAAAAACTAATTTTAAAGAAAAT 481 GCCTAACAGGTTTTTAATACAGTAATCACTGTAATTATCACTTTCTTTTCTAGTTCCTTG 541 GTTTTCAGCTCAGGCTGCATTCTCTAACTCATACTGTGAAGAAAGAGGTGTTTTTGATTC 601 AGAAATATATGAAATCTACATAGTCTTAATTTGTAAAAAATAAAGAAAATTCCTTAACCT 661 TTAAAAAAAAAAAAAAAAAAA | |||
WBC028D07_V1.3_AT | People's guanine nucleotide binding protein isotype II (GBP-2) mRNA | 1 AGTAAAAGTCCACAGTTACCGTGAGAGAAAAAAAGAGGAGAAAGCAGTGCAGCCAAACTC 61 GGAAGAAAAGAGAGGAGGAAAAGGACTCGACTTTCACATTGGAACAACCTTCTTTCCAGT 121 GCTAAGGCTCTCTGATCTGGGGAACAACACCTGGACATGGCTCCAGAGATCAACTTGCCG 181 GGCCCAATGAGCCTCATTGATAACACTAAAGGGCAGCTGGTGGTGAATCCAGAAGCTCTG 241 AAGATCCTATCTGCAATTACGCAGCCTGTGGTGGTGGTGGCGATTGTGGGCCTCTATCGC 301 ACAGGCAAATCCTACCTGATGAACAAGCTGGCTGGGAAGAAAAACGGCTTCTCTCTAGGC 361 TCCACAGTGAAGTCTCACACCAAGGGAATCTGGATGTGGTGTGTGCCTCATCCCAAGAAG 421 CCAGAACACACCCTAGTTCTGCTCGACACTGAGGGCCTGGGAGATATAGAGAAGGGTGAC 481 AATGAGAATGACTCCTGGATCTTTGCCTTGGCCATCCTCCTGAGCAGCACCTTCGTGTAC 541 AATAGCATGGGAACCATCAACCAGCAGGCCATGGACCAACTGCACTACGTGACAGAGCTG 601 ACAGAGCGAATCAGGGCAAAATCCTCACCCAGTAACAGTGAGCTTGAAGACTCAGCTGAC 661 TTCGTGAGCTTCTTTCCAACCTTTGTGTGGACTCTGAGAGATTTCTCCCTGGAGCTAGAA 721 GCCAATGGAGAACCCATCACTGCTGACGAGTACCTGGAGCTGTCACTGAAGCTAAAGAAA 781 GGTACTGATGAAAAAAGCAAAAGCTTTAATGAACCTCGGTTGTGCATCCGAAAGTTCTTC 841 CCAAAGAAGAAGTGCTTCATCTTTGACCGTCCCGCTCCCAGGAAGTACCTTGTCCAACTG 901 GAGAAGCTACAGGAGGAAGATCTGGACCCTGAATTCAGAGAACAAGTTGCAGACTTCTGC 961 TCCTACATCTTCAGCCATTCCAAAGCCAAGACTCTCTCAGGCGGCATCATAGTCAATGGG 1021?CCTCGTCTGGAGAGCCTGGTGCTGACCTATGTCAATGCCATCAGCAGTGGGGATCTTCCC 1081?TGCATGGAGAATGCAGTCCTGGCCTTGGCCCAGATAGAGAACTCGGCCGCAGTACAAAAG 1141?GCCGTGGCCCACTATGATCAGCAGATGGGCCAGAGGGTGAAGCTGCCCACGGAAACCCTC 1201?CAGGAGCTTCTGGACCTGCACAGGGCCAACGAGAAAGAGGCCATTGAAGTCTTCATGAAA 1261?AATTCTTTCAAGGATGTGGAACAAAAGTTCCAGAAGGAATTAGGGGCCCAGTTAGAAGCA 1321?AAGCGAGATGACTTTTGTAAGCAGAACATGCAAGCGTCATCAGATCGTTGCATGGCATTA 1381?CTTCAGGATATTTTTGGTCCTCTAGAAGAAGAGGTGAAGCAAGGGGCATTTTCTAAACCG 1441?GGAGGTTATCATCTCTTTATTCAGAAGAAACAGGAGCTGAAGAATAAGTACTACCAGGTG 1501?CCCAGGAAGGGGATACAGGCAGAGGACATGCTGAAGAAGTACTTGGAATCCAAGGAAGAC 1561?GTGGCTGATGCGCTTCTCCGGACTGACCAGTCACTCTCAGAAAAGGAAAAGGAGATTGAA 1621?GTGGAACGTATAAAGGCTGAATCTGCAGAAGCTGCAACGAAAATGTTGGAGGAAATCCAA 1681?AAGAAGAATCAGCAGATGATGGAACAGAAAGAAAAGAGTTATCAGGAACACGTGAAACAA 1741?TTGACTGAGAAGATGGAGAGAGATAGGGCCCAGCTGCTGGCAGAGCAGGAGAGGACTCTC 1801?GCTCTTAAACTTCAGGAACAGGAACGACTTCTCAAGGAAGGATTCCAGAACGAGAGCAGG 1861?AAACTTCAAAAAGACATATGGGATATCCAGATGAGAAGCAAATCATTGGAGCCAATATGT 1921?AACATACTCTAAAAGTCCAAGGAGCAAAATTTGCCTGTCCAGCTCCCTCTCCCCAAGAAA 1981?CAACATGAATGAGCAACTTCAGAGTGTCAAACAACTGCCATTAAACTTAACTCAAAATCA 2041?TGATGCTTCCATTTTTGTTGAGCTATAAAATTTGCAAAGTTTGCAAAGTAAAGGTTAAGT 2101?ATGAGGTCAATGTTTT | SEQ?ID?NO:109 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1 M A P E I N L P G P M S L I D N T K G Q 1 ATGGCTCCAGAGATCAACTTGCCGGGCCCAATGAGCCTCATTGATAACACTAAAGGGCAG 21 L V V N P E A L K I L S A I T Q P V V V 61 CTGGTGGTGAATCCAGAAGCTCTGAAGATCCTATCTGCAATTACGCAGCCTGTGGTGGTG 41 V A I V G L Y R T G K S Y L M N K L A G 121 GTGGCGATTGTGGGCCTCTATCGCACAGGCAAATCCTACCTGATGAACAAGCTGGCTGGG 61 K K N G F S L G S T V K S H T K G I W M 181 AAGAAAAACGGCTTCTCTCTAGGCTCCACAGTGAAGTCTCACACCAAGGGAATCTGGATG 81 W C V P H P K K P E H T L V L L D T E G 241 TGGTGTGTGCCTCATCCCAAGAAGCCAGAACACACCCTAGTTCTGCTCGACACTGAGGGC 101 L G D I E K G D N E N D S W I F A L A I 301 CTGGGAGATATAGAGAAGGGTGACAATGAGAATGACTCCTGGATCTTTGCCTTGGCCATC 121 L L S S T F V Y N S M G T I N Q Q A M D 361 CTCCTGAGCAGCACCTTCGTGTACAATAGCATGGGAACCATCAACCAGCAGGCCATGGAC 141 Q L H Y V T E L T E R I R A K S S P S N 421 CAACTGCACTACGTGACAGAGCTGACAGAGCGAATCAGGGCAAAATCCTCACCCAGTAAC 161 S E L E D S A D F V S F F P T F V W T L 481 AGTGAGCTTGAAGACTCAGCTGACTTCGTGAGCTTCTTTCCAACCTTTGTGTGGACTCTG 181 R D F S L E L E A N G E P I T A D E Y L 541 AGAGATTTCTCCCTGGAGCTAGAAGCCAATGGAGAACCCATCACTGCTGACGAGTACCTG 201 E L S L K L K K G T D E K S K S F N E P 601 GAGCTGTCACTGAAGCTAAAGAAAGGTACTGATGAAAAAAGCAAAAGCTTTAATGAACCT 221 R L C I R K F F P K K K C F I F D R P A 661 CGGTTGTGCATCCGAAAGTTCTTCCCAAAGAAGAAGTGCTTCATCTTTGACCGTCCCGCT 241 P R K Y L V Q L E K L Q E E D L D P E F 721 CCCAGGAAGTACCTTGTCCAACTGGAGAAGCTACAGGAGGAAGATCTGGACCCTGAATTC 261 R E Q V A D F C S Y I F S H S K A K T L 781 AGAGAACAAGTTGCAGACTTCTGCTCCTACATCTTCAGCCATTCCAAAGCCAAGACTCTC 281 S G G I I V N G P R L E S L V L T Y V N 841 TCAGGCGGCATCATAGTCAATGGGCCTCGTCTGGAGAGCCTGGTGCTGACCTATGTCAAT 301 A I S S G D L P C M E N A V L A L A Q I 901 GCCATCAGCAGTGGGGATCTTCCCTGCATGGAGAATGCAGTCCTGGCCTTGGCCCAGATA | SEQ?ID?NO:110 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
321 E N S A A V Q K A V A H Y D Q Q M G Q R 961 GAGAACTCGGCCGCAGTACAAAAGGCCGTGGCCCACTATGATCAGCAGATGGGCCAGAGG 341 V K L P T E T L Q E L L D L H R A N E K 1021?GTGAAGCTGCCCACGGAAACCCTCCAGGAGCTTCTGGACCTGCACAGGGCCAACGAGAAA 361 E A I E V F M K N S F K D V E Q K F Q K 1081?GAGGCCATTGAAGTCTTCATGAAAAATTCTTTCAAGGATGTGGAACAAAAGTTCCAGAAG 381 E L G A Q L E A K R D D F C K Q N M Q A 1141?GAATTAGGGGCCCAGTTAGAAGCAAAGCGAGATGACTTTTGTAAGCAGAACATGCAAGCG 401 S S D R C M A L L Q D I F G P L E E E V 1201?TCATCAGATCGTTGCATGGCATTACTTCAGGATATTTTTGGTCCTCTAGAAGAAGAGGTG 421 K Q G A F S K P G G Y H L F I Q K K Q E 1261?AAGCAAGGGGCATTTTCTAAACCGGGAGGTTATCATCTCTTTATTCAGAAGAAACAGGAG 441 L K N K Y Y Q V P R K G I Q A E D M L K 1321?CTGAAGAATAAGTACTACCAGGTGCCCAGGAAGGGGATACAGGCAGAGGACATGCTGAAG 461 K Y L E S K E D V A D A L L R T D Q S L 1381?AAGTACTTGGAATCCAAGGAAGACGTGGCTGATGCGCTTCTCCGGACTGACCAGTCACTC 481 S E K E K E I E V E R I K A E S A E A A 1441?TCAGAAAAGGAAAAGGAGATTGAAGTGGAACGTATAAAGGCTGAATCTGCAGAAGCTGCA 501 T K M L E E I Q KK N Q Q M M E Q K E K 1501?ACGAAAATGTTGGAGGAAATCCAAAAGAAGAATCAGCAGATGATGGAACAGAAAGAAAAG 521 S Y Q E H V K Q L T E K M E R D R A Q L 1561?AGTTATCAGGAACACGTGAAACAATTGACTGAGAAGATGGAGAGAGATAGGGCCCAGCTG 541 L A E Q E R T L A L K L Q E Q E R L L K 1621?CTGGCAGAGCAGGAGAGGACTCTCGCTCTTAAACTTCAGGAACAGGAACGACTTCTCAAG 561 E G F Q N E S R K L Q K D I W D I Q M R 1681?GAAGGATTCCAGAACGAGAGCAGGAAACTTCAAAAAGACATATGGGATATCCAGATGAGA 581 S K S L E P I C N I L - 1741?AGCAAATCATTGGAGCCAATATGTAACATACTCTAA | |||
WBC010B02_V1.3_AT | Homo sapiens C-type agglutinant protein CLL-1mRNA, encoding sequence fully. | 1 GGGTGATTGGTACAGTAGGTTTATAAACAGAAGTTTAAACTTGTAAGCTTAAGCTTCCGT 61 TTATAAACAGAAGTTTAAAATTATAGGTCCTGTTTAACATTCAGCTCTGTTAACTCACTC 121 ATCTTTTTGTGTTTTTACACTTTGTCAAGATTTCTTTACATATTCATCAATGTCTGAAGA 181 AGTTACTTATGCAGATCTTCAATTCCAGAACTCCAGTGAGATGGAAAAAATCCCAGAAAT 241 TGGCAAATTTGGGGAAAAAGCACCTCCAGCTCCCTCTCATGTATGGCGTCCAGCAGCCTT 301 GTTTCTGACTCTTCTGTGTCTTCTGCTGCTGACTGGACTGGGAGTCTTAGGAAGCATGTT | SEQ?ID?NO:111 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
361 TTATATAACTTTGAAGACAGAAGTGGGAAAATTGAATGAACTACAAAATTTTAAAGAAGA 421 ACTTCAGAGAAATATTTCTATACAACTGATGCATAACATGAATAATTCTGAGAAGATCAG 481 GAACCTCTCTATCACACTGCAAGAAATAGCCACCAAATTTTGTCATGAGCTGTATAGAAA 541 CAATCAAGAGCACAAATGTAAACCTTGCCCAAAGCAATGGATATGGCATGAAGACAGCTG 601 TTATTTCCTAAGTGATGATGTCCAAACATGGCAGGAGAGTAAAATGGCCTGTGCTGCTCA 661 GAATGCCAGCCTGTTGAAGATAAACAACAAAAATGCATTGGAATTTATAAAATCCCAGAG 721 TAGATCATATGACTATTGGCTGGGATTATCTCCTGAAGAAGATTCCACTCGTGGTATGAG 781 AGTGGATAATATAATCAACTCCTCTGCCTGGGTTATAAGAAACGCACCTGACTTAAATAA 841 CATGTATTGTGGATATATAAATAGACTATATGTTCAATATTATCACTGCACTTATAAACA 901 AAGAATGATATGTGAGAAGATGGCCAATCCAGTGCAGCTTGGTTCTACATATTTTAGGGA 961 GGCATGAGGCATCAATCAAATACATTGAAGGAGTGTAGGGGGTGGGGGTTCTAGGCTATA 1021?GGTAAATTTAAATATTTTCTGGTTGACAATTAGTTGAGTTTGTCTGAAGACCTGGGATTT 1081?TATCATGCAGATGAAACATCCAGGTAGCAAGCTTCAGAGAGAATAGACTGTGAATGTTAA 1141?TGCCAGAGAGGTATAATGAAGCATGTCCCACCTCCCACTTTCCATCATGGCCTGAACCCT 1201?GGAGGAAGAGGAAGTCCATTCAGATAGTTGTGGGGGGCCTTCGAATTTTCATTTTCATTT 1261?ACGTTCTTCCCCTTCTGGCCAAGATTTGCCAGAGGCAACATCAAAAACCAGCAAATTTTA 1321?ATTTTGTCCCACAGCGTTGCTAGGGTGGCATGGCTCCCCATCTCGGGTCCATCCTATACT 1381?TCCATGGGACTCCCTATGGCTGAAGGCCTTATGAGTCAAAGGACTTATAGCCAATTGATT 1441?GTTCTAGGCCAGGTAAGAATGGATATGGACATGCATTTATTACCTCTTAAAATTATTATT 1501?TTAAGTAAAAGCCAATAAACAAAAACGAAAAGGCAAAAAAAAAAAAAAAAAAAAAAAAAA 1561?AAAAAA 1 | SEQ?ID?NO:112 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
181 K S Q S R S Y D Y W L G L S P E E D S T 541 AAATCCCAGAGTAGATCATATGACTATTGGCTGGGATTATCTCCTGAAGAAGATTCCACT 201 R G M R V D N I I N S S A W V I R N A P 601 CGTGGTATGAGAGTGGATAATATAATCAACTCCTCTGCCTGGGTTATAAGAAACGCACCT 221 D L N N M Y C G Y I N R L Y V Q Y Y H C 661 GACTTAAATAACATGTATTGTGGATATATAAATAGACTATATGTTCAATATTATCACTGC 241 T Y K Q R M I C E K M A N P V Q L G S T 721 ACTTATAAACAAAGAATGATATGTGAGAAGATGGCCAATCCAGTGCAGCTTGGTTCTACA 261 Y F R E A - 781 TATTTTAGGGAGGCATGA | |||
B1961567.V1.3_AT | Homo sapiens's leucine aminopeptidase(LAP) 3, mRNA. | 1 GGCCGAGCCGACAAGATGTTCTTGCTGCCTCTTCCGGCTGCGGGGCGAGTAGTCGTCCGA 61 CGTCTGGCCGTGAGACGTTTCGGGAGCCGGAGTCTCTCCACCGCAGACATGACGAAGGGC 121 CTTGTTTTAGGAATCTATTCCAAAGAAAAAGAAGATGATGTGCCACAGTTCACAAGTGCA 181 GGAGAGAATTTTGATAAATTGTTAGCTGGAAAGCTGAGAGAGACTTTGAACATATCTGGA 241 CCACCTCTGAAGGCAGGGAAGACTCGAACCTTTTATGGTCTGCATCAGGACTTCCCCAGC 301 GTGGTGCTAGTTGGCCTCGGCAAAAAGGCAGCTGGAATCGACGAACAGGAAAACTGGCAT 361 GAAGGCAAAGAAAACATCAGAGCTGCTGTTGCAGCGGGGTGCAGGCAGATTCAAGACCTG 421 GAGCTCTCGTCTGTGGAGGTGGATCCCTGTGGAGACGCTCAGGCTGCTGCGGAGGGAGCG 481 GTGCTTGGTCTCTATGAATACGATGACCTAAAGCAAAAAAAGAAGATGGCTGTGTCGGCA 541 AAGCTCTATGGAAGTGGGGATCAGGAGGCCTGGCAGAAAGGAGTCCTGTTTGCTTCTGGG 601 CAGAACTTGGCACGCCAATTGATGGAGACGCCAGCCAATGAGATGACGCCAACCAGATTT 661 GCCGAAATTATTGAGAAGAATCTCAAAAGTGCTAGTAGTAAAACCGAGGTCCATATCAGA 721 CCCAAGTCTTGGATTGAGGAACAGGCAATGGGATCATTCCTCAGTGTGGCCAAAGGATCT 781 GACGAGCCCCCAGTCTTCTTGGAAATTCACTACAAAGGCAGCCCCAATGCAAACGAACCA 841 CCCCTGGTGTTTGTTGGGAAAGGAATTACCTTTGACAGTGGTGGTATCTCCATCAAGGCT 901 TCTGCAAATATGGACCTCATGAGGGCTGACATGGGAGGAGCTGCAACTATATGCTCAGCC 961 ATCGTGTCTGCTGCAAAGCTTAATTTGCCCATTAATATTATAGGTCTGGCCCCTCTTTGT 1021?GAAAATATGCCCAGCGGCAAGGCCAACAAGCCGGGGGATGTTGTTAGAGCCAAAAACGGG 1081?AAGACCATCCAGGTTGATAACACTGATGCTGAGGGGAGGCTCATACTGGCTGATGCGCTC 1141?TGTTACGCACACACGTTTAACCCGAAGGTCATCCTCAATGCCGCCACCTTAACAGGTGCC 1201?ATGGATGTAGCTTTGGGATCAGGTGCCACTGGGGTCTTTACCAATTCATCCTGGCTCTGG 1261?AACAAACTCTTCGAGGCCAGCATTGAAACAGGGGACCGCGTCTGGAGGATGCCTCTCTTT 1321?GACCATTATACTAGACAGGTTGTCGATTGCCAACTTGCTGATGTTAATAACATCGGAAAG 1381?TATAGATCTGCAGGAGCATGTACAGCTGCAGCATTCCTGAAGGAATTTGTGACTCATCCT 1441?AAGTGGGCGCATTTAGACATAGCAGGAGTGATGACTAACAAAGATGAGATTCCGTATCTG 1501?CGTAAAGGCATGACCGGGAGGCCCACGAGGACCCTGATAGAGTTCTTGCTTCGGTTCAGT 1561?CAAGACAAAGCTTAGTTCAGATACTCTAAAATGCCTTCATTCTGTCTTAAATTGGACAGT 1621?TGAACTTAAAAGGTTTTTGAATAAATGGATGAAAATCTTTTAACGGAGACAAAGGATGGT 1681?ATTTAAAAATGTAGAACACAATGAAATTTGTATGCCTTGATTTTTTTTTCATTTCACACA 1741?AAGATTTATAAAGGTAAAGTTAATATCTTACTTGATAAGGATTTTTAAGATACTCTATAA 1801?ATGATTAATTTTTTAAAAACTACCTAATCATTTTTCAGAGTGTATGTTTTTAATTGAGTG 1861?AAATTGTATTTCGGATTTGTGATGCTAGGAACATGAGCAAACTGAAAATTACTATGCACT | SEQ?ID?NO:113 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
1921?TGTCAGAAACAATAAATGCAACTTGTTGTGCAAAAAAAAAAAAAAAAAAA 1 M F L L P L P A A G R V V V R R L A V R 1 ATGTTCTTGCTGCCTCTTCCGGCTGCGGGGCGAGTAGTCGTCCGACGTCTGGCCGTGAGA 21 R F G S R S L S T A D M T K G L V L G I 61 CGTTTCGGGAGCCGGAGTCTCTCCACCGCAGACATGACGAAGGGCCTTGTTTTAGGAATC 41 Y S K E K E D D V P Q F T S A G E N F D 121 TATTCCAAAGAAAAAGAAGATGATGTGCCACAGTTCACAAGTGCAGGAGAGAATTTTGAT 61 K L L A G K L R E T L N I S G P P L K A 181 AAATTGTTAGCTGGAAAGCTGAGAGAGACTTTGAACATATCTGGACCACCTCTGAAGGCA 81 G K T R T F Y G L H Q D F P S V V L V G 241 GGGAAGACTCGAACCTTTTATGGTCTGCATCAGGACTTCCCCAGCGTGGTGCTAGTTGGC 101 L G K K A A G I D E Q E N W H E G K E N 301 CTCGGCAAAAAGGCAGCTGGAATCGACGAACAGGAAAACTGGCATGAAGGCAAAGAAAAC 121 I R A A V A A G C R Q I Q D L E L S S V 361 ATCAGAGCTGCTGTTGCAGCGGGGTGCAGGCAGATTCAAGACCTGGAGCTCTCGTCTGTG 141 E V D P C G D A Q A A A E G A V L G L Y 421 GAGGTGGATCCCTGTGGAGACGCTCAGGCTGCTGCGGAGGGAGCGGTGCTTGGTCTCTAT 161 E Y D D L K Q K K K M A V S A K L Y G S 481 GAATACGATGACCTAAAGCAAAAAAAGAAGATGGCTGTGTCGGCAAAGCTCTATGGAAGT 181 G D Q E A W Q K G V L F A S G Q N L A R 541 GGGGATCAGGAGGCCTGGCAGAAAGGAGTCCTGTTTGCTTCTGGGCAGAACTTGGCACGC 201 Q L M E T P A N E M T P T R F A E I I E 601 CAATTGATGGAGACGCCAGCCAATGAGATGACGCCAACCAGATTTGCCGAAATTATTGAG 221 K N L K S A S S K T E V H I R P K S W I 661 AAGAATCTCAAAAGTGCTAGTAGTAAAACCGAGGTCCATATCAGACCCAAGTCTTGGATT 241 E E Q A M G S F L S V A K G S D E P P V 721 GAGGAACAGGCAATGGGATCATTCCTCAGTGTGGCCAAAGGATCTGACGAGCCCCCAGTC 261 F L E I H Y K G S P N A N E P P L V F V 781 TTCTTGGAAATTCACTACAAAGGCAGCCCCAATGCAAACGAACCACCCCTGGTGTTTGTT 281 G K G I T F D S G G I S I K A S A N M D 841 GGGAAAGGAATTACCTTTGACAGTGGTGGTATCTCCATCAAGGCTTCTGCAAATATGGAC 301 L M R A D M G G A A T I C S A I V S A A | SEQ?ID?NO:114 |
Gene | The GenBank homology | The aminoacid sequence of dna sequence dna/deduction | Sequence identifier: |
901 CTCATGAGGGCTGACATGGGAGGAGCTGCAACTATATGCTCAGCCATCGTGTCTGCTGCA 321 K L N L P I N I I G L A P L C E N M P S 961 AAGCTTAATTTGCCCATTAATATTATAGGTCTGGCCCCTCTTTGTGAAAATATGCCCAGC 341 G K A N K P G D V V R A K N G K T I Q V 1021?GGCAAGGCCAACAAGCCGGGGGATGTTGTTAGAGCCAAAAACGGGAAGACCATCCAGGTT 361 D N T D A E G R L I L A D A L C Y A H T 1081?GATAACACTGATGCTGAGGGGAGGCTCATACTGGCTGATGCGCTCTGTTACGCACACACG 381 F N P K V I L N A A T L T G A M D V A L 1141?TTTAACCCGAAGGTCATCCTCAATGCCGCCACCTTAACAGGTGCCATGGATGTAGCTTTG 401 G S G A T G V F T N S S W L W N K L F E 1201?GGATCAGGTGCCACTGGGGTCTTTACCAATTCATCCTGGCTCTGGAACAAACTCTTCGAG 421 A S I E T G D R V W R M P L F D H Y T R 1261?GCCAGCATTGAAACAGGGGACCGCGTCTGGAGGATGCCTCTCTTTGACCATTATACTAGA 441 Q V V D C Q L A D V N N I G K Y R S A G 1321?CAGGTTGTCGATTGCCAACTTGCTGATGTTAATAACATCGGAAAGTATAGATCTGCAGGA 461 A C T A A A F L K E F V T H P K W A H L 1381?GCATGTACAGCTGCAGCATTCCTGAAGGAATTTGTGACTCATCCTAAGTGGGCGCATTTA 481 D I A G V M T N K D E I P Y L R K G M T 1441?GACATAGCAGGAGTGATGACTAACAAAGATGAGATTCCGTATCTGCGTAAAGGCATGACC 501 G R P T R T L I E F L L R F S Q D K A - 1501?GGGAGGCCCACGAGGACCCTGATAGAGTTCTTGCTTCGGTTCAGTCAAGACAAAGCTTAG |
Table 2
The probe groups title | Probe sequence | Sequence identifier |
B1961054.V1.3_at | CAACGTGTTGAGATCATTGCCACAA | SEQ?ID?NO:115 |
B1961054.V1.3_at | GAATCCAGAGTCCAAGACCGTCAAG | SEQ?ID?NO:116 |
B1961054.V1.3_at | GGTCTAAAAGATCTCCTCGAACACT | SEQ?ID?NO:117 |
B1961054.V1.3_at | GGTACTACTGATACGGATGGCCCAA | SEQ?ID?NO:118 |
B1961054.V1.3_at | GCCATCATTTCCCTGCATACAGTAT | SEQ?ID?NO:119 |
B1961054.V1.3_at | ATATGTCAAGCCCTAATTGTCCCCG | SEQ?ID?NO:120 |
B1961054.V1.3_at | TAATTGTCCCCGGATTGCAGTTCTC | SEQ?ID?NO:121 |
B1961054.V1.3_at | GTTCTCCTAAGATGACCAACCAGTC | SEQ?ID?NO:122 |
B1961054.V1.3_at | AATTAGCTGCTACTACTCCTGCAGG | SEQ?ID?NO:123 |
B1961054.V1.3_at | ATGGTTCATCATCCTGAGCTGTTCA | SEQ?ID?NO:124 |
B1961054.V1.3_at | TCAGTAGTAACTCTGCCTTGGCACT | SEQ?ID?NO:125 |
B1961434.V1.3_at | GAAAGATCTTCACTCCATGGACTTC | SEQ?ID?NO:126 |
B1961434.V1.3_at | TCACTCCATGGACTTCTACTGCCAT | SEQ?ID?NO:127 |
B1961434.V1.3_at | AAGGAGCCCATATTCTTCCAATGGT | SEQ?ID?NO:128 |
B1961434.V1.3_at | TTCTTCCAATGGTTATATACACAAA | SEQ?ID?NO:129 |
B1961434.V1.3_at | GAAGTCTTAGATGTACATATTTCTT | SEQ?ID?NO:130 |
B1961434.V1.3_at | CATATTTCTTACATTGTTTTCAGTG | SEQ?ID?NO:131 |
B1961434.V1.3_at | GTGTTTATGGAATAACTTACGTGAT | SEQ?ID?NO:132 |
B1961434.V1.3_at | GTACTACACATGAATGACCAATAGG | SEQ?ID?NO:133 |
B1961434.V1.3_at | GAAATCTAGATATATGTTCTGCATG | SEQ?ID?NO:134 |
B1961434.V1.3_at | ATATGTTCTGCATGATATGTAAGAC | SEQ?ID?NO:135 |
B1961434.V1.3_at | AAATATGCTGGATGTTTTTCAAAAT | SEQ?ID?NO:136 |
B1961434.V1.3_s_at | GCACTATACTATAAACTATGCTGAG | SEQ?ID?NO:137 |
B1961434.V1.3_s_at | AACTATGCTGAGGTGCTACATTCTT | SEQ?ID?NO:138 |
B1961434.V1.3_s_at | GCTGAGGTGCTACATTCTTAGTAAA | SEQ?ID?NO:139 |
B1961434.V1.3_s_at | GTAAATGTGCCAAGACCTAGTCCTG | SEQ?ID?NO:140 |
B1961434.V1.3_s_at | AAGACCTAGTCCTGCTACTGACACT | SEQ?ID?NO:141 |
B1961434.V1.3_s_at | TGCTACTGACACTTTCCTCGCCTTG | SEQ?ID?NO:142 |
B1961434.V1.3_s_at | CTCGCCTTGCCTATACTCTAAAGGT | SEQ?ID?NO:143 |
B1961434.V1.3_s_at | TAAAGGTTCTCAACGGATCTTTCCA | SEQ?ID?NO:144 |
B1961434.V1.3_s_at | GATCTTTCCACCTCTGGGCTTATCA | SEQ?ID?NO:145 |
B1961434.V1.3_s_at | GGGCTTATCAGAGTTCTCAGATCTC | SEQ?ID?NO:146 |
B1961434.V1.3_s_at | GCAATAATACAATCTGCTTTTTTAA | SEQ?ID?NO:147 |
B1961438.V1.3_at | GTGGGCAGAGACTTGGCATCATTGT | SEQ?ID?NO:148 |
B1961438.V1.3_at | GGCATCATTGTCATCCAGCAAATAA | SEQ?ID?NO:149 |
B1961438.V1.3_at | TCAGTCTCCCCTAGTCCAGAAAAGG | SEQ?ID?NO:150 |
B1961438.V1.3_at | CAGAAAAGGGCCTCACCTGCCAGGG | SEQ?ID?NO:151 |
B1961438.V1.3_at | TGCGCATTGCTTTCCAAGGAGCCTT | SEQ?ID?NO:152 |
B1961438.V1.3_at | AAGGAGCCTTCTTGAGGTCACTGCA | SEQ?ID?NO:153 |
B1961438.V1.3_at | GAGGTCACTGCATTTGATCTTCATG | SEQ?ID?NO:154 |
B1961438.V1.3_at | TTTGATCTTCATGGCGGCACCTGGA | SEQ?ID?NO:155 |
The probe groups title | Probe sequence | Sequence identifier |
B1961438.V1.3_at | GACATGAGCGTTTGTGTTTGCTTTA | SEQ?ID?NO:156 |
B1961438.V1.3_at | ATCCAGGGTGGAGTCTATGCAGAAA | SEQ?ID?NO:157 |
B1961438.V1.3_at | GAAATGACCCATAATCCAGCAACGC | SEQ?ID?NO:158 |
B1961469.V1.3_at | GGGCTAGAAGATCATCCTTGGTTGA | SEQ?ID?NO:159 |
B1961469.V1.3_at | AATTCAACATGCTCACTATCAGTAG | SEQ?ID?NO:160 |
B1961469.V1.3_at | TGAACTGAGCTTTGTCTCTGCAGCA | SEQ?ID?NO:161 |
B1961469.V1.3_at | AATGGCAGTCATCCATTGGCTGCAC | SEQ?ID?NO:162 |
B1961469.V1.3_at | TCCTCACCCTTCTTTATGTGCTTAG | SEQ?ID?NO:163 |
B1961469.V1.3_at | ATGTGCTTAGATACGTGCTCCAGAC | SEQ?ID?NO:164 |
B1961469.V1.3_at | AAGTCCCATTCATGAGCTTCCTGTT | SEQ?ID?NO:165 |
B1961469.V1.3_at | GCTTCCTGTTAGATGTGAACCTCCA | SEQ?ID?NO:166 |
B1961469.V1.3_at | GTGAACCTCCAGCAGAGGCAACGCT | SEQ?ID?NO:167 |
B1961469.V1.3_at | TGCCCCTTGGCTGGATTCATTCAAA | SEQ?ID?NO:168 |
B1961469.V1.3_at | GCAATGGTCCTCAATTCTGTTTATT | SEQ?ID?NO:169 |
B1961481.V1.3_at | ACTGACAGTTGAAACGATCAATGGA | SEQ?ID?NO:170 |
B1961481.V1.3_at | TCAATGGAATGATCAGCACAAACAG | SEQ?ID?NO:171 |
B1961481.V1.3_at | TGTGATATCCTCTATATCTAAGATA | SEQ?ID?NO:172 |
B1961481.V1.3_at | ATAACATGTACTCTCTCTATATATA | SEQ?ID?NO:173 |
B1961481.V1.3_at | GCTGTTACTGGAAAGATGACCGCAA | SEQ?ID?NO:174 |
B1961481.V1.3_at | GATGACCGCAAGAAGTTGATTTTTT | SEQ?ID?NO:175 |
B1961481.V1.3_at | GAAGTTGATTTTTTATCTACCAGAA | SEQ?ID?NO:176 |
B1961481.V1.3_at | ATCTACCAGAAGTTTTCTTCGCTGT | SEQ?ID?NO:177 |
B1961481.V1.3_at | TTTCTTCGCTGTGTTTTAAGTCGGC | SEQ?ID?NO:178 |
B1961481.V1.3_at | TTTAAGTCGGCGATCTGCTTTGATC | SEQ?ID?NO:179 |
B1961481.V1.3_at | TGCTTTGATCGTTTTGTTCGCTTCT | SEQ?ID?NO:180 |
B1961499.V1.3_at | GTCTAGTCTTGAAGTCCCTCATTTA | SEQ?ID?NO:181 |
B1961499.V1.3_at | TAATGTGATGTTTCGGCCAAGCCCA | SEQ?ID?NO:182 |
B1961499.V1.3_at | GAGTTCCCTGCCCTGAGAGAATGTC | SEQ?ID?NO:183 |
B1961499.V1.3_at | GAGAGAATGTCACCACCTGAGCAGC | SEQ?ID?NO:184 |
B1961499.V1.3_at | AAGAGTGATGCCCTGGTGTCTCCAG | SEQ?ID?NO:185 |
B1961499.V1.3_at | GGTGATAGGACATCTGGCTTGCCAG | SEQ?ID?NO:186 |
B1961499.V1.3_at | GGCTTGCCAGCGAGGTCTTTTTGAC | SEQ?ID?NO:187 |
B1961499.V1.3_at | AGGCCACCCTTCTAGCAGAGTTAAA | SEQ?ID?NO:188 |
B1961499.V1.3_at | TATGTGTCAGTCACGTAGCCAGCTG | SEQ?ID?NO:189 |
B1961499.V1.3_at | AGAACTTGCGGCTTGACTAGCAGCA | SEQ?ID?NO:190 |
B1961499.V1.3_at | CAGCTGCCCAATGCCATGTGAAGTA | SEQ?ID?NO:191 |
B1961550.V1.3_at | AGCTCGTGCCGTTCTGTGAGACTTG | SEQ?ID?NO:192 |
B1961550.V1.3_at | GAGACTTGTCTTTCCCACGAAATAG | SEQ?ID?NO:193 |
B1961550.V1.3_at | AGACAACTCTTCCACGGCACAGATG | SEQ?ID?NO:194 |
B1961550.V1.3_at | AGACACAGTGCCGTACATCAATCAG | SEQ?ID?NO:195 |
B1961550.V1.3_at | TCAGCACGGCTTTAATCGCAGTTAT | SEQ?ID?NO:196 |
B1961550.V1.3_at | GAACGTATTTCGCTGTTGATGCCAG | SEQ?ID?NO:197 |
B1961550.V1.3_at | GATGCCAGTTATTCTGCTAACGATG | SEQ?ID?NO:198 |
B1961550.V1.3_at | GTGCGAGTACTTACAGGAGTCTACA | SEQ?ID?NO:199 |
B1961550.V1.3_at | GAGTCTACACAGTTGGACACGCAGC | SEQ?ID?NO:200 |
The probe groups title | Probe sequence | Sequence identifier |
B1961550.V1.3_at | TACGGATCTGTTTGACTCTGTCACA | SEQ?ID?NO:201 |
B1961550.V1.3_at | GATACACGGCATCCAAAGCTATTTG | SEQ?ID?NO:202 |
B1961567.V1.3_at | GGACCGCGTCTGGAGGATGCCTCTC | SEQ?ID?NO:203 |
B1961567.V1.3_at | TGCCTCTCTTTGACCATTATACTAG | SEQ?ID?NO:204 |
B1961567.V1.3_at | TTGTCGATTGCCAACTTGCTGATGT | SEQ?ID?NO:205 |
B1961567.V1.3_at | GAGCATGTACAGCTGCAGCATTCCT | SEQ?ID?NO:206 |
B1961567.V1.3_at | TGTGACTCATCCTAAGTGGGCGCAT | SEQ?ID?NO:207 |
B1961567.V1.3_at | TGGGCGCATTTAGACATAGCAGGAG | SEQ?ID?NO:208 |
B1961567.V1.3_at | GAGATTCCGTATCTGCGTAAAGGCA | SEQ?ID?NO:209 |
B1961567.V1.3_at | ACGAGGACCCTGATAGAGTTCTTGC | SEQ?ID?NO:210 |
B1961567.V1.3_at | AGAGTTCTTGCTTCGGTTCAGTCAA | SEQ?ID?NO:211 |
B1961567.V1.3_at | AAATGCCTTCATTCTGTCTTAAGTG | SEQ?ID?NO:212 |
B1961567.V1.3_at | AAAACTAATGGCTTGCTTGGCAAAG | SEQ?ID?NO:213 |
B1961581.V1.3_at | TACTGTCACCTATCAAGCGTCTTAA | SEQ?ID?NO:214 |
B1961581.V1.3_at | ACGGGCATCTGCTTTTGAGTGACTT | SEQ?ID?NO:215 |
B1961581.V1.3_at | GTTGCATTCTCATCTGCTAAATTGG | SEQ?ID?NO:216 |
B1961581.V1.3_at | GCTGAAAGAGATGAGTGCCCACCCT | SEQ?ID?NO:217 |
B1961581.V1.3_at | TGGACTCGCTTCAGCAGTGACGGGC | SEQ?ID?NO:218 |
B1961581.V1.3_at | TTGGAGGTCGCGTGCTTCAGTCTCG | SEQ?ID?NO:219 |
B1961581.V1.3_at | GTCTCGCGCTGATAGATGGTGTCCA | SEQ?ID?NO:220 |
B1961581.V1.3_at | TCCCGCCAGCTGAGAGTGAGCCAAA | SEQ?ID?NO:221 |
B1961581.V1.3_at | AAACTCCCAGCTTTCGGTCCAGAAG | SEQ?ID?NO:222 |
B1961581.V1.3_at | GAATTCAGATCACTCACTCGGGAAA | SEQ?ID?NO:223 |
B1961581.V1.3_at | GTGTCAAGCAAGTCCTCAAACGGCA | SEQ?ID?NO:224 |
B1961659.V1.3_at | CTACCCAGGGACTTTCTGACAGTAT | SEQ?ID?NO:225 |
B1961659.V1.3_at | TGAGTTTCTAAGTCAGCTTCCAGCT | SEQ?ID?NO:226 |
B1961659.V1.3_at | TTCCAGCTGTGTTTCATCTCCTTCA | SEQ?ID?NO:227 |
B1961659.V1.3_at | ATCTCCTTCACCTGCATTTTATTTG | SEQ?ID?NO:228 |
B1961659.V1.3_at | AAGCATGGTTTGTTCACTCCTTCAA | SEQ?ID?NO:229 |
B1961659.V1.3_at | TTTCCTCCACTAAGCAGATGATCCT | SEQ?ID?NO:230 |
B1961659.V1.3_at | TGGATTCCCGCTGGAGCAGTGCTAC | SEQ?ID?NO:231 |
B1961659.V1.3_at | CCTCTGTTCCGGTGATTGGTTTGTT | SEQ?ID?NO:232 |
B1961659.V1.3_at | GATTGGTTTGTTCCTTTCTTGTATC | SEQ?ID?NO:233 |
B1961659.V1.3_at | ACAACTACACGATCCCAGAGACATA | SEQ?ID?NO:234 |
B1961659.V1.3_at | GTTAATTCCAGCTGACGAGAGACCA | SEQ?ID?NO:235 |
B1961690.V1.3_at | AGCATCAAGGCCTATGTCAGCACTT | SEQ?ID?NO:236 |
B1961690.V1.3_at | GTGATGTTCACACCTCTGACAGTGA | SEQ?ID?NO:237 |
B1961690.V1.3_at | AACGCATCGGAGTTGACCTGATCAT | SEQ?ID?NO:238 |
B1961690.V1.3_at | TCATGAAGACCTGTTTTAGCCCCAA | SEQ?ID?NO:239 |
B1961690.V1.3_at | GGGTGATCGGACTCTCAAGTGACTT | SEQ?ID?NO:240 |
B1961690.V1.3_at | CTGACAATACAGTGGGCCGCTTCTT | SEQ?ID?NO:241 |
B1961690.V1.3_at | GCCGCTTCTTGATGAGTCTGGTTAA | SEQ?ID?NO:242 |
B1961690.V1.3_at | GTTCCTGATGACTTCGAGACCATGC | SEQ?ID?NO:243 |
B1961690.V1.3_at | TGATGGTGACCTACTTGGCCAATCT | SEQ?ID?NO:244 |
B1961690.V1.3_at | TGGCCAATCTCACACAATCACAAAT | SEQ?ID?NO:245 |
The probe groups title | Probe sequence | Sequence identifier |
B1961690.V1.3_at | GTAAACCTGTGAATGGGCCCCAATC | SEQ?ID?NO:246 |
B1961693.V1.3_at | TACTTTTCACATGGGCCCCTCTATG | SEQ?ID?NO:247 |
B1961693.V1.3_at | CCTCTATGTGACCTGCTTAGGGTAA | SEQ?ID?NO:248 |
B1961693.V1.3_at | GACCTGCTTAGGGTAAGTATCACCA | SEQ?ID?NO:249 |
B1961693.V1.3_at | GTATCACCAGGGATTTATGTATTTA | SEQ?ID?NO:250 |
B1961693.V1.3_at | AATAGTTTTCTTGAGCAGCTGCTGG | SEQ?ID?NO:251 |
B1961693.V1.3_at | TCTTGAGCAGCTGCTGGGATCTGCT | SEQ?ID?NO:252 |
B1961693.V1.3_at | GAAGCTTTGCTAATAATCCATTTAT | SEQ?ID?NO:253 |
B1961693.V1.3_at | AATCCATTTATATGGGCTGAATTAT | SEQ?ID?NO:254 |
B1961693.V1.3_at | GCTATAAATTGATCAAGGCCACTTT | SEQ?ID?NO:255 |
B1961693.V1.3_at | AAGGCCACTTTATTATGGAATCCCA | SEQ?ID?NO:256 |
B1961693.V1.3_at | ATTATGGAATCCCATCTGCTACCCT | SEQ?ID?NO:257 |
B1961697.V1.3_at | AAACTTATGTCCTCAGTTCCATCTG | SEQ?ID?NO:258 |
B1961697.V1.3_at | AACCCAATGGCACCTTCAGCAGTAA | SEQ?ID?NO:259 |
B1961697.V1.3_at | GAATTTTACCCCATCATATACCTGA | SEQ?ID?NO:260 |
B1961697.V1.3_at | ATATGTTTTCCTGCAGCCTTATAAG | SEQ?ID?NO:261 |
B1961697.V1.3_at | GTTTTCATGCTAAACCTGGCCATTT | SEQ?ID?NO:262 |
B1961697.V1.3_at | GGCCATTTCAGATCTCTTGTTCACA | SEQ?ID?NO:263 |
B1961697.V1.3_at | GTCTTATTCCCTATATGTCAACATG | SEQ?ID?NO:264 |
B1961697.V1.3_at | CATCTATTTCCTGACTGTGCTGAGT | SEQ?ID?NO:265 |
B1961697.V1.3_at | TTGTGCGTTTCCTGGCAACTGTTCA | SEQ?ID?NO:266 |
B1961697.V1.3_at | AAGTGCCTGGATTCTATGTGGGATC | SEQ?ID?NO:267 |
B1961697.V1.3_at | GGATCTTTATTATGGCTTCGTCAGC | SEQ?ID?NO:268 |
B1961698.V1.3_at | TTCAAATTTAGCTGGAAATCCTGTA | SEQ?ID?NO:269 |
B1961698.V1.3_at | AAATCCTGTATTTTGCTGTTGTTGC | SEQ?ID?NO:270 |
B1961698.V1.3_at | TTTTGCTGTTGTTGCTAAATCTTGC | SEQ?ID?NO:271 |
B1961698.V1.3_at | TAAATCTTGCAACCCTAGTCTGCTG | SEQ?ID?NO:272 |
B1961698.V1.3_at | TAGTCTGCTGCCCAGGATCCATGAG | SEQ?ID?NO:273 |
B1961698.V1.3_at | ATCCATGAGTCCCTGTTCAACTAAG | SEQ?ID?NO:274 |
B1961698.V1.3_at | GTTCAACTAAGCCTTGGTTTCTTCT | SEQ?ID?NO:275 |
B1961698.V1.3_at | TGGTTTCTTCTTTAATCCTAAACTG | SEQ?ID?NO:276 |
B1961698.V1.3_at | GGAGAAAAGCATCAGCCACTATCCT | SEQ?ID?NO:277 |
B1961698.V1.3_at | ACTATCCTCCCTCACAGAGAGCTGA | SEQ?ID?NO:278 |
B1961698.V1.3_at | GGACTGGTGGAAGCACATTAACTTA | SEQ?ID?NO:279 |
B1961707.V1.3_at | TGTTCTTATCAGTCATGGGCCATCC | SEQ?ID?NO:280 |
B1961707.V1.3_at | TGGGCCATCCGCAGGGTAGCAAGAT | SEQ?ID?NO:281 |
B1961707.V1.3_at | AGTCATTCTACTTTTAGCACGTGTC | SEQ?ID?NO:282 |
B1961707.V1.3_at | AGCACGTGTCCATGGGCTACAATTG | SEQ?ID?NO:283 |
B1961707.V1.3_at | ATTGGTTGGCTTGACCAAGGTCTGC | SEQ?ID?NO:284 |
B1961707.V1.3_at | CAAGGTCTGCATGTGGAATGTCCGT | SEQ?ID?NO:285 |
B1961707.V1.3_at | GGAATGTCCGTGATCTCTTAACTAC | SEQ?ID?NO:286 |
B1961707.V1.3_at | TAGACAGGGCCAAGACTAGCACAAG | SEQ?ID?NO:287 |
B1961707.V1.3_at | GGATGCCCTCATTTTGAAGTCGTGC | SEQ?ID?NO:288 |
B1961707.V1.3_at | GAGTGTCTTCTTAAATTCTTTGCCT | SEQ?ID?NO:289 |
B1961707.V1.3_at | TAAATTCTTTGCCTCACTCTAGTGC | SEQ?ID?NO:290 |
The probe groups title | Probe sequence | Sequence identifier |
B1961708.V1.3_at | CGAGCCTTCTTTGGGTCCCAGAATA | SEQ?ID?NO:291 |
B1961708.V1.3_at | AATAACTTCTGTGCCTTCAATCTGA | SEQ?ID?NO:292 |
B1961708.V1.3_at | AACACTACCTCAGCTGGTCAATGCT | SEQ?ID?NO:293 |
B1961708.V1.3_at | GTCAATGCTCCTGGGTGTGGGCACC | SEQ?ID?NO:294 |
B1961708.V1.3_at | ACTAGTCCTAGGCATCATGGCGGTG | SEQ?ID?NO:295 |
B1961708.V1.3_at | ATGCTGCTGGCAGGAGGCCTGTTTA | SEQ?ID?NO:296 |
B1961708.V1.3_at | GCCTGTTTATGCTGCTGGGCCACAA | SEQ?ID?NO:297 |
B1961708.V1.3_at | GGGCCACAAGCGGTACTCAGAATAC | SEQ?ID?NO:298 |
B1961708.V1.3_at | AATTGAGACCCACTCTCTAGAGGGA | SEQ?ID?NO:299 |
B1961708.V1.3_at | GAAGGACATTACTGGACCTGCCTTG | SEQ?ID?NO:300 |
B1961708.V1.3_at | GCTCCCTTCTTGCTTTTATGCAGAA | SEQ?ID?NO:301 |
B1961711.V1.3_at | CCGTTCGCGTGCACCCAGGGAGGAC | SEQ?ID?NO:302 |
B1961711.V1.3_at | TGCACCCAGGGAGGACTCGGAGTCC | SEQ?ID?NO:303 |
B1961711.V1.3_at | CATTTTCTTCTGGTCGCCGTGGTCA | SEQ?ID?NO:304 |
B1961711.V1.3_at | GTCGCCGTGGTCACCCACAGGAAGG | SEQ?ID?NO:305 |
B1961711.V1.3_at | CAGCCTGGGTTTTCTCGGGCGGCTC | SEQ?ID?NO:306 |
B1961711.V1.3_at | CAGGTCTCAGCCTGTGAGGACTGCG | SEQ?ID?NO:307 |
B1961711.V1.3_at | GACTGCGGCGAGTCTGGAGACCCCA | SEQ?ID?NO:308 |
B1961711.V1.3_at | TCTTCGGGACTGTGTGGACCCACGA | SEQ?ID?NO:309 |
B1961711.V1.3_at | GTGTGGACCCACGAGGGCCATCTGC | SEQ?ID?NO:310 |
B1961711.V1.3_at | GAGGGCCATCTGCTGACAGAGCAAC | SEQ?ID?NO:311 |
B1961711.V1.3_at | GTGGGCTCTGTCTGGTTCACAGAGC | SEQ?ID?NO:312 |
B1961718.V1.3_at | AGGAGGTGCCTCACGACTGTCCTGG | SEQ?ID?NO:313 |
B1961718.V1.3_at | GAGGGACCTCATGCCAAGGGTGCCC | SEQ?ID?NO:314 |
B1961718.V1.3_at | GCCTGACCCGGCCATAGAGGAAATC | SEQ?ID?NO:315 |
B1961718.V1.3_at | CAAGATCTTGGTGTTGTCTGGGAAA | SEQ?ID?NO:316 |
B1961718.V1.3_at | TGGGAAAAGCACGTTCAGCGCCCAC | SEQ?ID?NO:317 |
B1961718.V1.3_at | ATGAAAACACGCAGCTCGTTGGCTC | SEQ?ID?NO:318 |
B1961718.V1.3_at | TTGGCTCCTGAGACCCCGGAGGACA | SEQ?ID?NO:319 |
B1961718.V1.3_at | CAGCGAGGAGGCACAGCACACGGTC | SEQ?ID?NO:320 |
B1961718.V1.3_at | AGCCTGACCCGCTGGGCGACAGAGT | SEQ?ID?NO:321 |
B1961718.V1.3_at | GTCACAGTTCCAGAGACACTTGAGT | SEQ?ID?NO:322 |
B1961718.V1.3_at | AGATTTGTACACTTCTCTCGTAGAA | SEQ?ID?NO:323 |
B1961720.V1.3_at | AGCCTCAATCTGCTGTTAGTCCTAA | SEQ?ID?NO:324 |
B1961720.V1.3_at | AATGGGCTAGCAAAGGCCATCTTCT | SEQ?ID?NO:325 |
B1961720.V1.3_at | GCCATCTTCTCACTACTTGGATAGA | SEQ?ID?NO:326 |
B1961720.V1.3_at | AAACTCCTGTACCTTGTTTGCAGTG | SEQ?ID?NO:327 |
B1961720.V1.3_at | GTGGCAAATACATTTCCCAGCAGGC | SEQ?ID?NO:328 |
B1961720.V1.3_at | TTCCCAGCAGGCCTTTATTGATTGT | SEQ?ID?NO:329 |
B1961720.V1.3_at | TTGTACTAACCTCAAAGCTGCTGGA | SEQ?ID?NO:330 |
B1961720.V1.3_at | GTCCATTTGGTTGATGAGCTCTGCC | SEQ?ID?NO:331 |
B1961720.V1.3_at | GAGCTCTGCCATTTTGGAACCTAAT | SEQ?ID?NO:332 |
B1961720.V1.3_at | GGAACCTAATCTCTACTCTTTAGCT | SEQ?ID?NO:333 |
B1961720.V1.3_at | AGCTACATATGCCATCTACAGGTCC | SEQ?ID?NO:334 |
B1961724.V1.3_at | CACGGGAAGGTGGAAGTTTCAGACA | SEQ?ID?NO:335 |
