CN101048653B - 物体的双能量辐射扫描 - Google Patents

物体的双能量辐射扫描 Download PDF

Info

Publication number
CN101048653B
CN101048653B CN2005800067975A CN200580006797A CN101048653B CN 101048653 B CN101048653 B CN 101048653B CN 2005800067975 A CN2005800067975 A CN 2005800067975A CN 200580006797 A CN200580006797 A CN 200580006797A CN 101048653 B CN101048653 B CN 101048653B
Authority
CN
China
Prior art keywords
radiation
atomicity
pixel
threshold value
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800067975A
Other languages
English (en)
Other versions
CN101048653A (zh
Inventor
保罗·比约克尔霍尔姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vision Co., Ltd.
Original Assignee
Varian Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Medical Systems Inc filed Critical Varian Medical Systems Inc
Priority claimed from PCT/US2005/006809 external-priority patent/WO2005084352A2/en
Publication of CN101048653A publication Critical patent/CN101048653A/zh
Application granted granted Critical
Publication of CN101048653B publication Critical patent/CN101048653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

在一个实施例中,公开了一种检查物体的方法,该方法包括:以第一和第二辐射能量扫描物体;探测第一和第二能量下的辐射;以及计算在第一和第二能量下探测的辐射的函数。可以对物体的对应部分计算函数。至少部分地根据该函数,来确定物体是否至少潜在地包括原子数高于预定原子数的高原子数材料。函数可以是比值。可以将该函数和第二函数进行比较,该第二函数可以是阈值,该阈值至少部分地基于具有预定原子数的材料。第二函数可以和第一函数相同。

Description

物体的双能量辐射扫描
本申请要求2004年3月1日提交的临时专利申请No.60/549,093和2004年5月5日提交的临时专利申请No.60/568,541的权益,它们被转让给了本发明的受让人且在此通过参考而被引入。
技术领域
对包括如货物运输工具之类的大物体的物体(object)进行辐射扫描(radiation scanning),以识别违禁品。
背景技术
辐射一般用于非入侵地检查诸如行李、袋子、公文包、货物集装箱等物体的内容,以便例如在机场、海港和公共建筑物识别隐藏的违禁品。例如,违禁品可以包括隐藏的枪、刀、爆炸装置、非法药物和大规模杀伤武器,如核或“脏”放射性炸弹。一种普通的检查系统是行扫描仪(line scanner),其中在如X射线辐射之类固定的辐射源和固定的探测器之间传送要检查的物体。辐射被校准(准直)为扇形射束或尖锥射束(pencil beam)。透过物体的辐射被物体的内容衰减到不同程度。辐射的衰减是射束所通过的材料的密度的函数。探测并测量透射的辐射。可以产生物体内容的辐射图像,用于检查。图像显示了内容的形状、大小和不同密度。
普通检查系统中所使用的固定辐射源典型地是大约160KeV至大约450KeV的X射线辐射源。例如,X射线源可以是韧致(Bremsstrahlung)辐射源。该能量范围内的X射线源可以是X射线管。450KeV的X射线辐射将不能完全穿透如货物集装箱之类的大物体。标准的货物集装箱典型地为20~50英尺长(6.1~15.2米)、8英尺高(2.4米)、6~9英尺宽(1.8~2.7米)。用于容纳要存放在飞机机体内的多件行李或其它货物的航空货物集装箱的尺寸(长、高、宽)可以从大约35×21×21英寸(0.89×0.53×0.53米)直到大约240×118×96英寸(6.1×3.0×2.4米)变化。在货物托盘(pallet)上也可以支撑大堆的物体,如多件行李。可以有支撑侧壁的货物托盘可能具有可比得上货物集装箱的尺寸,并且使用术语“货物运输工具”来涵盖货物集装箱和货物托盘。
虽然把枪、爆炸物和其它违禁品装在手提袋和行李中带到飞机上走私已经是当前众所周知的关注问题,但是较少公开但也严重的威胁是,利用船只在大的货物运输工具中跨国界走私违禁品。用船只运到美国的1千7百万只集装箱中只有2%~10%被检查。“检查站恐怖行动(Checkpoint Terror)”,美国新闻和世界报告(U.S.News andWorld Report),2002年2月11日,第52页。
利用常规爆炸来在广大地区散布放射性材料的原子弹和“脏弹”是可以在货物运输工具和更小物体中走私的核装置的例子。类似,也可以在这些物体中走私可用于制造原子设备的放射性、可裂变、易裂变和增殖性材料。如铀-235、铀-233和钚-239的易裂变材料,可以通过捕获慢(热)中子来经历裂变。可裂变材料包括易裂变材料,以及可以通过捕获快中子来经历裂变的材料,如铀-238。增殖性材料可以通过捕获慢(热)中子而转变成易裂变材料。例如,铀-238可以转变成钚-239。例如,钍-232可以转变成铀-233。可裂变、易裂变和增殖性材料在此被称为“核材料”。
通过手动检查如货物运输工具之类的物体的内容来识别核装置、核材料和放射性材料(可能不是核材料)对于常规用途来说太慢。通过如辐射探测器的无源检查系统来识别放射性材料和核装置更快,但是难。例如,可以将辐射探测器沿物体的路径放置。因为核材料通常是致密的,而它们吸收它们所发射的光子中的大多数。如铁、铅、钨或钯的屏蔽材料也可用于阻挡辐射的逸出,阻止了对辐射的探测。另外,某些如铀-233、铀-235和钚-239的易裂变材料虽然具有放射性,