The probe groups title | Probe sequence | Sequence identifier |
B1961724.V1.3_at | TGAGGGCATTCAAATTGTCTTTTTT | SEQ?ID?NO:336 |
B1961724.V1.3_at | TTTTTTCCATCCTCGTCTGTCAGTT | SEQ?ID?NO:337 |
B1961724.V1.3_at | CTCGTCTGTCAGTTTCCCTGAAAAA | SEQ?ID?NO:338 |
B1961724.V1.3_at | AAATTCATATTCCAGTGCCTATCCG | SEQ?ID?NO:339 |
B1961724.V1.3_at | AGTGCCTATCCGTGGGATCCTTCAC | SEQ?ID?NO:340 |
B1961724.V1.3_at | GATCCTTCACGTTCTTTGACATTGA | SEQ?ID?NO:341 |
B1961724.V1.3_at | AAAAAGAGAACTCACCTCGCTCTTC | SEQ?ID?NO:342 |
B1961724.V1.3_at | TGTGCCCCTCTGATACTGGCAGATG | SEQ?ID?NO:343 |
B1961724.V1.3_at | GATACTGGCAGATGCCTCTTCCTCT | SEQ?ID?NO:344 |
B1961724.V1.3_at | ACGCACGCACCCCAGTGGTGGGTTC | SEQ?ID?NO:345 |
B1961731.V1.3_at | GAGAAACTCCTAAGTTCCTGTGGAA | SEQ?ID?NO:346 |
B1961731.V1.3_at | AACCTATGGTGGCTGTGAAGGCCCT | SEQ?ID?NO:347 |
B1961731.V1.3_at | AGGCCCTGATGCCATGTATGTCAAA | SEQ?ID?NO:348 |
B1961731.V1.3_at | AATTGATATCCTCTGATGGCCATGA | SEQ?ID?NO:349 |
B1961731.V1.3_at | GAGAACACGCACTAACATCAGGAAC | SEQ?ID?NO:350 |
B1961731.V1.3_at | TGAGTGGCCCAGGTCAGTTTGCTGA | SEQ?ID?NO:351 |
B1961731.V1.3_at | TAGAGAGATCCCTTCACATGTGTTG | SEQ?ID?NO:352 |
B1961731.V1.3_at | AAGGTTCGCTACACTAACAGCTCCA | SEQ?ID?NO:353 |
B1961731.V1.3_at | AGCTCCACGGAGATTCCTGAATTCC | SEQ?ID?NO:354 |
B1961731.V1.3_at | CCTGAATTCCCAATTGCACCTGAAA | SEQ?ID?NO:355 |
B1961731.V1.3_at | ACTGGAACTGCTGATGGCTGCGAAC | SEQ?ID?NO:356 |
B1961732.V1.3_at | AGACCTGCATATTCGGTGACCTTAA | SEQ?ID?NO:357 |
B1961732.V1.3_at | GTAGAGAACACTGATTCCCAATCCC | SEQ?ID?NO:358 |
B1961732.V1.3_at | TCCCACCCAGAGATTAGTTTTCGTT | SEQ?ID?NO:359 |
B1961732.V1.3_at | GTTTTCGTTGCAACATGGAACAGTT | SEQ?ID?NO:360 |
B1961732.V1.3_at | GGAAGTTAACGATCTGCCCGGGTCT | SEQ?ID?NO:361 |
B1961732.V1.3_at | CGATCTGCCCGGGTCTAGAGGAAGA | SEQ?ID?NO:362 |
B1961732.V1.3_at | AGGAAGACCAGGAACGCCTTGCCAT | SEQ?ID?NO:363 |
B1961732.V1.3_at | TTGCCATCGGCAGAAGCGTCGTTGA | SEQ?ID?NO:364 |
B1961732.V1.3_at | TCGTTGATGCGAGCTGGATGTCCTC | SEQ?ID?NO:365 |
B1961732.V1.3_at | GGATGTCCTCCTTTTCAGTAGAAAC | SEQ?ID?NO:366 |
B1961732.V1.3_at | GTGAACTGCACATTGATCCCATTTT | SEQ?ID?NO:367 |
B1961735.V1.3_at | AAAGCTGTGCCTCCGAGCAAGCAAA | SEQ?ID?NO:368 |
B1961735.V1.3_at | AGCAAAAAGAGTTCGCCCATGGATC | SEQ?ID?NO:369 |
B1961735.V1.3_at | GAGTTCGCCCATGGATCGAAACAGT | SEQ?ID?NO:370 |
B1961735.V1.3_at | GGATCGAAACAGTGACGAGTTCCGT | SEQ?ID?NO:371 |
B1961735.V1.3_at | GACGAGTTCCGTCAACGCAGAGAGA | SEQ?ID?NO:372 |
B1961735.V1.3_at | GAGAGAGGAACATCATGGCCGTGAA | SEQ?ID?NO:373 |
B1961735.V1.3_at | TCATGGCCGTGAAAAAGAGCCGGTT | SEQ?ID?NO:374 |
B1961735.V1.3_at | AAGAGCCGGTTGAAAAGCAAGCAGA | SEQ?ID?NO:375 |
B1961735.V1.3_at | AGCAAGCAGAAAGCGCAGGATACAC | SEQ?ID?NO:376 |
B1961735.V1.3_at | TACACTGCAGAGAGTGAATCAGCTT | SEQ?ID?NO:377 |
B1961735.V1.3_at | GAAGAGAATGATCGCTTGGAAGCAA | SEQ?ID?NO:378 |
B1961737.V1.3_at | GAATGAGTAGCTTTCTGATGCTCTG | SEQ?ID?NO:379 |
B1961737.V1.3_at | TGATGCTCTGTATGTCAAACCCACC | SEQ?ID?NO:380 |
The probe groups title | Probe sequence | Sequence identifier |
B1961737.V1.3_at | ACCCCTGGCCCAAGAAATTGCAGTC | SEQ?ID?NO:381 |
B1961737.V1.3_at | AAACTGCCCTTTGTCCTCAAAGAAG | SEQ?ID?NO:382 |
B1961737.V1.3_at | TATCTGCCTTGTTCTTATCAACTTG | SEQ?ID?NO:383 |
B1961737.V1.3_at | TCTAACCGTGTTTTGTTGGCTACAG | SEQ?ID?NO:384 |
B1961737.V1.3_at | AAGTGCCCTAATTGAATGTGTTTGA | SEQ?ID?NO:385 |
B1961737.V1.3_at | GTGTTTGAATGTTATCCTTGCACAA | SEQ?ID?NO:386 |
B1961737.V1.3_at | AAATGTTTTACCTCACTGTTGGACA | SEQ?ID?NO:387 |
B1961737.V1.3_at | ACATTCCAAGCTTTTCAACTCTAGG | SEQ?ID?NO:388 |
B1961737.V1.3_at | AGTCATATGTTTTCCTGTATTGTAA | SEQ?ID?NO:389 |
B1961738.V1.3_at | GATTTTGCCTTTGGTTTGGGTCTCA | SEQ?ID?NO:390 |
B1961738.V1.3_at | TTAATCTTTTTTCTGGCTTCTTCTG | SEQ?ID?NO:391 |
B1961738.V1.3_at | TGGCTTCTTCTGCATGTTCTAGGAA | SEQ?ID?NO:392 |
B1961738.V1.3_at | AGAGTTGTATGTATTCTTCCCGGAA | SEQ?ID?NO:393 |
B1961738.V1.3_at | TTCCCGGAATTTGGCAGACTTCTCG | SEQ?ID?NO:394 |
B1961738.V1.3_at | AAACAGCTTACTGGCGCTTTCCAAT | SEQ?ID?NO:395 |
B1961738.V1.3_at | CTCCCCTGTGGATGTGTTGATTGCA | SEQ?ID?NO:396 |
B1961738.V1.3_at | GATTTTATCTCCAACTTGTGCCTGT | SEQ?ID?NO:397 |
B1961738.V1.3_at | GGATAAGTGGCCTGCTGGACCTGCT | SEQ?ID?NO:398 |
B1961738.V1.3_at | GCTGCATGATTTCACCACTGGTCAA | SEQ?ID?NO:399 |
B1961738.V1.3_at | TAAACTGAAGCACCTTGGCCATCTG | SEQ?ID?NO:400 |
B1961739.V1.3_at | GCTGGATCCCTCACAGGGCTGGGAA | SEQ?ID?NO:401 |
B1961739.V1.3_at | GGCAATGGGAGTACACTTTGATGAC | SEQ?ID?NO:402 |
B1961739.V1.3_at | GTGATTATTTCCGTAGTGACCCTGC | SEQ?ID?NO:403 |
B1961739.V1.3_at | AGTGACCCTGCCTGGGAGGCTCAGA | SEQ?ID?NO:404 |
B1961739.V1.3_at | GCAGGCAGGGATCAGACGTCATTAT | SEQ?ID?NO:405 |
B1961739.V1.3_at | ATGAACACAGTGATGGGCGGCAGTC | SEQ?ID?NO:406 |
B1961739.V1.3_at | TCGCCCCATGAGTGTCCCTTTGAGG | SEQ?ID?NO:407 |
B1961739.V1.3_at | AAGAGGGATGCTGCATTTCTCAGCT | SEQ?ID?NO:408 |
B1961739.V1.3_at | GCATTTCTCAGCTGGGCAGTAATCA | SEQ?ID?NO:409 |
B1961739.V1.3_at | GCAGTAATCAACTTAATGGTCCTTT | SEQ?ID?NO:410 |
B1961739.V1.3_at | ATGGTCCTTTTAAAATGTCTGTGTA | SEQ?ID?NO:411 |
B1961740.V1.3_at | GTTATCATGGCCACAAACCGAATAG | SEQ?ID?NO:412 |
B1961740.V1.3_at | TTGGACCCAGCACTTATCAGACCAG | SEQ?ID?NO:413 |
B1961740.V1.3_at | AGACCAGGCCGCATTGACAGGAAGA | SEQ?ID?NO:414 |
B1961740.V1.3_at | CCCCTGCCTGATGAGAAGACCAAGA | SEQ?ID?NO:415 |
B1961740.V1.3_at | AGAAGCGCATCTTTCAGATCCACAC | SEQ?ID?NO:416 |
B1961740.V1.3_at | AGATCCACACCAGCAGGATGACGCT | SEQ?ID?NO:417 |
B1961740.V1.3_at | GATGACGCTGGCTGACGACGTTACC | SEQ?ID?NO:418 |
B1961740.V1.3_at | GTTACCCTGGACGACTTGATCATGG | SEQ?ID?NO:419 |
B1961740.V1.3_at | ATGGCTAAAGACGACCTGTCCGGTG | SEQ?ID?NO:420 |
B1961740.V1.3_at | TGTCCGGTGCCGACATCAAGGCAAT | SEQ?ID?NO:421 |
B1961740.V1.3_at | AGAAGCTGGTCTGATGGCCTTGAGA | SEQ?ID?NO:422 |
B1961742.V1.3_at | CTTTGAGTTGATGCGGGAGCCATGC | SEQ?ID?NO:423 |
B1961742.V1.3_at | CGGCATCACTTATGACCGCAAAGAC | SEQ?ID?NO:424 |
B1961742.V1.3_at | ACCGCAAAGACATCGAGGAGCACCT | SEQ?ID?NO:425 |
The probe groups title | Probe sequence | Sequence identifier |
B1961742.V1.3_at | AGGAGCACCTGCAGCGTGTAGGCCA | SEQ?ID?NO:426 |
B1961742.V1.3_at | GTGTAGGCCACTTTGACCCTGTGAC | SEQ?ID?NO:427 |
B1961742.V1.3_at | CATCCCTAACCTGGCCATGAAAGAG | SEQ?ID?NO:428 |
B1961742.V1.3_at | AAGAGGTCATCGACGCATTCATCTC | SEQ?ID?NO:429 |
B1961742.V1.3_at | ATTCATCTCCGAGAACGGCTGGGTG | SEQ?ID?NO:430 |
B1961742.V1.3_at | TGCCTGGTAACCTGGCCCTAGAGGG | SEQ?ID?NO:431 |
B1961742.V1.3_at | GTACAGAGTTTGTGTCCCTGGATCC | SEQ?ID?NO:432 |
B1961742.V1.3_at | ATCAGTTCTGCTGCTGGGCCGTGAG | SEQ?ID?NO:433 |
B1961743.V1.3_at | AATGGGCTCCGTCATGATCTTATGT | SEQ?ID?NO:434 |
B1961743.V1.3_at | TTCCTTCAAATCTGAGGCTTGCCTG | SEQ?ID?NO:435 |
B1961743.V1.3_at | GCAGAGCGCCTGTGATTTGGCTCAA | SEQ?ID?NO:436 |
B1961743.V1.3_at | GATTTGGCTCAAGACTCCTGTATGA | SEQ?ID?NO:437 |
B1961743.V1.3_at | GAAAATGCTGCTCTTCTAAGTCCTT | SEQ?ID?NO:438 |
B1961743.V1.3_at | CTAAGTCCTTTGTGGCTTGTAAGTG | SEQ?ID?NO:439 |
B1961743.V1.3_at | GAATTTCATCCAAATGTTACCCTGT | SEQ?ID?NO:440 |
B1961743.V1.3_at | TGTTACCCTGTAATACTGGCATTTA | SEQ?ID?NO:441 |
B1961743.V1.3_at | TCTTCCTCACCCTTTTTACAGTGGA | SEQ?ID?NO:442 |
B1961743.V1.3_at | TAATAATTGGAACATCCTGCCCCTT | SEQ?ID?NO:443 |
B1961743.V1.3_at | CAATCCTAGTTGTCTACCTTCTTTT | SEQ?ID?NO:444 |
B1961745.V1.3_at | GATAGACTGAGTCCACGTCTCCTTA | SEQ?ID?NO:445 |
B1961745.V1.3_at | AGGTCTATATATAAGGTGGCCCCAC | SEQ?ID?NO:446 |
B1961745.V1.3_at | ACATTGCCTGCTAACTTGACTTCTT | SEQ?ID?NO:447 |
B1961745.V1.3_at | GCTCGGCTTATGTCAGTATTCTCTG | SEQ?ID?NO:448 |
B1961745.V1.3_at | TTTGCCTTCATGTGCCAAGCTTGAA | SEQ?ID?NO:449 |
B1961745.V1.3_at | GATTTGATTTCCTGAGTGACCTGTC | SEQ?ID?NO:450 |
B1961745.V1.3_at | TGACCTGTCTGCTTTCGATGTGCCA | SEQ?ID?NO:451 |
B1961745.V1.3_at | TAGTTCATCTTTCATCTCATTCGTG | SEQ?ID?NO:452 |
B1961745.V1.3_at | GGGTCAAGTCTTTTCAGGTGTTTAT | SEQ?ID?NO:453 |
B1961745.V1.3_at | AAATGATTTTGTGTTCCCTTCCCAT | SEQ?ID?NO:454 |
B1961745.V1.3_at | AAGCCCAGTGTATTGTACTTCACCC | SEQ?ID?NO:455 |
B1961746.V1.3_at | TGTGCAGTCCCACATGCTCATGGTG | SEQ?ID?NO:456 |
B1961746.V1.3_at | TCCAGGAGGCCTGTCATGTCCAGCA | SEQ?ID?NO:457 |
B1961746.V1.3_at | AGTGGGCACACTCCTGAAGCAGCTG | SEQ?ID?NO:458 |
B1961746.V1.3_at | GGAAGGGCCACGTGTGCACCAGCTC | SEQ?ID?NO:459 |
B1961746.V1.3_at | ACGACGGTCTTCTTGTCCATGAAGG | SEQ?ID?NO:460 |
B1961746.V1.3_at | TGAAGGCCACCTTGAACAGCAGAGG | SEQ?ID?NO:461 |
B1961746.V1.3_at | TGCCGCGTGCTCAGGAACACAAGCG | SEQ?ID?NO:462 |
B1961746.V1.3_at | AGGAAGCCACCTCGCTGTAACAGGA | SEQ?ID?NO:463 |
B1961746.V1.3_at | GTAACAGGACAGACCAACCGAGCAC | SEQ?ID?NO:464 |
B1961746.V1.3_at | AACCGAGCACCTGTCACGAGAGGAA | SEQ?ID?NO:465 |
B1961746.V1.3_at | AAAGCAGCCAGTGGTCACCGTGGGA | SEQ?ID?NO:466 |
B1961755.V1.3_at | ATTCTCCAAGAAATAGCCTACTCAA | SEQ?ID?NO:467 |
B1961755.V1.3_at | TAGCTGAGAACTTCCCAAACCTGGG | SEQ?ID?NO:468 |
B1961755.V1.3_at | GAAGACAACAGACCTCCGAACTATA | SEQ?ID?NO:469 |
B1961755.V1.3_at | AAAGACCTTCTCCAAGGCATATATT | SEQ?ID?NO:470 |
The probe groups title | Probe sequence | Sequence identifier |
B1961755.V1.3_at | TAAGGGCAGCAAGGCAGAGGACAAT | SEQ?ID?NO:471 |
B1961755.V1.3_at | AAAGGGACTCCTATCAGGCTTTCAG | SEQ?ID?NO:472 |
B1961755.V1.3_at | CTTTCAGTGGATTTCTCAGCAGATA | SEQ?ID?NO:473 |
B1961755.V1.3_at | TCAGCAGATACCTTACAGGCTAGGA | SEQ?ID?NO:474 |
B1961755.V1.3_at | GAGGACAAAAACTTTCAGCCAAGAA | SEQ?ID?NO:475 |
B1961755.V1.3_at | AGCCAAGAATACTCTATCCAGTGAA | SEQ?ID?NO:476 |
B1961755.V1.3_at | GCTAAGGGAGTTTATCACCACAAGA | SEQ?ID?NO:477 |
B1961756.V1.3_at | CATTTCCACCCCAACATAGAGTAGT | SEQ?ID?NO:478 |
B1961756.V1.3_at | GAGTAGTATTTGCTTTTTAGTCCAT | SEQ?ID?NO:479 |
B1961756.V1.3_at | TGCTTTTTAGTCCATTTTGTTTTCA | SEQ?ID?NO:480 |
B1961756.V1.3_at | ATATCGATCAGAGTCATTCTTTTGT | SEQ?ID?NO:481 |
B1961756.V1.3_at | CAGAGTCATTCTTTTGTTCATTGAA | SEQ?ID?NO:482 |
B1961756.V1.3_at | CATACCCCTAAACCAACCAGGATTG | SEQ?ID?NO:483 |
B1961756.V1.3_at | AGGATTGGAAGGTACCACCGCTGGT | SEQ?ID?NO:484 |
B1961756.V1.3_at | AAGGTACCACCGCTGGTGCTGCCTT | SEQ?ID?NO:485 |
B1961756.V1.3_at | TCCCACAGCCTGTAACTTAATGTTT | SEQ?ID?NO:486 |
B1961756.V1.3_at | GTAACTTAATGTTTTGTACTTCAAT | SEQ?ID?NO:487 |
B1961756.V1.3_at | GTGATGGTTAGAAACTTCGTGTATA | SEQ?ID?NO:488 |
B1961770.V1.3_at | GTGACTATTTCACTTGACCCTTTTT | SEQ?ID?NO:489 |
B1961770.V1.3_at | TACCAAGACCCTGTGAGCTGTGTGT | SEQ?ID?NO:490 |
B1961770.V1.3_at | GCTGTGTGTTTATTTCCCTCAATGA | SEQ?ID?NO:491 |
B1961770.V1.3_at | CCAGTCACTGCCTGTTGGAGAACAT | SEQ?ID?NO:492 |
B1961770.V1.3_at | GAACATGTCTGCATTGTGAGCCACT | SEQ?ID?NO:493 |
B1961770.V1.3_at | ATGGCATGTCAAACCACGCTTGAAT | SEQ?ID?NO:494 |
B1961770.V1.3_at | GTGTCAGGTGATAGGGCTTGTCCCC | SEQ?ID?NO:495 |
B1961770.V1.3_at | GGGCTTGTCCCCTGATAAAGCTTAG | SEQ?ID?NO:496 |
B1961770.V1.3_at | TAAAGCTTAGTATCTCCTCTCATGC | SEQ?ID?NO:497 |
B1961770.V1.3_at | CTCTCATGCCTAGTGCTTCAGAATA | SEQ?ID?NO:498 |
B1961770.V1.3_at | GTTGACAACTGTGACTGCACCCAAA | SEQ?ID?NO:499 |
B1961775.V1.3_at | TACGTCAGGTTTCAGCTACATTCGC | SEQ?ID?NO:500 |
B1961775.V1.3_at | TGATAAGCTGCTTCGATCGCAAAGA | SEQ?ID?NO:501 |
B1961775.V1.3_at | TCAGGCTCCTGAACCCACAGAAAGG | SEQ?ID?NO:502 |
B1961775.V1.3_at | AAGGGCATCTTCAGACGTAGTCACC | SEQ?ID?NO:503 |
B1961775.V1.3_at | GACAAAAACCTCATCCATGCCAATG | SEQ?ID?NO:504 |
B1961775.V1.3_at | AACATGTGGGTTCTGCAATTGGGAC | SEQ?ID?NO:505 |
B1961775.V1.3_at | ACATCAGTTACAGTGGCAGTGCCGT | SEQ?ID?NO:506 |
B1961775.V1.3_at | AGTCCTCCTCTGTGTGTTATGTAAG | SEQ?ID?NO:507 |
B1961775.V1.3_at | CTCTCCAGATTTGCAGGCTCATTAT | SEQ?ID?NO:508 |
B1961775.V1.3_at | TCATTATGAACGTGTGGCCCCAGAC | SEQ?ID?NO:509 |
B1961775.V1.3_at | GGCCCCAGACTGATGCTTGAGCTAA | SEQ?ID?NO:510 |
B1961778.V1.3_at | AGCGGCACGAGTTAGCTCAGGACAA | SEQ?ID?NO:511 |
B1961778.V1.3_at | GAATTAGCTTGCTGCTTTATTCAGA | SEQ?ID?NO:512 |
B1961778.V1.3_at | GCAGGCCCTGAGATGGACAAGAGAT | SEQ?ID?NO:513 |
B1961778.V1.3_at | GGTACTGTGATCCTGTTGTGTTAAC | SEQ?ID?NO:514 |
B1961778.V1.3_at | ATACCAAGCTGAGCGGATGCCAGAG | SEQ?ID?NO:515 |
The probe groups title | Probe sequence | Sequence identifier |
B1961778.V1.3_at | GTGGACCCAAAGCAGCTGGCTGTTT | SEQ?ID?NO:516 |
B1961778.V1.3_at | ATGTGCCTGGCTTTTTGCCTACAAA | SEQ?ID?NO:517 |
B1961778.V1.3_at | AACGATTTAAGTCAGCCCACAGGAT | SEQ?ID?NO:518 |
B1961778.V1.3_at | CACAGGATTTTTAGCTCAGCCCATG | SEQ?ID?NO:519 |
B1961778.V1.3_at | GAACTGGAGCAGCACCTACATGCCA | SEQ?ID?NO:520 |
B1961778.V1.3_at | TGAACCCTCAAGCTCAGGCTCTTAG | SEQ?ID?NO:521 |
B1961783.V1.3_at | ATTGTTGACATTTAGCTCTGCCTGC | SEQ?ID?NO:522 |
B1961783.V1.3_at | TTTTCTCTTCTTCCATGGCTAATCA | SEQ?ID?NO:523 |
B1961783.V1.3_at | AGGACCTCTCATCATCTCAAGGTGA | SEQ?ID?NO:524 |
B1961783.V1.3_at | GACTACAGTTGTGGTCACCCTTGGC | SEQ?ID?NO:525 |
B1961783.V1.3_at | TGCCTTCCCAGCTTAGATCTTTGAA | SEQ?ID?NO:526 |
B1961783.V1.3_at | ACCACCTTTGTATCCTTTTTGCTAG | SEQ?ID?NO:527 |
B1961783.V1.3_at | AATGGCATCTTTTACTCAGTCACAA | SEQ?ID?NO:528 |
B1961783.V1.3_at | AACAAACTCTTAGCCATTCCCTATT | SEQ?ID?NO:529 |
B1961783.V1.3_at | GGCATTTAAATTCCCAGGCAGGTAC | SEQ?ID?NO:530 |
B1961783.V1.3_at | AGGTACCCTCTCTGTGGCTAGAAAT | SEQ?ID?NO:531 |
B1961783.V1.3_at | GTTCTTTACAGCCATTGTTCTTGTG | SEQ?ID?NO:532 |
B1961785.V1.3_at | AGAATTCCAGCTGCAGCGGTTCGAT | SEQ?ID?NO:533 |
B1961785.V1.3_at | GGTTCGATGCGGAAGCCGCGCCAAT | SEQ?ID?NO:534 |
B1961785.V1.3_at | GCTCGCGAAATAGGCGTCCGATTCC | SEQ?ID?NO:535 |
B1961785.V1.3_at | GATTCCTCCCGTGTGACGGGACTCA | SEQ?ID?NO:536 |
B1961785.V1.3_at | GGCCCAGGGACTTCCAGTGCAGCAC | SEQ?ID?NO:537 |
B1961785.V1.3_at | CCTTGGCCGATTCGGCATTGGTGTA | SEQ?ID?NO:538 |
B1961785.V1.3_at | CATTGGTGTAGAAGACGAGTCCCCG | SEQ?ID?NO:539 |
B1961785.V1.3_at | GGATCGAGGCCCTTCAGCAGCACCA | SEQ?ID?NO:540 |
B1961785.V1.3_at | GGGTCCGACGACAATGTGAAGTCCT | SEQ?ID?NO:541 |
B1961785.V1.3_at | TCTCTTAACCGATCGATGGCCATTT | SEQ?ID?NO:542 |
B1961785.V1.3_at | ATGGCCATTTTCTTCCCTGTGGCAG | SEQ?ID?NO:543 |
B1961786.V1.3_at | GTCCTGACCCTGTGCTGGTGAATGG | SEQ?ID?NO:544 |
B1961786.V1.3_at | GGACTACATCCTCAAGGGCAGCAAT | SEQ?ID?NO:545 |
B1961786.V1.3_at | GCAGCAATTGGAGCCAGTGCCTAGA | SEQ?ID?NO:546 |
B1961786.V1.3_at | AGTGCCTAGAGGACCACACCTGGAT | SEQ?ID?NO:547 |
B1961786.V1.3_at | AAAAGCAGACACTGTGGCCATCCCG | SEQ?ID?NO:548 |
B1961786.V1.3_at | GGGTATCCAGCTCATGGCTGTTTTA | SEQ?ID?NO:549 |
B1961786.V1.3_at | GGAGAAGACTTCACCTCAGGATCTA | SEQ?ID?NO:550 |
B1961786.V1.3_at | ACTTAGTGGGCACACGGGACCAACA | SEQ?ID?NO:551 |
B1961786.V1.3_at | ACTTCCAGTCTGTGAGTTGATCCAA | SEQ?ID?NO:552 |
B1961786.V1.3_at | CAGCTCCACAGACCGAGTGCGAGAA | SEQ?ID?NO:553 |
B1961786.V1.3_at | TGTTGCCCTGACATTGTAGCTAAAC | SEQ?ID?NO:554 |
B1961792.V1.3_at | TTCCACACCTACCTTAGACTTTAAT | SEQ?ID?NO:555 |
B1961792.V1.3_at | GAACCTCAGCCATTTTCAATTACAG | SEQ?ID?NO:556 |
B1961792.V1.3_at | AAACTTCACTCCGTGTGTAGGGACG | SEQ?ID?NO:557 |
B1961792.V1.3_at | TAGGATAGGTTGTCTGCACCTCCCA | SEQ?ID?NO:558 |
B1961792.V1.3_at | AGAATTCTTGCTCCCTTGCTGCTGT | SEQ?ID?NO:559 |
B1961792.V1.3_at | ATACTAAAGGATGGCCAGCTGCTTC | SEQ?ID?NO:560 |
The probe groups title | Probe sequence | Sequence identifier |
B1961792.V1.3_at | GGTTTTCATTTACTGCAGCTGCTAG | SEQ?ID?NO:561 |
B1961792.V1.3_at | GGAATTGCACTCAGACGTGACATTT | SEQ?ID?NO:562 |
B1961792.V1.3_at | GTGACATTTCAGTTCATCTCTGCTA | SEQ?ID?NO:563 |
B1961792.V1.3_at | CTATGTGTCAGTTCTGTCAGCTGCA | SEQ?ID?NO:564 |
B1961792.V1.3_at | GTCAGCTGCAGGTTCTTGTATAATG | SEQ?ID?NO:565 |
B1961795.V1.3_at | TGAAGGCTAGACATGTGGCACCCAG | SEQ?ID?NO:566 |
B1961795.V1.3_at | GGCACCCAGCGATACAGTTCTTATG | SEQ?ID?NO:567 |
B1961795.V1.3_at | CTTATGTTTAATGTGGCCTTGGTCC | SEQ?ID?NO:568 |
B1961795.V1.3_at | GTGGCCTTGGTCCTACAAAGATTAG | SEQ?ID?NO:569 |
B1961795.V1.3_at | AAAGATTAGCTACCTCTGTCCTGAA | SEQ?ID?NO:570 |
B1961795.V1.3_at | GGAGCTTGCACATAGATACTTCAGT | SEQ?ID?NO:571 |
B1961795.V1.3_at | AAATGAGATTCGATTTGGCCCTCGC | SEQ?ID?NO:572 |
B1961795.V1.3_at | CTCGCTGCTACAGAAGCCAGGCAAT | SEQ?ID?NO:573 |
B1961795.V1.3_at | GCCAGGCAATGCTCTGACTTACTGA | SEQ?ID?NO:574 |
B1961795.V1.3_at | AGTACCATGTGGCTCGGGCACGCAA | SEQ?ID?NO:575 |
B1961795.V1.3_at | GAAACTTTTGGAACAGAGGGCTCAG | SEQ?ID?NO:576 |
B1961798.V1.3_at | AGTTTACCACCCTCCAGAAGATAGT | SEQ?ID?NO:577 |
B1961798.V1.3_at | CCAGGTCAGGAACTCGGCTACAGAA | SEQ?ID?NO:578 |
B1961798.V1.3_at | ACAGAAGCCCTCTTGTGGCTGAAGA | SEQ?ID?NO:579 |
B1961798.V1.3_at | GGACATCCAGACAGCCTTGAATAAC | SEQ?ID?NO:580 |
B1961798.V1.3_at | GGGCAGCTCCATCCTATGAAGATTT | SEQ?ID?NO:581 |
B1961798.V1.3_at | ATGAAGATTTTGTGGCCGCGTTAAC | SEQ?ID?NO:582 |
B1961798.V1.3_at | AGGTGACCACCAGAAAGCAGCTTTC | SEQ?ID?NO:583 |
B1961798.V1.3_at | GATGCAGAGGGATCTCAGCCTTTAC | SEQ?ID?NO:584 |
B1961798.V1.3_at | AGCTGGCGATACTGGACACTTTATA | SEQ?ID?NO:585 |
B1961798.V1.3_at | ACACTTTATACGAGGTCCACGGACT | SEQ?ID?NO:586 |
B1961798.V1.3_at | TATGACGTCTGCAGGACAGGGCCAC | SEQ?ID?NO:587 |
B1961799.V1.3_at | AAGAAGGCCGGGTCTGTTTCTCTTG | SEQ?ID?NO:588 |
B1961799.V1.3_at | GTTTCTCTTGGTACCCTTCAGAGTA | SEQ?ID?NO:589 |
B1961799.V1.3_at | GAAGATTTCCTGTTACACGGCTCTC | SEQ?ID?NO:590 |
B1961799.V1.3_at | GGCTCTCCCTCAAATACAATTACAA | SEQ?ID?NO:591 |
B1961799.V1.3_at | GCACCTGTTGAGCATCTGTGACCAA | SEQ?ID?NO:592 |
B1961799.V1.3_at | GAATTGTCCCAGGATCCTTACTAAG | SEQ?ID?NO:593 |
B1961799.V1.3_at | AAGGGTGTTTCAGCTGATTCGCCAC | SEQ?ID?NO:594 |
B1961799.V1.3_at | TTTGGGTTCCTTGGTTTCATCGCCG | SEQ?ID?NO:595 |
B1961799.V1.3_at | CTTGGGTCCCACTGAACTTTGTGAA | SEQ?ID?NO:596 |
B1961799.V1.3_at | TTGTGAATTCCTGTGTTCGCATCTT | SEQ?ID?NO:597 |
B1961799.V1.3_at | ATCTTCTGTTCCTGGAAGGTGTCCT | SEQ?ID?NO:598 |
B1961800.V1.3_at | TGTCCTGCAGGAACCCAAGCTTGAA | SEQ?ID?NO:599 |
B1961800.V1.3_at | AAGCTTGAACCCAGCGGCTGCTACA | SEQ?ID?NO:600 |
B1961800.V1.3_at | AAGAGTCACAAACTGTCTCCATCAC | SEQ?ID?NO:601 |
B1961800.V1.3_at | GAGCTGGCCCTCAACGAGCTGGTGA | SEQ?ID?NO:602 |
B1961800.V1.3_at | GCTTCAGCCCTAAGGAGGTGTTGGT | SEQ?ID?NO:603 |
B1961800.V1.3_at | TGCTCTGGCTGCAAGGGCACGAGAA | SEQ?ID?NO:604 |
B1961800.V1.3_at | AAGCTGCCCCGCGAGAAGTACCTGG | SEQ?ID?NO:605 |
The probe groups title | Probe sequence | Sequence identifier |
B1961800.V1.3_at | GAAGTACCTGGTCTTTAAGCCCCTG | SEQ?ID?NO:606 |
B1961800.V1.3_at | AGACGTCTTCTCCTGCATGGTGGGC | SEQ?ID?NO:607 |
B1961800.V1.3_at | GAGCTTCACCCAGAAGTCTATCGAC | SEQ?ID?NO:608 |
B1961800.V1.3_at | ATGTCAACGTGTCCGTGGTCATGGC | SEQ?ID?NO:609 |
B1961805.V1.3_at | TGTCATACAGTGTCCAAAACCCCAG | SEQ?ID?NO:610 |
B1961805.V1.3_at | GCGACAAGAACCTCATTGACTCCAT | SEQ?ID?NO:611 |
B1961805.V1.3_at | TTGACTCCATGGACCAAGCAGCCTT | SEQ?ID?NO:612 |
B1961805.V1.3_at | GAACCCCAAATTTGAGAGGCTCCTG | SEQ?ID?NO:613 |
B1961805.V1.3_at | AAAAGTGAGGTTCCCAGACATGCCG | SEQ?ID?NO:614 |
B1961805.V1.3_at | ATTGTTGTGATTTCTGCTGCTGCCC | SEQ?ID?NO:615 |
B1961805.V1.3_at | TTATCGTCCCCAGGAGGGTCCTTGG | SEQ?ID?NO:616 |
B1961805.V1.3_at | GCCTGGCTGGGCTCTTATGGTACTT | SEQ?ID?NO:617 |
B1961805.V1.3_at | TATGGTACTTCCTCTGTGAACTGTG | SEQ?ID?NO:618 |
B1961805.V1.3_at | ACTGTGTGTGAATTTGCCTTTCCTC | SEQ?ID?NO:619 |
B1961805.V1.3_at | AAATCCTGTGTTTTGTTACTTGAAT | SEQ?ID?NO:620 |
B1961806.V1.3_at | AAAGCAGTGATACCTCCAGAGCAGT | SEQ?ID?NO:621 |
B1961806.V1.3_at | AGCAGTGAGCTCTCTCGGCACCTAA | SEQ?ID?NO:622 |
B1961806.V1.3_at | TCGGCACCTAAGCAGTGCTTTCTAT | SEQ?ID?NO:623 |
B1961806.V1.3_at | TTTCTATACTGTTCCTCACCAAAAG | SEQ?ID?NO:624 |
B1961806.V1.3_at | AAGAACCAGTGCTCCCTGGAGAAAT | SEQ?ID?NO:625 |
B1961806.V1.3_at | ATGGCTGATTCCATGTCAGGAGCTT | SEQ?ID?NO:626 |
B1961806.V1.3_at | AAAGTAAAACTGAGCCTGGGACATC | SEQ?ID?NO:627 |
B1961806.V1.3_at | GCCTGGGACATCTTGTTGGGCCAAA | SEQ?ID?NO:628 |
B1961806.V1.3_at | GAATAGTGCTCACAGACAACTTTGA | SEQ?ID?NO:629 |
B1961806.V1.3_at | TAAAAGGGCTCCCACTGGACACATT | SEQ?ID?NO:630 |
B1961806.V1.3_at | GGACACATTCAGTACAGTTTGAGCA | SEQ?ID?NO:631 |
B1961810.V1.3_at | GAAATGTTGTACCTATCTGGGCACT | SEQ?ID?NO:632 |
B1961810.V1.3_at | GTTGTACCTATCTGGGCACTACAGA | SEQ?ID?NO:633 |
B1961810.V1.3_at | GCACTACAGAAGATGCATAGGCCTT | SEQ?ID?NO:634 |
B1961810.V1.3_at | AGATGCATAGGCCTTCCAGAGCTCA | SEQ?ID?NO:635 |
B1961810.V1.3_at | AGGCCTTCCAGAGCTCACAGAGGAA | SEQ?ID?NO:636 |
B1961810.V1.3_at | AATGCTTCAAGAGGCATGGTCCTCA | SEQ?ID?NO:637 |
B1961810.V1.3_at | AGGCATGGTCCTCAGAAATTATTCT | SEQ?ID?NO:638 |
B1961810.V1.3_at | ATTATTCTGGAATGCCGTTTCACTT | SEQ?ID?NO:639 |
B1961810.V1.3_at | GGAATGCCGTTTCACTTGTATCAAC | SEQ?ID?NO:640 |
B1961810.V1.3_at | GCCGTTTCACTTGTATCAACATCAT | SEQ?ID?NO:641 |
B1961810.V1.3_at | TCAACATCATGTTCCTGGTTCAGTT | SEQ?ID?NO:642 |
B1961812.V1.3_at | GGGCCTCCAGCCTTTGCCGCAAGTG | SEQ?ID?NO:643 |
B1961812.V1.3_at | AGCCTTTGCCGCAAGTGCCTCGGTG | SEQ?ID?NO:644 |
B1961812.V1.3_at | CAAGTGCCTCGGTGCCCGCTGGGTC | SEQ?ID?NO:645 |
B1961812.V1.3_at | CCCACCGCAAGGAGGACTCAGGACA | SEQ?ID?NO:646 |
B1961812.V1.3_at | AAGGAGGACTCAGGACAGCCCTCCA | SEQ?ID?NO:647 |
B1961812.V1.3_at | ACCCACAGAGCTTTTCCTCCTGGAC | SEQ?ID?NO:648 |
B1961812.V1.3_at | GCCGCCGGAAGGAAAGAGCTTGCCC | SEQ?ID?NO:649 |
B1961812.V1.3_at | GAAGGAAAGAGCTTGCCCGCTCCTA | SEQ?ID?NO:650 |
The probe groups title | Probe sequence | Sequence identifier |
B1961812.V1.3_at | TTGCCCGCTCCTACAGGACGTTTAT | SEQ?ID?NO:651 |
B1961812.V1.3_at | GCTCCTACAGGACGTTTATTTTTCT | SEQ?ID?NO:652 |
B1961812.V1.3_at | CAGGACGTTTATTTTTCTCTTGCCA | SEQ?ID?NO:653 |
B1961814.V1.3_s_at | GCCAGGAGACGGTCGCCCAGATCAA | SEQ?ID?NO:654 |
B1961814.V1.3_s_at | GAAAGTCAGAGGTCAGACTCCCAAG | SEQ?ID?NO:655 |
B1961814.V1.3_s_at | CAGAGGTCAGACTCCCAAGGTGGCC | SEQ?ID?NO:656 |
B1961814.V1.3_s_at | AGGGCATCGCTGCAGAAGATCAAGT | SEQ?ID?NO:657 |
B1961814.V1.3_s_at | GATCAAGTCGTGCTCTTGGCAGGCA | SEQ?ID?NO:658 |
B1961814.V1.3_s_at | GCCCCTGGAGGATGAGGCTACTCTG | SEQ?ID?NO:659 |
B1961814.V1.3_s_at | GGAGGCTCTGACCACTCTGGAAGTA | SEQ?ID?NO:660 |
B1961814.V1.3_s_at | TGACCACTCTGGAAGTAGCCGGCCG | SEQ?ID?NO:661 |
B1961814.V1.3_s_at | AGCCGGCCGCATGCTTGGAGGTAAA | SEQ?ID?NO:662 |
B1961814.V1.3_s_at | GAGGTAAAGTCCATGGCTCCCTAGC | SEQ?ID?NO:663 |
B1961814.V1.3_s_at | CCTAGCCCGTGCTGGGAAAGTCAGA | SEQ?ID?NO:664 |
B1961815.V1.3_at | GCAGATGCCAGCTTCAGTTTAGAGA | SEQ?ID?NO:665 |
B1961815.V1.3_at | GAATGAAGCTCGTGGTTCGCAGACT | SEQ?ID?NO:666 |
B1961815.V1.3_at | GTTCGCAGACTGTCTCAACAGCATT | SEQ?ID?NO:667 |
B1961815.V1.3_at | ATAACATGTTCAAGTGCGCCTAGTG | SEQ?ID?NO:668 |
B1961815.V1.3_at | GCCTAGTGTTTTTGCTACCACAATC | SEQ?ID?NO:669 |
B1961815.V1.3_at | TGGAAACTCTTTCTTCATGTACAGA | SEQ?ID?NO:670 |
B1961815.V1.3_at | GAAGCCTCAAGTGACCTGTTTTTAA | SEQ?ID?NO:671 |
B1961815.V1.3_at | GTGGACAATAACTTTCCCTTCCCAG | SEQ?ID?NO:672 |
B1961815.V1.3_at | TCCCAGTGGTTCTCATCTTAACGTA | SEQ?ID?NO:673 |
B1961815.V1.3_at | TCGAATCTTATGTGACCCATCTCTT | SEQ?ID?NO:674 |
B1961815.V1.3_at | GACCCATCTCTTCTTGAATCTTTTT | SEQ?ID?NO:675 |
B1961816.V1.3_at | GGGCATGTGCCTCCATCAGACACAG | SEQ?ID?NO:676 |
B1961816.V1.3_at | ATCAGACACAGCCAAGCTCTCCTGG | SEQ?ID?NO:677 |
B1961816.V1.3_at | GCTCTGACCTACAGCTTTGTGTTGA | SEQ?ID?NO:678 |
B1961816.V1.3_at | ATAGCTTGCGGCAGGTGGCACATGC | SEQ?ID?NO:679 |
B1961816.V1.3_at | GTGGCACATGCCACGCAGACGAGGC | SEQ?ID?NO:680 |
B1961816.V1.3_at | GGAAGTGCATCAGACCAGCGGCCAT | SEQ?ID?NO:681 |
B1961816.V1.3_at | GCAAAGTTCAGTGGGCAGCGCAGCA | SEQ?ID?NO:682 |
B1961816.V1.3_at | ATGGTGCCCCTGTAGGCCTCTGGGA | SEQ?ID?NO:683 |
B1961816.V1.3_at | CAGCAGGCAGGAGACGGCCAAGCCA | SEQ?ID?NO:684 |
B1961816.V1.3_at | TTGGCTTCGGCCTCCTTAAGAAAGG | SEQ?ID?NO:685 |
B1961816.V1.3_at | TTAAGAAAGGGAGACACTGCCCGCA | SEQ?ID?NO:686 |
B1961817.V1.3_at | ACATCTTTTGCCTTGTTCATGGTCA | SEQ?ID?NO:687 |
B1961817.V1.3_at | GGTCATCTGGATCATCTTTTACACT | SEQ?ID?NO:688 |
B1961817.V1.3_at | TACACTGCCATCCACTATGACTGAT | SEQ?ID?NO:689 |
B1961817.V1.3_at | ATGACTGATGGTGTACAGGCCCCAC | SEQ?ID?NO:690 |
B1961817.V1.3_at | GACCCTCTTACTTACAGCACAGAAA | SEQ?ID?NO:691 |
B1961817.V1.3_at | AAGACCCATGTTTCCTGGACTGAGA | SEQ?ID?NO:692 |
B1961817.V1.3_at | GATTATTCATCACCAACCATTTCTT | SEQ?ID?NO:693 |
B1961817.V1.3_at | GAAACACCTGTTTGCTGATTGGAGC | SEQ?ID?NO:694 |
B1961817.V1.3_at | GATGCACCTCTGGATCCGGATGAAA | SEQ?ID?NO:695 |
The probe groups title | Probe sequence | Sequence identifier |
B1961817.V1.3_at | ATTAAATTGTCTTCCTCACTTCCGT | SEQ?ID?NO:696 |
B1961817.V1.3_at | TCACTTCCGTCAGGTGTACAGTTTT | SEQ?ID?NO:697 |
B1961827.V1.3_at | GGACGTGCCCAAGCAGAACTCGCAG | SEQ?ID?NO:698 |
B1961827.V1.3_at | GAGCGCTTCCAGAACCTCGACAGGA | SEQ?ID?NO:699 |
B1961827.V1.3_at | GGTCTGGACTCGCTGCACAAGAACA | SEQ?ID?NO:700 |
B1961827.V1.3_at | AGAACAGCGTCAGCCAGATCTCGGT | SEQ?ID?NO:701 |
B1961827.V1.3_at | GGGAAAGGCCAAGTGCTCGCAGTTC | SEQ?ID?NO:702 |
B1961827.V1.3_at | GCAGTTCTGCACTACGGGCATGGAC | SEQ?ID?NO:703 |
B1961827.V1.3_at | GAGCTTGGAATCAGCCTTGAAGGAC | SEQ?ID?NO:704 |
B1961827.V1.3_at | TGACCTGCCAGGATTATGTTGCCCT | SEQ?ID?NO:705 |
B1961827.V1.3_at | ACGGTCGCTTTGCTGAATGTTTCTA | SEQ?ID?NO:706 |
B1961827.V1.3_at | GTGGGAAGCTTTTCTTACCTGTTGA | SEQ?ID?NO:707 |
B1961827.V1.3_at | TGAAGGAACACGTGCCTTTTTCTTA | SEQ?ID?NO:708 |
B1961830.V1.3_at | TCCCAGCGAGAACCAACACTGAGTC | SEQ?ID?NO:709 |
B1961830.V1.3_at | GGAACCTGGCACTTTCGTCGGCAGC | SEQ?ID?NO:710 |
B1961830.V1.3_at | TTTCGTCGGCAGCTGCAGCTTCTGG | SEQ?ID?NO:711 |
B1961830.V1.3_at | TTCTGGCTGCTTTTTTGGAGGTTCT | SEQ?ID?NO:712 |
B1961830.V1.3_at | TTTGGAGGTTCTTGGCCTGGACCCA | SEQ?ID?NO:713 |
B1961830.V1.3_at | TCTTGGCCTGGACCCATGGGCTTCG | SEQ?ID?NO:714 |
B1961830.V1.3_at | CGTGCCATGCCATACTGTCACTCAG | SEQ?ID?NO:715 |
B1961830.V1.3_at | TGTCACTCAGCCACATCAGTGTTTG | SEQ?ID?NO:716 |
B1961830.V1.3_at | ACATCAGTGTTTGTCCCACCAAGGG | SEQ?ID?NO:717 |
B1961830.V1.3_at | AGTGTTTGTCCCACCAAGGGAGGTG | SEQ?ID?NO:718 |
B1961830.V1.3_at | ATGGGTCACCCACATCTGTGCTTGG | SEQ?ID?NO:719 |
B1961841.V1.3_at | AAGAAGTGCTCAGCAGCGACACTGC | SEQ?ID?NO:720 |
B1961841.V1.3_at | TAGGCTCTCTTGTGTCCGTCATGTG | SEQ?ID?NO:721 |
B1961841.V1.3_at | GTCCGTCATGTGCTTGTGAACACTA | SEQ?ID?NO:722 |
B1961841.V1.3_at | CTAAATTGTGAGACAGCAGCCTGTG | SEQ?ID?NO:723 |
B1961841.V1.3_at | ACAAGATTTGTTCACGTCTCAACCC | SEQ?ID?NO:724 |
B1961841.V1.3_at | GTGTCTGCATTAGTATTGGCATACT | SEQ?ID?NO:725 |
B1961841.V1.3_at | TGACCTGTGTTCTCTTCCCTGATTG | SEQ?ID?NO:726 |
B1961841.V1.3_at | CCCTGATTGACTGTTCCAGCAGAGA | SEQ?ID?NO:727 |
B1961841.V1.3_at | ATGTCTTTACTTCATGCTCCACTGA | SEQ?ID?NO:728 |
B1961841.V1.3_at | GAGCTGCAGTTTCTTAGTGCCTTAT | SEQ?ID?NO:729 |
B1961841.V1.3_at | AATTCTTGCCATGAGGGATTGACGG | SEQ?ID?NO:730 |
B1961847.V1.3_at | CCGCCGAAGCGGAGTTGTGTGAACT | SEQ?ID?NO:731 |
B1961847.V1.3_at | CAGCCCCTCATTTCTTTTTGATGAA | SEQ?ID?NO:732 |
B1961847.V1.3_at | AAGATTGTCTCTGATAAGTGGCTCA | SEQ?ID?NO:733 |
B1961847.V1.3_at | ATAAGTGGCTCAGAAGCTCCCATCT | SEQ?ID?NO:734 |
B1961847.V1.3_at | AGAAGCTCCCATCTGCTGGTGCAGG | SEQ?ID?NO:735 |
B1961847.V1.3_at | GGTGCAGGGTTTTCTGAGGCTCTTC | SEQ?ID?NO:736 |
B1961847.V1.3_at | TTTCTGAGGCTCTTCTTCCTGAGCA | SEQ?ID?NO:737 |
B1961847.V1.3_at | ACTCCGTGCTTTTCGTGTGCGTACC | SEQ?ID?NO:738 |
B1961847.V1.3_at | GCCTCCACATCAAGGGACAGTTTGT | SEQ?ID?NO:739 |
B1961847.V1.3_at | CAGTTTGTTTGTGCTTGTTTTTCTA | SEQ?ID?NO:740 |
The probe groups title | Probe sequence | Sequence identifier |
B1961847.V1.3_at | CTAATGACATAAATTCCCTGAAGAG | SEQ?ID?NO:741 |
B1961848.V1.3_at | TCAGAGAAAATGCTGCCGCAACCTC | SEQ?ID?NO:742 |
B1961848.V1.3_at | TGCTTCCAGGGCTGTACATAGTTGG | SEQ?ID?NO:743 |
B1961848.V1.3_at | ACTGCGTGGGTCAACTCAGTGTCCA | SEQ?ID?NO:744 |
B1961848.V1.3_at | TCAGTGTCCACTTCGATGCTTGTAT | SEQ?ID?NO:745 |
B1961848.V1.3_at | CTTCGATGCTTGTATGTTTGGGTTT | SEQ?ID?NO:746 |
B1961848.V1.3_at | GTTTGGGTTTCGCATCTTCATTAAA | SEQ?ID?NO:747 |
B1961848.V1.3_at | GGGCAGCTCAGATCAGCCTGGGCCA | SEQ?ID?NO:748 |
B1961848.V1.3_at | GGATGAACCCTCAGGGCAGGGCACA | SEQ?ID?NO:749 |
B1961848.V1.3_at | AGAGCTGGCCCTGCATTCGCCTGGA | SEQ?ID?NO:750 |
B1961848.V1.3_at | GACCCTGAGCCGTCCATGGAAGCAG | SEQ?ID?NO:751 |
B1961848.V1.3_at | ATGGAAGCAGGGACCTTTTCTCCCG | SEQ?ID?NO:752 |
B1961850.V1.3_at | AAGATTATACCATTCCCTTGGAATA | SEQ?ID?NO:753 |
B1961850.V1.3_at | GAATATTTTCTTCCTAATGTCAGAG | SEQ?ID?NO:754 |
B1961850.V1.3_at | ATGTCAGAGCTTTTCCTGCATTATT | SEQ?ID?NO:755 |
B1961850.V1.3_at | GCTTTCTGAGTTGGGATGCTTTGAC | SEQ?ID?NO:756 |
B1961850.V1.3_at | GTATCACCTATTTTTAAAGCTGCTT | SEQ?ID?NO:757 |
B1961850.V1.3_at | AAAGCTGCTTTGTTAGGTTCCTTAT | SEQ?ID?NO:758 |
B1961850.V1.3_at | GTTCCTTATGTTTTAACTGTCTTAG | SEQ?ID?NO:759 |
B1961850.V1.3_at | GTCTTAGTTTCCATTTCATTCTCTT | SEQ?ID?NO:760 |
B1961850.V1.3_at | ATCAACTTCATGGTCTTGTTTTTAC | SEQ?ID?NO:761 |
B1961850.V1.3_at | GTATTGCATGTATTTAGGACCTATC | SEQ?ID?NO:762 |
B1961850.V1.3_at | AAGTGTCCTATTCACTACTTGTTAA | SEQ?ID?NO:763 |
B1961853.V1.3_at | GAAAATGTATGCCTGCGCCAAGTTT | SEQ?ID?NO:764 |
B1961853.V1.3_at | TGCTGAGCCGATCACTGTCTGCAGT | SEQ?ID?NO:765 |
B1961853.V1.3_at | GAAACGACCGGAGACACTGACAGAT | SEQ?ID?NO:766 |
B1961853.V1.3_at | GATGAGACCCTCAGCAGCTTGGCAG | SEQ?ID?NO:767 |
B1961853.V1.3_at | AAACCAGCGCCATTTCAAGGGACAT | SEQ?ID?NO:768 |
B1961853.V1.3_at | GGGACATCGACACAGCAGCCAAGTT | SEQ?ID?NO:769 |
B1961853.V1.3_at | TTGGGACTGTATTTGGGAGCCTCAT | SEQ?ID?NO:770 |
B1961853.V1.3_at | GGAGCCTCATCATTGGTTATGCCAG | SEQ?ID?NO:771 |
B1961853.V1.3_at | TTATGCCAGGAACCCTTCTCTGAAG | SEQ?ID?NO:772 |
B1961853.V1.3_at | TTTGCCTGATGGTGGCCTTTCTCAT | SEQ?ID?NO:773 |
B1961853.V1.3_at | TTCGCCATGTGAAGAAGCCGTCTCC | SEQ?ID?NO:774 |
B1961856.V1.3_at | CACGAGGGAAGAGGGTCTCCTTCCA | SEQ?ID?NO:775 |
B1961856.V1.3_at | GAACAATTTAATTTCTTGGCCGTGT | SEQ?ID?NO:776 |
B1961856.V1.3_at | GGCCGTGTTTAGTAACAGTTCCTAT | SEQ?ID?NO:777 |
B1961856.V1.3_at | ACAGTTCCTATGCATGGTTTTTAAC | SEQ?ID?NO:778 |
B1961856.V1.3_at | ACCTGATTCTGCCTCTTTAATGAAT | SEQ?ID?NO:779 |
B1961856.V1.3_at | GAAACTCAATGCCTTATGTGCTCAC | SEQ?ID?NO:780 |
B1961856.V1.3_at | TTATGTGCTCACTCAGTTTCCCTTC | SEQ?ID?NO:781 |
B1961856.V1.3_at | AGTTTCCCTTCTGCAGCTTGTTTTT | SEQ?ID?NO:782 |
B1961856.V1.3_at | GCTTGTTTTTTCTCACTATCTGTAT | SEQ?ID?NO:783 |
B1961856.V1.3_at | ATGCTGGCAAAACCTCTAAGACTGT | SEQ?ID?NO:784 |
B1961856.V1.3_at | GAAAGTTGATTTGTCCTAGTGCAAA | SEQ?ID?NO:785 |
The probe groups title | Probe sequence | Sequence identifier |
B1961864.V1.3_at | AGACAGGTGGCTCCAAGACGTCGTC | SEQ?ID?NO:786 |
B1961864.V1.3_at | GACGTCGTCGACAGTTAAGAGCACC | SEQ?ID?NO:787 |
B1961864.V1.3_at | AAGAGCACCCCGTCTGGGAAGAGGT | SEQ?ID?NO:788 |
B1961864.V1.3_at | GGTACAAGTTTGTGGCCACCGGACA | SEQ?ID?NO:789 |
B1961864.V1.3_at | GTAGACGAAGGCTCGGCACCCTAGG | SEQ?ID?NO:790 |
B1961864.V1.3_at | TGGCCTGCCGAAGAAGCTGCTTCCA | SEQ?ID?NO:791 |
B1961864.V1.3_at | TGGCTCTGCCTCTTATAAGCTCAGG | SEQ?ID?NO:792 |
B1961864.V1.3_at | TAAGCTCAGGCTGGCAGCTGGCTAA | SEQ?ID?NO:793 |
B1961864.V1.3_at | AACTCCCAAGGAAGGTGCAGCCTGT | SEQ?ID?NO:794 |
B1961864.V1.3_at | GGACCTCATGGTCAAGAGCCAGTGA | SEQ?ID?NO:795 |
B1961864.V1.3_at | TGAGCTGGATGCTTAGGCCCTACAT | SEQ?ID?NO:796 |
B1961865.V1.3_at | AGTTTCATCATCAGGGTCCGGGTGG | SEQ?ID?NO:797 |
B1961865.V1.3_at | TAGGTTGTCAGGGTTTACTGCCTTC | SEQ?ID?NO:798 |
B1961865.V1.3_at | TTAGCTCTTTTTTCCCTGCATTCTA | SEQ?ID?NO:799 |
B1961865.V1.3_at | CCCTGCATTCTAGCAATTCGTGATT | SEQ?ID?NO:800 |
B1961865.V1.3_at | GGGAAGAAGCAAGACCTCTCCTCAG | SEQ?ID?NO:801 |
B1961865.V1.3_at | AGACTTTGTCTCTGGGTTTCATCCT | SEQ?ID?NO:802 |
B1961865.V1.3_at | CTGTCACTCTAGGAGGGTTCGTGCT | SEQ?ID?NO:803 |
B1961865.V1.3_at | GAAGAGACATTAGCTCCTTGTTCCC | SEQ?ID?NO:804 |
B1961865.V1.3_at | TTTTCCCCACGGGTTTGGTGCACAG | SEQ?ID?NO:805 |
B1961865.V1.3_at | TTCCCATGTCCGCTCAGATGAGGAT | SEQ?ID?NO:806 |
B1961865.V1.3_at | TTTTTTCTTTTCTTGCCTGACCTCA | SEQ?ID?NO:807 |
B1961872.V1.3_at | TATGCTCTGTGTATAAGGATGAATT | SEQ?ID?NO:808 |
B1961872.V1.3_at | GAGTTGTCATTTTCTCTTCACTGGA | SEQ?ID?NO:809 |
B1961872.V1.3_at | GTCATTTTCTCTTCACTGGATGTTT | SEQ?ID?NO:810 |
B1961872.V1.3_at | TCTCTTCACTGGATGTTTATTTATA | SEQ?ID?NO:811 |
B1961872.V1.3_at | AGATTTGACCTGTTCATGCGTCTGT | SEQ?ID?NO:812 |
B1961872.V1.3_at | GTTCATGCGTCTGTGGAGCAGCCCT | SEQ?ID?NO:813 |
B1961872.V1.3_at | TCCGTCTCCCGGCTATATAGTAATC | SEQ?ID?NO:814 |
B1961872.V1.3_at | GTAATCTTAGGTAGAGTGTTGCCTT | SEQ?ID?NO:815 |
B1961872.V1.3_at | TAGAGTGTTGCCTTGTGGGTTACCG | SEQ?ID?NO:816 |
B1961872.V1.3_at | TGGGTTACCGTTTGCTCTGAGACTT | SEQ?ID?NO:817 |
B1961872.V1.3_at | TCTGAGACTTCTCGGATGGACCCAC | SEQ?ID?NO:818 |
B1961873.V1.3_at | ATGTTCAGTTCTAAGGAGTCCCAGC | SEQ?ID?NO:819 |
B1961873.V1.3_at | ATGCCCAAACGTGGCCTGGAGGTGA | SEQ?ID?NO:820 |
B1961873.V1.3_at | GATTGCCAGATTCTACAAGCTGCAC | SEQ?ID?NO:821 |
B1961873.V1.3_at | AGCGGAGGTGTGAGCCCATTGCCAT | SEQ?ID?NO:822 |
B1961873.V1.3_at | CCATTGCCATGACAGTGCCTAGAAA | SEQ?ID?NO:823 |
B1961873.V1.3_at | TAGAAAGTCGGACCTGTTCCAGGAG | SEQ?ID?NO:824 |
B1961873.V1.3_at | ATTTCCCTCAAGGATGGCTACGTGC | SEQ?ID?NO:825 |
B1961873.V1.3_at | AGACAGCACCAGAGGCCAGTGGCAC | SEQ?ID?NO:826 |
B1961873.V1.3_at | GGCACTCCTAGCTCGGATGCTGTAT | SEQ?ID?NO:827 |
B1961873.V1.3_at | AGATGAGGAAGCTCCAGGCCACTGT | SEQ?ID?NO:828 |
B1961873.V1.3_at | AGGCCACTGTGCAGGAGCTACAGAA | SEQ?ID?NO:829 |
B1961877.V1.3_at | GGAGCTGCTGTTCTTCAGACAGAGA | SEQ?ID?NO:830 |
The probe groups title | Probe sequence | Sequence identifier |
B1961877.V1.3_at | GACTCTGAGGCTGCTCCACAAGTAC | SEQ?ID?NO:831 |
B1961877.V1.3_at | ATAAGGGCGCCATCAAGTTCGTGCT | SEQ?ID?NO:832 |
B1961877.V1.3_at | AAGACACGGTGGTCGCGATCATGGC | SEQ?ID?NO:833 |
B1961877.V1.3_at | GAAGGTCAACAAAGGCATCGGCATT | SEQ?ID?NO:834 |
B1961877.V1.3_at | GCATCGGCATTGAAAACATCCACTA | SEQ?ID?NO:835 |
B1961877.V1.3_at | AATGAGCCTGCCAAGGAGTGCGCTT | SEQ?ID?NO:836 |
B1961877.V1.3_at | AAAGGAATGCGCTTGGGCTCCAGAC | SEQ?ID?NO:837 |
B1961877.V1.3_at | AATGCGCTTGGACTCAATGTGGACT | SEQ?ID?NO:838 |
B1961877.V1.3_at | AATGTGGACTCTGCTGTATCTGTGT | SEQ?ID?NO:839 |
B1961877.V1.3_at | TGTCCGTGTCTGTGTGTGACAGCAT | SEQ?ID?NO:840 |
B1961879.V1.3_at | GAAAGGGTGCCTGTTGTCAATAAAC | SEQ?ID?NO:841 |
B1961879.V1.3_at | GAGCTATGGCGCCTCCAATGAAGGA | SEQ?ID?NO:842 |
B1961879.V1.3_at | CAATGAAGGATCTGCCCAGGTGGCT | SEQ?ID?NO:843 |
B1961879.V1.3_at | ATTTGCAGTTGCTCCAGACTGGACT | SEQ?ID?NO:844 |
B1961879.V1.3_at | TAAGCAGTCTGGTTTTGTTCCCGAG | SEQ?ID?NO:845 |
B1961879.V1.3_at | GAGTCGATGTTTGACCGGCTTCTCA | SEQ?ID?NO:846 |
B1961879.V1.3_at | TGTGGCCTCCACTGCAGGAATCAAC | SEQ?ID?NO:847 |
B1961879.V1.3_at | GAATCAACCCTCTGCTGGTGAACAG | SEQ?ID?NO:848 |
B1961879.V1.3_at | GCCTGTTTGCTGGAATGGACCTGAC | SEQ?ID?NO:849 |
B1961879.V1.3_at | TTCAGAATCTCCAGAATCTCCAGTC | SEQ?ID?NO:850 |
B1961879.V1.3_at | GGGCCTGCCCAACATGTTTGGATTG | SEQ?ID?NO:851 |
B1961880.V1.3_at | TGAGTTCGTCATCAGGGCCAAGTTC | SEQ?ID?NO:852 |
B1961880.V1.3_at | AGACCACCTTACAGCGGCGTTATGA | SEQ?ID?NO:853 |
B1961880.V1.3_at | TGCGGATACTTCCACAGGTCGGAGA | SEQ?ID?NO:854 |
B1961880.V1.3_at | GAACCGCAGCGAGGAGTTTCTCATC | SEQ?ID?NO:855 |
B1961880.V1.3_at | TTCTCATCGCCGGACAACTATTGGA | SEQ?ID?NO:856 |
B1961880.V1.3_at | GGACGAGAAGCTGTACATCACCACC | SEQ?ID?NO:857 |
B1961880.V1.3_at | GAATGCTCAGTGTTTCCCTGTTCAT | SEQ?ID?NO:858 |
B1961880.V1.3_at | TGATTGCTTGTGGACGGACCAGCTC | SEQ?ID?NO:859 |
B1961880.V1.3_at | ACAGGCTCTGACAAGGGCTTCCAGA | SEQ?ID?NO:860 |
B1961880.V1.3_at | GAATCCTGTCTCCAGCAGAAGCTGA | SEQ?ID?NO:861 |
B1961880.V1.3_at | AGCTGAAGCTTGCACAGTGTTCACC | SEQ?ID?NO:862 |
B1961882.V1.3_at | GCTTCCTGGAGCTGGCATACCGTGG | SEQ?ID?NO:863 |
B1961882.V1.3_at | AGCTGGCATACCGTGGTCTGCGCTA | SEQ?ID?NO:864 |
B1961882.V1.3_at | GAAAGAAGCCCCAGAGCCCTGGGTG | SEQ?ID?NO:865 |
B1961882.V1.3_at | GGTGCTTCCCTCCACTTTCAAGTTT | SEQ?ID?NO:866 |
B1961882.V1.3_at | TTTCAAGTTTCATTCTCCTGCCTGT | SEQ?ID?NO:867 |
B1961882.V1.3_at | CATTCTCCTGCCTGTAGCAGGGAGA | SEQ?ID?NO:868 |
B1961882.V1.3_at | GAGAAAAAGCTCCTGTCTTCCTGTC | SEQ?ID?NO:869 |
B1961882.V1.3_at | TTCCTGTCCCCTGGACTGGGAGGTA | SEQ?ID?NO:870 |
B1961882.V1.3_at | AGTATTAATTCCTGTGACTGCTCCC | SEQ?ID?NO:871 |
B1961882.V1.3_at | CTGGCCCAGCTCTGTGGTGGGCACT | SEQ?ID?NO:872 |
B1961882.V1.3_at | ACTGGGAAGAGCCTCAGTGGACCCC | SEQ?ID?NO:873 |
B1961885.V1.3_at | AATGCGGTGGCATCTTTACAGATAC | SEQ?ID?NO:874 |
B1961885.V1.3_at | TTTTAAATCTCCAGGCTTCCCAAAT | SEQ?ID?NO:875 |
The probe groups title | Probe sequence | Sequence identifier |
B1961885.V1.3_at | TAACCAAGTCTGCTACTGGCACATC | SEQ?ID?NO:876 |
B1961885.V1.3_at | ACTCAAGTATGGTCAGCGTATTCAC | SEQ?ID?NO:877 |
B1961885.V1.3_at | GCGTATTCACCTGAGTTTTCTGGAC | SEQ?ID?NO:878 |
B1961885.V1.3_at | AGGTTGCTTGGCTGACTATGTTGAA | SEQ?ID?NO:879 |
B1961885.V1.3_at | CTAAGCGATGCTTCGGTGACCGCAG | SEQ?ID?NO:880 |
B1961885.V1.3_at | GTGACCGCAGGAGGTTTCCAAATCA | SEQ?ID?NO:881 |
B1961885.V1.3_at | TACAAGCACTACTTCTACGGGAAAT | SEQ?ID?NO:882 |
B1961885.V1.3_at | TATGGTTGTCTCTTTTGGAACCCCT | SEQ?ID?NO:883 |
B1961885.V1.3_at | GAACCCCTTTGATCTCAGTTTTGTA | SEQ?ID?NO:884 |
B1961890.V1.3_at | TGGCAATCCTCAGTACACGTACAAC | SEQ?ID?NO:885 |
B1961890.V1.3_at | GTACAACAATTGGTCTCCTCCGGTG | SEQ?ID?NO:886 |
B1961890.V1.3_at | TTTCCTGGAGAGATCGCATAGCGCT | SEQ?ID?NO:887 |
B1961890.V1.3_at | TAGCGCTAGGATGACACTTGCAAAA | SEQ?ID?NO:888 |
B1961890.V1.3_at | AAAAGCTTGTGAACTCTGTCCAGAG | SEQ?ID?NO:889 |
B1961890.V1.3_at | AGATGACCAAGATGCCCCAGATGAG | SEQ?ID?NO:890 |
B1961890.V1.3_at | CCTGGCTCTCAGTATCAGCAGAATA | SEQ?ID?NO:891 |
B1961890.V1.3_at | GCAGTGAAGAAGTAGCCCCGCCTCA | SEQ?ID?NO:892 |
B1961890.V1.3_at | AAATGCGCGTAGTGAACTGGTTCCA | SEQ?ID?NO:893 |
B1961890.V1.3_at | AACCTTTTTCTGTGTCTGGCTAATA | SEQ?ID?NO:894 |
B1961890.V1.3_at | GAGTTTATTCACTGTCTTATCTGCA | SEQ?ID?NO:895 |
B1961900.V1.3_at | GGTTTGTTTTTACTTGAGCCTGCCT | SEQ?ID?NO:896 |
B1961900.V1.3_at | TGAGCCTGCCTTTGTACCCTTTTTA | SEQ?ID?NO:897 |
B1961900.V1.3_at | GAACAGAGCCACACCGGTATTATAT | SEQ?ID?NO:898 |
B1961900.V1.3_at | GTTCTATTGCGTTTGCTGACTAAAT | SEQ?ID?NO:899 |
B1961900.V1.3_at | AAAAGTCCACACAGCTCTCCTGTTT | SEQ?ID?NO:900 |
B1961900.V1.3_at | GTCTACGTTCACAGCCTCAAAAAAG | SEQ?ID?NO:901 |
B1961900.V1.3_at | AGAACACCTCCATCCTGTGATAAGT | SEQ?ID?NO:902 |
B1961900.V1.3_at | GGATTCAGCTTTACTCCTTTGTAAC | SEQ?ID?NO:903 |
B1961900.V1.3_at | GTTAAAAGGCTGACCCACGTGGCTT | SEQ?ID?NO:904 |
B1961900.V1.3_at | ACGTGGCTTTGCAGTGCTGTTCGTC | SEQ?ID?NO:905 |
B1961900.V1.3_at | GCTGTTCGTCCAGAAGCATGGCACA | SEQ?ID?NO:906 |
B1961910.V1.3_at | GACCATCCCCACTTTGCAGAAGAGG | SEQ?ID?NO:907 |
B1961910.V1.3_at | GTGTGAAGTCACTGGCCAAAGCCGG | SEQ?ID?NO:908 |
B1961910.V1.3_at | GACAGAGTGACCCAAGCCTGAGGCC | SEQ?ID?NO:909 |
B1961910.V1.3_at | GGGTCGGCTATCAGTATCCCGGCTA | SEQ?ID?NO:910 |
B1961910.V1.3_at | ATCCCGGCTACCGTGGATACCAGTA | SEQ?ID?NO:911 |
B1961910.V1.3_at | GTGGATACCAGTACCTCCTGGAGCC | SEQ?ID?NO:912 |
B1961910.V1.3_at | GCGACTACCGGCACTGGAACGAGTG | SEQ?ID?NO:913 |
B1961910.V1.3_at | TTCCAGCCACAGATGCAGGCCGTGC | SEQ?ID?NO:914 |
B1961910.V1.3_at | TGCGCGACAGGCAGTGGCACCACAA | SEQ?ID?NO:915 |
B1961910.V1.3_at | AGTGGCACCACAAGGGCAGCTTCCC | SEQ?ID?NO:916 |
B1961910.V1.3_at | AAATGAGTCCACACTCCATGCCTGT | SEQ?ID?NO:917 |
B1961913.V1.3_at | GTACTAGCCCAAGCATCATCAATGA | SEQ?ID?NO:918 |
B1961913.V1.3_at | TGGTTTATTCCAGCTCGAGATCTCC | SEQ?ID?NO:919 |
B1961913.V1.3_at | GAGATCTCCCACAAACTATGGACCA | SEQ?ID?NO:920 |
The probe groups title | Probe sequence | Sequence identifier |
B1961913.V1.3_at | ATCAGTGATGGCTCTTCTCTGGAAG | SEQ?ID?NO:921 |
B1961913.V1.3_at | GTGGTCAAGAGCAATCTGAACCCAA | SEQ?ID?NO:922 |
B1961913.V1.3_at | GGGCCCTCTTTTGGTGGATGTAGCA | SEQ?ID?NO:923 |
B1961913.V1.3_at | GGATGTAGCACAATTTCCACACTGT | SEQ?ID?NO:924 |
B1961913.V1.3_at | TAAAAGCTCTCTCTTGTCACTGTGT | SEQ?ID?NO:925 |
B1961913.V1.3_at | ACTGTGTTACACTTATGCATTGCCA | SEQ?ID?NO:926 |
B1961913.V1.3_at | AGTTTTGTTAGTCTTGCATGCTTAA | SEQ?ID?NO:927 |
B1961913.V1.3_at | GAATTGGCCCCATGACTTGATGTGA | SEQ?ID?NO:928 |
B1961919.V1.3_at | ATCAGTCCTGATTGCTATTTAATTT | SEQ?ID?NO:929 |
B1961919.V1.3_at | TGATGGGTTTTAAGTGTCTCATTAA | SEQ?ID?NO:930 |
B1961919.V1.3_at | GAGAGCACTGAGTGCCAGGCACTGT | SEQ?ID?NO:931 |
B1961919.V1.3_at | GGGCTCCAAGCAATTAGACAGCAAG | SEQ?ID?NO:932 |
B1961919.V1.3_at | GCAAGATCACTATTAGAGTCAGACA | SEQ?ID?NO:933 |
B1961919.V1.3_at | GTCAGACAAAGTGTGTGCACATCTT | SEQ?ID?NO:934 |
B1961919.V1.3_at | GCAGGTCAGTTGCTATTTATTGAAA | SEQ?ID?NO:935 |
B1961919.V1.3_at | ACATTTTTATGTTGAAGCTTCCCTT | SEQ?ID?NO:936 |
B1961919.V1.3_at | GAAGCTTCCCTTAGACATTTTATGT | SEQ?ID?NO:937 |
B1961919.V1.3_at | GGGCATAATGCCTGGTTTGATATTC | SEQ?ID?NO:938 |
B1961919.V1.3_at | TATGCAATGTTTCTCTATCTGGAAC | SEQ?ID?NO:939 |
B1961921.V1.3_at | TGATGGTTCTTGTTCCACGAGGGCC | SEQ?ID?NO:940 |
B1961921.V1.3_at | AAGGGCTGTGAGTATCTTCTCTCTT | SEQ?ID?NO:941 |
B1961921.V1.3_at | GGGTGCATTTACTCAGTGCCTGGCA | SEQ?ID?NO:942 |
B1961921.V1.3_at | TGGTCCGTGGGAGCTCTGAATGCAA | SEQ?ID?NO:943 |
B1961921.V1.3_at | CACGTCGGTTTAGGTCAGGTCTCAA | SEQ?ID?NO:944 |
B1961921.V1.3_at | CAGGTCTCAATTCCTTTCTATGGGA | SEQ?ID?NO:945 |
B1961921.V1.3_at | TTCGGGCCATCAATAAATCAGTACT | SEQ?ID?NO:946 |
B1961921.V1.3_at | TGTGATTAAATGCAGCCCCTGGTGC | SEQ?ID?NO:947 |
B1961921.V1.3_at | CTCTCTTTCCTTGTGACGACAGACA | SEQ?ID?NO:948 |
B1961921.V1.3_at | GACAACATGGTTTCTCTTGCCAGTG | SEQ?ID?NO:949 |
B1961921.V1.3_at | GCTGTCTGGGACTTGGTTTGTAAAA | SEQ?ID?NO:950 |
B1961922.V1.3_at | AGAACAAGTGACTCTGACCAGCAGG | SEQ?ID?NO:951 |
B1961922.V1.3_at | GACCAGCAGGTTTACCTTGTTGAAA | SEQ?ID?NO:952 |
B1961922.V1.3_at | AATATTCCAATTCATTCTTGCCCCA | SEQ?ID?NO:953 |
B1961922.V1.3_at | GTGGAGAAGTTCTGCCCGACATAGA | SEQ?ID?NO:954 |
B1961922.V1.3_at | GCCCGACATAGATACCTTACAGATT | SEQ?ID?NO:955 |
B1961922.V1.3_at | AAGTGTCGATGTTTCACTTCCCCAA | SEQ?ID?NO:956 |
B1961922.V1.3_at | GTCAAGATTTTCTTCCTCCAAGAGT | SEQ?ID?NO:957 |
B1961922.V1.3_at | GGACATTTTTTGTGGACTTCCATAA | SEQ?ID?NO:958 |
B1961922.V1.3_at | AGAATCCGTAACATACCAGTCTCCT | SEQ?ID?NO:959 |
B1961922.V1.3_at | AACGTTCAGTTTATGTGAGCACGAA | SEQ?ID?NO:960 |
B1961922.V1.3_at | ATGGAAGAAGCCTCGCTGAGAGATT | SEQ?ID?NO:961 |
B1961928.V1.3_at | TGGTCATCATCGCAGTGGGTGCCTT | SEQ?ID?NO:962 |
B1961928.V1.3_at | AGTGGGTGCCTTCCTCTTCCTGGTG | SEQ?ID?NO:963 |
B1961928.V1.3_at | TTCCTGGTGGCCTTTGTGGGCTGCT | SEQ?ID?NO:964 |
B1961928.V1.3_at | GGGCCTGCAAGGAGAACTACTGTCT | SEQ?ID?NO:965 |
The probe groups title | Probe sequence | Sequence identifier |
B1961928.V1.3_at | GGAGAACTACTGTCTTATGATCACG | SEQ?ID?NO:966 |
B1961928.V1.3_at | ACTGTCTTATGATCACGTTTGCCGT | SEQ?ID?NO:967 |
B1961928.V1.3_at | ATGATCACGTTTGCCGTCTTCCTGT | SEQ?ID?NO:968 |
B1961928.V1.3_at | TTCCTGTCTCTTATCACGCTGGTGG | SEQ?ID?NO:969 |
B1961928.V1.3_at | TCTTATCACGCTGGTGGAGGTGGCC | SEQ?ID?NO:970 |
B1961928.V1.3_at | GTGGCCGCAGCCATAGCTGGCTATG | SEQ?ID?NO:971 |
B1961928.V1.3_at | CATAGCTGGCTATGTCTTTAGAGAC | SEQ?ID?NO:972 |
B1961932.V1.3_at | TGTTACCCGAGTCTGACCCAGTCCT | SEQ?ID?NO:973 |
B1961932.V1.3_at | AGTCCTGGGTTAGCTGCCGCCATAT | SEQ?ID?NO:974 |
B1961932.V1.3_at | GCTGCCGCCATATCACTGGATTGGA | SEQ?ID?NO:975 |
B1961932.V1.3_at | ATCACTGGATTGGATGCTGAGCCTA | SEQ?ID?NO:976 |
B1961932.V1.3_at | GATGCTGAGCCTAGAAACTGATCAA | SEQ?ID?NO:977 |
B1961932.V1.3_at | GAATGACTTAGGAGGCCCCAGGAAA | SEQ?ID?NO:978 |
B1961932.V1.3_at | AGGATTTGCCTAGAGAGGCCCGTTC | SEQ?ID?NO:979 |
B1961932.V1.3_at | GTTCCTTCAACAGAGCTTCATCTAG | SEQ?ID?NO:980 |
B1961932.V1.3_at | AGAGCTTCATCTAGCTGGCACCAGA | SEQ?ID?NO:981 |
B1961932.V1.3_at | TGGCACCAGAGGCAGGATTGCACCT | SEQ?ID?NO:982 |
B1961932.V1.3_at | TTGCACCTGTGGTGGGTGCTTAGCC | SEQ?ID?NO:983 |
B1961932.V1.3_s_at | GAAATTGTGATTAGCCGGTAGTGAC | SEQ?ID?NO:984 |
B1961932.V1.3_s_at | AGTGACAGTTTGCTGTCAGGTCCCC | SEQ?ID?NO:985 |
B1961932.V1.3_s_at | TGGGCCTCCTCTTAGGCATGGGATC | SEQ?ID?NO:986 |
B1961932.V1.3_s_at | ATGGGATCCCCAGAGTGGACCTGCC | SEQ?ID?NO:987 |
B1961932.V1.3_s_at | GCCAGTTTGTGCACCCATGGAGAGC | SEQ?ID?NO:988 |
B1961932.V1.3_s_at | ATGGAGAGCGTTGCTGGCAGCCATA | SEQ?ID?NO:989 |
B1961932.V1.3_s_at | AGGGAGTGGGTCACAGCCCATGACC | SEQ?ID?NO:990 |
B1961932.V1.3_s_at | GGCATTCCAGACAGCTGACCCGGCA | SEQ?ID?NO:991 |
B1961932.V1.3_s_at | ACGTTTTGCCTGCACATGGCTCAGA | SEQ?ID?NO:992 |
B1961932.V1.3_s_at | AGACCTTGGGTCGAGTAACGCTTGT | SEQ?ID?NO:993 |
B1961932.V1.3_s_at | GAGTAACGCTTGTTTGTGTGTATCT | SEQ?ID?NO:994 |
B1961935.V1.3_at | TCATTGATTCCGTGTGTCACAGCAT | SEQ?ID?NO:995 |
B1961935.V1.3_at | ATTTTCTGAAGAACCGCCTCACGAG | SEQ?ID?NO:996 |
B1961935.V1.3_at | ACGAGACTCATTGTTCTGCGTGTCC | SEQ?ID?NO:997 |
B1961935.V1.3_at | GTTCTGAAATTGTCACGCTCTGTAG | SEQ?ID?NO:998 |
B1961935.V1.3_at | GAGGACACGGTTTGTTCTCTGTGCA | SEQ?ID?NO:999 |
B1961935.V1.3_at | AAGGGAGCCCTGCACCTCAGAAGGA | SEQ?ID?NO:1000 |
B1961935.V1.3_at | ATTCCCTTGCCAGTGACTAGTTCTA | SEQ?ID?NO:1001 |
B1961935.V1.3_at | TGAGACCCAATTCAGGCCGATAAGA | SEQ?ID?NO:1002 |
B1961935.V1.3_at | TCTGGGCACGCTTGAGTCTGAATGT | SEQ?ID?NO:1003 |
B1961935.V1.3_at | TACCAGCCCGATGTTGAACGCGACA | SEQ?ID?NO:1004 |
B1961935.V1.3_at | GATGGAACACACCTAAGCCCTGAGT | SEQ?ID?NO:1005 |
B1961938.V1.3_at | AGGAGCGAATCTGCAGGGTCTTCTC | SEQ?ID?NO:1006 |
B1961938.V1.3_at | CTGAGCTTTGAGGACTTTCTGGACC | SEQ?ID?NO:1007 |
B1961938.V1.3_at | GACCTCCTCAGTGTGTTCAGTGACA | SEQ?ID?NO:1008 |
B1961938.V1.3_at | ATGCCTTCCGCATCTTTGACTTTGA | SEQ?ID?NO:1009 |
B1961938.V1.3_at | GAGATGACCTGAGCCAGCTCGTGAA | SEQ?ID?NO:1010 |
The probe groups title | Probe sequence | Sequence identifier |
B1961938.V1.3_at | CACGGCTCAGTGCTTCCGAGATGAA | SEQ?ID?NO:1011 |
B1961938.V1.3_at | GGATGGGACCATCAATCTCTCTGAG | SEQ?ID?NO:1012 |
B1961938.V1.3_at | AATCTCTCTGAGTTCCAGCATGTCA | SEQ?ID?NO:1013 |
B1961938.V1.3_at | ACCAGACTTTGCAAGCTCCTTTAAG | SEQ?ID?NO:1014 |
B1961938.V1.3_at | GCTCCTTTAAGATTGTCCTGTGACA | SEQ?ID?NO:1015 |
B1961938.V1.3_at | GACCAAGGTCATGCCTGTGTTGCCA | SEQ?ID?NO:1016 |
B1961940.V1.3_at | GAGCGGCACGAGTCTCAGACCTGAA | SEQ?ID?NO:1017 |
B1961940.V1.3_at | GCATGGACCGGATAGACTCTTGACT | SEQ?ID?NO:1018 |
B1961940.V1.3_at | TTCTGCCCACAGTTTGTGATCTGCA | SEQ?ID?NO:1019 |
B1961940.V1.3_at | TGCAGAGTCCAGCTAGGGTAACCCT | SEQ?ID?NO:1020 |
B1961940.V1.3_at | GAGCCAAAGTTTTCTCATTCTCCCT | SEQ?ID?NO:1021 |
B1961940.V1.3_at | AAATTCTCTCTCCATCTTTTCGGTG | SEQ?ID?NO:1022 |
B1961940.V1.3_at | TTTTCGGTGCATTGGCCATGTTACT | SEQ?ID?NO:1023 |
B1961940.V1.3_at | GCCATGTTACTGTGCCAATAGTGTC | SEQ?ID?NO:1024 |
B1961940.V1.3_at | TAATTCTTGTTCCATCTGTTCTCAG | SEQ?ID?NO:1025 |
B1961940.V1.3_at | GCCTTGAACCCCACATAGGAGTTGT | SEQ?ID?NO:1026 |
B1961940.V1.3_at | GTTACTCCTTGTAGTTGATCCTGAT | SEQ?ID?NO:1027 |
B1961941.V1.3_at | TGAAGCCCAATATGGTAACCCCAGG | SEQ?ID?NO:1028 |
B1961941.V1.3_at | GATTGCCATGGCAACTGTCACGGCA | SEQ?ID?NO:1029 |
B1961941.V1.3_at | TGGGATCACCTTCCTATCTGGAGGC | SEQ?ID?NO:1030 |
B1961941.V1.3_at | AGGAGGAGGCATCCATCAACCTCAA | SEQ?ID?NO:1031 |
B1961941.V1.3_at | GGAATATGTCAAGCGAGCCCTGGCC | SEQ?ID?NO:1032 |
B1961941.V1.3_at | AAATACACCCCAAGTGGTCACGCTG | SEQ?ID?NO:1033 |
B1961941.V1.3_at | TTCATCTCTAACCATGCCTACTAAG | SEQ?ID?NO:1034 |
B1961941.V1.3_at | AGTGGAGGTATTCTAAGGCTGCCCC | SEQ?ID?NO:1035 |
B1961941.V1.3_at | AGGGCTTTAGGCTGTTCTTTCCCAT | SEQ?ID?NO:1036 |
B1961941.V1.3_at | TTGCCTCCCTGGTGACATTGGTCTG | SEQ?ID?NO:1037 |
B1961941.V1.3_at | GTCTGTGGTATTGTCTGTGTATGCT | SEQ?ID?NO:1038 |
B1961946.V1.3_at | TTCATCATGCTCATCATACTCGTAC | SEQ?ID?NO:1039 |
B1961946.V1.3_at | TTGCCCCTTCGAAGAAATCACGTCA | SEQ?ID?NO:1040 |
B1961946.V1.3_at | GGCACTCACACTTGGGCAGCATGTA | SEQ?ID?NO:1041 |
B1961946.V1.3_at | ATACATGTATCTATCTGTCCCTTCA | SEQ?ID?NO:1042 |
B1961946.V1.3_at | GTGTTTTTGTAGACTTCTGACCCAG | SEQ?ID?NO:1043 |
B1961946.V1.3_at | AAGAACGTACCATTGACTCAGCTCC | SEQ?ID?NO:1044 |
B1961946.V1.3_at | TGTTGGTACTCCCAGCAATGTCTAG | SEQ?ID?NO:1045 |
B1961946.V1.3_at | CAATGTCTAGCTGTGTGACCTTAGG | SEQ?ID?NO:1046 |
B1961946.V1.3_at | TTCTTCTATGAGATGGCGGCCACGA | SEQ?ID?NO:1047 |
B1961946.V1.3_at | AAAGGATGTGTAGCAGACCCCTGCC | SEQ?ID?NO:1048 |
B1961946.V1.3_at | TGGCAGGTACTCAGTTGATCGTCGA | SEQ?ID?NO:1049 |
BM734452.V1.3_at | CCGACTCCAGCAGCACGTAGAAGTG | SEQ?ID?NO:1050 |
BM734452.V1.3_at | AGACTTTCCCAGGTTCGGGAGCTGC | SEQ?ID?NO:1051 |
BM734452.V1.3_at | GCTGCTGTGTCCAGAGGTGGCATTT | SEQ?ID?NO:1052 |
BM734452.V1.3_at | GGCATTTGACTATTTTTGACCAGGA | SEQ?ID?NO:1053 |
BM734452.V1.3_at | GTAAGCGCGAGGAAATCCTTTTTAT | SEQ?ID?NO:1054 |
BM734452.V1.3_at | TTTTATTGTATTATCTTCCCTCCCT | SEQ?ID?NO:1055 |
The probe groups title | Probe sequence | Sequence identifier |
BM734452.V1.3_at | GGCTGCTGGGTCTGTTGTCAGTCCT | SEQ?ID?NO:1056 |
BM734452.V1.3_at | TGTCAGTCCTGCTGCTAACCTGGCA | SEQ?ID?NO:1057 |
BM734452.V1.3_at | GCCGTGAGCTGCCATGTGCTTCTCA | SEQ?ID?NO:1058 |
BM734452.V1.3_at | CTCAGAGCTGCCCAAGTGGAGGCTC | SEQ?ID?NO:1059 |
BM734452.V1.3_at | AAGTGGAGGCTCTAGCTGACTGCCT | SEQ?ID?NO:1060 |
BM734454.V1.3_at | GAGAAACTCCATTCTACCACTATGA | SEQ?ID?NO:1061 |
BM734454.V1.3_at | GTGTTCCTTTCGTTTTGGGTATCAT | SEQ?ID?NO:1062 |
BM734454.V1.3_at | GTTTTGGGTATCATCTTCCTGACTC | SEQ?ID?NO:1063 |
BM734454.V1.3_at | ATCATCTTCCTGACTCTGATTGGAG | SEQ?ID?NO:1064 |
BM734454.V1.3_at | GAGTTCAAGGAGCTCCAGTAATGAG | SEQ?ID?NO:1065 |
BM734454.V1.3_at | AAGGGACGCTGTTCCTGCATCAAGA | SEQ?ID?NO:1066 |
BM734454.V1.3_at | GCATCAAGACCAGCCAAGGGACGAT | SEQ?ID?NO:1067 |
BM734454.V1.3_at | GACGATCCGCCCAAAACTGTTAAAG | SEQ?ID?NO:1068 |
BM734454.V1.3_at | TTAAACAGTTTGCTCCAAGCCCTTC | SEQ?ID?NO:1069 |
BM734454.V1.3_at | CAAGCCCTTCTTGTGAGACAACTGA | SEQ?ID?NO:1070 |
BM734454.V1.3_at | GTCTAAACCCAGATTCAGCAGAAGT | SEQ?ID?NO:1071 |
BM734455.V1.3_at | GGGACAGCCTGCTTGGCCATTGCAA | SEQ?ID?NO:1072 |
BM734455.V1.3_at | CTGCTTGGCCATTGCAAGCGGCATT | SEQ?ID?NO:1073 |
BM734455.V1.3_at | ATTGCAAGCGGCATTTACCTGCTGG | SEQ?ID?NO:1074 |
BM734455.V1.3_at | AAGCGGCATTTACCTGCTGGCGGCC | SEQ?ID?NO:1075 |
BM734455.V1.3_at | CCGTCCGTGGTGAGCAGTGGACCCC | SEQ?ID?NO:1076 |
BM734455.V1.3_at | CCCCAGCCGAGGTTTGCAAGAAGCT | SEQ?ID?NO:1077 |
BM734455.V1.3_at | AGGTTTGCAAGAAGCTCAGCGAGGA | SEQ?ID?NO:1078 |
BM734455.V1.3_at | AGCGAGGAGGAGTCCGCGGCCGCCA | SEQ?ID?NO:1079 |
BM734455.V1.3_at | ATCCCGGTGACCGATGAGGTTGTGT | SEQ?ID?NO:1080 |
BM734455.V1.3_at | GTGACGGTGTGTGACCAGAGCCTCA | SEQ?ID?NO:1081 |
BM734455.V1.3_at | TGTGTGACCAGAGCCTCAAACCGCT | SEQ?ID?NO:1082 |
BM734457.V1.3_at | AGGCCCTACGGCTATGCCTGGCAGG | SEQ?ID?NO:1083 |
BM734457.V1.3_at | AGATCTGCAAGGTGGCAGTGGCCAC | SEQ?ID?NO:1084 |
BM734457.V1.3_at | GGCAGTGGCCACTCTGAGCCATGAG | SEQ?ID?NO:1085 |
BM734457.V1.3_at | TGAGCCATGAGCAGATGATTGATCT | SEQ?ID?NO:1086 |
BM734457.V1.3_at | GATTGATCTGCTGAGAACATCCGTC | SEQ?ID?NO:1087 |
BM734457.V1.3_at | CTGCTGAGAACATCCGTCACGGTGA | SEQ?ID?NO:1088 |
BM734457.V1.3_at | CACGGTGAAGGTGGTCATTATCCCC | SEQ?ID?NO:1089 |
BM734457.V1.3_at | ATGATGACTGCACCCCACGGAGGAG | SEQ?ID?NO:1090 |
BM734457.V1.3_at | ACCCCACGGAGGAGTTGCTCTGAAA | SEQ?ID?NO:1091 |
BM734457.V1.3_at | AGGAGTTGCTCTGAAACCTACCGCA | SEQ?ID?NO:1092 |
BM734457.V1.3_at | AACCTACCGCATGCCAGTGATGGAA | SEQ?ID?NO:1093 |
BM734458.V1.3_at | GATTCCTTCCAGCTGAGAGGATTAG | SEQ?ID?NO:1094 |
BM734458.V1.3_at | AATGGAAGGGTTGGGAGCACTTTCT | SEQ?ID?NO:1095 |
BM734458.V1.3_at | GGGCATACTCCTGAAGCCAGTTTTG | SEQ?ID?NO:1096 |
BM734458.V1.3_at | GTTTTGAAAAGCTCAATGGCACCAG | SEQ?ID?NO:1097 |
BM734458.V1.3_at | AATGGCACCAGAAAAGCAGTAAGAC | SEQ?ID?NO:1098 |
BM734458.V1.3_at | CTGGGCTAGATCAGAGAGGTCTCTC | SEQ?ID?NO:1099 |
BM734458.V1.3_at | ATCAGAGAGGTCTCTCGGGCTGTGC | SEQ?ID?NO:1100 |
The probe groups title | Probe sequence | Sequence identifier |
BM734458.V1.3_at | AACAGCGGGCTCTGAGTTGTGTCTT | SEQ?ID?NO:1101 |
BM734458.V1.3_at | GCGGGCTCTGAGTTGTGTCTTAGAA | SEQ?ID?NO:1102 |
BM734458.V1.3_at | AGAAGAGTCTCTTTGGCGTGGTCCA | SEQ?ID?NO:1103 |
BM734458.V1.3_at | TTGGCGTGGTCCACAGGACAGAGTT | SEQ?ID?NO:1104 |
BM734459.V1.3_at | ATTGTTGATGAGCTGTTTCCGCGTC | SEQ?ID?NO:1105 |
BM734459.V1.3_at | GATCAACAAGCTCCATCTGTGCAAA | SEQ?ID?NO:1106 |
BM734459.V1.3_at | GAGAGACGATTACAGCACCGCGCAG | SEQ?ID?NO:1107 |
BM734459.V1.3_at | AAGCGGAGGAGTACCTGTCCTTCGC | SEQ?ID?NO:1108 |
BM734459.V1.3_at | GATGATTCTGATATACCTGCTTCCA | SEQ?ID?NO:1109 |
BM734459.V1.3_at | AAATGCTGCTGGGTCATATGCCAAC | SEQ?ID?NO:1110 |
BM734459.V1.3_at | ATATGCCAACCATTGAGCTCTTGAA | SEQ?ID?NO:1111 |
BM734459.V1.3_at | AGTACCATCTCATGCAGTTTGCTGA | SEQ?ID?NO:1112 |
BM734459.V1.3_at | TGTAAGCGAAGGCAATCTCCTCCTG | SEQ?ID?NO:1113 |
BM734459.V1.3_at | GAACGAGGCTCTCACAAAGCACGAG | SEQ?ID?NO:1114 |
BM734459.V1.3_at | AAAGCACGAGACCTTCTTCATTCGC | SEQ?ID?NO:1115 |
BM734461.V1.3_at | GGCTAGAGGATGACCGTGCGTGGCA | SEQ?ID?NO:1116 |
BM734461.V1.3_at | AGGGCGCCGCCGACGGAGGCATGAT | SEQ?ID?NO:1117 |
BM734461.V1.3_at | GAGGCATGATGGACAGGGACCACAA | SEQ?ID?NO:1118 |
BM734461.V1.3_at | AGAAGTATGTCTGGTCACTCGGGCC | SEQ?ID?NO:1119 |
BM734461.V1.3_at | GCCACATGATGACCCGCGGCGGGAT | SEQ?ID?NO:1120 |
BM734461.V1.3_at | ATGCAGGGCGGCTTCGGAGGCCAGA | SEQ?ID?NO:1121 |
BM734461.V1.3_at | TTAGGAGCCCCTTCAACTGTGTACA | SEQ?ID?NO:1122 |
BM734461.V1.3_at | GCCCCTTCAACTGTGTACAATACGT | SEQ?ID?NO:1123 |
BM734461.V1.3_at | TTTTTTATCTGCTGCCATATTGTAG | SEQ?ID?NO:1124 |
BM734461.V1.3_at | ATCTGCTGCCATATTGTAGCTCAAT | SEQ?ID?NO:1125 |
BM734461.V1.3_at | GTAGCTCAATACAATGTGAATTTGT | SEQ?ID?NO:1126 |
BM734464.V1.3_at | GGACAAGCGTGTCAACGACCTGTTC | SEQ?ID?NO:1127 |
BM734464.V1.3_at | GTGTCAACGACCTGTTCCGCATCAT | SEQ?ID?NO:1128 |
BM734464.V1.3_at | ATCATCCCCGGCATTGGGAACTTCG | SEQ?ID?NO:1129 |
BM734464.V1.3_at | GCATTGGGAACTTCGGTGACCGTTA | SEQ?ID?NO:1130 |
BM734464.V1.3_at | GTGACCGTTACTTTGGGACCGATGC | SEQ?ID?NO:1131 |
BM734464.V1.3_at | GACCGATGCTGTCCCTGATGGCAGT | SEQ?ID?NO:1132 |
BM734464.V1.3_at | ATGCTGTCCCTGATGGCAGTGACGA | SEQ?ID?NO:1133 |
BM734464.V1.3_at | AAGTGGCTTCCACGAGTTAGCTGTG | SEQ?ID?NO:1134 |
BM734464.V1.3_at | AGTTAGCTGTGCAGGCTGAGCCACC | SEQ?ID?NO:1135 |
BM734464.V1.3_at | TTGGCTCTTGCTTTCCGAGTACAGA | SEQ?ID?NO:1136 |
BM734464.V1.3_at | CTTGCTTTCCGAGTACAGAGATGTT | SEQ?ID?NO:1137 |
BM734465.V1.3_at | ACCGGTGGGTCTTTAGCATCTGCAG | SEQ?ID?NO:1138 |
BM734465.V1.3_at | TAGGTGGTCCGTGTCTCATCCAAGA | SEQ?ID?NO:1139 |
BM734465.V1.3_at | TCCAAGACTGATGAGGCCTGCTGCA | SEQ?ID?NO:1140 |
BM734465.V1.3_at | AAGCTGACATCATCGGCCACAGGGA | SEQ?ID?NO:1141 |
BM734465.V1.3_at | AAGAGCGCGTCATAGTCCCGGAGGA | SEQ?ID?NO:1142 |
BM734465.V1.3_at | GGAACCTCTTCTCCTGAAGCAAGGA | SEQ?ID?NO:1143 |
BM734465.V1.3_at | GGAACTCTTCGATGAAGCCCTGAAT | SEQ?ID?NO:1144 |
BM734465.V1.3_at | GAATGTTGTCACAGCTGCTTTCCAA | SEQ?ID?NO:1145 |
The probe groups title | Probe sequence | Sequence identifier |
BM734465.V1.3_at | GAATGGGAGAGCCTCTGCCACAAGT | SEQ?ID?NO:1146 |
BM734465.V1.3_at | AAGCCTCCTCTTCTTAATTGCAGAC | SEQ?ID?NO:1147 |
BM734465.V1.3_at | AATTGCAGACTCCAGTTCGGGAACT | SEQ?ID?NO:1148 |
BM734478.V1.3_at | TACAGCCCCTGGACCTTTTGAAGGA | SEQ?ID?NO:1149 |
BM734478.V1.3_at | GAGTCTGGCTCCCAGGCTGAAGAAA | SEQ?ID?NO:1150 |
BM734478.V1.3_at | TATACTCGGCCACAGCTAAAGCTTT | SEQ?ID?NO:1151 |
BM734478.V1.3_at | TTTCACTTTTCTCCTTCGGAAGCAA | SEQ?ID?NO:1152 |
BM734478.V1.3_at | GCAAAACTGGCCTGTACGAGATCCC | SEQ?ID?NO:1153 |
BM734478.V1.3_at | GATCCCCTGTTAAAACTTCTCGGCG | SEQ?ID?NO:1154 |
BM734478.V1.3_at | AATTGTTGTATTTCTCTCTGCTTCC | SEQ?ID?NO:1155 |
BM734478.V1.3_at | TAACAGCTTTGTGATGTTCCCGCTT | SEQ?ID?NO:1156 |
BM734478.V1.3_at | TTTCTTTCTTCCTAACAGCCAGATT | SEQ?ID?NO:1157 |
BM734478.V1.3_at | CAGCCAGATTGCTTTTCCCATAAAG | SEQ?ID?NO:1158 |
BM734478.V1.3_at | TTGAGAATCTCAAGCCATGTGCATT | SEQ?ID?NO:1159 |
BM734480.V1.3_at | AATGCTTTGCAAGTCCTGTGCCAAA | SEQ?ID?NO:1160 |
BM734480.V1.3_at | AAAGCTGGCCTGAGGACCACTTGCA | SEQ?ID?NO:1161 |
BM734480.V1.3_at | TAGGCACAGCAGCAGTAGCTCCTTT | SEQ?ID?NO:1162 |
BM734480.V1.3_at | TTCCATTATCTCCTTCAACTCAGAA | SEQ?ID?NO:1163 |
BM734480.V1.3_at | AGAAAGGGTTTCTGTCTCCAGCCAC | SEQ?ID?NO:1164 |
BM734480.V1.3_at | GGCGAGACCCCTTGATTGGCAAAGA | SEQ?ID?NO:1165 |
BM734480.V1.3_at | AGACCCGACATGTTTTAGGCCCTCA | SEQ?ID?NO:1166 |
BM734480.V1.3_at | GCCCTCACCAGTGTTGTCTTAGGTA | SEQ?ID?NO:1167 |
BM734480.V1.3_at | GTCTTAGGTATCAACTGCTGCTCTG | SEQ?ID?NO:1168 |
BM734480.V1.3_at | AGCCAGCCTATTTTTCAGTGCACAT | SEQ?ID?NO:1169 |
BM734480.V1.3_at | CAAGGTGCTATCTGCTCTGGAAGTT | SEQ?ID?NO:1170 |
BM734482.V1.3_at | ATTTCCTGTGGTGTTCATTTTGAGC | SEQ?ID?NO:1171 |
BM734482.V1.3_at | TAGCAAACCTTCTATGCTCTCAGTG | SEQ?ID?NO:1172 |
BM734482.V1.3_at | TCAGTGCTTCCCAGAGAACATCAGG | SEQ?ID?NO:1173 |
BM734482.V1.3_at | AGATTCTCACGTGCCTTTGGGATCG | SEQ?ID?NO:1174 |
BM734482.V1.3_at | GAAGGGTTCAACAACACGAGGTCTT | SEQ?ID?NO:1175 |
BM734482.V1.3_at | ACGAGGTCTTGATCTGGACTTCAGA | SEQ?ID?NO:1176 |
BM734482.V1.3_at | GAATCAATGGTGCTGTGCTGTCAAT | SEQ?ID?NO:1177 |
BM734482.V1.3_at | TGCTGTCAATGGCTACTCGGTGGAA | SEQ?ID?NO:1178 |
BM734482.V1.3_at | AAGGGTTGCCCCAGAATAAATCTCT | SEQ?ID?NO:1179 |
BM734482.V1.3_at | AAATCTCTGGATTAACTCTCCCGGG | SEQ?ID?NO:1180 |
BM734482.V1.3_at | GCAGGGTGCCGTTTCGGTACCAAGA | SEQ?ID?NO:1181 |
BM734485.V1.3_at | GACACAAACTTTCAGACCATAGCAA | SEQ?ID?NO:1182 |
BM734485.V1.3_at | TGTATGACAAGGACTGCCAGGCCCA | SEQ?ID?NO:1183 |
BM734485.V1.3_at | AGGCCCATCCATTAACGCTAGTTGG | SEQ?ID?NO:1184 |
BM734485.V1.3_at | TTAACGCTAGTTGGGTTCACTCCTC | SEQ?ID?NO:1185 |
BM734485.V1.3_at | ATCTCAAATTTCCTCGATTTCACCA | SEQ?ID?NO:1186 |
BM734485.V1.3_at | GATTTCACCAAGAGCCTATTGCCTT | SEQ?ID?NO:1187 |
BM734485.V1.3_at | GAGCCTATTGCCTTCAAGTTTTTAT | SEQ?ID?NO:1188 |
BM734485.V1.3_at | AAATGTCTGGATTTTCAGCTTCTGT | SEQ?ID?NO:1189 |
BM734485.V1.3_at | GTGGGAGTGTTCTCCAAACACGGGA | SEQ?ID?NO:1190 |
The probe groups title | Probe sequence | Sequence identifier |
BM734485.V1.3_at | TGCTGGACAGCCCAACTGAATGGTG | SEQ?ID?NO:1191 |
BM734485.V1.3_at | GGTGATACTGACCACACTTGCCATA | SEQ?ID?NO:1192 |
BM734496.V1.3_at | TGGGTTGCTGCCACAACATGGCTGC | SEQ?ID?NO:1193 |
BM734496.V1.3_at | GAGTGATGTGGGTCCACACCCAGGA | SEQ?ID?NO:1194 |
BM734496.V1.3_at | GGAGCTGAACCCTGGGCTGCTGAAT | SEQ?ID?NO:1195 |
BM734496.V1.3_at | GCCAGCCCCTACAAGTCATTTTTTA | SEQ?ID?NO:1196 |
BM734496.V1.3_at | ACTTTCAGTGACATAGGCTGCCTTT | SEQ?ID?NO:1197 |
BM734496.V1.3_at | GGCTGCCTTTTCTAAACTAATCCTT | SEQ?ID?NO:1198 |
BM734496.V1.3_at | ACAGAGTCTTGATTTCTGCACCCCA | SEQ?ID?NO:1199 |
BM734496.V1.3_at | GCACCCCATCTTTACCTTTGAGGAA | SEQ?ID?NO:1200 |
BM734496.V1.3_at | GGCCAGCCCGGTGATGTAATGATTA | SEQ?ID?NO:1201 |
BM734496.V1.3_at | AAGTTTGCACACTCCACTTCAGTGG | SEQ?ID?NO:1202 |
BM734496.V1.3_at | AGTGGCCTGGGATTCACCAGTTCAG | SEQ?ID?NO:1203 |
BM734501.V1.3_at | AAGAGAATGTAGTTCCCTCCTCAGG | SEQ?ID?NO:1204 |
BM734501.V1.3_at | CAGGCTTTCGTGGTTAGCTTACCGA | SEQ?ID?NO:1205 |
BM734501.V1.3_at | GGTACAAGCCGAGCTGCCAGGGAAT | SEQ?ID?NO:1206 |
BM734501.V1.3_at | ACAGTCTTGCTGTCCAGGGAACCAA | SEQ?ID?NO:1207 |
BM734501.V1.3_at | GTCCGTTTTCAGTTCTATCTCCAAA | SEQ?ID?NO:1208 |
BM734501.V1.3_at | TAACAGGCCCTTGGCACAGCAAGAT | SEQ?ID?NO:1209 |
BM734501.V1.3_at | AGCAAGATCCTTTCTGCAGGCTGAT | SEQ?ID?NO:1210 |
BM734501.V1.3_at | AAAAACGATTCTGTCTCCTTCAAAG | SEQ?ID?NO:1211 |
BM734501.V1.3_at | GAGTACTTGTTTTCTGACTTGTCCA | SEQ?ID?NO:1212 |
BM734501.V1.3_at | AATGCACTATGCTTGATCGCCGATT | SEQ?ID?NO:1213 |
BM734501.V1.3_at | GTATAACGTCGTTGCCTTTATTTGT | SEQ?ID?NO:1214 |
BM734502.V1.3_at | ATGAGCTGGAGGCACTTCTACCTTT | SEQ?ID?NO:1215 |
BM734502.V1.3_at | TACCTTTGTGGGTCCCTTATTCTAT | SEQ?ID?NO:1216 |
BM734502.V1.3_at | GACTTCTAAAAGCTCATGGGCCCTA | SEQ?ID?NO:1217 |
BM734502.V1.3_at | GGCCCTGCCATTACGTGGATACTGT | SEQ?ID?NO:1218 |
BM734502.V1.3_at | GGATACTGTGCCTTTAGCTGTAACA | SEQ?ID?NO:1219 |
BM734502.V1.3_at | TAACACCGAGCCTGTATCCTTTAAT | SEQ?ID?NO:1220 |
BM734502.V1.3_at | TGATTTCATTCAGGCATGCTCATCT | SEQ?ID?NO:1221 |
BM734502.V1.3_at | AAATGGGACCCAGCTCTCTTGGTGA | SEQ?ID?NO:1222 |
BM734502.V1.3_at | GTGAGCCAGGATCTCTTTACGTTTA | SEQ?ID?NO:1223 |
BM734502.V1.3_at | TATTGTTTTAACTCTCTTCCCAGGT | SEQ?ID?NO:1224 |
BM734502.V1.3_at | TTCAAACTTTTCTGATCCCAGCCTA | SEQ?ID?NO:1225 |
BM734506.V1.3_at | GAACCTGTTGGATGACCTTGTAACT | SEQ?ID?NO:1226 |
BM734506.V1.3_at | GAGAGAGACTACTTCTGGCATCCTT | SEQ?ID?NO:1227 |
BM734506.V1.3_at | AGAACCAGATCTCATCAGGTCCAGC | SEQ?ID?NO:1228 |
BM734506.V1.3_at | TAAGCGAGGAGTACCCAACCCTTGG | SEQ?ID?NO:1229 |
BM734506.V1.3_at | GATGAAATCCGGCAGCAGCAGCAGA | SEQ?ID?NO:1230 |
BM734506.V1.3_at | TTTCCTCCATCATAAGTCGCCAGAA | SEQ?ID?NO:1231 |
BM734506.V1.3_at | ATGACCTTGCCAACCTGGTGGAGAA | SEQ?ID?NO:1232 |
BM734506.V1.3_at | GATTTTATTGCTGCTCGTGGCTATT | SEQ?ID?NO:1233 |
BM734506.V1.3_at | GTGGCTATTGTGGTCGTCGCAGTCT | SEQ?ID?NO:1234 |
BM734506.V1.3_at | TCGCAGTCTGGCCTACCAAGTAGTG | SEQ?ID?NO:1235 |
The probe groups title | Probe sequence | Sequence identifier |
BM734506.V1.3_at | AGTTCAGTGCCCTTTTGGTACACGA | SEQ?ID?NO:1236 |
BM734508.V1.3_at | AGGTCTCCGTCTGCTTTCTTTTTTG | SEQ?ID?NO:1237 |
BM734508.V1.3_at | AGGCTTTAGGCCACAGGCAGCTTCT | SEQ?ID?NO:1238 |
BM734508.V1.3_at | CAAGGTGGCCAGATGGTTCCAGGAC | SEQ?ID?NO:1239 |
BM734508.V1.3_at | GTTCCAGGACCACAGTGTCTTTATT | SEQ?ID?NO:1240 |
BM734508.V1.3_at | ATTTTTAACTGTTTGCCACTGCTGC | SEQ?ID?NO:1241 |
BM734508.V1.3_at | TGGAGTACTCTCTGCCCCAGACTAG | SEQ?ID?NO:1242 |
BM734508.V1.3_at | GCCCCAGACTAGCAGGAGTGAGTTC | SEQ?ID?NO:1243 |
BM734508.V1.3_at | AGCGCTGATTCTCCCCGCAGTGTTG | SEQ?ID?NO:1244 |
BM734508.V1.3_at | GGGCATACCTTCTAACTGAGCAGTA | SEQ?ID?NO:1245 |
BM734508.V1.3_at | GCACGAGCCTGGGAACTGCTTTTAT | SEQ?ID?NO:1246 |
BM734508.V1.3_at | AATTTATCTCTGTGACCTGCTAGGG | SEQ?ID?NO:1247 |
BM734510.V1.3_at | ACGAGCGGCACGAGCCGAAGATGGC | SEQ?ID?NO:1248 |
BM734510.V1.3_at | GCGGCACGAGCCGAAGATGGCGGAG | SEQ?ID?NO:1249 |
BM734510.V1.3_at | GGGCAGGTCCTGGTGCTGGATGGCC | SEQ?ID?NO:1250 |
BM734510.V1.3_at | CAGGTCCTGGTGCTGGATGGCCGGG | SEQ?ID?NO:1251 |
BM734510.V1.3_at | GCCTGGCGGCCATCGTGGCCAAGCA | SEQ?ID?NO:1252 |
BM734510.V1.3_at | GCCATCGTGGCCAAGCAGGTGCTGC | SEQ?ID?NO:1253 |
BM734510.V1.3_at | CCATCGTGGCCAAGCAGGTGCTGCT | SEQ?ID?NO:1254 |
BM734510.V1.3_at | CATCGTGGCCAAGCAGGTGCTGCTG | SEQ?ID?NO:1255 |
BM734510.V1.3_at | AAGCAGGTGCTGCTGGGCCGGAAGG | SEQ?ID?NO:1256 |
BM734510.V1.3_at | GCTGCTGGGCCGGAAGGTGGTGGTC | SEQ?ID?NO:1257 |
BM734510.V1.3_at | CTTCCTCCGCAAGCCTACACGAAAG | SEQ?ID?NO:1258 |
BM734511.V1.3_at | ATCTCTTTCCTCATTTTCCTGATAG | SEQ?ID?NO:1259 |
BM734511.V1.3_at | GATGAGGATGGCCTTCCTGTTTCAC | SEQ?ID?NO:1260 |
BM734511.V1.3_at | ATCTTCTCAATCTTTCTTTACCGGG | SEQ?ID?NO:1261 |
BM734511.V1.3_at | AATACGCTTGGCACTGATGGGCACT | SEQ?ID?NO:1262 |
BM734511.V1.3_at | CAGACCCCGGATGCTATTTATTCAA | SEQ?ID?NO:1263 |
BM734511.V1.3_at | GTTTGAATGAGTCCTTCGTGGGCCA | SEQ?ID?NO:1264 |
BM734511.V1.3_at | AGGCTTATCTTTTTGTCTAGTGCAA | SEQ?ID?NO:1265 |
BM734511.V1.3_at | TTTACCTAAATACTTCCAGCTCCTT | SEQ?ID?NO:1266 |
BM734511.V1.3_at | AAGCTCAGTACACTAATGCCTCATC | SEQ?ID?NO:1267 |
BM734511.V1.3_at | ATGCCTCATCTTAGCAGTGATTTTG | SEQ?ID?NO:1268 |
BM734511.V1.3_at | AAACCTGACTGAGTTTTCCTGTCTA | SEQ?ID?NO:1269 |
BM734513.V1.3_at | GAGGCTTGAAAACACACCACATTGA | SEQ?ID?NO:1270 |
BM734513.V1.3_at | ACCACATTGAAAATCCTGCCACAGC | SEQ?ID?NO:1271 |
BM734513.V1.3_at | TAAGCACTGGCTTCGTAGGAAACCA | SEQ?ID?NO:1272 |
BM734513.V1.3_at | CATACGCCGGCCGTCTTGGAAAAGA | SEQ?ID?NO:1273 |
BM734513.V1.3_at | AGAACTAGCTTTTCTGCCTTTTGGC | SEQ?ID?NO:1274 |
BM734513.V1.3_at | GCCTGGCCTTTGCTACTGGTAAGAA | SEQ?ID?NO:1275 |
BM734513.V1.3_at | AAGATGGAGCCTGGGTCTCAAGCCC | SEQ?ID?NO:1276 |
BM734513.V1.3_at | TGTACCTTTGCCACACTGTATGTGT | SEQ?ID?NO:1277 |
BM734513.V1.3_at | GAGGCTGAGGGATTCTTTCCAGTCT | SEQ?ID?NO:1278 |
BM734513.V1.3_at | GGTATCCACATTCTCAACTTCAAGT | SEQ?ID?NO:1279 |
BM734513.V1.3_at | AGTCATTGCAGTTTCTTTTTCCCAG | SEQ?ID?NO:1280 |
The probe groups title | Probe sequence | Sequence identifier |
BM734514.V1.3_at | ACGTGTTCAGGGTTTGGTTGGCTCA | SEQ?ID?NO:1281 |
BM734514.V1.3_at | GGTTGGCTCAACTCCAAACTCAATA | SEQ?ID?NO:1282 |
BM734514.V1.3_at | TGATTACCAATATGATCTCCCGTCC | SEQ?ID?NO:1283 |
BM734514.V1.3_at | TGATCTCCCGTCCAGTAGCGTGGGA | SEQ?ID?NO:1284 |
BM734514.V1.3_at | AGGTATTTCCTCTGTGGTGCCATAG | SEQ?ID?NO:1285 |
BM734514.V1.3_at | GGAGCAGTTCCATCTCACTGTGTAA | SEQ?ID?NO:1286 |
BM734514.V1.3_at | ACGAATTGGAAAGCCGACCCGCAAG | SEQ?ID?NO:1287 |
BM734514.V1.3_at | GACCCGCAAGGGAGCTTGTCTATTG | SEQ?ID?NO:1288 |
BM734514.V1.3_at | AAGGAACCTTTGATAGCCGCTGTAT | SEQ?ID?NO:1289 |
BM734514.V1.3_at | TTTGATAGCCGCTGTATCTGCTCAG | SEQ?ID?NO:1290 |
BM734514.V1.3_at | TATCTGCTCAGCCATGTCCACATTT | SEQ?ID?NO:1291 |
BM734515.V1.3_at | GTGCCGGCTCATTCAGCCAGAAAAT | SEQ?ID?NO:1292 |
BM734515.V1.3_at | CAGAAAATAAATCTCCCACCCGTGT | SEQ?ID?NO:1293 |
BM734515.V1.3_at | TCCCACCCGTGTTTGACTTTGAAGA | SEQ?ID?NO:1294 |
BM734515.V1.3_at | ACTTTGAAGACTCCACCAGGTCGTG | SEQ?ID?NO:1295 |
BM734515.V1.3_at | GAGAGCTTGGGAACTGCGATAACTT | SEQ?ID?NO:1296 |
BM734515.V1.3_at | GCGATAACTTTCTGGGAGCTTTGGT | SEQ?ID?NO:1297 |
BM734515.V1.3_at | TCTCCGTACACGCATGACACATGTT | SEQ?ID?NO:1298 |
BM734515.V1.3_at | CATGTTCGCCATATTACGTTTTATC | SEQ?ID?NO:1299 |
BM734515.V1.3_at | TATAACAAACACACACCCTACATTT | SEQ?ID?NO:1300 |
BM734515.V1.3_at | TTCACATGGTTCTTAGGCCACATCC | SEQ?ID?NO:1301 |
BM734515.V1.3_at | GGCCACATCCCTCTTTATAAAAATT | SEQ?ID?NO:1302 |
BM734516.V1.3_at | GGGCCTGTTAGGTCATCTGTTTCAG | SEQ?ID?NO:1303 |
BM734516.V1.3_at | GTTTCAGCATTTGTCAACTTCTTGA | SEQ?ID?NO:1304 |
BM734516.V1.3_at | GGAAAATCTTCAATGGCTTCAACCA | SEQ?ID?NO:1305 |
BM734516.V1.3_at | ACCAAGTCTTGGCAGCACTGTGCAA | SEQ?ID?NO:1306 |
BM734516.V1.3_at | TAGACTCATTTTTCAGGCTAGCCTG | SEQ?ID?NO:1307 |
BM734516.V1.3_at | GCGCCGAAACGTCTGCATCAAGGTG | SEQ?ID?NO:1308 |
BM734516.V1.3_at | ATTCGGCACGAGTAGGATTGTCACA | SEQ?ID?NO:1309 |
BM734516.V1.3_at | AGTGGTATCTTACTCTGGCAGTTAC | SEQ?ID?NO:1310 |
BM734516.V1.3_at | TGGCAGTTACCAGACTACCTTAAAA | SEQ?ID?NO:1311 |
BM734516.V1.3_at | GTGAGCCTTCTGTGTATGATCTGTC | SEQ?ID?NO:1312 |
BM734516.V1.3_at | ATGATCTGTCTGTTCCTGTTTCAAA | SEQ?ID?NO:1313 |
BM734517.V1.3_at | AATTTTCTCCTAGTCTGTAGCTTTT | SEQ?ID?NO:1314 |
BM734517.V1.3_at | TGTAGCTTTTCTTTTCACGTGTTAA | SEQ?ID?NO:1315 |
BM734517.V1.3_at | GAAGCCCGATTTATCCATTTGTTCT | SEQ?ID?NO:1316 |
BM734517.V1.3_at | GACATGCCCTTGGTGTGGTATCTAA | SEQ?ID?NO:1317 |
BM734517.V1.3_at | GGATATCCATTTATTCTAGCACCAT | SEQ?ID?NO:1318 |
BM734517.V1.3_at | AAGGCTGTTTATTCTCCATTGCATT | SEQ?ID?NO:1319 |
BM734517.V1.3_at | CATTGCCTTTGCACCTTTGTACAAA | SEQ?ID?NO:1320 |
BM734517.V1.3_at | GTAGGCTTATTTCTGGACTCTGTTC | SEQ?ID?NO:1321 |
BM734517.V1.3_at | GTTCTGTTCCTTTTCTCTGTTTATA | SEQ?ID?NO:1322 |
BM734517.V1.3_at | AGACAGGTAGTGTTAGCCCTCCAAC | SEQ?ID?NO:1323 |
BM734517.V1.3_at | TGGCTATTCTAGGTCATTTGCATTT | SEQ?ID?NO:1324 |
BM734518.V1.3_at | AGCAACTGGCACAAGGGCTGGGACT | SEQ?ID?NO:1325 |
The probe groups title | Probe sequence | Sequence identifier |
BM734518.V1.3_at | GGGACTGGACCTCAGGGTCTAACAA | SEQ?ID?NO:1326 |
BM734518.V1.3_at | TAACAAGTGTCCAGCTGAGGCCACC | SEQ?ID?NO:1327 |
BM734518.V1.3_at | CTGCCGCACATTTGAGTCCTACTTC | SEQ?ID?NO:1328 |
BM734518.V1.3_at | GCTGCCCTGTGTGAGGAACTCTGGA | SEQ?ID?NO:1329 |
BM734518.V1.3_at | GGAGTCACTCCTACAAGGTCAGCAA | SEQ?ID?NO:1330 |
BM734518.V1.3_at | AGGTCAGCAACTACCGCCGAGGGAG | SEQ?ID?NO:1331 |
BM734518.V1.3_at | TGCATCCAGATGTGGTTCGACCCGG | SEQ?ID?NO:1332 |
BM734518.V1.3_at | GAGGTTCTATGCCTTGGCCATGACT | SEQ?ID?NO:1333 |
BM734518.V1.3_at | AGCTTTGATGACCAGGCTAGGCTCA | SEQ?ID?NO:1334 |
BM734518.V1.3_at | TAGGCTCAGCTCAGCTCCTAAGCAT | SEQ?ID?NO:1335 |
BM734519.V1.3_at | AACCACAACGTGAATTTGCAACAGG | SEQ?ID?NO:1336 |
BM734519.V1.3_at | GAACCAAAACTTCTAAGGCCCTGCT | SEQ?ID?NO:1337 |
BM734519.V1.3_at | GGGTCAGCCATTTTTAATGATCTCG | SEQ?ID?NO:1338 |
BM734519.V1.3_at | TGATCTCGGATGACCAAACCAGCCT | SEQ?ID?NO:1339 |
BM734519.V1.3_at | ATGACCAAACCAGCCTTCGGAGCGT | SEQ?ID?NO:1340 |
BM734519.V1.3_at | TCTGTCCTACTTCTGACTTTACTTG | SEQ?ID?NO:1341 |
BM734519.V1.3_at | CTGACTTTACTTGTGGTGTGACCAT | SEQ?ID?NO:1342 |
BM734519.V1.3_at | GTGTGACCATGTTCATTATAATCTC | SEQ?ID?NO:1343 |
BM734519.V1.3_at | CAATCTTATTCCGAGCATTCCAGTA | SEQ?ID?NO:1344 |
BM734519.V1.3_at | GAGCATTCCAGTAACTTTTTTGTGT | SEQ?ID?NO:1345 |
BM734519.V1.3_at | TTTGGCCTGTTTGATGTATGTGTGA | SEQ?ID?NO:1346 |
BM734526.V1.3_at | GTCTGGCCCGGTTCAAAAGCAACGT | SEQ?ID?NO:1347 |
BM734526.V1.3_at | AGGGTTTTGAGTACATCTTGGCCAA | SEQ?ID?NO:1348 |
BM734526.V1.3_at | TAAAAGTCAACTTCCAGTCCTCTCT | SEQ?ID?NO:1349 |
BM734526.V1.3_at | TTTTGGGCATCTACGGTGCACCAGG | SEQ?ID?NO:1350 |
BM734526.V1.3_at | GTTACCAACATCTGAGCCGAGTCTG | SEQ?ID?NO:1351 |
BM734526.V1.3_at | GAGTCTGCTTATTCTCACATTGGGC | SEQ?ID?NO:1352 |
BM734526.V1.3_at | AGGTGCAGTGACTTGCCCAGGGTCA | SEQ?ID?NO:1353 |
BM734526.V1.3_at | ACAGCGTGCGGGTGACATGGTCATA | SEQ?ID?NO:1354 |
BM734526.V1.3_at | TAAATGCTAGACTGTACGCTCCACG | SEQ?ID?NO:1355 |
BM734526.V1.3_at | AGGGCAGGACCTGTGTTTTGTTGTC | SEQ?ID?NO:1356 |
BM734526.V1.3_at | TTGTTGTCCGATGTGTCCCAGGTAC | SEQ?ID?NO:1357 |
BM734529.V1.3_at | GAAGTGGAGTCTTTGCCTTTCCCAA | SEQ?ID?NO:1358 |
BM734529.V1.3_at | AGACTTTCAACAGCTCCCAAGATGT | SEQ?ID?NO:1359 |
BM734529.V1.3_at | AAGATGTTTCCCACTTACACACTGG | SEQ?ID?NO:1360 |
BM734529.V1.3_at | ATCACCTTCCACCTAGGCAGAGAAG | SEQ?ID?NO:1361 |
BM734529.V1.3_at | GAAGGGCAACTCCTAACAACCGGTG | SEQ?ID?NO:1362 |
BM734529.V1.3_at | ACAACCGGTGCACTGTGTAAACACT | SEQ?ID?NO:1363 |
BM734529.V1.3_at | TGGTGCAACAGCTAGTTCCGTGCCT | SEQ?ID?NO:1364 |
BM734529.V1.3_at | AATGGGTACCCATAGCCACTGGTGG | SEQ?ID?NO:1365 |
BM734529.V1.3_at | AGAGCATACGTCACACCAGGAACTG | SEQ?ID?NO:1366 |
BM734529.V1.3_at | AAGCATATTTCCTCCAGTTGGTTTC | SEQ?ID?NO:1367 |
BM734529.V1.3_at | GGCAGTACCACATCACATGCTATAC | SEQ?ID?NO:1368 |
BM734531.V1.3_at | GAGTCACCCAAGGAACTTATGCAGA | SEQ?ID?NO:1369 |
BM734531.V1.3_at | TTATGCAGATGCCATGTCCTCACTC | SEQ?ID?NO:1370 |
The probe groups title | Probe sequence | Sequence identifier |
BM734531.V1.3_at | GGAGCCAGGTGTCTGCATTTGAACA | SEQ?ID?NO:1371 |
BM734531.V1.3_at | GTCCTGTGGCTTTTGTGTGTCTCTC | SEQ?ID?NO:1372 |
BM734531.V1.3_at | ACCACTTCATGTTCTCTACAGAGCT | SEQ?ID?NO:1373 |
BM734531.V1.3_at | GGCCTTGCTTGAGAGAGGTCCATCC | SEQ?ID?NO:1374 |
BM734531.V1.3_at | GGTCACTTAGCAGCGACTTCTTGGA | SEQ?ID?NO:1375 |
BM734531.V1.3_at | ACAGAGCTGTCCAGAGCCGAGGCTG | SEQ?ID?NO:1376 |
BM734531.V1.3_at | CGTTGCCCGCTGTTGGTCATGACAA | SEQ?ID?NO:1377 |
BM734531.V1.3_at | AAACGAGTCCGAGGGCACAGCCAGG | SEQ?ID?NO:1378 |
BM734531.V1.3_at | GAGTCTCTGTCAGGATCCTTTTGAA | SEQ?ID?NO:1379 |
BM734533.V1.3_at | CTCGTGCCGTGTGCTGAGAGGCCCT | SEQ?ID?NO:1380 |
BM734533.V1.3_at | AGGCACAGCCCCTGGAATCCTGAGC | SEQ?ID?NO:1381 |
BM734533.V1.3_at | GGAATCCTGAGCTGCCATGGGCTAC | SEQ?ID?NO:1382 |
BM734533.V1.3_at | ATGGGCTACCCCAAGACGTCCAGAG | SEQ?ID?NO:1383 |
BM734533.V1.3_at | GCTACCCCAAGACGTCCAGAGAAGA | SEQ?ID?NO:1384 |
BM734533.V1.3_at | GACAATGAACGTTGGAAGATCCGAT | SEQ?ID?NO:1385 |
BM734533.V1.3_at | TTGGAAGATCCGATTTCACAGCACT | SEQ?ID?NO:1386 |
BM734533.V1.3_at | GAACAGGTGTGTCAGTGTGCTCCCA | SEQ?ID?NO:1387 |
BM734533.V1.3_at | CACGATGACGATGAGGAGGAAGAAC | SEQ?ID?NO:1388 |
BM734533.V1.3_at | GGAAGAACGTGCCACCTCAGGTCGA | SEQ?ID?NO:1389 |
BM734533.V1.3_at | ACGTGCCACCTCAGGTCGATTTAGG | SEQ?ID?NO:1390 |
BM734539.V1.3_at | GAGGCTGCCAGCACAGGGTGATCAC | SEQ?ID?NO:1391 |
BM734539.V1.3_at | ATCACAGCCCAAGCAGTGGAGGCCT | SEQ?ID?NO:1392 |
BM734539.V1.3_at | GACAGATACCTGTGAACCCATCAGC | SEQ?ID?NO:1393 |
BM734539.V1.3_at | CGGTCTTCGGCAGCGGCTTTTTCAG | SEQ?ID?NO:1394 |
BM734539.V1.3_at | GCTTTTTCAGCCGAGTGAGGACTCT | SEQ?ID?NO:1395 |
BM734539.V1.3_at | GAGGACTCTGGGTCCCACGCAGAGA | SEQ?ID?NO:1396 |
BM734539.V1.3_at | AAGACCGTGGCCTCCTGGGAAGGCA | SEQ?ID?NO:1397 |
BM734539.V1.3_at | ATCTAAGTTCCAGAGCAGTTGACCT | SEQ?ID?NO:1398 |
BM734539.V1.3_at | GCAGTTGACCTGATGGGACGCTCTC | SEQ?ID?NO:1399 |
BM734539.V1.3_at | TTTGGTCTTAAGTGGATCTCGGGCA | SEQ?ID?NO:1400 |
BM734539.V1.3_at | CTGGCGTTTGACTACGAGCAGGAAC | SEQ?ID?NO:1401 |
BM734540.V1.3_at | GAAAGCACAGACTCTATATCCCTCA | SEQ?ID?NO:1402 |
BM734540.V1.3_at | TATATCCCTCATCGCATGGATCGTA | SEQ?ID?NO:1403 |
BM734540.V1.3_at | TGAGCAAAGCGGACCTCAGCCGGAA | SEQ?ID?NO:1404 |
BM734540.V1.3_at | AGCTTGTGCAGCTCCTGAATGGGCG | SEQ?ID?NO:1405 |
BM734540.V1.3_at | AGAGTTTTTCACTACCAGTTCCTGT | SEQ?ID?NO:1406 |
BM734540.V1.3_at | AACTGTTGCTGGCTACTGGTTACAC | SEQ?ID?NO:1407 |
BM734540.V1.3_at | ATTCTTCATGTGCAGTGTCGACAGC | SEQ?ID?NO:1408 |
BM734540.V1.3_at | GCACAGATTCTGCATTCAGTGGCAA | SEQ?ID?NO:1409 |
BM734540.V1.3_at | TCTGGCTTCAGGAACTCGGGCATAA | SEQ?ID?NO:1410 |
BM734540.V1.3_at | AAAGACCATGTTGGCTGTCCGGAGC | SEQ?ID?NO:1411 |
BM734540.V1.3_at | TGTCCGGAGCACACATGGCTTAGAA | SEQ?ID?NO:1412 |
BM734541.V1.3_at | TGAACATGCTTCAGATCTCCACGTT | SEQ?ID?NO:1413 |
BM734541.V1.3_at | TCTCCACGTTGCTCTGTAACATTAT | SEQ?ID?NO:1414 |
BM734541.V1.3_at | TATTTGTTATCCCTGCTCTGCAATG | SEQ?ID?NO:1415 |
The probe groups title | Probe sequence | Sequence identifier |
BM734541.V1.3_at | AATGTAGTTCCCTGTTAGACCCAAG | SEQ?ID?NO:1416 |
BM734541.V1.3_at | GTGACACATGGCTTTCACTTCACAT | SEQ?ID?NO:1417 |
BM734541.V1.3_at | ATGAGTGATGTCTGCCATGGGCACA | SEQ?ID?NO:1418 |
BM734541.V1.3_at | GTTGCAGATGTTTGGGATCCTCCCT | SEQ?ID?NO:1419 |
BM734541.V1.3_at | TGTGCCCTCAATATGCTGTGTGTGC | SEQ?ID?NO:1420 |
BM734541.V1.3_at | CTGTGTGTGCCCTTTGGATGAAACT | SEQ?ID?NO:1421 |
BM734541.V1.3_at | AAGAATGGAAGCCTCTGGGCCTTTC | SEQ?ID?NO:1422 |
BM734541.V1.3_at | GGTGTGGACAGACTTCTTTTCCTCA | SEQ?ID?NO:1423 |
BM734543.V1.3_at | GGCTTCTTCACGTAGAACCCGGGAG | SEQ?ID?NO:1424 |
BM734543.V1.3_at | ATTCAGAATCGAATCTCTTCTCCCT | SEQ?ID?NO:1425 |
BM734543.V1.3_at | CTTCCTGTTTTTCGGCTTTGTGAGA | SEQ?ID?NO:1426 |
BM734543.V1.3_at | GTTACCAACAAGACAGATCCTCGCT | SEQ?ID?NO:1427 |
BM734543.V1.3_at | GGGAATCTCAATACTCTTGTGGTCA | SEQ?ID?NO:1428 |
BM734543.V1.3_at | AAATCGTGGGTTGCTCTGTTCATAA | SEQ?ID?NO:1429 |
BM734543.V1.3_at | GCTTTGCCTTCGTTCAGTACGTTAA | SEQ?ID?NO:1430 |
BM734543.V1.3_at | AATGAGAGAAATGCCCGTGCTGCTG | SEQ?ID?NO:1431 |
BM734543.V1.3_at | GCAGAATGATCGCTGGCCAGGTTTT | SEQ?ID?NO:1432 |
BM734543.V1.3_at | TCAGCTCCTCTTTTGACTTGGACTA | SEQ?ID?NO:1433 |
BM734543.V1.3_at | GGATGTACAGTTACCCAGCACGTGT | SEQ?ID?NO:1434 |
BM734550.V1.3_at | TTTTGGTCCCTACTTCCAGCGTCAT | SEQ?ID?NO:1435 |
BM734550.V1.3_at | GTCATTCCTGCCTATCACTTTGGAG | SEQ?ID?NO:1436 |
BM734550.V1.3_at | CTGCCTATCACTTTGGAGCGTGTGG | SEQ?ID?NO:1437 |
BM734550.V1.3_at | CGAGATTTGGGCATTGCCAGCAGTT | SEQ?ID?NO:1438 |
BM734550.V1.3_at | CTTGTTTTTCCTGGGCAGCTTCCTT | SEQ?ID?NO:1439 |
BM734550.V1.3_at | GGCAGCTTCCTTGGGACAGAAACTT | SEQ?ID?NO:1440 |
BM734550.V1.3_at | CAAAGTTTTTGGTGACTTGTGGCTA | SEQ?ID?NO:1441 |
BM734550.V1.3_at | TGAGTGTCCTTTTTCCCAGGGTGGG | SEQ?ID?NO:1442 |
BM734550.V1.3_at | ACAGCCGCCGTGCTGCAGCCTTGTG | SEQ?ID?NO:1443 |
BM734550.V1.3_at | GGTCCCCAGCTTCCCTGATGTAGGA | SEQ?ID?NO:1444 |
BM734550.V1.3_at | GCTTCCCTGATGTAGGAACCAGATT | SEQ?ID?NO:1445 |
BM734553.V1.3_at | GCAGCTTGGAAACGCACGGAAACCT | SEQ?ID?NO:1446 |
BM734553.V1.3_at | GGAAACCTATACTGAAGCCCAACAA | SEQ?ID?NO:1447 |
BM734553.V1.3_at | GCGAGGCGACCTGTATCACGGAGAT | SEQ?ID?NO:1448 |
BM734553.V1.3_at | TGTCGGTAATGATGGCTTGCTGGAA | SEQ?ID?NO:1449 |
BM734553.V1.3_at | GAATTCCGCGACGAAGCTTGCAGAA | SEQ?ID?NO:1450 |
BM734553.V1.3_at | AAAAGAGATCCAGGCCTTCTTCGAT | SEQ?ID?NO:1451 |
BM734553.V1.3_at | AGGCCTTCTTCGATTGTGCTTCGAA | SEQ?ID?NO:1452 |
BM734553.V1.3_at | GGAGAAGCCTTTTCAATGACGGGAC | SEQ?ID?NO:1453 |
BM734553.V1.3_at | ATGACGGGACTGTAGCTTTTGAGAA | SEQ?ID?NO:1454 |
BM734553.V1.3_at | GCACTGTTATACTTTCTTTGCAGAG | SEQ?ID?NO:1455 |
BM734553.V1.3_at | TGTCCTTTGGAACCATTGTCTCTGT | SEQ?ID?NO:1456 |
BM734556.V1.3_at | GCACGAGTCAGTGTTCGCCATTTCA | SEQ?ID?NO:1457 |
BM734556.V1.3_at | GCCATTTCACGTTCGGTTCGGGAAG | SEQ?ID?NO:1458 |
BM734556.V1.3_at | GGAAGCTGGGAGTCCTGAGATCCAA | SEQ?ID?NO:1459 |
BM734556.V1.3_at | GATATAGAAATCAACGGCGACGCAG | SEQ?ID?NO:1460 |
The probe groups title | Probe sequence | Sequence identifier |
BM734556.V1.3_at | GGCGACGCAGTGGATCTTCACATGA | SEQ?ID?NO:1461 |
BM734556.V1.3_at | AGAAGCTTTCTTTGTGGAGGAGACT | SEQ?ID?NO:1462 |
BM734556.V1.3_at | ATGAAAAGCTTCCTGCTTACCTTGC | SEQ?ID?NO:1463 |
BM734556.V1.3_at | ACCTCACCAATTCCTACTGAAGATC | SEQ?ID?NO:1464 |
BM734556.V1.3_at | TTAAAGATATTGACACCCGTTTGGT | SEQ?ID?NO:1465 |
BM734556.V1.3_at | GACCATCTCAGAGTTCAGACATCTC | SEQ?ID?NO:1466 |
BM734556.V1.3_at | GACATCTCACACATCTTAGACACGG | SEQ?ID?NO:1467 |
BM734557.V1.3_at | AAGCGTGCCCGCAAGGAGCTGCTCA | SEQ?ID?NO:1468 |
BM734557.V1.3_at | GGAGCTGCTCAACTTTTACGCCTGG | SEQ?ID?NO:1469 |
BM734557.V1.3_at | GGCAGCACCGCGAGACCAAGATGGA | SEQ?ID?NO:1470 |
BM734557.V1.3_at | AAGATGGAGCATCTCGCACAGCTGC | SEQ?ID?NO:1471 |
BM734557.V1.3_at | AGAGGATTGAACTGATGCGGGCCCA | SEQ?ID?NO:1472 |
BM734557.V1.3_at | AATGCTGGTCTCAGAGGCTGTGCCC | SEQ?ID?NO:1473 |
BM734557.V1.3_at | CGTCAAGCCGCCCAAAGATCTGAGG | SEQ?ID?NO:1474 |
BM734557.V1.3_at | GGGTGAAGGACCATGTCGCCCTCCA | SEQ?ID?NO:1475 |
BM734557.V1.3_at | ATTCTGGTGCTTCAGCAGTCCTGGG | SEQ?ID?NO:1476 |
BM734557.V1.3_at | AGCATGAGGACTTGGCCTTCAGGAA | SEQ?ID?NO:1477 |
BM734557.V1.3_at | TTCAGGAAGCCACTGGCCCAGGAGT | SEQ?ID?NO:1478 |
BM734560.V1.3_at | GTGTTTCCACTTTGGCTCTATCACA | SEQ?ID?NO:1479 |
BM734560.V1.3_at | TTATTTTTGGTAAGTCCCTCTGCAG | SEQ?ID?NO:1480 |
BM734560.V1.3_at | AAGTCCCTCTGCAGTATCAGCTGGA | SEQ?ID?NO:1481 |
BM734560.V1.3_at | TGGAGTGTCCTTAGTACCACAGATT | SEQ?ID?NO:1482 |
BM734560.V1.3_at | GATTAGCCTAGCTCCCCATGAGAGA | SEQ?ID?NO:1483 |
BM734560.V1.3_at | AGGATCCACTAGAGGGCGGGTTACA | SEQ?ID?NO:1484 |
BM734560.V1.3_at | GAGTAGTTGTGTACGCACGCTCACA | SEQ?ID?NO:1485 |
BM734560.V1.3_at | GTGCAAACAACCCAGACGTCGTCAG | SEQ?ID?NO:1486 |
BM734560.V1.3_at | GTAAACCAAGTGTGCTGTGTCCATA | SEQ?ID?NO:1487 |
BM734560.V1.3_at | TTAACTGACACATGCCACAACGGGA | SEQ?ID?NO:1488 |
BM734560.V1.3_at | ACCAGGTAAACCACTAGGCTGCCGG | SEQ?ID?NO:1489 |
BM734564.V1.3_at | GCAATGGTTCTGTCATCGGATCTAA | SEQ?ID?NO:1490 |
BM734564.V1.3_at | ACTGAATAACCTTCCGGTGATCTCC | SEQ?ID?NO:1491 |
BM734564.V1.3_at | GGTGATCTCCAACATGACGGCCACA | SEQ?ID?NO:1492 |
BM734564.V1.3_at | GACGGCCACATTAGACAGTTGCTCA | SEQ?ID?NO:1493 |
BM734564.V1.3_at | GTTGCTCAGCAGCAGATGGCAGTTT | SEQ?ID?NO:1494 |
BM734564.V1.3_at | GCAGTTTGGCTGCAGAAATGCCCAA | SEQ?ID?NO:1495 |
BM734564.V1.3_at | AACTAATTGCTATACCCACTGCAGC | SEQ?ID?NO:1496 |
BM734564.V1.3_at | TTACCAGCACCACCACAGGGACAAT | SEQ?ID?NO:1497 |
BM734564.V1.3_at | TCCCTCACGACGACTGTTGTTCAGG | SEQ?ID?NO:1498 |
BM734564.V1.3_at | GTTGTTCAGGCCACACCAAAGAGTC | SEQ?ID?NO:1499 |
BM734564.V1.3_at | GAGTCCTCCATTAAAACCCATTCAA | SEQ?ID?NO:1500 |
BM734567.V1.3_at | TTGGTGTGCCAATCAAAGTCCTACA | SEQ?ID?NO:1501 |
BM734567.V1.3_at | AGGCCGAGGGCCACATTGTGACATG | SEQ?ID?NO:1502 |
BM734567.V1.3_at | GGTGTATCGTGGGAAGCTCATTGAA | SEQ?ID?NO:1503 |
BM734567.V1.3_at | CGGAGGACAACATGAACTGCCAGAT | SEQ?ID?NO:1504 |
BM734567.V1.3_at | GAGCAGGTGTACATCCGCGGCAGCA | SEQ?ID?NO:1505 |
The probe groups title | Probe sequence | Sequence identifier |
BM734567.V1.3_at | CAGCAAGATCCGCTTCCTGATTTTG | SEQ?ID?NO:1506 |
BM734567.V1.3_at | CCTGATTTTGCCTGACATGCTGAAA | SEQ?ID?NO:1507 |
BM734567.V1.3_at | AAAGCTGCTATTTTGAAGGCCCAAG | SEQ?ID?NO:1508 |
BM734567.V1.3_at | GAACAGAACTTTGCCTCTATTTTTT | SEQ?ID?NO:1509 |
BM734567.V1.3_at | GGGTGTGTGCTTATGTATATGTCCT | SEQ?ID?NO:1510 |
BM734567.V1.3_at | TATGTCCTAGGTTTTCTTTTGTCAA | SEQ?ID?NO:1511 |
BM734568.V1.3_at | TCGTGCTTCCTGATTGGCTGGAGGA | SEQ?ID?NO:1512 |
BM734568.V1.3_at | GGGCTTTGTCACCTGAGCAGTGAAT | SEQ?ID?NO:1513 |
BM734568.V1.3_at | GTGAATTAATGTTGGCATCTGCTCC | SEQ?ID?NO:1514 |
BM734568.V1.3_at | TTGGCATCTGCTCCAAACACTTGGA | SEQ?ID?NO:1515 |
BM734568.V1.3_at | AACACTTGGAGGAGAGCCACGATTT | SEQ?ID?NO:1516 |
BM734568.V1.3_at | GGAATCGTCCTCATGCAGCAGATTA | SEQ?ID?NO:1517 |
BM734568.V1.3_at | GCAGATTATGTTGGCTGATCCCCAT | SEQ?ID?NO:1518 |
BM734568.V1.3_at | ATCCGTGACTGCGTGATGTTTACTG | SEQ?ID?NO:1519 |
BM734568.V1.3_at | TGATGTTTACTGCACCTGGTGTGTA | SEQ?ID?NO:1520 |
BM734568.V1.3_at | GGGCACAGCGATGAACAAACAGACA | SEQ?ID?NO:1521 |
BM734568.V1.3_at | GGACTTACCCTGGTGGAGTTGACCT | SEQ?ID?NO:1522 |
BM734569.V1.3_at | AAAACTGTGCTGTCCTTGTGAGGTC | SEQ?ID?NO:1523 |
BM734569.V1.3_at | TGTGAGGTCACTGCCTGGACATGGC | SEQ?ID?NO:1524 |
BM734569.V1.3_at | GCTGCCTTCCTGTGCCCAGAAAGGA | SEQ?ID?NO:1525 |
BM734569.V1.3_at | GGTCTTCCTCTTAAGGCCAGTTGAA | SEQ?ID?NO:1526 |
BM734569.V1.3_at | GTTGAAGATGGTCCCTTGCAGTTTC | SEQ?ID?NO:1527 |
BM734569.V1.3_at | TTGCAGTTTCCCAAGTTAGGTTAGT | SEQ?ID?NO:1528 |
BM734569.V1.3_at | TAGTGATGTGAAATGCTCCTGCCCC | SEQ?ID?NO:1529 |
BM734569.V1.3_at | AGGCAATTGCTGGTTTTCTTCCCCA | SEQ?ID?NO:1530 |
BM734569.V1.3_at | TCTTCCCCAATTCTTTTCCAATTAG | SEQ?ID?NO:1531 |
BM734569.V1.3_at | GCCTCACCCCTGTTGAGTTTTTAGT | SEQ?ID?NO:1532 |
BM734569.V1.3_at | AGTTTTTAGTCTCTTGTGCTGTGCC | SEQ?ID?NO:1533 |
BM734573.V1.3_at | TGTACACCCTCTCTGTGTCTGGAGA | SEQ?ID?NO:1534 |
BM734573.V1.3_at | GTGGGACCTACGGAACATGGGCTAC | SEQ?ID?NO:1535 |
BM734573.V1.3_at | GGGAGTCCAGCCTCAAGTACCAGAC | SEQ?ID?NO:1536 |
BM734573.V1.3_at | GGGCATTTCCGAACAAGCAGGGTTA | SEQ?ID?NO:1537 |
BM734573.V1.3_at | GTGGCAGTTGAGTACCTGGACCCAA | SEQ?ID?NO:1538 |
BM734573.V1.3_at | GAAGTACGCCTTCAAGTGTCACAGA | SEQ?ID?NO:1539 |
BM734573.V1.3_at | AGATTTACCCGGTCAATGCCATTTC | SEQ?ID?NO:1540 |
BM734573.V1.3_at | AAGCGACTGTGTCAGTTCCATCGGT | SEQ?ID?NO:1541 |
BM734573.V1.3_at | ATCGCATCACTTGCCTTCAGTAATG | SEQ?ID?NO:1542 |
BM734573.V1.3_at | GATGGGACTACACTTGCAATAGCAT | SEQ?ID?NO:1543 |
BM734573.V1.3_at | GGTATCTTCATTCGCCAAGTGACAG | SEQ?ID?NO:1544 |
BM734578.V1.3_at | ATGAGGTCAAAGCTGCTCGAGCCCG | SEQ?ID?NO:1545 |
BM734578.V1.3_at | GAGCCCCTTCACGTGATGGATATTG | SEQ?ID?NO:1546 |
BM734578.V1.3_at | GCCCCGTCGCTCTGTGGAAATTGAA | SEQ?ID?NO:1547 |
BM734578.V1.3_at | AATTGAAGCCTTCTCACAGCATTGC | SEQ?ID?NO:1548 |
BM734578.V1.3_at | GATTTATGCATTTGGCCGTCGTCAA | SEQ?ID?NO:1549 |
BM734578.V1.3_at | TCAAGGGAACATTGCCCACTTCACA | SEQ?ID?NO:1550 |
The probe groups title | Probe sequence | Sequence identifier |
BM734578.V1.3_at | GTACGTGGCAACTGAAGCTTTCTTG | SEQ?ID?NO:1551 |
BM734578.V1.3_at | CTTGTAGTTTGTTTCCCTGTTTGAG | SEQ?ID?NO:1552 |
BM734578.V1.3_at | GAGATATCTGACCTTAGCTTTTCCC | SEQ?ID?NO:1553 |
BM734578.V1.3_at | TGACTTTATTGTTTATCCCCTTCAC | SEQ?ID?NO:1554 |
BM734578.V1.3_at | GTAGCCATGGCAGCTTTTTGCAGTG | SEQ?ID?NO:1555 |
BM734583.V1.3_at | GCACAAAATAACCAAGAACATCCTC | SEQ?ID?NO:1556 |
BM734583.V1.3_at | AGAACATCCTCTTTTTTGGCAGATT | SEQ?ID?NO:1557 |
BM734583.V1.3_at | TTTGGCAGATTTGCCTCACCCTAAA | SEQ?ID?NO:1558 |
BM734583.V1.3_at | ATTTGCCTCACCCTAAAATTGAAAG | SEQ?ID?NO:1559 |
BM734583.V1.3_at | AATTGAAAGGTTCTGTTTCTGCACA | SEQ?ID?NO:1560 |
BM734583.V1.3_at | GGTTCTGTTTCTGCACAGGATTTTG | SEQ?ID?NO:1561 |
BM734583.V1.3_at | CACAGGATTTTGTAATATGAGCTAT | SEQ?ID?NO:1562 |
BM734583.V1.3_at | TATGAGCTATAAGCCTCAGATTTGC | SEQ?ID?NO:1563 |
BM734583.V1.3_at | TAAGCCTCAGATTTGCTCTAGTGCC | SEQ?ID?NO:1564 |
BM734583.V1.3_at | TCAGATTTGCTCTAGTGCCCAAAAT | SEQ?ID?NO:1565 |
BM734583.V1.3_at | CTAGTGCCCAAAATTTAGAGACTTT | SEQ?ID?NO:1566 |
BM734593.V1.3_at | TGACCTTGGAGAACCTCACTGCAGA | SEQ?ID?NO:1567 |
BM734593.V1.3_at | TGATCCCTTTTTCCAGGTTCAGGTG | SEQ?ID?NO:1568 |
BM734593.V1.3_at | AGGTTCAGGTGTTGGTTTCCTCAGC | SEQ?ID?NO:1569 |
BM734593.V1.3_at | ACAAGAGCTCTACGTGGACACCTGG | SEQ?ID?NO:1570 |
BM734593.V1.3_at | GGACATTCCAGCCAACACCAAGGGT | SEQ?ID?NO:1571 |
BM734593.V1.3_at | TGCTCCTCATATTCCTGAAGGTGCC | SEQ?ID?NO:1572 |
BM734593.V1.3_at | TCAGTGCCGTCCTCTGGGTGAACAG | SEQ?ID?NO:1573 |
BM734593.V1.3_at | AGAGCCAGCCTGACCAAGAAAACCT | SEQ?ID?NO:1574 |
BM734593.V1.3_at | CTCGCCCATCAATATCTTGTGCAGA | SEQ?ID?NO:1575 |
BM734593.V1.3_at | AGACCCTGAATCTGATATCCCTTTT | SEQ?ID?NO:1576 |
BM734593.V1.3_at | TTTTCACCCTATTGCCAGAGACTTT | SEQ?ID?NO:1577 |
BM734597.V1.3_at | GCTGCTATACATTCACCGGTAAGAA | SEQ?ID?NO:1578 |
BM734597.V1.3_at | AGAAGATCTCATCTCAGAGGCTGGG | SEQ?ID?NO:1579 |
BM734607.V1.3_at | AAGAGCATTGCGAGAGCGGGCACCA | SEQ?ID?NO:1580 |
BM734607.V1.3_at | CAATGTGTCAGCAGAGCGTGCCGAA | SEQ?ID?NO:1581 |
BM734607.V1.3_at | AAGCACTCGCTGGAGCTTCATGAGG | SEQ?ID?NO:1582 |
BM734607.V1.3_at | TTGCGTGTCAGTTCTGTGAGCTGGC | SEQ?ID?NO:1583 |
BM734607.V1.3_at | TGGCCGTGCGCCTCAGTAAGGCAGA | SEQ?ID?NO:1584 |
BM734607.V1.3_at | GAGATCCATGAGTACCACTGTGGCA | SEQ?ID?NO:1585 |
BM734607.V1.3_at | TGGCCCAGCACAAGGACGTGTGTCA | SEQ?ID?NO:1586 |
BM734607.V1.3_at | GAGATAAGTATTCCCACCACGTGGA | SEQ?ID?NO:1587 |
BM734607.V1.3_at | TAAATGTCGCACAGTCTCAGAGTCT | SEQ?ID?NO:1588 |
BM734607.V1.3_at | GGAAAGCCAAGAATTCCTCCTCCAT | SEQ?ID?NO:1589 |
BM734607.V1.3_at | TCCAAGCCAGGCTGCTGAAGATCAA | SEQ?ID?NO:1590 |
BM734613.V1.3_at | CCAGTGGATTGGTCACCTGCTAGAC | SEQ?ID?NO:1591 |
BM734613.V1.3_at | GGCAGAATCCCCTTACTAAGCAGAT | SEQ?ID?NO:1592 |
BM734613.V1.3_at | GATTTGCTGAATCCGCTTTGTATCA | SEQ?ID?NO:1593 |
BM734613.V1.3_at | CTGCTTTGTACATAGGGCGTGATCC | SEQ?ID?NO:1594 |
BM734613.V1.3_at | CTGTGCCAGGAAGCCATTGCTCAGT | SEQ?ID?NO:1595 |
The probe groups title | Probe sequence | Sequence identifier |
BM734613.V1.3_at | ATTGCTCAGTTCTACCTTTGTTTTT | SEQ?ID?NO:1596 |
BM734613.V1.3_at | TGTACTGCTCAGAATGTGTCCCTCT | SEQ?ID?NO:1597 |
BM734613.V1.3_at | ATTGGTTTAATGGTGACGCCTCCTG | SEQ?ID?NO:1598 |
BM734613.V1.3_at | GATCTGGTCACCTGTGCATTTGTGA | SEQ?ID?NO:1599 |
BM734613.V1.3_at | GAATTAGGCAGATCACCGTCTCTTG | SEQ?ID?NO:1600 |
BM734613.V1.3_at | GTCTCTTGTCTACCCAGTTTAACAA | SEQ?ID?NO:1601 |
BM734661.V1.3_at | GACGCAGACATGCAGATCTTTGTGA | SEQ?ID?NO:1602 |
BM734661.V1.3_at | ATCTTTGTGAAGACCCTGACGGGCA | SEQ?ID?NO:1603 |
BM734661.V1.3_at | GGTTGAGCCCAGTGACACCATTGAG | SEQ?ID?NO:1604 |
BM734661.V1.3_at | AGCAGCGTTTGATTTTTGCCGGCAA | SEQ?ID?NO:1605 |
BM734661.V1.3_at | TTTTGCCGGCAAACAGCTGGAGGAC | SEQ?ID?NO:1606 |
BM734661.V1.3_at | CACTCTCTCAGACTACAATATCCAG | SEQ?ID?NO:1607 |
BM734661.V1.3_at | ATTTGCCGCAAGTGTTATGCTCGCC | SEQ?ID?NO:1608 |
BM734661.V1.3_at | TCGTGCTGTCAACTGCCGCAAGAAG | SEQ?ID?NO:1609 |
BM734661.V1.3_at | GCAAGAAGAAGTGCGGCCACACCAA | SEQ?ID?NO:1610 |
BM734661.V1.3_at | AACCTGCGCCCCAAGAAGAAGGTCA | SEQ?ID?NO:1611 |
BM734661.V1.3_at | GAAGGTCAAATAAGGCCCCTCCTCT | SEQ?ID?NO:1612 |
BM734719.V1.3_at | GAAGCTTCTTCCCACCTAGAAAGAA | SEQ?ID?NO:1613 |
BM734719.V1.3_at | AGAAGTCCTCTCTGAGACTCAAGGG | SEQ?ID?NO:1614 |
BM734719.V1.3_at | AAGGGCTAAGGCAAGGTCTTCCAGA | SEQ?ID?NO:1615 |
BM734719.V1.3_at | ACGCCAATGGGTCAAACTAACTCTG | SEQ?ID?NO:1616 |
BM734719.V1.3_at | TTTCCACTGTCGTCAGAGCCAACAA | SEQ?ID?NO:1617 |
BM734719.V1.3_at | CAAGAAATGACAGCCTCCAAGCCTT | SEQ?ID?NO:1618 |
BM734719.V1.3_at | AAGCCTTCCTAAAAGCACACTTGCC | SEQ?ID?NO:1619 |
BM734719.V1.3_at | GGTGACAACGCTGGCTGCTGAAAGC | SEQ?ID?NO:1620 |
BM734719.V1.3_at | AAAGCCCATGAGCTGCTTCTTTGTT | SEQ?ID?NO:1621 |
BM734719.V1.3_at | TTCTTTGTTCTCTGTCACGGGACAA | SEQ?ID?NO:1622 |
BM734719.V1.3_at | AAAAATCTCTCATCCTATTCTGCTT | SEQ?ID?NO:1623 |
BM734862.V1.3_at | AGCATTGTCATTCCTGTGGCGTGCG | SEQ?ID?NO:1624 |
BM734862.V1.3_at | TGGCGTGCGCACTCGTGACTAAGAG | SEQ?ID?NO:1625 |
BM734862.V1.3_at | CTCGTGACTAAGAGCCTGGTCCTTA | SEQ?ID?NO:1626 |
BM734862.V1.3_at | TTACTGTCCTGTTTGCTGTCACACA | SEQ?ID?NO:1627 |
BM734862.V1.3_at | GAAGTCATTTGGATCCTAGGCCCAT | SEQ?ID?NO:1628 |
BM734862.V1.3_at | ATGAGGATGACCTCTGATCTCCATC | SEQ?ID?NO:1629 |
BM734862.V1.3_at | ATCTACATCCATCTGGCAGTTGTGC | SEQ?ID?NO:1630 |
BM734862.V1.3_at | GGCAGCGACATGAGTTGGATCCGTT | SEQ?ID?NO:1631 |
BM734862.V1.3_at | ACAAAGGTTATTTCTGAGGCTCAGG | SEQ?ID?NO:1632 |
BM734862.V1.3_at | CCCTCATTTCACTGATGACCGTGGG | SEQ?ID?NO:1633 |
BM734900.V1.3_at | GCTGGATTCCGCCTTTGAGGAGCCA | SEQ?ID?NO:1634 |
BM734900.V1.3_at | GAGGAGCCACTCACCAAGAAGATTT | SEQ?ID?NO:1635 |
BM734900.V1.3_at | GAAGATTTTCTTCTTCTCTGGGCGC | SEQ?ID?NO:1636 |
BM734900.V1.3_at | GTGTACACAGGCAAGTCGGCGCTAG | SEQ?ID?NO:1637 |
BM734900.V1.3_at | TAGGCCCGAGGCGTCTGGACAAGCT | SEQ?ID?NO:1638 |
BM734900.V1.3_at | GTGTCAGCCCGGTGGACCAGATGTT | SEQ?ID?NO:1639 |
BM734900.V1.3_at | ACGACGTCTTCCAGTACCGAGAGAA | SEQ?ID?NO:1640 |
The probe groups title | Probe sequence | Sequence identifier |
BM734900.V1.3_at | ACTGGCGCGTGAGTTCCCGGAATGA | SEQ?ID?NO:1641 |
BM734900.V1.3_at | AAGTGGGCTACGTGAGCTTCGACCT | SEQ?ID?NO:1642 |
BM734900.V1.3_at | GAAGGAGCCAGTTTGCCGGTTTCAA | SEQ?ID?NO:1643 |
BM734900.V1.3_at | GGTTTCAAACTGGTGGGTCTGTTCT | SEQ?ID?NO:1644 |
BM735031.V1.3_at | ACTGAGCTTTTGTAAGTCCCGACAC | SEQ?ID?NO:1645 |
BM735031.V1.3_at | AGCGGTCTGGAAGTGCTGTCATCAC | SEQ?ID?NO:1646 |
BM735031.V1.3_at | ATCATAGCTGCCATAGAGTTACTGT | SEQ?ID?NO:1647 |
BM735031.V1.3_at | GAGTTACTGTTTCTCCGTACATAGA | SEQ?ID?NO:1648 |
BM735031.V1.3_at | AGAGGACAGTGCTTCTGACTGGAAT | SEQ?ID?NO:1649 |
BM735031.V1.3_at | GTTAGCATTCACTTTCAACGGGAGA | SEQ?ID?NO:1650 |
BM735031.V1.3_at | TGTGGTCAAATGTTCTCTAGGTCAA | SEQ?ID?NO:1651 |
BM735031.V1.3_at | TAGGTCAACCTTACATAGCATACTT | SEQ?ID?NO:1652 |
BM735031.V1.3_at | AGCAAAATTGGAGCTTCTGAGCCCA | SEQ?ID?NO:1653 |
BM735031.V1.3_at | TGAGCCCAAATCACTGTCACTGTTT | SEQ?ID?NO:1654 |
BM735031.V1.3_at | TCTTTCTTTCAAACTGTGCTGCATG | SEQ?ID?NO:1655 |
BM735054.V1.3_at | GCTGGACTTCCATCACTGGGTGAGA | SEQ?ID?NO:1656 |
BM735054.V1.3_at | GTGAGAGGCTCACCCTGTCATCCAA | SEQ?ID?NO:1657 |
BM735054.V1.3_at | GGGACACTGAATGGCTTCAACCTAC | SEQ?ID?NO:1658 |
BM735054.V1.3_at | AATGGCTTCAACCTACTGGGTGCGC | SEQ?ID?NO:1659 |
BM735054.V1.3_at | AGCCAAGGCTACTGCAGCTGTGGTT | SEQ?ID?NO:1660 |
BM735054.V1.3_at | GTCCTTAGCGGCCAAGATGATGTCC | SEQ?ID?NO:1661 |
BM735054.V1.3_at | AAGATGATGTCCACGGCCGCCATTG | SEQ?ID?NO:1662 |
BM735054.V1.3_at | GGTGGCCACTCTACAGTCCGTGGGA | SEQ?ID?NO:1663 |
BM735054.V1.3_at | CAAAGTCATCCTGGGCTCCACTGGG | SEQ?ID?NO:1664 |
BM735054.V1.3_at | TCATGGCACCCCTGTAATAGCTCCT | SEQ?ID?NO:1665 |
BM735054.V1.3_at | TCAGCCCCGCACAGGAGAGGACTGG | SEQ?ID?NO:1666 |
BM735096.V1.3_at | AGAACAACATCATCACAGCCGAGGG | SEQ?ID?NO:1667 |
BM735096.V1.3_at | TGGGACGCTGCTGCTGTTCAGGAAA | SEQ?ID?NO:1668 |
BM735096.V1.3_at | GAAGTTCGGGCCAGACATCCAGGAT | SEQ?ID?NO:1669 |
BM735096.V1.3_at | GAGAATCTTTATGAGGGCCTGAACC | SEQ?ID?NO:1670 |
BM735096.V1.3_at | AACCTCGATGACTGTTCCATGTACG | SEQ?ID?NO:1671 |
BM735096.V1.3_at | ACATCGGAGACGTCCAGCTGGAGAA | SEQ?ID?NO:1672 |
BM735096.V1.3_at | ATCTGCTGTGCTTCCAATTTGTGTC | SEQ?ID?NO:1673 |
BM735096.V1.3_at | TGGAACGCGGTCTTTTCACAATCTT | SEQ?ID?NO:1674 |
BM735096.V1.3_at | ACAATCTTTCCTGGGAGTGTCCTGA | SEQ?ID?NO:1675 |
BM735096.V1.3_at | GGGTAATGAGCCCTTAATCGCTGCC | SEQ?ID?NO:1676 |
BM735096.V1.3_at | GATTGTAGCAGCCTCGTTAGTGCCA | SEQ?ID?NO:1677 |
BM735170.V1.3_at | TCGTCCTCACTGTTTTTACCTTGAC | SEQ?ID?NO:1678 |
BM735170.V1.3_at | TTTTTACCTTGACTTCAACTGCCCA | SEQ?ID?NO:1679 |
BM735170.V1.3_at | GCTGGAGCTGATTACTGAACTCGTA | SEQ?ID?NO:1680 |
BM735170.V1.3_at | TCGTATTTAATCTCTATTGCCAGTG | SEQ?ID?NO:1681 |
BM735170.V1.3_at | TATTTTTCTGATTGGTTTCCCCTCT | SEQ?ID?NO:1682 |
BM735170.V1.3_at | TGGTTTCCCCTCTTATTGGAAGTAT | SEQ?ID?NO:1683 |
BM735170.V1.3_at | GGAATCATTTGAGGCTTTCAGGTTA | SEQ?ID?NO:1684 |
BM735170.V1.3_at | TTAGCAAGAGCTATGGGCGTTACAT | SEQ?ID?NO:1685 |
The probe groups title | Probe sequence | Sequence identifier |
BM735170.V1.3_at | GGCGTTACATGCTTGTTTTTTCCAA | SEQ?ID?NO:1686 |
BM735170.V1.3_at | GGGAGCTTTGGCATCTTTTTAGATT | SEQ?ID?NO:1687 |
BM735170.V1.3_at | ATCTCTATTTTCTTAATCCAGGGTA | SEQ?ID?NO:1688 |
BM735449.V1.3_at | GTAATATGATTTCCCTTTACTTCCT | SEQ?ID?NO:1689 |
BM735449.V1.3_at | TACCCTTCTGTTAAACTGCTGCTAC | SEQ?ID?NO:1690 |
BM735449.V1.3_at | GCTGCTACTGGAGTTCGCCTTTAAA | SEQ?ID?NO:1691 |
BM735449.V1.3_at | GATTTGAAGTCCTTGGCATCCTGAA | SEQ?ID?NO:1692 |
BM735449.V1.3_at | GTTATATGCCATGTGCTTGTTATGA | SEQ?ID?NO:1693 |
BM735449.V1.3_at | TATGGTATGCCAGGAGACATTCTCC | SEQ?ID?NO:1694 |
BM735449.V1.3_at | GAGACATTCTCCTGATTTTCATTAT | SEQ?ID?NO:1695 |
BM735449.V1.3_at | AATGCTGTTCTTCTTATCTTTTATA | SEQ?ID?NO:1696 |
BM735449.V1.3_at | ATCAATTTCCGTTGTTTCGCTTGTC | SEQ?ID?NO:1697 |
BM735449.V1.3_at | GGTCTACATTAATTTTCCCCAGTCT | SEQ?ID?NO:1698 |
BM735449.V1.3_at | TAATTTTCCCCAGTCTGCATTAGAA | SEQ?ID?NO:1699 |
BM780886.V1.3_at | AAGGACCTGTCCTGGCTGATTAGTT | SEQ?ID?NO:1700 |
BM780886.V1.3_at | CTGATTAGTTGAGGCTGGGACAGCT | SEQ?ID?NO:1701 |
BM780886.V1.3_at | GACAGCTGGAAGGATGACATGACAT | SEQ?ID?NO:1702 |
BM780886.V1.3_at | TCTACACAGCGCATTTTGGAGGACA | SEQ?ID?NO:1703 |
BM780886.V1.3_at | CCCACACTGGGAAACTCTGCTGGTT | SEQ?ID?NO:1704 |
BM780886.V1.3_at | AAACTCTGCTGGTTCCTGGACGAGG | SEQ?ID?NO:1705 |
BM780886.V1.3_at | TGACCGTGCCCTTCGAGAAGCATTC | SEQ?ID?NO:1706 |
BM780886.V1.3_at | GAAGCATTCGGCCTTGTAGCCAGCC | SEQ?ID?NO:1707 |
BM780886.V1.3_at | GAAGAAAGCCGTGGCTGGGCCTTCT | SEQ?ID?NO:1708 |
BM780886.V1.3_at | CGGCGTTTGGCTTCCTTTCAGAAGA | SEQ?ID?NO:1709 |
BM780886.V1.3_at | GGCTTCCTTTCAGAAGAGCTGCCAC | SEQ?ID?NO:1710 |
BM781127.V1.3_at | CAATATGGTCCATCGCGGAGCACGG | SEQ?ID?NO:1711 |
BM781127.V1.3_at | CAACCTGCAGTACCTTCAAGACGAG | SEQ?ID?NO:1712 |
BM781127.V1.3_at | CATAGGCTTTGTGCTAAGCGGCGCT | SEQ?ID?NO:1713 |
BM781127.V1.3_at | AAGCGGCGCTGGGAACTTCATGGAC | SEQ?ID?NO:1714 |
BM781127.V1.3_at | GTGGCTTTGCCTACGTGGAGATCAG | SEQ?ID?NO:1715 |
BM781127.V1.3_at | GATCAGCCCCAAAGAGATGACCGTC | SEQ?ID?NO:1716 |
BM781127.V1.3_at | ATGACCGTCACTTACATCGAAGCTT | SEQ?ID?NO:1717 |
BM781127.V1.3_at | AAGCTTCGGGCAAGTCCCTGTTCAA | SEQ?ID?NO:1718 |
BM781127.V1.3_at | TTCAAGACCAGGCTGCCCAGGAGAG | SEQ?ID?NO:1719 |
BM781127.V1.3_at | GAAAGCAGCATGGACACCGGCCAGA | SEQ?ID?NO:1720 |
BM781127.V1.3_at | GAGGGAAATTTTCTCCTGGATTCAG | SEQ?ID?NO:1721 |
BM781436.V1.3_at | GGCACGAGATCCAGTACCAGCTAGT | SEQ?ID?NO:1722 |
BM781436.V1.3_at | GCTAGTGGACATCTCTCAGGACAAC | SEQ?ID?NO:1723 |
BM781436.V1.3_at | AGGACAACGCCCTGCGGGATGAGAT | SEQ?ID?NO:1724 |
BM781436.V1.3_at | GACTATGAGCTCTTCGTGGAGGCTG | SEQ?ID?NO:1725 |
BM781436.V1.3_at | GCAAAACACGCTGCAGGAGTTCCTG | SEQ?ID?NO:1726 |
BM781436.V1.3_at | GAGTTCCTGAAACTGGCCTAAGCCA | SEQ?ID?NO:1727 |
BM781436.V1.3_at | GTGACCAATTCCCTGTTATTCCTAA | SEQ?ID?NO:1728 |
BM781436.V1.3_at | TATTCCTAACCTTCTGGCCTTGGAG | SEQ?ID?NO:1729 |
BM781436.V1.3_at | TCCTTACCCACTAGTCTCAGAAATT | SEQ?ID?NO:1730 |
The probe groups title | Probe sequence | Sequence identifier |
BM781436.V1.3_at | CTGACACTGGCTGATGGGCACCTAT | SEQ?ID?NO:1731 |
BM781436.V1.3_at | GGGCACCTATGTTGGTTCCATTAGC | SEQ?ID?NO:1732 |
Foe1268.V1.3_at | ATCGGAGCTCATGATGGGCGGCACC | SEQ?ID?NO:1733 |
Foe1268.V1.3_at | AACACGCTGGTGCTGCATAACACAT | SEQ?ID?NO:1734 |
Foe1268.V1.3_at | AACACATGTGAGGACTCTCTCCTGG | SEQ?ID?NO:1735 |
Foe1268.V1.3_at | CATGCTGGATCTGGTACTGCTGACA | SEQ?ID?NO:1736 |
Foe1268.V1.3_at | AGAACTGTGCCAGCGTGTGAGCTTC | SEQ?ID?NO:1737 |
Foe1268.V1.3_at | AGCGCAGCTGCATCGAGAACATCCT | SEQ?ID?NO:1738 |
Foe1268.V1.3_at | AGAACATCCTAAGGGCCTGCGTGGG | SEQ?ID?NO:1739 |
Foe1268.V1.3_at | AGAACCACATGCTTCTGGAGCACAA | SEQ?ID?NO:1740 |
Foe1268.V1.3_at | TGGAGCACAAGATGGAGCGCCCCTG | SEQ?ID?NO:1741 |
Foe1268.V1.3_at | CAACGGCTGTGTCGGTGATGCCAAT | SEQ?ID?NO:1742 |
Foe1268.V1.3_at | AATGGTCATACAAAGGCCGAGGCAC | SEQ?ID?NO:1743 |
GI1305528.V1.3_at | AAGGAGCGCAACGACACCTGTGACA | SEQ?ID?NO:1744 |
GI1305528.V1.3_at | AAGTTCCTGAAGGAGCGGCTTGCTC | SEQ?ID?NO:1745 |
GI1305528.V1.3_at | GTTAAATCGGGCTCTCTGTCTCAGC | SEQ?ID?NO:1746 |
GI1305528.V1.3_at | TAGTTACCCATTCACAGATACCCGA | SEQ?ID?NO:1747 |
GI1305528.V1.3_at | GTCTGTGCTTGTCCTTTAGTGGATA | SEQ?ID?NO:1748 |
GI1305528.V1.3_at | AAGCATTGAGACTAGAGCCCCGCCT | SEQ?ID?NO:1749 |
GI1305528.V1.3_at | CCCGCCTTCATGTAGCATATGCTTT | SEQ?ID?NO:1750 |
GI1305528.V1.3_at | GAGCAGTGCCATTTTCTGGTTAGGA | SEQ?ID?NO:1751 |
GI1305528.V1.3_at | TCAGAGACCGATGTACGTGCAGCAT | SEQ?ID?NO:1752 |
GI1305528.V1.3_at | TTTTTTGTGTTGTCCTTTCGCATAC | SEQ?ID?NO:1753 |
GI1305528.V1.3_at | GCATACCCAGTGTTTTAGGCGTGTG | SEQ?ID?NO:1754 |
WBC004E01_V1.3_at | GGATGTATGCTCAAATGTTCTTTTA | SEQ?ID?NO:1755 |
WBC004E01_V1.3_at | GTTCTTTTAAATACCTCCTGATCAA | SEQ?ID?NO:1756 |
WBC004E01_V1.3_at | TTTACAACCTACTACAGACACCTGG | SEQ?ID?NO:1757 |
WBC004E01_V1.3_at | TCTGACCCTCCTTACTCTATTTTTT | SEQ?ID?NO:1758 |
WBC004E01_V1.3_at | TTGTGTTTTTGAAAGCCTGTCTCCT | SEQ?ID?NO:1759 |
WBC004E01_V1.3_at | AAGCCTGTCTCCTCTTGTGAGAATG | SEQ?ID?NO:1760 |
WBC004E01_V1.3_at | GAACATTTAGTCCTGTTTACGTTTG | SEQ?ID?NO:1761 |
WBC004E01_V1.3_at | TTACGTTTGTACTCCAGCACCAAGA | SEQ?ID?NO:1762 |
WBC004E01_V1.3_at | CAGTACCTGAACATAGAATCCACGT | SEQ?ID?NO:1763 |
WBC004E01_V1.3_at | GGGAAGACTGTTTCAACCAAGATTT | SEQ?ID?NO:1764 |
WBC004E01_V1.3_at | GGTTGGTGACATGCACTTAGGGATA | SEQ?ID?NO:1765 |
WBC005G04_V1.3_at | GATCCAAAGATTGAGGTCCCTACCA | SEQ?ID?NO:1766 |
WBC005G04_V1.3_at | GAGGTCCCTACCAGAATTATCAAAA | SEQ?ID?NO:1767 |
WBC005G04_V1.3_at | TAATCTTCACAAACAAGCATCGGGA | SEQ?ID?NO:1768 |
WBC005G04_V1.3_at | TATGGGTTGTTTGTGTTACATCAGA | SEQ?ID?NO:1769 |
WBC005G04_V1.3_at | GATAAACTTCGACTCTTCTGCTTTC | SEQ?ID?NO:1770 |
WBC005G04_V1.3_at | TCGACTCTTCTGCTTTCAATTGAGA | SEQ?ID?NO:1771 |
WBC005G04_V1.3_at | AGAGGCTGAAACTGACATGTGGAAA | SEQ?ID?NO:1772 |
WBC005G04_V1.3_at | GTTTCATTCAGGTCATCAAGGCTAA | SEQ?ID?NO:1773 |
WBC005G04_V1.3_at | ATCTGAAGTGAAGAACCCTCCTCCA | SEQ?ID?NO:1774 |
WBC005G04_V1.3_at | AGAACCCTCCTCCAAATCAATTGGG | SEQ?ID?NO:1775 |
The probe groups title | Probe sequence | Sequence identifier |
WBC005G04_V1.3_at | TTCAGCAGAAACAGCTCAGCACATT | SEQ?ID?NO:1776 |
WBC007A05_V1.3_at | GAAGGTCTACCAAGCTGTGCAGCAT | SEQ?ID?NO:1777 |
WBC007A05_V1.3_at | TGTGCAGCATAATCGAGCCACGGAA | SEQ?ID?NO:1778 |
WBC007A05_V1.3_at | TTATCTTGTGTTTTACTCCCTTTCA | SEQ?ID?NO:1779 |
WBC007A05_V1.3_at | TACTCCCTTTCATGTGATGTTGCTG | SEQ?ID?NO:1780 |
WBC007A05_V1.3_at | GATGTTGCTGATTCGCTGCATTCTA | SEQ?ID?NO:1781 |
WBC007A05_V1.3_at | GTTGCGGATCCAATTCTGTACTGTT | SEQ?ID?NO:1782 |
WBC007A05_V1.3_at | AAAATTCTGTACTGGGAGGCTCAAC | SEQ?ID?NO:1783 |
WBC007A05_V1.3_at | AAACGCATACCGTCTATGTCTACAA | SEQ?ID?NO:1784 |
WBC007A05_V1.3_at | GAAGACTGTGTTCCATCTGAGTGAA | SEQ?ID?NO:1785 |
WBC007A05_V1.3_at | GTGAATATTTTAATCCTCTCCAGTG | SEQ?ID?NO:1786 |
WBC007A05_V1.3_at | AAAACGCACTGTATTGCTCCTGACT | SEQ?ID?NO:1787 |
WBC007E09_V1.3_at | GGCTGTGTAAGTGACCTAATTAATA | SEQ?ID?NO:1788 |
WBC007E09_V1.3_at | AAGAGTATCGTCTTCCTACGCATAG | SEQ?ID?NO:1789 |
WBC007E09_V1.3_at | TAGGAAGCTTATTCTCTGGAGACAT | SEQ?ID?NO:1790 |
WBC007E09_V1.3_at | ATTGATACTCTCTGATTTAATCCAG | SEQ?ID?NO:1791 |
WBC007E09_V1.3_at | CCAGATCTGGGCTTATTTAACTAAA | SEQ?ID?NO:1792 |
WBC007E09_V1.3_at | ATATTCGACACTGCTGATTTTTTAA | SEQ?ID?NO:1793 |
WBC007E09_V1.3_at | GATGCACTGCACTTTTGATATGTTT | SEQ?ID?NO:1794 |
WBC007E09_V1.3_at | GCCAAATATTTAGGTCTGTCACTGA | SEQ?ID?NO:1795 |
WBC007E09_V1.3_at | TAGTTTTGTGACCTTATTCTCCCCT | SEQ?ID?NO:1796 |
WBC007E09_V1.3_at | CCCCACTTCCTCTGCAAAAAGATTT | SEQ?ID?NO:1797 |
WBC007E09_V1.3_at | AAACGTGGTTTGCAAGGCATTCTAT | SEQ?ID?NO:1798 |
WBC008B04_V1.3_at | AGATATCCTGCCCTGTGTTTTATTC | SEQ?ID?NO:1799 |
WBC008B04_V1.3_at | GTTTTATTCCTGTGTGTTAACCTCA | SEQ?ID?NO:1800 |
WBC008B04_V1.3_at | AGCAAGAAAGTCTGCCCTTTGCCAT | SEQ?ID?NO:1801 |
WBC008B04_V1.3_at | GCGTGTGCGCACGTACATGCATGAG | SEQ?ID?NO:1802 |
WBC008B04_V1.3_at | TGTGGTTTCCAGCTTTGCTGACAGT | SEQ?ID?NO:1803 |
WBC008B04_V1.3_at | GAGAACTTAGCCTCCTAGTATCCAC | SEQ?ID?NO:1804 |
WBC008B04_V1.3_at | CAGTCTCAACTCTGGTTTCTCAAGA | SEQ?ID?NO:1805 |
WBC008B04_V1.3_at | AAGATCTGTCACGTTGGCCTACTAA | SEQ?ID?NO:1806 |
WBC008B04_V1.3_at | GTTGGCCTACTAACTTGACGTCTTC | SEQ?ID?NO:1807 |
WBC008B04_V1.3_at | GATCGCCCAGCGTTTTTAGATTGTA | SEQ?ID?NO:1808 |
WBC008B04_V1.3_at | TTATCTCTTGCTTTGTTACTTTGGG | SEQ?ID?NO:1809 |
WBC009D04_V1.3_at | GCACCTCGAGTATCAGTTCATTCAT | SEQ?ID?NO:1810 |
WBC009D04_V1.3_at | ATTGTGCTGTTACCATGACTCACGC | SEQ?ID?NO:1811 |
WBC009D04_V1.3_at | TGACTCACGCTCTTTGTTGACAGTT | SEQ?ID?NO:1812 |
WBC009D04_V1.3_at | AGGAGCCTGAGAATCTTGGTCCCTC | SEQ?ID?NO:1813 |
WBC009D04_V1.3_at | CTCCAACCTATGTGGCCCAAGTAAA | SEQ?ID?NO:1814 |
WBC009D04_V1.3_at | AACCAACTCCATTTGTTGCTCTGAA | SEQ?ID?NO:1815 |
WBC009D04_V1.3_at | TCTCCAGGGTTTTCTACCTTTGACA | SEQ?ID?NO:1816 |
WBC009D04_V1.3_at | GAGAGATTTGCCCTGTGTTATCCTG | SEQ?ID?NO:1817 |
WBC009D04_V1.3_at | GTCATTAGGACAGCTTCCTTCTTCA | SEQ?ID?NO:1818 |
WBC009D04_V1.3_at | GCACAGCTTCCTTAGCATTTAGCAT | SEQ?ID?NO:1819 |
WBC009D04_V1.3_at | TTTTTAGTTCTCCTGCTTTTGCAAT | SEQ?ID?NO:1820 |
The probe groups title | Probe sequence | Sequence identifier |
WBC010B02_V1.3_at | GACAGCTGCTATGTACTACTTGAAG | SEQ?ID?NO:1821 |
WBC010B02_V1.3_at | GAGATGTTCTTCTCACAATGCCAGC | SEQ?ID?NO:1822 |
WBC010B02_V1.3_at | AATGCCAGCCTGTTGAAGATTAAGA | SEQ?ID?NO:1823 |
WBC010B02_V1.3_at | GAATCATTGGCTGGGATTATCTCCC | SEQ?ID?NO:1824 |
WBC010B02_V1.3_at | TGACACACCCTACAAGCTCTTGGAT | SEQ?ID?NO:1825 |
WBC010B02_V1.3_at | GGATGAGACAATTAGCTCCTCTGAT | SEQ?ID?NO:1826 |
WBC010B02_V1.3_at | CAATTAGCTCCTCTGATTGGTTCAG | SEQ?ID?NO:1827 |
WBC010B02_V1.3_at | CTGTCTGTGAGAAGTTGGCTAATCC | SEQ?ID?NO:1828 |
WBC010B02_V1.3_at | GTAGTCAGTGCATTATTTTGCCTCA | SEQ?ID?NO:1829 |
WBC010B02_V1.3_at | ATTTTGCCTCAGCTATTATCCTGCA | SEQ?ID?NO:1830 |
WBC010B02_V1.3_at | GAGGGCATACATCTTGTGGACGATA | SEQ?ID?NO:1831 |
WBC010C05_V1.3_at | TGGTCACAGCCTCCATAAAACTGGT | SEQ?ID?NO:1832 |
WBC010C05_V1.3_at | AACTGGTAGGTTTTGCTCAACATAC | SEQ?ID?NO:1833 |
WBC010C05_V1.3_at | TATTTGTGAGCAATGGCCTCGCCTA | SEQ?ID?NO:1834 |
WBC010C05_V1.3_at | TCGCCTACGTGTTAGCACATGTCGA | SEQ?ID?NO:1835 |
WBC010C05_V1.3_at | GGGTACTTCGATACACATGGCTAAA | SEQ?ID?NO:1836 |
WBC010C05_V1.3_at | AACACTTTTGTATGTCTTTCTGAAA | SEQ?ID?NO:1837 |
WBC010C05_V1.3_at | GAAGTAAAATGTCAGCCTCTCTCCT | SEQ?ID?NO:1838 |
WBC010C05_V1.3_at | GCTGCTGGCTTTTAACTTCTTTGTA | SEQ?ID?NO:1839 |
WBC010C05_V1.3_at | GGCTATTTTATCGTTTTCTCATTGT | SEQ?ID?NO:1840 |
WBC010C05_V1.3_at | TAATGAGTAACTTCTCCCACTGTGT | SEQ?ID?NO:1841 |
WBC010C05_V1.3_at | GGATCGTCTTTACTGTTTTACTCTC | SEQ?ID?NO:1842 |
WBC012F12_V1.3_at | TTGGTTTGTTTCTACTTTCCTGCTA | SEQ?ID?NO:1843 |
WBC012F12_V1.3_at | ATATTTCCATTTCTCTCGTGTGTAC | SEQ?ID?NO:1844 |
WBC012F12_V1.3_at | CTTCCTCCTAACTTTGCATATCAAA | SEQ?ID?NO:1845 |
WBC012F12_V1.3_at | GGAACTCAGATTCAGTGCTACTTCT | SEQ?ID?NO:1846 |
WBC012F12_V1.3_at | ACTTCTATAGTGTTCTGCCATCTCA | SEQ?ID?NO:1847 |
WBC012F12_V1.3_at | AGTACTCCCAGTGTTGAGTGCCTCA | SEQ?ID?NO:1848 |
WBC012F12_V1.3_at | GAGTGCCTCAGTATTGCGCTTACCA | SEQ?ID?NO:1849 |
WBC012F12_V1.3_at | TACCAGTTTGCCCTGGAGCTGTTAT | SEQ?ID?NO:1850 |
WBC012F12_V1.3_at | TTCTCCTCCTACTGTGAATTTCTGG | SEQ?ID?NO:1851 |
WBC012F12_V1.3_at | AGGCTCTCATTTTTGTCTGTCCCAA | SEQ?ID?NO:1852 |
WBC012F12_V1.3_at | GGAACTCTGTAAGTCCTTTCGAACG | SEQ?ID?NO:1853 |
WBC013G08_V1.3_at | TAGAGGGTATCAATGCCTGGCCCAT | SEQ?ID?NO:1854 |
WBC013G08_V1.3_at | AATGCCTGGCCCATGTTACATAGAA | SEQ?ID?NO:1855 |
WBC013G08_V1.3_at | AGGCATGTACACTTTGATATAGCAG | SEQ?ID?NO:1856 |
WBC013G08_V1.3_at | GATATAGCAGGTTCACCTTAGGAAA | SEQ?ID?NO:1857 |
WBC013G08_V1.3_at | GTTCAGGCATTGCTTTAAACGATGA | SEQ?ID?NO:1858 |
WBC013G08_V1.3_at | TGAATTTAACACATCCATATACTGG | SEQ?ID?NO:1859 |
WBC013G08_V1.3_at | GGAAGACTATGTAGCCAGCAAGTAA | SEQ?ID?NO:1860 |
WBC013G08_V1.3_at | AGTAAATTGACAGTGGAGCTCCATT | SEQ?ID?NO:1861 |
WBC013G08_V1.3_at | CAGTGGAGCTCCATTTTACAAATGT | SEQ?ID?NO:1862 |
WBC013G08_V1.3_at | GTGCAGTCTTACATGTGTACACATA | SEQ?ID?NO:1863 |
WBC013G08_V1.3_at | GAATACGTCTGGAATGATCCATTAG | SEQ?ID?NO:1864 |
WBC016C12_V1.3_at | GTTCTCTTATGGTCCTACTTCTAAA | SEQ?ID?NO:1865 |
The probe groups title | Probe sequence | Sequence identifier |
WBC016C12_V1.3_at | GCTTTATGTTAACTGTGAGGCCGCA | SEQ?ID?NO:1866 |
WBC016C12_V1.3_at | TGAGGCCGCATGTGTCCGTCACTGG | SEQ?ID?NO:1867 |
WBC016C12_V1.3_at | AGGCTGTCCCAGTGTTAATTGTATT | SEQ?ID?NO:1868 |
WBC016C12_V1.3_at | TTTACAGCAGGCCTACTAGACCAGC | SEQ?ID?NO:1869 |
WBC016C12_V1.3_at | TAGACCAGCAGGAAGCATCGCACAT | SEQ?ID?NO:1870 |
WBC016C12_V1.3_at | GCATCGCACATGTCACATTGCACAT | SEQ?ID?NO:1871 |
WBC016C12_V1.3_at | TTGCACATGGGAGCTCAGGTCCTGA | SEQ?ID?NO:1872 |
WBC016C12_V1.3_at | GTCCTGAAGTCAGGCTTCTGTCTGT | SEQ?ID?NO:1873 |
WBC016C12_V1.3_at | CTCTGCTGCCTGTGTTAATATTTCT | SEQ?ID?NO:1874 |
WBC016C12_V1.3_at | TAAACTCTTACCTACGATTACTGTG | SEQ?ID?NO:1875 |
WBC020C09_V1.3_at | AAAGCCATTCCAGCATGTGTGTCCT | SEQ?ID?NO:1876 |
WBC020C09_V1.3_at | GTGCTGCCTCTAATCTAAGCTGGGT | SEQ?ID?NO:1877 |
WBC020C09_V1.3_at | AAGCGACCCTCGAGATTCTGATGAC | SEQ?ID?NO:1878 |
WBC020C09_V1.3_at | GATGACAGTTTTGCCACTGAGCCGT | SEQ?ID?NO:1879 |
WBC020C09_V1.3_at | GTGAGGCCTGGGACAAGTATTTTCT | SEQ?ID?NO:1880 |
WBC020C09_V1.3_at | AGTATTTTCTTCTCTGCTTCAGTTT | SEQ?ID?NO:1881 |
WBC020C09_V1.3_at | GTTTTCCTGAGTACAGTGTCACCAT | SEQ?ID?NO:1882 |
WBC020C09_V1.3_at | ATATCACACTAGAGACAGCCCCTTG | SEQ?ID?NO:1883 |
WBC020C09_V1.3_at | GACAGCCCCTTGTAAAGATCGTGTG | SEQ?ID?NO:1884 |
WBC020C09_V1.3_at | GAAGGGCTACATGATGCTCCTCTGC | SEQ?ID?NO:1885 |
WBC020C09_V1.3_at | ACACACTCTCCTGGGTGTAGCTGGA | SEQ?ID?NO:1886 |
WBC021A01_V1.3_at | TGTCCACGTCACTGAGTGCTGTGAG | SEQ?ID?NO:1887 |
WBC021A01_V1.3_at | GAGAGCCCAGAGGACACTCACGTAT | SEQ?ID?NO:1888 |
WBC021A01_V1.3_at | ACTCACGTATTCAGGTGCCCATTTT | SEQ?ID?NO:1889 |
WBC021A01_V1.3_at | AGATAAAAGCATGCCCTTTCCTGTC | SEQ?ID?NO:1890 |
WBC021A01_V1.3_at | GGTGCAGTTCCATCCATTCTGAATG | SEQ?ID?NO:1891 |
WBC021A01_V1.3_at | AAAAGTGGAGCCTGCCAGTGCTTTC | SEQ?ID?NO:1892 |
WBC021A01_V1.3_at | ATTTCACTGTCGTGGCTGGATAGCA | SEQ?ID?NO:1893 |
WBC021A01_V1.3_at | GAGGGCACCATGTAGTCCTGACGCA | SEQ?ID?NO:1894 |
WBC021A01_V1.3_at | GACGCAGTCCTGTGTGATTCCGTGA | SEQ?ID?NO:1895 |
WBC021A01_V1.3_at | TTTCTGTAACTGTCCTTCCAAACCA | SEQ?ID?NO:1896 |
WBC021A01_V1.3_at | TCTCACCAATGGTTGCTGTTACAGT | SEQ?ID?NO:1897 |
WBC022G05_V1.3_at | ACGTCAGTCTAATAGCACCTGTCAT | SEQ?ID?NO:1898 |
WBC022G05_V1.3_at | CACCTGTCATCTTTTCTGCTTAGAA | SEQ?ID?NO:1899 |
WBC022G05_V1.3_at | TTAGAACCGCTTATCTCGAAACGAT | SEQ?ID?NO:1900 |
WBC022G05_V1.3_at | TGAAATCATGTCTTGCACCCTTGAG | SEQ?ID?NO:1901 |
WBC022G05_V1.3_at | GTTTAGTCTCTGAATACCTTCTCCA | SEQ?ID?NO:1902 |
WBC022G05_V1.3_at | GGGACACATTCATTGAACCACTCAT | SEQ?ID?NO:1903 |
WBC022G05_V1.3_at | AACCACTCATGGCACATCTTAGAAG | SEQ?ID?NO:1904 |
WBC022G05_V1.3_at | GCACATTCATATCATAGGGAGCCGA | SEQ?ID?NO:1905 |
WBC022G05_V1.3_at | GGAGCCGACTGGTTCTCTTATTAGT | SEQ?ID?NO:1906 |
WBC022G05_V1.3_at | GTGTACTATCAGAGTGTGCTTTCGC | SEQ?ID?NO:1907 |
WBC022G05_V1.3_at | TGTGCTTTCGCTCATCTGGATATAC | SEQ?ID?NO:1908 |
WBC024D07_V1.3_at | AAGCAGCGGGACAAGGTGTCTTCTA | SEQ?ID?NO:1909 |
WBC024D07_V1.3_at | AATTCACTTGAGTCCTATGCATTCA | SEQ?ID?NO:1910 |
The probe groups title | Probe sequence | Sequence identifier |
WBC024D07_V1.3_at | GGCTTGACAAGAACCAGACTGCAGA | SEQ?ID?NO:1911 |
WBC024D07_V1.3_at | GGAGAAAGTTTGCAACCCCATCATT | SEQ?ID?NO:1912 |
WBC024D07_V1.3_at | ATTACCAAGCTGTACCAGAGTGCAG | SEQ?ID?NO:1913 |
WBC024D07_V1.3_at | GGTTTCCCTGGTGGTGGAGCTCCTC | SEQ?ID?NO:1914 |
WBC024D07_V1.3_at | GGTGGATTAAGCCAACCCGAGCATA | SEQ?ID?NO:1915 |
WBC024D07_V1.3_at | GCATAGATTTAGCATTGTTCCACAT | SEQ?ID?NO:1916 |
WBC024D07_V1.3_at | TTTGTAGCAAATTCCATGGCAGTTT | SEQ?ID?NO:1917 |
WBC024D07_V1.3_at | ATAACTGGGCATTCTTGATACTTGA | SEQ?ID?NO:1918 |
WBC024D07_V1.3_at | GCACTTTATAGGCACTGTATTGTAA | SEQ?ID?NO:1919 |
WBC024E03_V1.3_at | GCTAAAGGCAAATTCTCTCTCTTGA | SEQ?ID?NO:1920 |
WBC024E03_V1.3_at | GCTTTTCTGTTTGTTATGGGTTTAT | SEQ?ID?NO:1921 |
WBC024E03_V1.3_at | GAAGTACCTTTTCCAAATTCATGAG | SEQ?ID?NO:1922 |
WBC024E03_V1.3_at | CACAGCTGAATATATTCGGCCTTCA | SEQ?ID?NO:1923 |
WBC024E03_V1.3_at | TCGGCCTTCAACATGGTCACTAGTA | SEQ?ID?NO:1924 |
WBC024E03_V1.3_at | AATTGTCTTCACAGTTCTCTCAAGG | SEQ?ID?NO:1925 |
WBC024E03_V1.3_at | GTTCTCTCAAGGGAGCCAGGCTATT | SEQ?ID?NO:1926 |
WBC024E03_V1.3_at | TGACAACAGCTCTCTCAAGGCAAAT | SEQ?ID?NO:1927 |
WBC024E03_V1.3_at | CAAGGCAAATCCTCTTATTTTCCAA | SEQ?ID?NO:1928 |
WBC024E03_V1.3_at | GTGACCGACAAATCATTAACCAGAA | SEQ?ID?NO:1929 |
WBC024E03_V1.3_at | GAAAACTTGGCTGTGTAACTGCATT | SEQ?ID?NO:1930 |
WBC026C03_V1.3_at | GTAGTGGTATCTCATTGTAGTCTTA | SEQ?ID?NO:1931 |
WBC026C03_V1.3_at | GTAGTCTTAATTTGCGTTTCCTCAG | SEQ?ID?NO:1932 |
WBC026C03_V1.3_at | TATGTTCTGTCTTTTTATGTGCTTA | SEQ?ID?NO:1933 |
WBC026C03_V1.3_at | TATGTGCTTATTTGCCGCCCATGTA | SEQ?ID?NO:1934 |
WBC026C03_V1.3_at | ATGTATCTCTTTCTGCCTATTTTTG | SEQ?ID?NO:1935 |
WBC026C03_V1.3_at | GAGTACTAGATCTTTAGCAGCTATG | SEQ?ID?NO:1936 |
WBC026C03_V1.3_at | AAGTCCCAATCTATAGCTTGCCTTT | SEQ?ID?NO:1937 |
WBC026C03_V1.3_at | GCTTGCCTTTTCATGCTTTCAGGGA | SEQ?ID?NO:1938 |
WBC026C03_V1.3_at | GAAATCTTTGCCTAAACCAACATCA | SEQ?ID?NO:1939 |
WBC026C03_V1.3_at | GATTTTCTCTTGTGTTTTCTTCTAG | SEQ?ID?NO:1940 |
WBC026C03_V1.3_at | TATCCAATTGTTCCATACTGTTTGT | SEQ?ID?NO:1941 |
WBC028A02_V1.3_at | AAGGTGGCCACCTATTTTATTGTGA | SEQ?ID?NO:1942 |
WBC028A02_V1.3_at | TTTATTGTGAGCTCTTCCTAGGAAG | SEQ?ID?NO:1943 |
WBC028A02_V1.3_at | GGAAGGCTCCTATTTCAGCAGTTTG | SEQ?ID?NO:1944 |
WBC028A02_V1.3_at | CAGCAGTTTGGTCTGGCTAACTTTA | SEQ?ID?NO:1945 |
WBC028A02_V1.3_at | TAAGCTGACGTTGGCAGGCATTCAA | SEQ?ID?NO:1946 |
WBC028A02_V1.3_at | GGCATTCAAATTCATGTCTCCTTGG | SEQ?ID?NO:1947 |
WBC028A02_V1.3_at | GGGCCAATCTGTTCTATTTTGTGCC | SEQ?ID?NO:1948 |
WBC028A02_V1.3_at | AACTTAGCTGTCTCATCCCAAAAAT | SEQ?ID?NO:1949 |
WBC028A02_V1.3_at | GTGGTTAAGTTTAGTGCACTCCCCT | SEQ?ID?NO:1950 |
WBC028A02_V1.3_at | GTGACCCGGGTTCACAGATTTGGAT | SEQ?ID?NO:1951 |
WBC028A02_V1.3_at | GGATCCTGGATGCAGACCTAGGCCA | SEQ?ID?NO:1952 |
WBC028D07_V1.3_at | AAGACGTGGCTGATGCGCTTCTCCG | SEQ?ID?NO:1953 |
WBC028D07_V1.3_at | GGACTGACCAGTCACTCTCAGAAAA | SEQ?ID?NO:1954 |
WBC028D07_V1.3_at | AAAGGCTGAATCTGCAGAAGCTGCA | SEQ?ID?NO:1955 |
The probe groups title | Probe sequence | Sequence identifier |
WBC028D07_V1.3_at | ATAGGGCCCAGCTGCTGGCAGAGCA | SEQ?ID?NO:1956 |
WBC028D07_V1.3_at | GACTCTCGCTCTTAAACTTCAGGAA | SEQ?ID?NO:1957 |
WBC028D07_V1.3_at | GGAACAGGAACGACTTCTCAAGGAA | SEQ?ID?NO:1958 |
WBC028D07_V1.3_at | GCAGGAGATGCAGGCTATCCGAATG | SEQ?ID?NO:1959 |
WBC028D07_V1.3_at | AGCACCAGCTGGAGTATGTAACATA | SEQ?ID?NO:1960 |
WBC028D07_V1.3_at | ATGTAATTTCCTAACCATCTCTCCT | SEQ?ID?NO:1961 |
WBC028D07_V1.3_at | TCTCTCCTCCACAAGCAATAAGCTG | SEQ?ID?NO:1962 |
WBC028D07_V1.3_at | GATGCTTCCATTTTTGTTGAGCTAT | SEQ?ID?NO:1963 |
WBC029A01_V1.3_at | ATGTGTTCATAAGTGCCAACCGACT | SEQ?ID?NO:1964 |
WBC029A01_V1.3_at | GCCAACCGACTAATTCATCAAACCA | SEQ?ID?NO:1965 |
WBC029A01_V1.3_at | AAACCAACTTGATACTTCAGACCTT | SEQ?ID?NO:1966 |
WBC029A01_V1.3_at | CAGACCTTCAAAACTGTGGCCTGAA | SEQ?ID?NO:1967 |
WBC029A01_V1.3_at | GAGATGTACTCTCAGTGGCAGTATT | SEQ?ID?NO:1968 |
WBC029A01_V1.3_at | GTATTGAACTGCCTTATCTGTAAAT | SEQ?ID?NO:1969 |
WBC029A01_V1.3_at | TGTATAAATTATCCGTCCCTCCTGA | SEQ?ID?NO:1970 |
WBC029A01_V1.3_at | GGGATTATTGCCATCTTACACCATA | SEQ?ID?NO:1971 |
WBC029A01_V1.3_at | GTAGCTTAATCATAATCTCACACTG | SEQ?ID?NO:1972 |
WBC029A01_V1.3_at | GAAGATTTTGCATCACTTTTGCTAT | SEQ?ID?NO:1973 |
WBC029A01_V1.3_at | GAATTTACGCCTTAATGTGTCATTA | SEQ?ID?NO:1974 |
WBC030G08_V1.3_at | GTGTTTAAAACACCGTCTCAAATCA | SEQ?ID?NO:1975 |
WBC030G08_V1.3_at | ACTTTGAATTAGTCTTTTGGCTCTA | SEQ?ID?NO:1976 |
WBC030G08_V1.3_at | TTGGCTCTAAATTTGCCACTTGAAT | SEQ?ID?NO:1977 |
WBC030G08_V1.3_at | GTTCACCTTATTCTATACCAGGGCT | SEQ?ID?NO:1978 |
WBC030G08_V1.3_at | TACCAGGGCTGGCTATTCAGATGAT | SEQ?ID?NO:1979 |
WBC030G08_V1.3_at | AATGCCATGTGCCAATACTTTTCAA | SEQ?ID?NO:1980 |
WBC030G08_V1.3_at | GCCAATACTTTTCAAGGTGCCTTTG | SEQ?ID?NO:1981 |
WBC030G08_V1.3_at | AACGCTCGAGAACTTAACACTTATT | SEQ?ID?NO:1982 |
WBC030G08_V1.3_at | ATGATTTGACTGTATCCTGTACCAA | SEQ?ID?NO:1983 |
WBC030G08_V1.3_at | GTATCCTGTACCAAGACTACTTACC | SEQ?ID?NO:1984 |
WBC030G08_V1.3_at | AGACTACTTACCTTGAATACACCAG | SEQ?ID?NO:1985 |
WBC031E09_V1.3_at | CCAACAGGTTGGTCTGATGGTCTGA | SEQ?ID?NO:1986 |
WBC031E09_V1.3_at | AATCTGATGGGCAGGCCTTGCGATT | SEQ?ID?NO:1987 |
WBC031E09_V1.3_at | GCATGCCTGCTTACTTAATGACTGA | SEQ?ID?NO:1988 |
WBC031E09_V1.3_at | AATGACTGAAACTGTGCACTTTTGT | SEQ?ID?NO:1989 |
WBC031E09_V1.3_at | GTGCACTTTTGTTCTGACACTGAAT | SEQ?ID?NO:1990 |
WBC031E09_V1.3_at | ATTTCCTGTTCCATAATAGTAGTTA | SEQ?ID?NO:1991 |
WBC031E09_V1.3_at | AAGTTTTAGCATGTCCTTAGAGGCA | SEQ?ID?NO:1992 |
WBC031E09_V1.3_at | GGCAAGTATATGCTTCAACACCTAA | SEQ?ID?NO:1993 |
WBC031E09_V1.3_at | GGTACCTTCTTTGCTGAATGTGACA | SEQ?ID?NO:1994 |
WBC031E09_V1.3_at | GTGACAGAATCCATACCAGCTCATG | SEQ?ID?NO:1995 |
WBC031E09_V1.3_at | GTTTTCATCTTTACATATGGCACAT | SEQ?ID?NO:1996 |
WBC032C03_V1.3_at | AAGGATACCATTTTTGGCTCTCCCT | SEQ?ID?NO:1997 |
WBC032C03_V1.3_at | AGTACACAGTTTGACCCAGTGGCCA | SEQ?ID?NO:1998 |
WBC032C03_V1.3_at | AGTGGCCACTGGTTCACAGTACGCC | SEQ?ID?NO:1999 |
WBC032C03_V1.3_at | TGAAACAGTTTGTTCCCAGGCCGTG | SEQ?ID?NO:2000 |
The probe groups title | Probe sequence | Sequence identifier |
WBC032C03_V1.3_at | AGAATCCTGGAGTGGCATGCTGACC | SEQ?ID?NO:2001 |
WBC032C03_V1.3_at | AATGGCTTGCTTCTGCAGAGGATGC | SEQ?ID?NO:2002 |
WBC032C03_V1.3_at | TGCCTCCAGCTTCTTGCTTAAGAAC | SEQ?ID?NO:2003 |
WBC032C03_V1.3_at | AATTTGTTGATTCTCTGCTAGGCCT | SEQ?ID?NO:2004 |
WBC032C03_V1.3_at | ATCACTTTCTTTTCTAGTTCCTTGG | SEQ?ID?NO:2005 |
WBC032C03_V1.3_at | AGTTCCTTGGTTTTCAGCTCAGGCT | SEQ?ID?NO:2006 |
WBC032C03_V1.3_at | AGGCTGCATTCTCTAACTCATACTG | SEQ?ID?NO:2007 |
WBC032G11_V1.3_at | GAAAATACACCCAAGCTCCAAGGCT | SEQ?ID?NO:2008 |
WBC032G11_V1.3_at | TAATGAGTCACCCATCCAGGAGATC | SEQ?ID?NO:2009 |
WBC032G11_V1.3_at | GGAGATCCCAACGTACTAGCAAGTA | SEQ?ID?NO:2010 |
WBC032G11_V1.3_at | AGACTGTCCTAAATCCTGATCAATA | SEQ?ID?NO:2011 |
WBC032G11_V1.3_at | ACATTGTGGGCCTCGAAGTGCTACA | SEQ?ID?NO:2012 |
WBC032G11_V1.3_at | AGGAGTGCACACATCACCTGGAGAT | SEQ?ID?NO:2013 |
WBC032G11_V1.3_at | GAACCTGAATCTGATCAAGCCTCTG | SEQ?ID?NO:2014 |
WBC032G11_V1.3_at | AAGCCTCTGGATCTTGCTTCCAATT | SEQ?ID?NO:2015 |
WBC032G11_V1.3_at | TGCTCCTAAGTAATTCCATGTATGG | SEQ?ID?NO:2016 |
WBC032G11_V1.3_at | GTTAATTATACTCCTCTCTTCTTTG | SEQ?ID?NO:2017 |
WBC032G11_V1.3_at | TCTCTTCTTTGGACTGTGCTTTTGA | SEQ?ID?NO:2018 |
WBC035E08_V1.3_at | GATACTTGGACATCTGCATCTTCAG | SEQ?ID?NO:2019 |
WBC035E08_V1.3_at | TCAGCTTACAAGATCTACAGTGCAT | SEQ?ID?NO:2020 |
WBC035E08_V1.3_at | GATTTCATTCTTTGTTAGCTCACTT | SEQ?ID?NO:2021 |
WBC035E08_V1.3_at | TGTCAACTCATTACTTTTTCCTGTG | SEQ?ID?NO:2022 |
WBC035E08_V1.3_at | GAATTAACTGTCTGTCTGCCTTGTC | SEQ?ID?NO:2023 |
WBC035E08_V1.3_at | CTGCCTTGTCTTAGGGTGTTCTGTA | SEQ?ID?NO:2024 |
WBC035E08_V1.3_at | GGTGTTCTGTAGATCGATTGCCGAT | SEQ?ID?NO:2025 |
WBC035E08_V1.3_at | TCGATTGCCGATTTCTTAAACCTGA | SEQ?ID?NO:2026 |
WBC035E08_V1.3_at | AAACCTGAAATGATCTTTACACTGT | SEQ?ID?NO:2027 |
WBC035E08_V1.3_at | TATTGACACCTTTTACAGATCTTAA | SEQ?ID?NO:2028 |
WBC035E08_V1.3_at | GATCTTAATGTAGCTTTTTCCATAT | SEQ?ID?NO:2029 |
WBC036C09_V1.3_at | GTTGATCCAGTTTGTCCTTTAGGTT | SEQ?ID?NO:2030 |
WBC036C09_V1.3_at | GAATGTGGCCACAGATGCCTTGCTG | SEQ?ID?NO:2031 |
WBC036C09_V1.3_at | ATCTGTCCCCTGAAGACTTGTGAGG | SEQ?ID?NO:2032 |
WBC036C09_V1.3_at | GTGAGGTCCTCTTTTGAAAGCCAAA | SEQ?ID?NO:2033 |
WBC036C09_V1.3_at | AGCTAGGACTTCACATTGCCATTCA | SEQ?ID?NO:2034 |
WBC036C09_V1.3_at | TTGCCATTCAAAACTCTTCTCTCTT | SEQ?ID?NO:2035 |
WBC036C09_V1.3_at | AGAATGATTGCCTTGCTGGTGTCCT | SEQ?ID?NO:2036 |
WBC036C09_V1.3_at | GAACGGCTTTGACCTGACGGTGCCT | SEQ?ID?NO:2037 |
WBC036C09_V1.3_at | AGGGAGCTTGTCTCTAGCGGGTTCA | SEQ?ID?NO:2038 |
WBC036C09_V1.3_at | GTGAACACTTTCCACTTTCTGACAC | SEQ?ID?NO:2039 |
WBC036C09_V1.3_at | TTCTGACACCTGATCCTGATGTATG | SEQ?ID?NO:2040 |
WBC041B04_V1.3_at | GTGTTAACCATGAAAGTACTCGAAG | SEQ?ID?NO:2041 |
WBC041B04_V1.3_at | AAGGGTACATTTCTCCTATGGCCGA | SEQ?ID?NO:2042 |
WBC041B04_V1.3_at | CTATGGCCGATTTCAGGAATTTCAA | SEQ?ID?NO:2043 |
WBC041B04_V1.3_at | GAGAATCCTTCAGTTCATTCACAAA | SEQ?ID?NO:2044 |
WBC041B04_V1.3_at | ATAAAGCCCTGGAGGGCCCTGAGGC | SEQ?ID?NO:2045 |
The probe groups title | Probe sequence | Sequence identifier |
WBC041B04_V1.3_at | CCTGAGGCTCACTGCTGACTGAGAA | SEQ?ID?NO:2046 |
WBC041B04_V1.3_at | GACTGAGAACTCTGTGGAACATGAT | SEQ?ID?NO:2047 |
WBC041B04_V1.3_at | GGAACATGATCCTAGGCACTGAAGT | SEQ?ID?NO:2048 |
WBC041B04_V1.3_at | GGCACTGAAGTATCGACCACTTTCC | SEQ?ID?NO:2049 |
WBC041B04_V1.3_at | ACCACTTTCCTATTTCACCTGATTT | SEQ?ID?NO:2050 |
WBC041B04_V1.3_at | AGAATGGGACCATTTCTCTGTGAAT | SEQ?ID?NO:2051 |
WBC041C11_V1.3_at | AGAGGACTGCCTCGCAATACTTCGT | SEQ?ID?NO:2052 |
WBC041C11_V1.3_at | AATACTTCGTGCTGTTGCTGCTGAC | SEQ?ID?NO:2053 |
WBC041C11_V1.3_at | CTGCCCATGTCAGTGATCATCGTGG | SEQ?ID?NO:2054 |
WBC041C11_V1.3_at | AGCTGGACGCTGATGGTGGACCCCT | SEQ?ID?NO:2055 |
WBC041C11_V1.3_at | GCGTACACGCTCTGGGAAGGCATCT | SEQ?ID?NO:2056 |
WBC041C11_V1.3_at | AGGCATCTGCCCGTGACATAGTGCA | SEQ?ID?NO:2057 |
WBC041C11_V1.3_at | GACATAGTGCAGTTTGTGCCCTACC | SEQ?ID?NO:2058 |
WBC041C11_V1.3_at | AGAAGTACCTGCACAACTGGTCTCC | SEQ?ID?NO:2059 |
WBC041C11_V1.3_at | TCAGGCCTAGATTCCCTTGGAGGGT | SEQ?ID?NO:2060 |
WBC041C11_V1.3_at | AGGGTAAGCTGTGGCCAGTCCTCAG | SEQ?ID?NO:2061 |
WBC041C11_V1.3_at | TATACTTGTTCCTGCTATTTCTGCT | SEQ?ID?NO:2062 |
WBC048H02_V1.3_at | TACACTGTCCAGGATGAGAGCCACT | SEQ?ID?NO:2063 |
WBC048H02_V1.3_at | ATCATTGTCTCCTGTGGCTGGGACA | SEQ?ID?NO:2064 |
WBC048H02_V1.3_at | AGCTGAAGACCAATCACATCGGCCA | SEQ?ID?NO:2065 |
WBC048H02_V1.3_at | AGGCTACCTGAACACTGTCACTGTC | SEQ?ID?NO:2066 |
WBC048H02_V1.3_at | GATCCCTCTGTGCTTCTGGAGGCAA | SEQ?ID?NO:2067 |
WBC048H02_V1.3_at | GGCCAGGCCATGCTTTGGGATTTAA | SEQ?ID?NO:2068 |
WBC048H02_V1.3_at | GGCAAGCACCTTTACACACTAGATG | SEQ?ID?NO:2069 |
WBC048H02_V1.3_at | GGGACATCATCAACGCCTTGTGCTT | SEQ?ID?NO:2070 |
WBC048H02_V1.3_at | AGAAGTTATCAGTACCAGCAGCAAG | SEQ?ID?NO:2071 |
WBC048H02_V1.3_at | AGACTCTGTTTGCTGGCTACACGGA | SEQ?ID?NO:2072 |
WBC048H02_V1.3_at | ATCGGCACCCGCTAGAAATACATGG | SEQ?ID?NO:2073 |
WBC285.gRSP.V1.3_at | GTTTCTGAAAATTCTCTTCTCTCCC | SEQ?ID?NO:2074 |
WBC285.gRSP.V1.3_at | CAACCCCTCAGCTTCTGGATATAAT | SEQ?ID?NO:2075 |
WBC285.gRSP.V1.3_at | GTGCATAATTGTGTATCCTCCTCAA | SEQ?ID?NO:2076 |
WBC285.gRSP.V1.3_at | GATGTTTACACTTTTCCAGACGAGA | SEQ?ID?NO:2077 |
WBC285.gRSP.V1.3_at | CAGATCGTGGATTTCTTTTCCTGTA | SEQ?ID?NO:2078 |
WBC285.gRSP.V1.3_at | AACAGATTCTTCTCACCGATGGTAG | SEQ?ID?NO:2079 |
WBC285.gRSP.V1.3_at | GATGGTCCCAATATGTCAGTTGCTG | SEQ?ID?NO:2080 |
WBC285.gRSP.V1.3_at | CTGGTGCAGTATTCTTTCCGTGATA | SEQ?ID?NO:2081 |
WBC285.gRSP.V1.3_at | ATTGGTGGTCTTGCCTGTATTTTCA | SEQ?ID?NO:2082 |
WBC285.gRSP.V1.3_at | CGGTGCGTTTTATCGGACTGATTCA | SEQ?ID?NO:2083 |
WBC285.gRSP.V1.3_at | ATAAAGGGTGCTGCTCTGAGGCTAG | SEQ?ID?NO:2084 |
WBC31.gFSP.V1.3_at | CAAGGCCCGTGATTTTTCTACCAGA | SEQ?ID?NO:2085 |
WBC31.gFSP.V1.3_at | GTGATTTTTCTACCAGACCTCACTG | SEQ?ID?NO:2086 |
WBC31.gFSP.V1.3_at | TACCAGACCTCACTGCTTTTGTGTT | SEQ?ID?NO:2087 |
WBC31.gFSP.V1.3_at | GACCTCACTGCTTTTGTGTTTAGGA | SEQ?ID?NO:2088 |
WBC31.gFSP.V1.3_at | CTCACTGCTTTTGTGTTTAGGAAAG | SEQ?ID?NO:2089 |
WBC31.gFSP.V1.3_at | GAAAGAGATCATATCTGCCCCAGCT | SEQ?ID?NO:2090 |
The probe groups title | Probe sequence | Sequence identifier |
WBC31.gFSP.V1.3_at | AGAGATCATATCTGCCCCAGCTGGA | SEQ?ID?NO:2091 |
WBC31.gFSP.V1.3_at | TGCCCCAGCTGGATGTTTCGAGGAT | SEQ?ID?NO:2092 |
WBC31.gFSP.V1.3_at | AGCTGGATGTTTCGAGGATCCTCCT | SEQ?ID?NO:2093 |
WBC31.gFSP.V1.3_at | GGATGTTTCGAGGATCCTCCTCCCT | SEQ?ID?NO:2094 |
WBC31.gFSP.V1.3_at | CTCCTCCCTCTAGACATTGGAAGAA | SEQ?ID?NO:2095 |
WBC31.gFSP.V1.3_s_at | AATGCAGATTGAGAGCTCCCTGTCC | SEQ?ID?NO:2096 |
WBC31.gFSP.V1.3_s_at | TGTCCTCAGCCCTGAACTGGGAATT | SEQ?ID?NO:2097 |
WBC31.gFSP.V1.3_s_at | AGGAGACTTAGCTCTACACGCTCAA | SEQ?ID?NO:2098 |
WBC31.gFSP.V1.3_s_at | GTCTCTAGCCAACCAAACTCACAAG | SEQ?ID?NO:2099 |
WBC31.gFSP.V1.3_s_at | GTATAAGCCAGAGGCCCAGTGTTTC | SEQ?ID?NO:2100 |
WBC31.gFSP.V1.3_s_at | CAGTGTTTCCACCAGGCGTGGAGTA | SEQ?ID?NO:2101 |
WBC31.gFSP.V1.3_s_at | AGCTCTGGAGCTGTTAGTGCCTGGT | SEQ?ID?NO:2102 |
WBC31.gFSP.V1.3_s_at | TAGTGCCTGGTGTAACTCTTGCCTC | SEQ?ID?NO:2103 |
WBC31.gFSP.V1.3_s_at | TAGCCCTGTGATTCTGTGCAAGTTA | SEQ?ID?NO:2104 |
WBC31.gFSP.V1.3_s_at | TATTGATTGATCTCTCTAAGCCTCA | SEQ?ID?NO:2105 |
WBC31.gFSP.V1.3_s_at | TAAGCCTCAATTTCCTCATCTGTGA | SEQ?ID?NO:2106 |
WBC31.V1.3_s_at | AATGCAGATTGAGAGCTCCCTGTCC | SEQ?ID?NO:2107 |
WBC31.V1.3_s_at | TGTCCTCAGCCCTGAACTGGGAATT | SEQ?ID?NO:2108 |
WBC31.V1.3_s_at | AGGAGACTTAGCTCTACACGCTCAA | SEQ?ID?NO:2109 |
WBC31.V1.3_s_at | GTCTCTAGCCAACCAAACTCACAAG | SEQ?ID?NO:2110 |
WBC31.V1.3_s_at | GTATAAGCCAGAGGCCCAGTGTTTC | SEQ?ID?NO:2111 |
WBC31.V1.3_s_at | CAGTGTTTCCACCAGGCGTGGAGTA | SEQ?ID?NO:2112 |
WBC31.V1.3_s_at | AGCTCTGGAGCTGTTAGTGCCTGGT | SEQ?ID?NO:2113 |
WBC31.V1.3_s_at | TAGTGCCTGGTGTAACTCTTGCCTC | SEQ?ID?NO:2114 |
WBC31.V1.3_s_at | TAGCCCTGTGATTCTGTGCAAGTTA | SEQ?ID?NO:2115 |
WBC31.V1.3_s_at | TATTGATTGATCTCTCTAAGCCTCA | SEQ?ID?NO:2116 |
WBC31.V1.3_s_at | TAAGCCTCAATTTCCTCATCTGTGA | SEQ?ID?NO:2117 |
WBC422.gRSP.V1.3_at | GGATGTGACTCCTGGTTATGTTCAG | SEQ?ID?NO:2118 |
WBC422.gRSP.V1.3_at | ATGTTCAGTGGACACTCTGCTTAGA | SEQ?ID?NO:2119 |
WBC422.gRSP.V1.3_at | AGATAGACGTGCTCCGGAAGATGGC | SEQ?ID?NO:2120 |
WBC422.gRSP.V1.3_at | GATGGCAGGAACTACCAGCATGGAA | SEQ?ID?NO:2121 |
WBC422.gRSP.V1.3_at | AAATGTGTCATAGGCTGGAGGGCTA | SEQ?ID?NO:2122 |
WBC422.gRSP.V1.3_at | AGACTTTTCCTTCTTGTTACACTCA | SEQ?ID?NO:2123 |
WBC422.gRSP.V1.3_at | GTTACACTCAACAAGGGCATGACTT | SEQ?ID?NO:2124 |
WBC422.gRSP.V1.3_at | GACTTAACTGTGTATTTTGTCTTTA | SEQ?ID?NO:2125 |
WBC422.gRSP.V1.3_at | TGTCTTTACAATCCTTTAGTGCCTG | SEQ?ID?NO:2126 |
WBC422.gRSP.V1.3_at | GGCTCATTTAATGTATGCTTGCTCA | SEQ?ID?NO:2127 |
WBC422.gRSP.V1.3_at | GTCTGTTTGCACATATTTTTAACCA | SEQ?ID?NO:2128 |
WBC44.V1.3_at | AAGATCTGATCTTCAAAGCAGCCAG | SEQ?ID?NO:2129 |
WBC44.V1.3_at | TGGTAGGCAGAATGATGCCCTCCCC | SEQ?ID?NO:2130 |
WBC44.V1.3_at | GATGTCCACACTTTAATCTCCTGAA | SEQ?ID?NO:2131 |
WBC44.V1.3_at | GATGTGATTAAGGTTACCCTGCAGA | SEQ?ID?NO:2132 |
WBC44.V1.3_at | CCAGGATTTTTCAGGTGGGCTCAAT | SEQ?ID?NO:2133 |
WBC44.V1.3_at | AAGAGAGAACCTTCCTAGCTGCTTC | SEQ?ID?NO:2134 |
WBC44.V1.3_at | ATATGATGCTCTGTGCTGGTTCTGA | SEQ?ID?NO:2135 |
The probe groups title | Probe sequence | Sequence identifier |
WBC44.V1.3_at | GGATTGAAGCAAGCCTGCCAACACT | SEQ?ID?NO:2136 |
WBC44.V1.3_at | TGCCAACACTTCGATTTTAGCCTCA | SEQ?ID?NO:2137 |
WBC44.V1.3_at | TTAGCCTCAAGAGACCCATACCTGA | SEQ?ID?NO:2138 |
WBC44.V1.3_at | CCATACCTGACTTCTGACCTATAGA | SEQ?ID?NO:2139 |
WBC881.gRSP.V1.3_at | GCTGCTCTGTCGGTCTGTACAAATA | SEQ?ID?NO:2140 |
WBC881.gRSP.V1.3_at | AACACGACTGGGTCTCGAATACACA | SEQ?ID?NO:2141 |
WBC881.gRSP.V1.3_at | GTTTTTGTGGGTATTGCCTCATTCC | SEQ?ID?NO:2142 |
WBC881.gRSP.V1.3_at | ATTCCATCCCTGAGCTTTGCAGGTA | SEQ?ID?NO:2143 |
WBC881.gRSP.V1.3_at | AACTATGTTCCAGGGTGTTCCTTGT | SEQ?ID?NO:2144 |
WBC881.gRSP.V1.3_at | TTTGTTGCTCTCTTTCCTGGAAATA | SEQ?ID?NO:2145 |
WBC881.gRSP.V1.3_at | GAGACGCTCCTGATTTGTCCATCTA | SEQ?ID?NO:2146 |
WBC881.gRSP.V1.3_at | ATCTACTGCTTTGGTTCCTTGGATC | SEQ?ID?NO:2147 |
WBC881.gRSP.V1.3_at | ATCCACCCATTCTTTCACTTTAAGA | SEQ?ID?NO:2148 |
WBC881.gRSP.V1.3_at | GAGGTCTCTGTATTTTGCAGCTGCC | SEQ?ID?NO:2149 |
WBC881.gRSP.V1.3_at | TTTGCAGCTGCCCTTTTGTAAGAAG | SEQ?ID?NO:2150 |
Table 3
The amino acid subclass
Subclass | Amino acid |
The charged little polarity of acid alkalescence/neutral polarity/big hydrophobicity aromatic series affects the residue of chain orientation | Aspartic acid, L-glutamic acid non-annularity: arginine, Methionin; Ring-type: Histidine aspartic acid, L-glutamic acid, arginine, Methionin, the Histidine glycine, Serine, L-Ala, Threonine, the proline(Pro) l-asparagine, Histidine, glutamine, halfcystine, Serine, the Threonine l-asparagine, glutamine tyrosine, Xie Ansuan, Isoleucine, leucine, methionine(Met), phenylalanine, the tryptophane tryptophane, tyrosine, phenylalanine glycine and proline(Pro) |
Table 4
Exemplary and preferred amino acids replaces
Original residue | Exemplary replacement | The preferred replacement |
Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val | Val、Leu、Ile Lys、Gln、Asn Gln、His、Lys、Arg Glu Ser Asn、His、Lys, Asp、Lys Pro Asn、Gln、Lys、Arg Leu、Val、Met、Ala、Phe、Norleu Norleu、Ile、Val、Met、Ala、Phe Arg、Gln、Asn Leu、Ile、Phe Leu、Val、Ile、Ala Gly Thr Ser Tyr Trp、Phe、Thr、Ser Ile、Leu、Met、Phe、Ala、Norleu | Val Lys Gln Glu Ser Asn Asp Pro Arg Leu Ile Arg Leu Leu Gly Thr Ser Tyr Phe Leu |
Table 5
Gene ordering according to the P value
The gene title | Difference | SE | The T value | The P value |
B1961481.V1.3_at WBC026C03_V1.3_at WBC005G04_V1.3_at WBC020C09_V1.3_at WBC007A05_V1.3_at B1961581.V1.3_at BM735170.V1.3_at WBC010C05_V1.3_at B1961434.V1.3_at WBC009D04_V1.3_at B1961434.V1.3_s_at BM780886.V1.3_at WBC004E01_V1.3_at B1961659.V1.3_at WBC008B04_V1.3_at B1961054.V1.3_at BM735449.V1.3_at WBC029A01_V1.3_at BM781436.V1.3_at BM735054.V1.3_at WBC31.V1.3_s_at BM734900.V1.3_at B1961438.V1.3_at B1961550.V1.3_at WBC31.gFSP.V1.3_s_at BM734862.V1.3_at WBC041B04_V1.3_at WBC422.gRSP.V1.3_at WBC007E09_V1.3_at BM735031.V1.3_at WBC013G08_V1.3_at BM735096.V1.3_at GI1305528.V1.3_at WBC881.gRSP.V1.3_at WBC44.V1.3_at WBC041C11_V1.3_at WBC036C09_V1.3_at WBC285.gRSP.V1.3_at WBC030G08_V1.3_at WBC024D07_V1.3_at WBC031E09_V1.3_at BM734613.V1.3_at WBC012F12_V1.3_at BM734661.V1.3_at WBC022G05_V1.3_at WBC032G11_V1.3_at WBC028A02_V1.3_at | 1.666322507 1.150792386 0.894442963 -1.975434651 0.785659357 -0.451711505 1.433067223 1.441977213 3.424431972 0.592808107 3.161162105 -0.415531897 0.784558644 1.551889116 -0.678906889 3.826550139 1.170277871 0.879852727 -0.314495364 1.551493311 -0.680666497 -1.516282343 -0.440498303 1.3425348 -0.591039401 -0.437281772 2.184025458 2.280789862 0.843052247 1.059207378 1.604484661 -0.527142962 1.698015694 -0.462008718 0.616616596 -0.303160563 -0.403578085 -0.519857227 0.657348571 0.345066898 0.945682519 -0.195796173 1.423082668 -0.171573177 0.598971114 0.74658497 -0.471494416 | 0.155216771 0.126397807 0.099099842 0.227309869 0.094470794 0.055606081 0.18234517 0.189449588 0.456186048 0.081892899 0.439488349 0.057815618 0.110780118 0.219186785 0.097154867 0.547819858 0.167733159 0.127554003 0.045881808 0.228178727 0.100518591 0.22417215 0.065266955 0.199300914 0.087840965 0.065682696 0.331137896 0.346757118 0.12836437 0.161421311 0.246581348 0.08133936 0.262662758 0.071869337 0.095944624 0.047586732 0.063531632 0.082704672 0.104593529 0.054910514 0.150758028 0.031448406 0.230285511 0.027859225 0.097369199 0.122452588 0.077361546 | 10.735454 9.10452809 9.02567496 -8.690492245 8.31642587 -8.123419151 7.859090675 7.611403272 7.506656526 7.23882188 7.192823458 -7.187191162 7.082125009 7.080212956 -6.98788343 6.985051894 6.977021578 6.897884067 -6.854467519 6.799465195 -6.771548352 -6.763919336 -6.749178129 6.736219995 -6.72851668 -6.657488225 6.595516498 6.577485351 6.567649944 6.561756739 6.506918213 -6.48078572 6.464622952 -6.428453908 6.426796735 -6.370695093 -6.352396027 -6.28570571 6.284791949 6.284168071 6.272850147 -6.225948974 6.179644819 -6.158576752 6.151546063 6.096930933 -6.094687073 | 3.42E-12 1.76E-09 2.40E-09 8.93E-09 3.90E-08 8.36E-08 2.38E-07 6.36E-07 9.64E-07 2.79E-06 3.34E-06 3.42E-06 5.18E-06 5.22E-06 7.51E-06 7.60E-06 7.84E-06 1.07E-05 1.27E-05 1.58E-05 1.76E-05 1.82E-05 1.92E-05 2.02E-05 2.09E-05 2.76E-05 3.52E-05 3.78E-05 3.92E-05 4.01E-05 4.98E-05 5.51E-05 5.87E-05 6.76E-05 6.81E-05 8.48E-05 9.10E-05 0.000118084 0.000118467 0.000118717 0.000124039 0.00014889 0.000178261 0.000193428 0.000198726 0.000245632 0.0002477 |
The gene title | Difference | SE | The T value | The P value |
WBC024E03_V1.3_at BM734607.V1.3_at Foe1268.V1.3_at WBC035E08_V1.3_at BM734719.V1.3_at BM781127.V1.3_at WBC048H02_V1.3_at B1961469.V1.3_at WBC021A01_V1.3_at B1961499.V1.3_at B1961690.V1.3_at WBC016C12_V1.3_at WBC032C03_V1.3_at WBC028D07_V1.3_at WBC010B02_V1.3_at B1961567.V1.3_at | 0.478892417 1.687765982 -0.658520375 0.627315382 -0.480084044 -0.411205914 -0.147436743 0.597662751 -0.33752016 -0.204864013 -0.189758849 -0.403364998 -0.27218489 1.186413699 0.794652845 0.639519337 | 0.078794071 0.277888053 0.109329632 0.104346849 0.080066503 0.068820452 0.024739757 0.100424518 0.057261491 0.034949361 0.032616546 0.069604438 0.047411852 0.208543617 0.13993627 0.117658674 | 6.077772226 6.073546394 -6.023256108 6.011828676 -5.9960661 -5.975053959 -5.959506446 5.951362912 -5.894365583 -5.861738376 -5.817870785 -5.79510457 -5.740861829 5.689043457 5.678676762 5.435377724 | 0.000264421 0.000268705 0.000326329 0.000340982 0.000362314 0.000392606 0.000416788 0.00042997 0.00053523 0.000606722 0.000717784 0.000782617 0.000962987 0.001173814 0.001220044 0.003046977 |
Table 6
Gene ordering according to the T value
Difference | SE | The T value | The P value | |
WBC020C09_V1.3_at B1961581.V1.3_at BM780886.V1.3_at WBC008B04_V1.3_at BM781436.V1.3_at WBC31.V1.3_s_at BM734900.V1.3_at B1961438.V1.3_at WBC31.gFSP.V1.3_s_at BM734862.V1.3_at BM735096.V1.3_at WBC881.gRSP.V1.3_at WBC041C11_V1.3_at WBC036C09_V1.3_at WBC285.gRSP.V1.3_at BM734613.V1.3_at BM734661.V1.3_at WBC028A02V_1.3_at Foe1268.V1.3_at BM734719.V1.3_at BM781127.V1.3_at WBC048H02_V1.3_at WBC021A01_V1.3_at B1961499.V1.3_at B1961690.V1.3_at WBC016C12_V1.3_at WBC032C03_V1.3_at B1961567.V1.3_at WBC010B02_V1.3_at WBC028D07_V1.3_at B1961469.V1.3_at WBC035E08_V1.3_at BM734607.V1.3_at WBC024E03_V1.3_at WBC032G11_V1.3_at WBC022G05_V1.3_at WBC012F12_V1.3_at WBC031E09_V1.3_at WBC024D07_V1.3_at WBC030G08_V1.3_at WBC44.V1.3_at GI1305528.V1.3_at WBC013G08V1.3_at BM735031.V1.3_at WBC007E09_V1.3_at WBC422.gRSP.V1.3_at WBC041B04_V1.3_at | -1.975434651 -0.451711505 -0.415531897 -0.678906889 -0.314495364 -0.680666497 -1.516282343 -0.440498303 -0.591039401 -0.437281772 -0.527142962 -0.462008718 -0.303160563 -0.403578085 -0.519857227 -0.195796173 -0.171573177 -0.471494416 -0.658520375 -0.480084044 -0.411205914 -0.147436743 -0.33752016 -0.204864013 -0.189758849 -0.403364998 -0.27218489 0.639519337 0.794652845 1.186413699 0.597662751 0.627315382 1.687765982 0.478892417 0.74658497 0.598971114 1.423082668 0.945682519 0.345066898 0.657348571 0.616616596 1.698015694 1.604484661 1.059207378 0.843052247 2.280789862 2.184025458 | 0.227309869 0.055606081 0.057815618 0.097154867 0.045881808 0.100518591 0.22417215 0.065266955 0.087840965 0.065682696 0.08133936 0.071869337 0.047586732 0.063531632 0.082704672 0.031448406 0.027859225 0.077361546 0.109329632 0.080066503 0.068820452 0.024739757 0.057261491 0.034949361 0.032616546 0.069604438 0.047411852 0.117658674 0.13993627 0.208543617 0.100424518 0.104346849 0.277888053 0.078794071 0.122452588 0.097369199 0.230285511 0.150758028 0.054910514 0.104593529 0.095944624 0.262662758 0.246581348 0.161421311 0.12836437 0.346757118 0.331137896 | -8.690492245 -8.123419151 -7.187191162 -6.98788343 -6.854467519 -6.771548352 -6.763919336 -6.749178129 -6.72851668 -6.657488225 -6.48078572 -6.428453908 -6.370695093 -6.352396027 -6.28570571 -6.225948974 -6.158576752 -6.094687073 -6.023256108 -5.9960661 -5.975053959 -5.959506446 -5.894365583 -5.861738376 -5.817870785 -5.79510457 -5.740861829 5.435377724 5.678676762 5.689043457 5.951362912 6.011828676 6.073546394 6.077772226 6.096930933 6.151546063 6.179644819 6.272850147 6.284168071 6.284791949 6.426796735 6.464622952 6.506918213 6.561756739 6.567649944 6.577485351 6.595516498 | 8.93E-09 8.36E-08 3.42E-06 7.51E-06 1.27E-05 1.76E-05 1.82E-05 1.92E-05 2.09E-05 2.76E-05 5.51E-05 6.76E-05 8.48E-05 9.10E-05 0.000118084 0.00014889 0.000193428 0.0002477 0.000326329 0.000362314 0.000392606 0.000416788 0.00053523 0.000606722 0.000717784 0.000782617 0.000962987 0.003046977 0.001220044 0.001173814 0.00042997 0.000340982 0.000268705 0.000264421 0.000245632 0.000198726 0.000178261 0.000124039 0.000118717 0.000118467 6.81E-05 5.87E-05 4.98E-05 4.01E-05 3.92E-05 3.78E-05 3.52E-05 |
Difference | SE | The T value | The P value | |
B1961550.V1.3_at BM735054.V1.3_at WBC029A01_V1.3_at BM735449.V1.3_at B1961054.V1.3_at B1961659.V1.3_at WBC004E01_V1.3_at B1961434.V1.3_s_at WBC009D04_V1.3_at B1961434.V1.3_at WBC010C05_V1.3_at BM735170.V1.3_at WBC007A05_V1.3_at WBC005G04_V1.3_at WBC026C03_V1.3_at B1961481.V1.3_at | 1.3425348 1.551493311 0.879852727 1.170277871 3.826550139 1.551889116 0.784558644 3.161162105 0.592808107 3.424431972 1.441977213 1.433067223 0.785659357 0.894442963 1.150792386 1.666322507 | 0.199300914 0.228178727 0.127554003 0.167733159 0.547819858 0.219186785 0.110780118 0.439488349 0.081892899 0.456186048 0.189449588 0.18234517 0.094470794 0.099099842 0.126397807 0.155216771 | 6.736219995 6.799465195 6.897884067 6.977021578 6.985051894 7.080212956 7.082125009 7.192823458 7.23882188 7.506656526 7.611403272 7.859090675 8.31642587 9.02567496 9.10452809 10.735454 | 2.02E-05 1.58E-05 1.07E-05 7.84E-06 7.60E-06 5.22E-06 5.18E-06 3.34E-06 2.79E-06 9.64E-07 6.36E-07 2.38E-07 3.90E-08 2.40E-09 1.76E-09 3.42E-12 |
Table 7
EHV-1 group 1: the mean value of clinical and hematologic parameter
The 0th day | The 2nd day | The 4th day | The 6th day | The 13rd day | The 20th day | F ratio | The P value | |
HR RR Temp PCV TSP Fib WCC Neuts Lymphs | 52.45 27.48 38.15 34.4006 61.6314 1.8429 10.3866 5.491 4.0605 | 54.95 22.66 38.10 33.2173 61.9314 3.1263 12.3899 6.0105 5.5708 | 54.68 37.16 39.37 33.779 67.3297 2.1113 9.4875 4.933 4.0228 | 47.95 28.66 37.87 32.7173 60.1814 3.3763 11.1899 5.3505 5.2033 | 47.48 20.72 38.45 32.979 65.3297 0.9113 9.4695 3.927 4.3228 | 52.45 19.66 37.95 35.2173 65.9314 3.3763 9.4899 3.813 4.3983 | 3.79 3.06 9.81 0.535 4.563 5.871 4.443 3.331 5.736 | 0.019 0.04 0 0.747 0.009 0.003 0.01 0.03 0.003 |
The HR=heart rate, RR=respiration rate, Temp=rectal temperature, PCV=hematocrit cell volume (blood), TSP=total serum protein, Fib=fibrinogen, WCC=-white blood cell count(WBC), Neut=neutrophil, Lymphs=lymphocyte.
Table 8
My god | Sensitivity | Specificity | AUC-is original | AUC-Lloyd |
2 | 1.000 | 0.800 | 1 | 0.886 |
4 | 1.000 | 0.800 | 1.000 | 0.941 |
13 | 0.667 | 0.400 | 0.500 | 0.467 |
20 | 0.500 | 0.800 | 0.700 | 0.645 |
Table 9
Organize the prediction classification and discriminating scoring of 2 young each sample of coltfoal
Date | Horse ID | The fate of test | Male/female | Gene expression index |
On May 19, on May 12,2003 on May 5,2003 on May 3,2003 on May 1,2003 on April 29,2003 on April 14,2003 on April 10,2003 on April 12,2003 2003 on the 8th April in 2003 | 360 360 360 360 360 360 360 360 360 360 | 0 2 4 6 21 23 25 27 34 41 | Negative positive negative | -0.09 0.43 -1.55 -1.73 -1.45 -0.91 -0.78 -1.52 -2.28 -2.74 |
On May 19, on May 12,2003 on May 3,2003 on May 1,2003 on April 29,2003 on April 28,2003 on April 12,2003 on April 14,2003 on April 10,2003 on April 12,2003 2003 on the 8th April in 2003 | 362 362 362 362 362 362 362 362 362 362 362 | 0 2 4 6 13 20 21 23 25 34 41 | Positive negative positive negative negative negative | 1.69 0.96 -0.56 0.51 -1.45 -2.41 -1.31 -1.08 -1.97 -1.28 -2.33 |
On May 19, on May 12,2003 on May 5,2003 on May 3,2003 on May 1,2003 on April 29,2003 on April 28,2003 on April 14,2003 on April 14,2003 on April 10,2003 on April 12,2003 2003 on the 8th April in 2003 | 364 364 364 364 364 364 364 364 364 364 364 364 | 0 2 4 6 13 20 21 23 25 27 34 41 | Positive negative negative positive negative negative | 0.45 -0.08 -1.03 -1.31 -1.02 -1.5 0.03 -0.32 -0.74 -1.56 -1.35 -1.51 |
On April 12, on April 14,2003 on April 10,2003 on April 12,2003 2003 on the 8th April in 2003 | 366 366 366 366 366 | 0 2 4 6 13 | Negative negative | -1.68 -1.42 -2.09 -1.68 -0.75 |
On May 19, on May 11,2003 on May 5,2003 on May 3,2003 on April 29,2003 on May 1,2003 2003 on the 28th April in 2003 | 366 366 366 366 366 366 366 | 20 21 23 25 27 34 41 | Negative negative negative | -1.97 -0.76 -0.92 -1.34 -1.17 -1.41 -1.68 |
On May 19, on May 12,2003 on May 5,2003 on May 3,2003 on May 1,2003 on April 29,2003 on April 28,2003 on April 12,2003 on April 14,2003 on April 10,2003 on April 12,2003 2003 on the 8th April in 2003 | 368 368 368 368 368 368 368 368 368 368 368 368 | 0 2 4 6 13 20 21 23 25 27 34 41 | Positive negative negative positive negative negative | 1.22 0.95 -2.02 -0.9 -2.08 -1.54 -1.97 -1.34 0.37 -0.48 -3.54 -1.96 |
On May 19, on May 12,2003 on May 5,2003 on May 3,2003 on May 1,2003 on April 29,2003 on April 28,2003 on April 12,2003 on April 14,2003 on April 10,2003 on April 12,2003 2003 on the 8th April in 2003 | 369 369 369 369 369 369 369 369 369 369 369 369 | 0 2 4 6 13 20 21 23 25 27 34 41 | Negative positive negative negative | -0.86 -1 1.18 -0.61 -1.14 -1.21 -1.19 -1.77 -1.19 -1.99 -1.53 -1.52 |
On May 19, on May 12,2003 on May 5,2003 on May 3,2003 on May 1,2003 on April 29,2003 on April 28,2003 on April 12,2003 on April 14,2003 on April 10,2003 on April 12,2003 2003 on the 8th April in 2003 | 375 375 375 375 375 375 375 375 375 375 375 375 | 0 2 4 6 13 20 21 23 25 27 34 41 | Negative positive positive negative | -2.15 1.97 1.66 0.66 -1.11 -0.6 -1.1 -2.47 -2.4 -0.67 -4.03 -1 |
Table 10
Two kinds of genes selecting
Sensitivity | Specificity | The result | Gene 1 | Gene 2 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | WBC881 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | WBC007A05 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | BM735054 |
0.8913 | 0.8621 | 0.8800 | WBC012F12 | WBC026C03 |
0.8913 | 0.8621 | 0.8800 | WBC032G11 | WBC026C03 |
0.8913 | 0.8621 | 0.8800 | BM781127 | WBC026C03 |
0.8913 | 0.8621 | 0.8800 | B1961659 | WBC026C03 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | BM734719 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | BM734719 |
0.8913 | 0.8621 | 0.8800 | WBC007E09 | WBC026C03 |
0.9130 | 0.8276 | 0.8800 | B1961499 | GI1305528 |
0.8913 | 0.8621 | 0.8800 | B1961567 | WBC026C03 |
0.9130 | 0.8276 | 0.8800 | GI1305528 | B1961499 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | WBC032G11 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | BM781127 |
0.8913 | 0.8621 | 0.8800 | B1961567 | WBC026C03 |
0.8913 | 0.8621 | 0.8800 | WBC031E09 | WBC026C03 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | WBC881 |
0.8913 | 0.8621 | 0.8800 | BM735449 | WBC026C03 |
0.9130 | 0.8276 | 0.8800 | GI1305528 | B1961499 |
Table 11
Select 3 kinds of genes
Sensitivity | Specificity | The result | Gene 1 | Gene 2 | Gene 3 |
0.9348 | 0.8276 | 0.8933 | WBC028A02 | B1961499 | WBC024D07 |
0.9348 | 0.7931 | 0.8800 | BM780886 | GI1305528 | BM735096 |
0.8913 | 0.8621 | 0.8800 | WBC041C11 | WBC026C03 | BM734900 |
0.9348 | 0.7931 | 0.8800 | WBC048H02 | WBC020C09 | BM734900 |
0.8913 | 0.8621 | 0.8800 | WBC020C09 | WBC026C03 | WBC881 |
0.9130 | 0.8276 | 0.8800 | WBC026C03 | B1961581 | BM735096 |
0.9565 | 0.7586 | 0.8800 | WBC44 | BM734862 | B1961690 |
0.9565 | 0.7586 | 0.8800 | B1961499 | BM734607 | WBC048H02 |
0.8913 | 0.8621 | 0.8800 | WBC020C09 | WBC007E09 | WBC026C03 |
0.8913 | 0.8621 | 0.8800 | WBC010B02 | WBC026C03 | WBC881 |
0.9130 | 0.8276 | 0.8800 | Foe1268 | WBC31 | WBC048H02 |
0.9565 | 0.7586 | 0.8800 | WBC041B04 | B1961438 | BM734862 |
0.9130 | 0.8276 | 0.8800 | WBC010C05 | B1961438 | WBC041B04 |
0.9130 | 0.8276 | 0.8800 | WBC31 | Foe1268 | WBC048H02 |
0.8913 | 0.8621 | 0.8800 | WBC022G05 | WBC048H02 | WBC020C09 |
0.8913 | 0.8621 | 0.8800 | WBC022G05 | WBC048H02 | B1961581 |
0.8913 | 0.8276 | 0.8667 | WBC048H02 | B1961054 | BM735170 |
0.8913 | 0.8276 | 0.8667 | BM735054 | WBC026C03 | BM735449 |
0.9130 | 0.7931 | 0.8667 | WBC028A02 | WBC048H02 | B1961481 |
0.9130 | 0.7931 | 0.8667 | WBC012F12 | B1961499 | BM734613 |
Table 12
Select 4 kinds of genes
Sensitivity | Specificity | The result | Gene 1 | Gene 2 | Gene 3 | Gene 4 |
0.9348 | 0.8621 | 0.9067 | B1961054 | WBC009D04 | B1961481 | B1961499 |
0.9565 | 0.8276 | 0.9067 | WBC009D04 | WBC021A01 | B1961499 | WBC048H02 |
0.9348 | 0.8276 | 0.8933 | WBC009D04 | WBC422 | BM734719 | B1961481 |
0.9130 | 0.8621 | 0.8933 | B1961469 | B1961481 | B1961434 | WBC009D04 |
0.9565 | 0.7931 | 0.8933 | WBC44 | WBC016C12 | B1961499 | BM735096 |
0.9130 | 0.8276 | 0.8800 | WBC048H02 | B1961499 | WBC31 | WBC041B04 |
0.9130 | 0.8276 | 0.8800 | WBC048H02 | WBC026C03 | WBC005G04 | B1961581 |
0.9130 | 0.8276 | 0.8800 | B1961499 | WBC024D07 | WBC005G04 | WBC048H02 |
0.9348 | 0.7931 | 0.8800 | BM735096 | WBC010B02 | WBC041B04 | WBC024E03 |
0.9565 | 0.7586 | 0.8800 | BM735054 | WBC013G08 | B1961690 | BM735096 |
0.9130 | 0.8276 | 0.8800 | B1961581 | B1961438 | GI1305528 | WBC020C09 |
0.9348 | 0.7931 | 0.8800 | B1961499 | BM735054 | WBC007A05 | BM735096 |
0.9130 | 0.8276 | 0.8800 | WBC022G05 | GI1305528 | BM735096 | BM734862 |
0.8913 | 0.8621 | 0.8800 | WBC041C11 | WBC048H02 | WBC020C09 | WBC030G08 |
0.9348 | 0.7931 | 0.8800 | WBC041B04 | B1961659 | WBC31 | B1961499 |
0.9348 | 0.7931 | 0.8800 | WBC022G05 | B1961438 | BM780886 | B1961499 |
0.9130 | 0.8276 | 0.8800 | WBC036C09 | WBC285 | B1961581 | WBC041B04 |
0.8913 | 0.8621 | 0.8800 | WBC026C03 | BM734900 | WBC032G11 | WBC031E09 |
0.9130 | 0.8276 | 0.8800 | BM735054 | WBC022G05 | WBC041C11 | WBC048H02 |
0.9130 | 0.8276 | 0.8800 | WBC048H02 | WBC021A01 | BM780886 | BM735054 |
Table 13
Select 5 kinds of genes
Sensitivity | Specificity | The result | Gene 1 | Gene 2 | Gene 3 | Gene 4 | Gene 5 |
0.9348 | 0.8621 | 0.9067 | BM734900 | BM734719 | WBC028D07 | B1961481 | WBC041B04 |
0.9348 | 0.8621 | 0.9067 | WBC048H02 | BM735096 | WBC029A01 | B1961581 | WBC026C03 |
0.9348 | 0.8276 | 0.8933 | WBC031E09 | WBC029A01 | B1961499 | WBC048H02 | WBC007A05 |
0.8913 | 0.8966 | 0.8933 | WBC31 | BM735054 | B1961054 | B1961481 | WBC029A01 |
0.9130 | 0.8621 | 0.8933 | B1961054 | B1961481 | BM735054 | BM734607 | BM735096 |
0.9565 | 0.7931 | 0.8933 | B1961054 | WBC009D04 | WBC048H02 | B1961438 | B1961499 |
0.9348 | 0.8276 | 0.8933 | B1961499 | B1961481 | B1961434 | B1961690 | WBC028D07 |
0.9348 | 0.8276 | 0.8933 | B1961054 | WBC009D04 | WBC024D07 | BM735449 | B1961481 |
0.8913 | 0.8966 | 0.8933 | WBC048H02 | WBC022G05 | B1961581 | WBC44 | WBC041C11 |
0.9130 | 0.8621 | 0.8933 | BM735449 | B1961434 | WBC009D04 | B1961481 | BM734862 |
0.8913 | 0.8966 | 0.8933 | WBC009D04 | B1961481 | BM734900 | WBC285 | B1961434 |
0.9348 | 0.8276 | 0.8933 | B1961499 | WBC012F12 | WBC028D07 | WBC041B04 | BM735096 |
0.9348 | 0.7931 | 0.8800 | WBC008B04 | WBC048H02 | BM734607 | WBC007E09 | WBC44 |
0.9130 | 0.8276 | 0.8800 | BM735054 | BM781436 | BM735449 | WBC028A02 | B1961581 |
0.9348 | 0.7931 | 0.8800 | WBC035E08 | WBC285 | WBC004E01 | B1961499 | BM734719 |
0.9348 | 0.7931 | 0.8800 | WBC31 | WBC022G05 | BM735054 | WBC007A05 | WBC285 |
0.9565 | 0.7586 | 0.8800 | WBC022G05 | WBC021A01 | B1961499 | B1961438 | WBC032C03 |
0.9130 | 0.8276 | 0.8800 | B1961550 | BM734613 | BM780886 | B1961581 | BM735054 |
0.9130 | 0.8276 | 0.8800 | WBC032G11 | WBC024D07 | BM781127 | BM734613 | B1961499 |
0.8913 | 0.8621 | 0.8800 | WBC881 | BM735449 | BM781127 | WBC026C03 | WBC010B02 |
Table 14
Select 6 kinds of genes
Sensitivity | Specificity | The result | Gene 1 | Gene 2 | Gene 3 | Gene 4 | Gene 5 | Gene 6 |
0.9348 | 0.8966 | 0.9200 | BM735096 | WBC007E09 | WBC041B04 | WBC016C12 | B1961054 | B1961481 |
0.9348 | 0.8621 | 0.9067 | WBC048H02 | WBC041B04 | GI1305528 | B1961659 | WBC422 | B1961481 |
0.9348 | 0.8621 | 0.9067 | WBC009D04 | B1961481 | B1961567 | B1961434 | BM734862 | B1961499 |
0.9130 | 0.8966 | 0.9067 | B1961481 | B1961581 | WBC048H02 | WBC035E08 | B1961434 | WBC009D04 |
0.9348 | 0.8621 | 0.9067 | WBC005G04 | BM734900 | WBC020C09 | B1961434 | WBC009D04 | B1961481 |
0.9565 | 0.8276 | 0.9067 | WBC010B02 | B1961434 | WBC009D04 | WBC041B04 | WBC028A02 | B1961481 |
0.9348 | 0.8621 | 0.9067 | B1961659 | WBC032G11 | WBC048H02 | BM735096 | WBC041B04 | B1961581 |
0.9348 | 0.8621 | 0.9067 | BM735449 | BM734661 | BM734607 | WBC285 | BM735054 | WBC022G05 |
0.9565 | 0.8276 | 0.9067 | B1961690 | WBC022G05 | B1961499 | WBC016C12 | WBC013G08 | B1961434 |
0.9348 | 0.8276 | 0.8933 | GI1305528 | BM734613 | BM735096 | BM734862 | B1961499 | BM780886 |
0.9565 | 0.7931 | 0.8933 | B1961438 | WBC048H02 | WBC028D07 | B1961499 | BM734900 | B1961567 |
0.9130 | 0.8621 | 0.8933 | WBC44 | B1961659 | WBC024E03 | B1961581 | BM734719 | BM734661 |
0.9130 | 0.8621 | 0.8933 | WBC422 | B1961481 | WBC007A05 | WBC041B04 | WBC005G04 | BM734607 |
0.9130 | 0.8621 | 0.8933 | B1961481 | WBC024E03 | WBC009D04 | WBC032C03 | Foe1268 | WBC422 |
0.9348 | 0.8276 | 0.8933 | BM735449 | B1961499 | WBC028A02 | WBC285 | WBC44 | WBC004E01 |
0.8913 | 0.8966 | 0.8933 | WBC036C09 | B1961581 | WBC005G04 | WBC048H02 | B1961434 | Foe1268 |
0.8913 | 0.8621 | 0.8800 | WBC005G04 | WBC013G08 | WBC048H02 | WBC007E09 | B1961581 | WBC004E01 |
0.9348 | 0.7931 | 0.8800 | BM735054 | BM734661 | B1961499 | B1961054 | BM780886 | WBC031E09 |
0.9130 | 0.8276 | 0.8800 | BM735054 | WBC005G04 | B1961434 | WBC028D07 | BM734719 | B1961581 |
0.9130 | 0.8276 | 0.8800 | B1961438 | B1961581 | WBC048H02 | BM735054 | BM735170 | GI1305528 |
Table 15
Select 7 kinds of genes
Sensitivity | Specificity | The result | Gene 1 | Gene 2 | Gene 3 | Gene 4 | Gene 5 | Gene 6 | Gene 7 |
0.9348 | 0.8621 | 0.9067 | B1961434 | BM781127 | WBC31 | WBC31 | WBC030G08 | WBC048H02 | BM735054 |
0.9348 | 0.8621 | 0.9067 | B1961481 | WBC009D04 | Foe1268 | WBC016C12 | WBC007E09 | WBC035E08 | B1961054 |
0.9130 | 0.8966 | 0.9067 | WBC022G05 | WBC009D04 | WBC021A01 | B1961481 | BM734719 | WBC004E01 | B1961434 |
0.9348 | 0.8276 | 0.8933 | WBC008B04 | BM735096 | B1961434 | BM735054 | BM781127 | WBC31 | B1961567 |
0.9348 | 0.8276 | 0.8933 | WBC028D07 | B1961481 | BM735031 | B1961434 | WBC048H02 | B1961054 | WBC009D04 |
0.9348 | 0.8276 | 0.8933 | WBC041B04 | BM781127 | WBC032C03 | WBC31 | BM735054 | B1961434 | WBC030G08 |
0.9565 | 0.7931 | 0.8933 | WBC31 | WBC44 | WBC007A05 | BM735054 | WBC048H02 | B1961469 | BM734607 |
0.9130 | 0.8621 | 0.8933 | WBC008B04 | WBC31 | B1961499 | B1961054 | WBC048H02 | WBC016C12 | BM734719 |
0.9348 | 0.8276 | 0.8933 | BM735054 | B1961054 | WBC422 | WBC31 | BM734661 | WBC048H02 | WBC007E09 |
0.9348 | 0.8276 | 0.8933 | B1961690 | BM734661 | WBC009D04 | WBC422 | B1961481 | B1961567 | WBC031E09 |
0.9130 | 0.8621 | 0.8933 | WBC048H02 | WBC31 | WBC024E03 | WBC041C11 | BM735054 | B1961054 | WBC31 |
0.9130 | 0.8621 | 0.8933 | WBC022G05 | B1961550 | WBC009D04 | B1961434 | B1961481 | B1961438 | WBC024E03 |
0.9348 | 0.8276 | 0.8933 | WBC041C11 | WBC026C03 | B1961690 | WBC005G04 | WBC032G11 | B1961581 | B1961499 |
0.9348 | 0.8276 | 0.8933 | WBC005G04 | B1961054 | WBC004E01 | BM781127 | BM735096 | B1961499 | GI1305528 |
0.9348 | 0.8276 | 0.8933 | BM735096 | WBC009D04 | BM735054 | WBC028D07 | WBC041B04 | WBC032G11 | BM734719 |
0.9130 | 0.8621 | 0.8933 | WBC008B04 | BM780886 | B1961438 | BM735096 | BM735054 | WBC013G08 | WBC007E09 |
0.9348 | 0.8276 | 0.8933 | BM735096 | B1961581 | WBC31 | WBC041B04 | B1961434 | WBC009D04 | B1961690 |
0.9130 | 0.8621 | 0.8933 | WBC020C09 | BM735449 | WBC009D04 | B1961481 | WBC022G05 | B1961434 | WBC036C09 |
0.8913 | 0.8621 | 0.8800 | B1961054 | WBC285 | WBC026C03 | WBC016C12 | BM735054 | WBC007A05 | BM734661 |
0.9130 | 0.8276 | 0.8800 | WBC008B04 | B1961481 | WBC009D04 | B1961550 | WBC422 | WBC021A01 | Foe1268 |
Table 16
Select 8 kinds of genes
Sensitivity | Specificity | The result | Gene (8) |
0.9565 | 0.8621 | 0.9200 | BM735054;B1961054;WBC009D04;B1961438;BM780886;BM735449;WBC020C09;WBC010B02 |
0.9348 | 0.8621 | 0.9067 | BM735031;WBC032G11;BM734661;WBG44;B1961054;WBC028D07;B1961481;WBC009D04 |
0.9130 | 0.8966 | 0.9067 | WBC029A01;B1961434;WBC041B04;GI1305528;B1961438;Foe1268;WBC048H02;WBC44 |
0.9565 | 0.8276 | 0.9067 | WBC007E09;B1961581;BM781127;WBC010B02;BM734613;WBC005G04;B1961438;WBC009D04 |
0.9565 | 0.8276 | 0.9067 | WBC026C03;WBC020C09;WBC285;BM781127;WBC010B02;WBC028A02;BM734719;WBC005G04 |
0.9565 | 0.7931 | 0.8933 | WBC031E09;BM735096;WBC013G08;B1961434;WBC009D04;B1961499;WBC041B04;BM734900 |
0.8913 | 0.8966 | 0.8933 | B1961434;B1961481;B1961438;WBC024E03;WBC009D04;B1961469;WBC036C09;BM734900 |
0.9130 | 0.8621 | 0.8933 | BM781127;BM735096;BM734719;BM735031;B1961690;BM735054;B1961481;B1961434 |
0.9348 | 0.8276 | 0.8933 | WBC007E09;WBC048H02;WBC036C09;WBC31;BM735054;WBC028D07;BM735096;B1961499 |
0.9130 | 0.8621 | 0.8933 | WBC041C11;WBC041B04;WBC022G05;WBC422;B1961481;GI1305528;WBC030G08;WBC013G08 |
0.9348 | 0.8276 | 0.8933 | B1961469;B1961690;WBC022G05;WBC010C05;B1961499;BM735054;WBC036C09;WBC028D07 |
0.9348 | 0.8276 | 0.8933 | WBC008B04;BM781127;BM735096;WBC041B04;WBC032G11;WBC31;B1961438;WBC422 |
0.9130 | 0.8621 | 0.8933 | BM734607;WBC026C03;WBC028D07;B1961581;BM735096;B1961690;WBC041C11;WBC010C05 |
0.9348 | 0.8276 | 0.8933 | B1961438;WBC024D07;WBC422;BM735054;BM734607;BM734661;WBC031E09;WBC041B04 |
0.9565 | 0.7931 | 0.8933 | BM780886;B1961438;B1961499;WBC004E01;WBC041C11;WBC036C09;B1961581;WBC032C03 |
0.9348 | 0.8276 | 0.8933 | BM735096;WBC041B04;WBC31;B1961434;B1961581;B1961567;B1961469;WBC009D04 |
0.8913 | 0.8966 | 0.8933 | WBC032G11;B1961481;WBC036C09;WBC005G04;WBC009D04;WBC016C12;WBC029A01;B1961434 |
0.9348 | 0.8276 | 0.8933 | B1961054;GI1305528;BM735054;WBC024E03;WBC021A01;Foe1268;B1961581;BM735096 |
0.8913 | 0.8966 | 0.8933 | B1961481;WBC009D04;WBC016C12;BM734661;WBC030G08;WBC010C05;WBC005G04;B1961434 |
0.8913 | 0.8966 | 0.8933 | BM735031;Foe1268;B1961481;WBC004E01;WBC024E03;WBC048H02;WBC041B04;WBC010C05 |
Table 17
Select 9 kinds of genes
Sensitivity | Specificity | The result | Gene (9) |
0.9348 | 0.8966 | 0.9200 | ?WBC021A01;B1961499;WBC028D07;WBC009D04;WBC031E09;B1961054;B1961481;WBC31;BM780886 |
0.9348 | 0.8966 | 0.9200 | ?B1961659;BM735054;BM734719;B1961054;WBC024E03;B1961550;BM734900;B1961481;WBC31 |
0.9565 | 0.8621 | 0.9200 | ?BM734719;Foe1268;B1961567;WBC020C09;WBC007A05;GI1305528;WBC009D04;B1961481;B1961434 |
0.9348 | 0.8966 | 0.9200 | ?B1961481;B1961054;WBC008B04;WBC041C11;WBC009D04;WBC029A01;BM735031;WBC012F12;WBC041B04 |
0.9348 | 0.8621 | 0.9067 | ?BM735096;WBC31;WBC44;B1961434;BM734900;GI1305528;WBC024E03;BM734862;B1961481 |
0.9348 | 0.8621 | 0.9067 | ?WBC028D07;WBC035E08;WBC041B04;B1961438;WBC022G05;WBC020C09;G11305528;WBC024E03;WBC285 |
0.9348 | 0.8621 | 0.9067 | ?WBC31;WBC009D04;BM734719;B1961481;WBC030G08;B1961054;BM780886;WBC026C03;WBC024D07 |
0.9348 | 0.8621 | 0.9067 | ?B1961469;WBC028D07;BM735096;WBC007A05;BM781436;WBC041B04;WBC007E09;B1961581;B1961054 |
0.9130 | 0.8966 | 0.9067 | ?B1961054;WBC009D04;B1961567;WBC31;WBC016C12;WBC285;WBC44;B1961481;B1961434 |
0.8913 | 0.9310 | 0.9067 | ?WBC030G08;B1961567;GI1305528;B1961481;WBC422;B1961054;BM734900;BM734613;8M735054 |
0.9130 | 0.8966 | 0.9067 | ?WBC030G08;B1961434;BM734900;BM735054;BM781127;B1961550;WBC010C05;B1961581;WBC032G11 |
0.9348 | 0.8276 | 0.8933 | ?WBC048H02;WBC041C11;WBC31;WBC005G04;WBC032C03;WBC013G08;BM734862;B1961581;BM734613 |
0.9130 | 0.8621 | 0.8933 | ?WBC016C12;B1961499;B1961054;BM735096;WBC035E08;WBC022G05;WBC032G11;WBC048H02;BM734719 |
0.9565 | 0.7931 | 0.8933 | ?WBC009D04;WBC022G05;Foe1268;B1961434;B1961481;WBC012F12;BM735031;WBC016C12;B1961499 |
0.9348 | 0.8276 | 0.8933 | ?WBC31;B1961690;WBC422;WBC022G05;WBC020C09;B1961581;B1961438;WBC041B04;WBC024E03;BM780886; |
0.8913 | 0.8966 | 0.8933 | ?B1961054;BM735170;GI1305528;WBC285;B1961659;WBC013G08;WBC007E09;BM735054 |
0.9130 | 0.8621 | 0.8933 | ?WBC036C09;BM735054;WBC028A02;BM780886;WBC030G08;B1961434;WBC048H02;WBC029A01;BM781436 |
0.9130 | 0.8621 | 0.8933 | ?BM781436;WBC041B04;B1961054;WBC024E03;BM734719;WBC44;B1961499;WBC028D07;WBC285 |
0.8913 | 0.8966 | 0.8933 | ?B1961567;B1961481;WBC032C03;WBC009D04;WBC016C12;BM734719;WBC008B04;WBC285;B1961434 |
0.9130 | 0.8621 | 0.8933 | ?BM735031;GI1305528;Foe1268;WBC422;WBC009D04;B1961481;BM734607;WBC041C11;B1961054 |
Table 18
Select 10 kinds of genes
Sensitivity | Specificity | The result | Gene (10) |
0.9348 | 0.9310 | 0.9333 | WBC029A01;WBC009D04;BM735031;B1961550;BM735054;B1961054;BM780886;B1961659;B1961481;WBC041B04 |
0.9130 | 0.9310 | 0.9200 | WBC009D04;WBC007E09;B1961054;BM735170;WBC026C03;WBC029A01;BM781127;WBC31;B1961550;B1961481 |
0.9348 | 0.8966 | 0.9200 | B1961499;BM735096;B1961567;B1961434;BM734900;BM734719;WBC041B04;B1961054;B1961481;B1961659 |
0.9348 | 0.8966 | 0.9200 | BM734607;WBC036C09;B1961469;WBC009D04;B1961054;WBC028D07;WBC030G08;B1961481;BM734862;BM735170 |
0.9130 | 0.9310 | 0.9200 | WBC028D07;B1961434;B1961481;BM735096;GI1305528;BM735054;BM735170;WBC041B04;B1961550;WBC009D04 |
0.9130 | 0.8966 | 0.9067 | BM735096;B1961499;BM734613;WBC048H02;WBC010C05;WBC032G11;WBC881;BM734900;WBC005G04;WBC041B04 |
0.9565 | 0.8276 | 0.9067 | BM735054;BM734607;B1961438;BM734900;WBC881;BM735031;WBC007E09;WBC048H02;B1961054;WBC013G08 |
0.9348 | 0.8621 | 0.9067 | WBC024E03;BM734607;WBC020C09;WBC007E09;B1961481;WBC005G04;WBC031E09;B1961438;WBC009D04;GI1305528 |
0.9348 | 0.8621 | 0.9067 | BM735031;BM734607;BM734613;WBC012F12;WBC422;B1961054;WBC009D04;WBC022G05;B1961481;WBC030G08 |
0.8913 | 0.9310 | 0.9067 | WBC285;WBC041C11;BM781436;WBC009D04;B1961054;BM735096;B1961434;B1961481;B1961550;WBC028A02 |
0.9348 | 0.8621 | 0.9067 | BM734607;B1961434;BM734862;WBC041C11;BM734613;WBC009D04;BM735170;WBC028D07;B1961481;B1961567 |
0.9348 | 0.8621 | 0.9067 | B1961499;WBC422;WBC009D04;B1961434;WBC022G05;BM780886;WBC44;B1961434;WBC036C09;B1961481 |
0.9348 | 0.8621 | 0.9067 | WBC048H02;WBC036C09;BM735054;BM735096;B1961054;WBC31;BM734862;WBC010C05;WBC007E09;B1961434 |
0.9565 | 0.8276 | 0.9067 | WBC007E09;WBC005G04;BM735096;WBC041B04;B1961499;WBC009D04;B1961690;WBC422;WBC024E03;BM735031 |
0.9348 | 0.8621 | 0.9067 | B1961434;WBC029A01;WBC020C09;B1961581;BM734719;WBC005G04;BM781436;WBC007E09;B1961481;WBC009D04 |
0.9348 | 0.8621 | 0.9067 | BM735096;B1961438;WBC028D07;WBC44;Foe1268;WBC007E09;WBC028A02;WBC048H02;BM781127;WBC022G05 |
0.9130 | 0.8966 | 0.9067 | B1961481;BM735096;WBC048H02;B1961054;WBC012F12;BM734661;WBC881;BM735031;BM735054;GI1305528 |
0.9130 | 0.8966 | 0.9067 | BM735054;WBC31;WBC036C09;B1961481;WBC285;B1961550;B1961054;B1961581;BM734900;B1961434 |
0.8913 | 0.8966 | 0.8933 | B1961567;B1961481;WBC022G05;WBC028A02;B1961469;B1961054;WBC44;WBC881;BM735054;B1961581 |
0.9348 | 0.8276 | 0.8933 | WBC036C09;WBC035E08;WBC041C11;BM734719;B1961659;WBC031E09;B1961481;B1961581;WBC422;BM735096 |
Table 19
Select 20 kinds of genes
Sensitivity | Specificity | The result | Gene (20) |
0.9130 | 0.8966 | 0.9067 | WBC020C09;B1961054;B1961434;WBC012F12;B1961550;WBC422;WBC021A01;WBC022G05;WBC010B02;BM735096; WBC31;WBC026C03;BM734661;B1961690;GI1305528;BM734719;WBC009D04;WBC028D07;WBC041B04;B1961481 |
0.9130 | 0.8966 | 0.9067 | BM735096;B1961054;BM735449;BM781436;WBC024E03;WBC010B02;B1961438;B1961567;WBC036C09;WBC004E01; WBC010C05;WBC881;BM734862;WBC032G11;WBC009D04;WBC016C12;B1961481;WBC007E09;Foe1268;BM780886 |
0.9130 | 0.8621 | 0.8933 | B1961054;WBC029A01;WBC004E01;B1961659;WBC036C09;BM734719;WBC035E08;BM781127;BM735096;WBG44; B1961690;WBC422;WBC016C12;WBC009D04;WBC026C03;B1961481;BM735170;BM781436;BM734661;WBC013G08 |
0.9348 | 0.8276 | 0.8933 | WBC021A01;BM734613;WBC009D04;WBC44;B1961438;BM780886;WBC024E03;WBC031E09;WBC020C09;WBC007A05; B1961550;WBC036C09;B1961659;WBC007E09;WBC030G08;B1961481;B1961054;Foe1268;WBC422;WBC024D07 |
0.9130 | 0.8621 | 0.8933 | WBC031E09;WBC013G08;WBC041C11;WBC005G04;BM734613;WBC009D04;WBC028D07;WBC44;B1961434;BM780886; B1961550;BM781436;WBC029A01;B1961438;WBC024E03;BM734661;WBC31;B1961481;Foe1268;BM734900 |
0.9130 | 0.8621 | 0.8933 | BM735031;WBC007A05;BM735054;WBC021A01;B1961054;BM735449;BM734607;GI1305528;WBC016C12;B1961438; B1961481;WBC024E03;B1961567;B1961550;WBC009D04;WBC035E08;WBC013G08;WBC032G11;WBC028A02;B1961434 |
0.8913 | 0.8966 | 0.8933 | WBC031E09;WBC016C12;WBC013G08;WBC035E08;WBC009D04;B1961054;Foe1268;WBC032G11;B1961567;WBC881; B1961690;WBC029A01;GI1305528;WBC022G05;BM735170;WBC010B02;BM735054;B1961481;WBC012F12;WBC021A01 |
0.9130 | 0.8621 | 0.8933 | WBC44;BM735096;WBC008B04;BM735449;WBC036C09;BM781436;B1961499;WBC285;B1961469;WBC032C03;Foe1268; WBC048H02;WBC028A02;WBC010C05;WBC009D04;WBC021A01;WBC026C03;WBC028D07;WBC010B02;WBC005G04 |
0.9348 | 0.8276 | 0.8933 | WBC041C11;B1961054;WBC44;WBC009D04;WBC028D07;WBC012F12;B1961567;WBC024D07;WBC024E03;B1961481; WBC013G08;GI1305528;BM781127;B1961438;WBC020C09;B1961581;WBC021A01;B1961469;Foe1268;BM735031 |
0.9130 | 0.8621 | 0.8933 | B1961659;WBC024D07;BM734719;B1961581;WBC31;B1961054;B1961499;WBC024E03;BM735170;WBC881;B1961469; B1961481;WBC031E09;BM735096;WBC009D04;WBC31;WBC028A02;WBC030G08;WBC012F12;WBC032C03 |
0.9130 | 0.8621 | 0.8933 | WBC028A02;WBC008B04;B1961690;WBC028D07;WBC022G05;WBC030G08;B1961438;BM734661;B1961499;BM781127; WBC031E09;BM781436;GI1305528;WBC013G08;WBC004E01;B1961054;WBC021A01;WBC041B04;BM735031;BM734719 |
0.9565 | 0.7931 | 0.8933 | B1961690;B1961481;WBC31;WBC024E03;BM734613;WBC007A05;BM734900;WBC026C03;BM735449;WBC041C11; WBC024D07;WBC007E09;WBC021A01;BM734719;WBC31;WBC041B04;B1961499;BM735170;WBC012F12;WBC028D07 |
0.9130 | 0.8621 | 0.8933 | B1961481;B1961434;B1961567;WBC44;WBC881;WBC028A02;WBC010B02;WBC048H02;B1961438;BM734862; WBC009D04;WBC035E08;WBC31;BM734607;BM735054;BM734900;BM734661;BM781127;WBC013G08;WBC031E09 |
0.9130 | 0.8621 | 0.8933 | WBC041B04;Foe1268;GI1305528;BM735054;WBC008B04;WBC009D04;WBC004E01;B1961481;WBC021A01;B1961054; BM735031;WBC007A05;WBC013G08;B1961499;B1961438;WBC31;WBC026C03;B1961469;WBC010C05;BM734661 |
0.9130 | 0.8621 | 0.8933 | WBC022G05;WBC008B04;B1961434;B1961438;B1961054;WBC032G11;WBC016C12;WBC007A05;B1961567;WBC031E09; BM735449;WBC31;WBC005G04;WBC041C11;WBC028D07;WBC032C03;WBC041B04;WBC009D04;WBC010B02;B1961481 |
0.9130 | 0.8621 | 0.8933 | WBC028D07;WBC010B02;WBC009D04;BM735449;BM734719;BM734862;BM735096;BM781436;B1961550;WBC008B04; |
Sensitivity | Specificity | The result | Gene (20) |
BM734607;WBC016C12;WBC024E03;Foe1268;B1961438;BM781127;BM734613;B1961054;B1961481;WBC44 | |||
0.8913 | 0.8966 | 0.8933 | B1961054;WBC041C11;WBC009D04;BM734661;WBC032C03;BM734719;WBC031E09;BM734607;BM735031;B1961550; B1961438;BM735449;WBC021A01;BM735054;BM781436;WBC028D07;B1961434;B1961581;WBC016C12;GI1305528 |
0.9130 | 0.8621 | 0.8933 | BM735449;WBC041B04;BM735031;BM735054;WBC007A05;WBC024E03;WBC016C12;WBC010C05;WBC022G05; WBC013G08;WBC422;B1961499;BM780886;WBC004E01;WBC012F12;BM781436;WBC007E09;GI1305528;BM735096; B1961567 |
0.9130 | 0.8621 | 0.8933 | BM735031;WBC024D07;B1961054;B1961481;BM734862;BM734900;BM735170;B1961690;WBC004E01;BM781127; WBC881;B1961434;B1961659;WBC022G05;WBC44;WBC032C03;BM780886;WBC009D04;B1961499;WBC035E08 |
0.9130 | 0.8621 | 0.8933 | B1961567;BM735170;BM734900;WBC881;WBC041B04;WBC009D04;WBC016C12;WBC048H02;B1961481;B1961054; BM734613;B1961659;BM734719;BM781436;WBC030G08;WBC024D07;WBC31;B1961581;WBC026C03;WBC422 |
Table 20
Selected 30 kinds of genes
Sensitivity | Specificity | The result | Gene (30) |
0.9130 | 0.8276 | 0.8800 | WBC012F12;BM781127;BM735449;BM734862;WBC007A05;WBC31;BM734900;WBC009D04;WBC041B04;B1961438; WBC032C03;B1961054;B1961434;WBC016C12;B1961481;B1961550;WBC024E03;WBC028D07;WBC022G05;BM734719; WBC005G04;WBC024D07;BM781436;WBC028A02;Foe1268;WBC010C05;WBC881;B1961659;WBC004E01;WBC048H02 |
0.9348 | 0.7931 | 0.8800 | BM734661;B1961499;WBC005G04;BM735449;WBC44;B1961550;B1961581;WBC032C03;BM781436;BM734900; WBC036C09;BM781127;WBC035E08;WBC285;BM734607;B1961690;WBC007E09;WBC029A01;BM734613;WBC008B04; WBC048H02;WBC030G08;BM735096;WBC881;WBC009D04;BM734862;BM735031;WBC041B04;WBC026C03;BM735170 |
0.8913 | 0.8621 | 0.8800 | WBC028A02;WBC032C03;WBC44;WBC005G04;BM735031;WBC028D07;WBC31;WBC009D04;WBC016C12;B1961481; BM780886;WBC048H02;BM735170;WBC31;WBC041B04;B1961438;BM735449;B1961690;B1961659;WBC012F12; B1961581;WBC035E08;BM734719;WBC010B02;B1961499;GI1305528;BM734607;WBC036C09;BM735096;WBC021A01 |
0.9130 | 0.8276 | 0.8800 | WBC007E09;WBC44;BM734900;WBC035E08;WBC024E03;WBC009D04;BM734613;WBC041C11;WBC285;BM781127; BM734719;B1961581;WBC031E09;WBC032C03;WBC005G04;WBC036C09;WBC010C05;BM734862;BM735449;BM735096; B1961469;WBC020C09;WBC041B04;WBC008B04;BM781436;WBC028D07;B1961659;BM735031;GI1305528;B1961481 |
0.8913 | 0.8621 | 0.8800 | WBC036C09;B1961438;BM735170;BM734862;WBC029A01;B1961659;WBC285;B1961550;WBC016C12;WBC007E09; B1961434;WBC028A02;WBC024E03;BM735096;BM734719;WBC035E08;WBC010C05;B1961567;BM735031;WBC007A05; B1961581;BM735054;WBC031E09;BM734900;WBC026C03;B1961054;GI1305528;WBC009D04;B1961481;WBC048H02 |
0.8696 | 0.8966 | 0.8800 | WBC009D04;WBC010B02;WBC031E09;Foe1268;WBC422;B1961438;WBC881;WBC31;WBC285;BM734613;BM735054; B1961054;BM734900;BM781436;WBC024E03;WBC007A05;B1961499;B1961567;WBC041C11;BM735449;B1961434; WBC028D07;WBC012F12;WBC008B04;BM734661;WBC016C12;WBC041B04;WBC007E09;B1961481;WBC024D07 |
0.8913 | 0.8621 | 0.8800 | WBC016C12;WBC007E09;BM734719;WBC020C09;WBC024D07;B1961499;B1961659;WBC030G08;WBC422;WBC881; BM734900;BM735449;BM734613;BM735054;BM734661;WBC005G04;BM735096;B1961550;WBC036C09;GI1305528; WBC012F12;WBC026C03;BM734862;WBC032G11;WBC010B02;WBC032C03;BM734607;B1961054;WBC022G05;B1961469 |
0.8696 | 0.8621 | 0.8667 | BM781436;WBC032G11;WBC009D04;B1961434;BM735054;B1961567;WBC881;WBC008B04;WBC024D07;BM734719; WBC007E09;WBC035E08;WBC041B04;BM734607;WBC031E09;B1961690;WBC022G05;B1961481;GI1305528;BM735096; B1961054;WBC007A05;WBC020C09;BM735449;WBC048H02;WBC028A02;B1961469;WBC004E01;BM781127;WBC010B02 |
0.8913 | 0.8276 | 0.8667 | WBC028A02;BM734613;BM734862;WBC007A05;WBC029A01;WBC004E01;BM735054;BM780886;WBC016C12;BM734900; WBC024D07;WBC028D07;BM734719;BM735170;WBC010B02;B1961434;B1961481;BM734607;WBC021A01;WBC026C03; BM781436;B1961659;WBC009D04;B1961438;B1961054;BM735449;WBC881;WBC036C09;WBC422;WBC005G04 |
0.9130 | 0.7931 | 0.8667 | WBC035E08;WBC036C09;B1961438;B1961481;BM781436;BM734661;WBC285;BM734607;WBC010B02;BM734900; WBC026C03;WBC005G04;B1961659;B1961469;WBC881;WBC028D07;BM734719;B1961581;WBC028A02;BM735449; WBC024E03;WBC007E09;WBC31;GI1305528;BM734613;WBC008B04;B1961054;WBC032G11;WBC422;WBC032C03 |
0.8913 | 0.8276 | 0.8667 | WBC041B04;WBC007A05;WBC032G11;BM734719;WBC44;WBC31;WBC010B02;B1961434;WBC028A02;B1961438; |
Sensitivity | Specificity | The result | Gene (30) |
B1961659;WBC881;BM735096;BM781127;WBC012F12;WBC030G08;B1961567;B1961690;B1961499;WBC021A01; WBC005G04;BM735054;B1961434;WBC035E08;WBC032C03;B1961054;B1961469;WBC008B04;GI1305528;BM781436 | |||
0.8696 | 0.8621 | 0.8667 | WBC030G08;WBC44;WBC31;WBC024E03;B1961550;Foe1268;BM734719;WBC881;WBC022G05;WBC005G04;B1961499; WBC029A01;WBC032C03;WBC007A05;WBC021A01;WBC024D07;B1961481;WBC285;WBC?012F12;WBC028A02; WBC010B02;BM781127;WBC422;B1961054;WBC009D04;BM735449;WBC028D07;GI1305528;BM734661;B1961469 |
0.8696 | 0.8621 | 0.8667 | WBC007A05;GI1305528;B1961481;B1961567;WBC881;WBC010B02;WBC048H02;BM734862;WBC422;WBC031E09; WBC022G05;WBC007E09;WBC030G08;BM735096;WBC008B04;BM735054;WBC44;WBC004E01;WBC041C11; WBC035E08;BM780886;BM781127;BM781436;B1961054;B1961690;WBC032C03;WBC024D07;B1961659;WBC005G04; BM734719 |
0.8696 | 0.8621 | 0.8667 | B1961054;WBC024E03;WBC010B02;WBC026C03;B1961690;BM781436;WBC31;BM780886;WBC31;GI1305528;BM735449; WBC041C11;WBC004E01;B1961481;WBC881;WBC285;WBC035E08;WBC007E09;WBC028A02;WBC005G04;WBC029A01; WBC041B04;B1961659;BM735031;WBC007A05;BM734719;WBC032C03;B1961567;BM734661;BM734862 |
0.9130 | 0.7931 | 0.8667 | GI1305528;BM734607;BM735170;WBC008B04;Foe1268;WBC285;BM734613;WBC024E03;BM781436;B1961581;BM734719; WBC009D04;B1961054;B1961659;WBC028D07;WBC31;B1961567;B1961481;WBC032G11;WBC020C09;WBC010C05; B1961550;WBC031E09;BM735096;WBC004E01;WBC026C03;BM734661;BM781127;B1961469;B1961499 |
0.8913 | 0.8276 | 0.8667 | WBC016C12;BM781127;WBC024E03;B1961567;WBC041B04;WBC009D04;WBC007A05;B1961550;WBC041C11;B1961690; WBC010C05;BM735449;BM735096;B1961499;B1961581;WBC881;B1961054;BM781436;WBC032G11;B1961469; WBC010B02;BM735054;WBC020C09;WBC021A01;WBC031E09;B1961481;B1961434;BM734661;WBC285;WBC013G08 |
0.8478 | 0.8966 | 0.8667 | BM781436;WBC026C03;B1961690;WBC031E09;WBC009D04;BM735170;WBC44;B1961434;WBC022G05;BM735054; B1961499;WBC029A01;WBC041C11;WBC016C12;B1961567;WBC024E03;B1961054;WBC004E01;WBC31;B1961481; B1961469;BM734719;WBC032C03;WBC012F12;WBC008B04;WBC028A02;WBC041B04;BM734900;BM734661;WBC005G04 |
0.8696 | 0.8621 | 0.8667 | WBC028D07;BM734900;WBC032C03;WBC010B02;WBC012F12;BM780886;WBC007E09;BM781127;WBC009D04;WBC31; BM735096;WBC022G05;B1961469;BM735031;BM735054;B1961499;GI1305528;BM735449;WBC020C09;WBC007A05; WBC021A01;WBC041B04;WBC026C03;B1961434;B1961054;B1961690;WBC028A02;WBC035E08;WBC285;B1961438 |
0.8913 | 0.8276 | 0.8667 | WBC032C03;WBC029A01;BM781436;WBC31;WBC44;GI1305528;B1961481;WBC024D07;WBC028D07;B1961659; WBC026C03;WBC008B04;BM734900;BM780886;BM734719;WBC036C09;B1961438;WBC007E09;WBC041B04; WBC009D04;BM735096;BM734607;WBC004E01;BM781127;WBC020C09;WBC010B02;WBC422;B1961054;BM734661; BM735054 |
0.9130 | 0.7931 | 0.8667 | Foe1268;WBC010B02;WBC032G11;BM735170;WBC022G05;WBC31;WBC030G08;BM734900;BM781127;BM781436; WBC041B04;BM734719;BM780886;BM734613;BM734862;WBC422;WBC029A01;WBC012F12;GI1305528;WBC021A01; B1961481;B1961469;B1961054;B1961581;WBC44;WBC009D04;WBC032C03;B1961438;WBC024D07;WBC013G08 |
Table 21
Gene ontology
Gene | The GenBank homology | Uniprot | Component | Function | Process |
B1961481.V1.3_AT | No homology | NA | NA | NA | NA |
WBC026C03_V1.3_A T | The homo sapiens, Interferon, rabbit, but γ-induced protein 16, mRNA. | Q16666 | Nuclear | DNA combination and transcription repression | To the reaction of virus, immunne response |
WBC005G04_V1.3_A T | Homo sapiens's myelocyte nuclear differentiation antigen mRNA, encoding sequence fully | P41218 | Nuclear | The DNA combination | Immunne response |
WBC020C09_V1.3_A T | No homology | NA | NA | NA | NA |
WBC007A05_V1.3_A T | Homo sapiens G albumen-coupled receptor 65, mRNA | Q8IYL9 | Integrate with plasma membrane | Acceptor and signal transduction activity | Immunne response |
B1961581 | Homo sapiens NAD kinases accession number BC001709 | O95544 | Tenuigenin | The NAD+ kinase activity | The ATP metabolism |
BM735170.V1.3_AT | No homology | NA | NA | NA | NA |
WBC010C05 | Putative protein matter ox analogue (LOC529385) | NA | NA | NA | NA |
WBC009D04_V1.3_A T | Be positioned at the people mRNA of the X-CGD gene that relates to the granuloma disease on the chromosome x | P04839 | Integrate with film | Melts combine, oxidoreductase activity | Inflammatory response, electron transport |
B1961434.V1.3_AT / B1961054.V1.3_AT B1961434.V1.3_S_ AT | But the IP-10mRNA of interferon--inducible protein-10 | P02778 | Outside the born of the same parents | The chemokine activity | Immunne response |
BM780886.V1.3_AT | Homo sapiens 6-phosphogluconolactonase, MRNA (C DNA cloning MGC:20013 IMAGE:4053022). | O59479 | Endoplasmic reticulum | 6-phosphogluconolactonase activity | Carbohydrate activity |
WBC004E01_V1.3_A T | Homo sapiens Apo-2 ligand mRNA, cds fully | P50591 | Integrate with film | The TNF receptors bind | Immunne response |
B1961659.V1.3_AT | No homology | NA | NA | NA | NA |
WBC008B04 | No homology | NA | NA | NA | NA |
BM735449.V1.3_AT | No homology | NA | NA | NA | NA |
WBC029A01 | Homo sapiens's apoptosis 10 (PDCD10), | Q9BUL8 | NA | NA | NA |
BM781436.V1.3_AT | Homo sapiens SH3 structural domain associativity is rich in the | Q9H299 | Nuclear | NA | NA |
BM735054.V1.3_AT | Homo sapiens family with | X9H2X8 | Integrate with film | NA | Reaction to insect, parasite or pathogenic agent |
WBC31 | No homology | NA | NA | NA | NA |
BM734900 | Homo sapiens's matrix metalloproteinase 9 (gelatinase B, the 92kDa gelatinase, 92kDa IV Collagen Type VI enzyme), mRNA (cDNA clone MGC:12688 IMAGE:4054882) | P14780 | Outside the born of the same parents | Ionic bond, metal proteinase activity | Proteolysis |
Gene | The GenBank homology | Uniprot | Component | Function | Process |
B1961438 | No homology | NA | NA | NA | NA |
B1961550.V1.3_AT | Homo sapiens cDNA FLJ40597 fis, clone THYMU2011118 | NA | NA | NA | NA |
BM734862.V1.3_A | The homo sapiens who expresses on the | Q9NP99 | Integrate with film | Receptor active | Humoral response |
WBC041B04_V1.3_A T | The proteinic people mRNA of interferon-induced 56-Kda is also referred to as IFIT-1 | P09914 | Tenuigenin | In conjunction with | Immunne response |
WBC422.GRSP.V1.3 _AT | Homo sapiens's guanine | Q96PP8 | NA | The GTP combination | Immunne response |
WBC007E09 | Homo sapiens's sterol-C5-desaturase (ERG3 Δ-5-desaturase homologue, fungi)-sample, transcript variant 2 (SC5DL) | Q6GTM5 | Integrate with film | Oxidoreductase activity | Lipid metabolism |
BM735031.V1.3_AT | Homo sapiens N-myc (and STAT) interactant, mRNA (cDNA clone MGC:5050 IMAGE:3452659) | Q13287 | Tenuigenin | Transcribe the cofactor activity | Inflammatory response |
WBC013G08_V1.3_A T | Homo sapiens cDNA FLJ16386 fis, clone TRACH2000862 mediumly is similar to the purine nucleoside acid binding protein mRNA that mouse is inferred | NA | NA | NA | NA |
BM735096 | Homo sapiens CD79A antigen (immunoglobulin (Ig) be correlated with α) (CD79A), | P11912 | Integrate with film | The transmembrane receptor activity | Defense is replied |
GI1305528.V1.3_A T | Horse Mx protein homology thing mRNA. | P27594 | NA | The GTP combination | Immunne response |
WBC881.GRSP.V1.3 _AT | Homo sapiens makorin, | Q9UHC7 | The ubiquitin ligase mixture | Uiquitin-protease matter ligase enzyme is in conjunction with activity | The protein ubiquitinization |
WBC44.V1.3_AT | Homo sapiens B aggressive lymphoma gene, mRNA. | Q8IXQ6 | Nuclear | NAD+ADP-ribosyltransferase activity | Cell migration |
WBC041C11 | Homo sapiens copine I (CPNE1) | Q99829 | NA | Transport activity | The transhipment of vesica mediation |
WBC036C09_V1.3_A T | Homo sapiens's Δ sleep inducing peptide, immunoreactant, mRNA. | NA | NA | NA | NA |
WBC285 | No homology | NA | NA | NA | NA |
WBC030G08_V1.3_A T | Homo | NA | NA | NA | NA |
WBC024D07 | Homo sapiens's heat shock 70kDa albumen 8, transcript variant 1 (HSPA8) | P11142 | Cell surface, nuclear | The ATP combination | Protein folding |
WBC031E09_V1.3_A T | People EV12 protein gene, | NA | NA | NA | NA |
BM734613 | Homo sapiens's senilism protein relative protein mRNA. | Q9UJZ5 | Integrate plastosome with film | Protein bound | Transhipment |
WBC012F12_V1.3_A T | No homology | NA | NA | NA | NA |
BM734661 | The people UbA52 suprarenal gland mRNA of ubiquitin-52 amino acid fusion rotein | P62987 | Nuclear, rrna | Protein modification | Ribosomal structural constituent |
WBC022G05 | Homo sapiens ELOVL | Q7L2S5 | NA | NA | NA |
WBC032G11_V1.3_A T | Homo sapiens cDNA FLJ20073 fis, clone COL02320 | NA | NA | NA | NA |
WBC028A02 | No homology | NA | NA | NA | NA |
WBC024E03_V1.3_A T | Homo sapiens's transcription factor ISGF-3mRNA. | Q00978 | Tenuigenin, nuclear | Transcription factor | Immunne response |
Gene | The GenBank homology | Uniprot | Component | Function | Process |
BM734607.V1.3_AT | The homo sapiens mRNA (BIRC4BP) of XIAP correlation factor-1. | Q6GPH4 | NA | The zine ion combination | NA |
Foe1268 | Myo-inositol 1-phosphate synthase A1 (ISYNA1) | Q9NPH2 | NA | Inositol-3-phosphate synthase activity | The inositol biosynthesizing |
WBC035E08 | Homo sapiens's ubiquitin-conjugate enzyme E2D 1 (UBC4/5 homologue | P51668 | NA | The ligase enzyme activity | The ubiquitin circulation |
BM734719.V1.3_AT | No homology | NA | NA | NA | NA |
BM781127.V1.3_AT | Homo sapiens's | P13686 | NA | Integrate lysosome with film | Hydrolytic enzyme activities |
WBC048H02.bFSP_2 0021501.esd | Homo sapiens's guanine-nucleotide-binding protein (G albumen), beta polypeptides 2-sample 1 (GNB2L1), mRNA | Q6RW13 | NA | NA | Receptor active |
B1961469 | No homology | NA | NA | NA | NA |
WBC021A01 | No homology | NA | NA | NA | NA |
B1961499 | Homo sapiens SUI1 isomer (being also referred to as eIF1) | P41567 | Tenuigenin | Translation starts active | The protein biosynthesizing |
B1961690.V1.3_AT | Homo sapiens's eukaryotic translation starts the | O00303 | Eukaryotic translation starts the | Translation starts active | The protein biosynthesizing |
WBC016C12 | No homology | NA | NA | NA | NA |
WBC032C03 | No homology | NA | NA | NA | NA |
WBC028D07_V1.3_A T | People's guanine nucleotide binding protein isotype II (GBP-2) mRNA | P32456 | NA | The GTP combination | Immunne response |
WBC010B02_V1.3_A T | Homo sapiens C-type agglutinant protein CLL-1mRNA, cds. fully | Q5QGZ9 | NA | The sugar combination | NA |
B1961567.V1.3_AT | Homo sapiens's leucine aminopeptidase(LAP) 3, mRNA. | P28838 | Tenuigenin | Amino-peptidase activity | Proteolysis |
Claims (54)
1. the method for the existence of herpesvirus infection in the diagnostic test object, described method comprise detect in the tested object at least a be selected from following, the unconventionality expression of the herpesvirus infection of in immune system cell, expressing (HVI) marker gene: (a) a kind of gene, its polynucleotide expression product contains the nucleotide sequence that at least 50% sequence homogeny is arranged with following arbitrary sequence: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, or its complementary sequence; (b) a kind of gene, its polynucleotide expression product contain the nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; (c) a kind of gene, its polynucleotide expression product contains to encode the nucleotide sequence of the polypeptide of at least 50% sequence similarity: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114 with at least a portion of following arbitrary sequence, wherein said part contains at least 15 amino-acid residues that adjoin of this sequence; (d) a kind of gene, its polynucleotide expression product contain at least under low preciseness condition the nucleotide sequence with (a) and (b), (c) described sequence or its complementary sequence hybridization.
2. the method for claim 1, it is characterized in that, comprise and detect the unconventionality expression that is selected from following HVI mark polynucleotide: (a) contain the polynucleotide that the nucleotide sequence of at least 50% sequence homogeny is arranged with following arbitrary sequence: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; (c) contain the polynucleotide of nucleotide sequence that coding and at least a portion of following arbitrary sequence have the polypeptide of at least 50% sequence similarity: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains at least 15 contiguous amino acid residues of this sequence; (d) contain at least under low preciseness condition polynucleotide with the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
3. the method for claim 1, it is characterized in that, comprise and detect the unconventionality expression that is selected from following HVI labeling polypeptide: (i) contain the polypeptide that has the aminoacid sequence of 50% sequence similarity with following arbitrary sequence at least: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; The polypeptide that (ii) contains the part of following arbitrary sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains at least 5 contiguous amino acid residues of this sequence; At least 15 contiguous amino acid residues of (iii) amino acid contained sequence and following arbitrary sequence have the polypeptide of 30% similarity at least: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; The polypeptide that (iv) contains the part of following arbitrary sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains at least 5 contiguous amino acid residues of this sequence, and with can and (i), (ii) or (iii) described sequence immune interactional antigen binding molecules takes place immunity takes place interacts.
4. the method for claim 1, it is characterized in that, detect described unconventionality expression by following steps: the level or the functionally active of at least a HVI marker gene expression product in the biological sample of (1) detection available from tested object, (2) level or the functionally active of corresponding expression product in the reference sample of the object of the level of detected each expression product or functionally active and one or more normal subjects or one or more no herpesvirus infections are made comparisons, wherein compare with the level or the functionally active of corresponding expression product in the reference sample, there is herpesvirus infection in the level of expression product or functionally active variant showing in this biological sample in the tested object.
5. method as claimed in claim 4, it is characterized in that, also comprise when this expression product or the detected level of each expression product or functionally active higher 10% the time than this corresponding expression product or the detected level of each corresponding expression product or functionally active, diagnosing has herpesvirus infection existence, stage or degree in this tested object.
6. method as claimed in claim 5, it is characterized in that, determine the existence of herpesvirus infection by the increase that detects at least a level that is selected from following HVI mark polynucleotide or functionally active: (a) contain the polynucleotide that have the nucleotide sequence of 50% sequence homogeny with following arbitrary sequence at least: SEQ ID NO:1,2,4,8,12,13,15,17,21,23,26,27,31,39,43,45,47,49,51,55,59,67,69,71,75,76,79,81,85,87,91,98,99109,111 or 113, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,14,16,18,22,28,32,40,44,46,48,50,52,56,60,68,70,72,80,82,86,88,92,110,112 or 114; (c) contain the polynucleotide of nucleotide sequence that coding and following arbitrary sequence at least a portion have the polypeptide of 50% sequence similarity at least: SEQ ID NO:3,5,9,14,16,18,22,28,32,40,44,46,48,50,52,56,60,68,70,72,80,82,86,88,92,110,112 or 114, wherein said part contains at least 15 contiguous amino acid residues of this sequence; (d) containing at least can be under low preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
7. method as claimed in claim 4, it is characterized in that, also comprise when this expression product or the detected level of each expression product or functionally active lower 10% the time than this corresponding expression product or the detected level of each corresponding expression product or functionally active, diagnosing has herpesvirus infection existence, stage or degree in this tested object.
8. method as claimed in claim 7, it is characterized in that, determine the existence of herpesvirus infection by the reduction that detects at least a level that is selected from following HVI mark polynucleotide or functionally active: (a) contain the polynucleotide that have the nucleotide sequence of 50% sequence homogeny with following arbitrary sequence at least: SEQ ID NO:6,10,19,24,25,29,33,34,35,37,38,41,53,57,61,63,65,66,73,77,83,89,93,94,96,100,101,102,104,106,107 or 108,, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:11,20,30,36,42,54,58,62,64,74,78,90,95,97,103 or 105; (c) contain the polynucleotide of nucleotide sequence that coding and following arbitrary sequence at least a portion have the polypeptide of 50% sequence similarity at least: SEQ ID NO:11,20,30,36,42,54,58,62,64,74,78,90,95,97,103 or 105, wherein said part contains at least 15 contiguous amino acid residues of this sequence; (d) containing at least can be under low preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
9. method as claimed in claim 4, it is characterized in that, also comprise when this expression product or the detected level of each expression product or the corresponding expression product with this of functionally active or the detected level of each corresponding expression product or functionally active are same or similar, diagnose not have herpesvirus infection in this tested object.
10. method as claimed in claim 4 is characterized in that, the difference of detected level of the corresponding expression product with each of detected level of each expression product or functionally active or functionally active is no more than about 5%.
11. method as claimed in claim 4 is characterized in that, also comprises level or the functionally active of detection at least about each expression product of two kinds of HVI marker gene.
12. method as claimed in claim 4, it is characterized in that, comprise the level or the functionally active that detect each expression product that is selected from the relevant HVI marker gene of following at least a one-level: (a) contain the polynucleotide that have the nucleotide sequence of 50% sequence homogeny with following arbitrary sequence at least: SEQ IDNO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25 or 26, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20 or 22; (c) contain the polynucleotide of nucleotide sequence that coding and at least a portion of following sequence have the polypeptide of 50% sequence similarity at least: SEQ ID NO:3,5,9,11,14,16,18,20 or 22, wherein said part contains at least 15 contiguous amino acid residues of this sequence; (d) containing at least can be under low preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
13. method as claimed in claim 4, it is characterized in that, comprise the level or the functionally active that detect each expression product that is selected from the relevant HVI marker gene of following at least a secondary: (a) contain the polynucleotide that have the nucleotide sequence of at least 50% sequence homogeny with following arbitrary sequence: SEQID NO:27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61 or 63, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:28,30,32,36,40,42,44,46,48,50,52,56,58,60,62 or 64; (c) contain the polynucleotide of nucleotide sequence that coding and at least a portion of following arbitrary sequence have the polypeptide of 50% sequence similarity at least: SEQ ID NO:28,30,32,36,40,42,44,46,48,50,52,56,58,60,62 or 64, wherein said part contains at least 15 contiguous amino acid residues of this sequence; (d) containing at least can be under low preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
14. method as claimed in claim 4, it is characterized in that, comprise the level or the functionally active that detect each expression product that is selected from following at least a three grades of relevant HVI marker gene: (a) contain the polynucleotide that have the nucleotide sequence of at least 50% sequence homogeny with following arbitrary sequence: SEQID NO:65,66,67,69,71,73,75,76,77,79,81,83,84,85 or 87, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:68,70,72,74,78,80,82,86 or 88; (c) contain the polynucleotide of nucleotide sequence that coding and at least a portion of following arbitrary sequence have the polypeptide of 50% sequence similarity at least: SEQ ID NO:68,70,72,74,78,80,82,86 or 88, wherein said part contains at least 15 contiguous amino acid residues of this sequence; (d) containing at least can be under low preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
15. method as claimed in claim 4, it is characterized in that, comprise the level or the functionally active that detect each expression product that is selected from the relevant HVI marker gene of following at least a level Four: (a) contain the polynucleotide that have the nucleotide sequence of at least 50% sequence homogeny with following arbitrary sequence: SEQID NO:89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:90,92,95,97,103,105,110,112 or 114; (c) contain the polynucleotide of nucleotide sequence that coding and at least a portion of following arbitrary sequence have the polypeptide of 50% sequence similarity at least: SEQ ID NO:90,92,95,97,103,105,110,112 or 114, wherein said part contains at least 15 contiguous amino acid residues of this sequence; (d) containing at least can be under low preciseness condition and the polynucleotide of the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
16. method as claimed in claim 4 is characterized in that, described biological sample comprises blood.
17. method as claimed in claim 4 is characterized in that, described biological sample comprises peripheral blood.
18. method as claimed in claim 4 is characterized in that, described biological sample comprises white corpuscle.
19. method as claimed in claim 4 is characterized in that, described expression product is the RNA molecule.
20. method as claimed in claim 4 is characterized in that, described expression product is a polypeptide.
21. method as claimed in claim 4 is characterized in that, described expression product is identical with corresponding expression product.
22. method as claimed in claim 4 is characterized in that, described expression product is the variant of described corresponding expression product.
23. method as claimed in claim 4, it is characterized in that, described expression product or corresponding expression product are the DNA copies of target RNA or this target RNA, the available at least a nucleic acid probe of hybridizing with this target RNA or this DNA copy under low preciseness condition at least of its level detects, and this nucleic acid probe contains 15 contiguous nucleotides of certain HVI marker gene at least.
24. method as claimed in claim 23 is characterized in that, described target RNA or its DNA are copied level or the abundance stdn by the DNA copy that is present in reference RNA in the same sample or this reference RNA of detected level or abundance.
25. method as claimed in claim 23 is characterized in that, described nucleic acid probe is fixed on solid or the semi-solid upholder.
26. method as claimed in claim 23 is characterized in that, described nucleic acid probe constitutes the part of all nucleic acid probe space arrays.
27. method as claimed in claim 23 is characterized in that, detects the level that copies the bonded nucleic acid probe with described target RNA or described DNA by hybridization.
28. method as claimed in claim 23 is characterized in that, detects the level that copies the bonded nucleic acid probe with described target RNA or described DNA by nucleic acid amplification.
29. method as claimed in claim 23 is characterized in that, detects the level that copies the bonded nucleic acid probe with described target RNA or described DNA by the nuclease protection test.
30. method as claimed in claim 23 is characterized in that, the probe that is used to detect HVI mark polynucleotide contains just like SEQ ID NO:145-2150 the sequence shown in any.
31. method as claimed in claim 23 is characterized in that, described expression product or corresponding expression product are the target polypeptide, and the interactional at least a antigen binding molecules of the available and described target polypeptide immune of its level detects.
32. method as claimed in claim 23 is characterized in that, with the detected level of described target polypeptide by the level standardization that is present in the reference polypeptide in the same sample.
33. method as claimed in claim 23 is characterized in that, described antigen binding molecules is fixed on solid or the semi-solid upholder.
34. method as claimed in claim 23 is characterized in that, described antigen binding molecules forms the part of antigen binding molecules space array.
35. method as claimed in claim 23 is characterized in that, by the level of immunoassay detection with described target polypeptide bonded antigen binding molecules.
36. method as claimed in claim 4 is characterized in that, described expression product or corresponding expression product are the target polypeptide, and at least a substrate that the available and described target polypeptide reaction of its level produces reaction product detects.
37. method as claimed in claim 36 is characterized in that, with the detected functionally active of described target polypeptide by the functionally active stdn that is present in the reference polypeptide in the same sample.
38. method as claimed in claim 4, it is characterized in that, utilization comprises that the system in the terminal station that at least one is connected with the base station carries out described method, (a) accepts described data by network of communication from described terminal station in wherein said base station, wherein said data representedly detect or the parameter value of level of standardization or functionally active corresponding at least a expression product in the biological sample, (b) described data are made comparisons with representing in the reference sample at least a corresponding expression product data that pre-determine detected or level of standardization or functionally active, thereby measure and compare any difference of the level of expression product or functionally active in this biological sample with the level or the functionally active of corresponding expression product in the reference sample.
39. method as claimed in claim 38 is characterized in that, described base station can provide herpesvirus infection to exist, do not exist or the diagnosis of degree.
40. method as claimed in claim 38 is characterized in that, described base station also can will diagnose indication to be passed to described terminal station by network of communication.
41. the method for claim 1 is characterized in that, detects described unconventionality expression and shows have herpesvirus infection to exist or risk.
42. the method for claim 1 is characterized in that, described tested object is a horse.
43. treatment, the method of prevention or inhibition object generation herpesvirus infection, this method comprises the unconventionality expression of at least a HVI marker gene in the detected object, and give treatment or the relief of symptoms or the reverse of described object significant quantity or suppress the medicine of described object generation herpesvirus infection, wherein, group is down expressed and be selected to the HVI marker gene in immune cell: (a) a kind of gene, its polynucleotide expression product contains the nucleotide sequence that at least 50% sequence homogeny is arranged with following arbitrary sequence: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, or its complementary sequence; (b) a kind of gene, its polynucleotide expression product contain the nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; (c) a kind of gene, its polynucleotide expression product contains to encode the nucleotide sequence of the polypeptide of at least 50% sequence similarity: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114 with at least a portion of following arbitrary sequence, wherein said part contains at least 15 amino-acid residues that adjoin of this sequence; (d) a kind of gene, its polynucleotide expression product contain at least under low preciseness condition the nucleotide sequence with (a) and (b), (c) described sequence or its complementary sequence hybridization.
44. isolating HVI mark polynucleotide, it is selected from: (a) contain the polynucleotide that have the nucleotide sequence of 50% sequence homogeny with following arbitrary sequence at least: SEQ ID NO:1,12,23,24,25,26,33,34,37,38,65,66,75,76,83,84,93,98,99,100,101,106,107 or 108, or its complementary sequence; (b) contain the polynucleotide of a part that comprises following arbitrary sequence: SEQ ID NO:1,12,23,24,25,26,33,34,37,38,65,66,75,76,83,84,93,98,99,100,101,106,107 or 108, or its complementary sequence, wherein said part contains at least 15 contiguous nucleotides of this sequence or complementary sequence; (c) at least can be under low preciseness condition and (a) or (b) polynucleotide of described sequence or its complementary sequence hybridization; (d) contain the polynucleotide of the part of following arbitrary sequence: SEQ ID NO:1,12,23,24,25,26,33,34,37,38,65,66,75,76,83,84,93,98,99,100,101,106,107 or 108, or its complementary sequence, wherein said part contain at least 15 contiguous nucleotides of this sequence or complementary sequence and at least under low preciseness condition with (a) and (b) or (c) described sequence or its complementary sequence hybridization.
45. one kind contains the nucleic acid construct thing that operability is connected in the described HVI mark of claim 44 polynucleotide of regulatory element, described regulatory element can be operated in host cell.
46. an isolating host cell, it contains nucleic acid construct thing as claimed in claim 45.
47. probe that contains at least under low preciseness condition with the nucleotide sequence of the described multi-nucleotide hybrid of claim 44.
48. probe as claimed in claim 47, it is characterized in that, described probe is basically by constituting corresponding at least a portion of the nucleotide sequence of arbitrary aminoacid sequence below the coding or with its complementary nucleotide sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part is to 15 Nucleotide of the youthful and the elderly.
49. probe as claimed in claim 47, it is characterized in that, described probe comprise can with the nucleotide sequence of at least a portion hybridization of the nucleotide sequence of the following arbitrary aminoacid sequence of coding: SEQID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part is to 15 Nucleotide of the youthful and the elderly.
50. probe as claimed in claim 47, it is characterized in that, described probe contains the nucleotide sequence that can hybridize with at least a portion of following sequence at least under low preciseness condition: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, wherein said part is to 15 Nucleotide of the youthful and the elderly.
51. probe as claimed in claim 47 is characterized in that, described probe comprises the sequence shown in arbitrary among the SEQ ID NO:145-2150.
52. a solid or semi-solid upholder, it comprises at least a probe as claimed in claim 47 that is fixed thereon.
53. one or more HVI mark polynucleotide as claimed in claim 44, or one or more probes as claimed in claim 47, or be selected from one or more following HVI labeling polypeptides, perhaps can in the preparation diagnosis object, there be application in the test kit of herpesvirus infection: (i) contain the polypeptide that has the aminoacid sequence of 50% sequence similarity with following arbitrary sequence at least: SEQ ID NO:3 with interactional one or more antigen binding molecules of these HVI labeling polypeptides immunity, 5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; (ii) contain the polypeptide that has the aminoacid sequence of 50% sequence similarity with the expression of polypeptides product of HVI marker gene at least, described expression of polypeptides product contains following arbitrary sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; (iii) above (i) or the (ii) part of described polypeptide, wherein said part comprises at least 5 contiguous amino acid residues of this polypeptide; (iv) contain the polypeptide that has the aminoacid sequence of 30% similarity with (i) or (ii) at least 15 contiguous amino acid residues of described polypeptide at least; With (iv) contain (i) or the (ii) polypeptide of the part of described polypeptide, wherein said part contain (i) or (ii) described polypeptide at least 5 contiguous amino acid residues and can with (i), (ii) or the interactional antigen binding molecules of (iii) described epi sequence immunity takes place interacts.
54. there is the method for herpesvirus infection in a diagnostic test object, it comprises the unconventionality expression that is selected from following at least a HVI mark polynucleotide in the immune system cell that detects tested object: (a) contain the polynucleotide that the nucleotide sequence of at least 50% sequence homogeny is arranged with following arbitrary sequence: SEQ ID NO:1,2,4,6,7,8,10,12,13,15,17,19,21,23,24,25,26,27,29,31,33,34,35,37,38,39,41,43,45,47,49,51,53,55,57,59,61,63,65,66,67,69,71,73,75,76,77,79,81,83,84,85,87,89,91,93,94,96,98,99,100,101,102,104,106,107,108,109,111 or 113, or its complementary sequence; (b) contain the polynucleotide of nucleotide sequence that coding comprises the polypeptide of following arbitrary aminoacid sequence: SEQ ID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114; (c) contain the polynucleotide of nucleotide sequence that coding and at least a portion of following arbitrary sequence have the polypeptide of at least 50% sequence similarity: SEQID NO:3,5,9,11,14,16,18,20,22,28,30,32,36,40,42,44,46,48,50,52,56,58,60,62,64,68,70,72,74,78,80,82,86,88,90,92,95,97,103,105,110,112 or 114, wherein said part contains at least 15 amino-acid residues that adjoin of this sequence; (d) contain at least under low preciseness condition polynucleotide with the nucleotide sequence of (a) and (b), (c) described sequence or its complementary sequence hybridization.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2004904578A AU2004904578A0 (en) | 2004-08-13 | Diagnostic agents and uses therefor | |
AU2004904578 | 2004-08-13 | ||
US60814104P | 2004-09-09 | 2004-09-09 | |
US60/608,141 | 2004-09-09 | ||
PCT/AU2005/001222 WO2006015452A1 (en) | 2004-08-13 | 2005-08-15 | Microarray-mediated diagnosis of herpes virus infection by monitoring host’s differential gene expression upon infection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101065502A true CN101065502A (en) | 2007-10-31 |
CN101065502B CN101065502B (en) | 2012-06-06 |
Family
ID=38965700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800323153A Expired - Fee Related CN101065502B (en) | 2004-08-13 | 2005-08-15 | Microarray-mediated diagnosis of herpes virus infection by monitoring host's differential gene expression upon infection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101065502B (en) |
-
2005
- 2005-08-15 CN CN2005800323153A patent/CN101065502B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101065502B (en) | 2012-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alvarez-Sanchez et al. | Real time PCR for the diagnosis of benzimidazole resistance in trichostrongylids of sheep | |
US9816128B2 (en) | Polynucleotide marker genes and their expression, for diagnosis of endotoxemia | |
US20150322517A1 (en) | Agents and methods for diagnosing stress | |
CN1324147C (en) | Diagnostic assays for parvovirus B19 | |
CN103649329A (en) | Diagnostic and/or screening agents and uses therefor | |
CN1839205A (en) | Compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer | |
CN1732270A (en) | ACTN3 genotype screen for athletic performance | |
CA2634072A1 (en) | Markers for memory t cells and uses thereof | |
CN1930306A (en) | Method evolved for recognition of thrombophilia (MERT) | |
CN1533435A (en) | Methods and reagents for diagnosis and treatment of insulin resistance and related conditions | |
CN1509337A (en) | New polynucleotides and polypeptides of IFN alpha-17 gene | |
US8071305B2 (en) | Microarray-mediated diagnosis of herpes virus infection by monitoring host's differential gene expression upon infection | |
CN1531440A (en) | Pharmaceutical composition for preventing or treating TH1 and TH2 cell related diseases by modulating TH/TH2 ratio | |
CN1942480A (en) | Identification of SNPs associated with hyperlipidemia, dyslipidemia and defective carbohydrate metabolism | |
CN101065502A (en) | Microarray-mediated diagnosis of herpes virus infection by monitoring host's differential gene expression upon infection | |
CN1882704A (en) | A method for detecting nipah virus and method for providing immunoprotection against henipaviruses | |
AU2011268223A1 (en) | Method for predicting a therapy response in subjects with multiple sclerosis | |
US20190309366A1 (en) | CXR4 as a Susceptibility Locus in Juvenile Idiopathic Arthritis (JIA) and Methods of Use Thereof for the Treatment and Diagnosis of the Same | |
US20090191540A1 (en) | Markers for Viral Infections and Other Inflammatory Responses | |
WO2005090593A1 (en) | Host markers for diagnosis of equine protozoal myeloencephalitis and sarcocystis neurona infection | |
Aftab et al. | Molecular characterization of canine and feline kobuvirus infections in Iran | |
CN1708511A (en) | Genes whose expression is increased in response to stimulation by corticotropin-releasing hormone | |
JP5111763B2 (en) | Genetic predisposition test for bronchial asthma | |
CN1647823A (en) | SARS coronary virus full virus vaccine | |
Matsuzaki et al. | Regenerative Therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120606 Termination date: 20140815 |
|
EXPY | Termination of patent right or utility model |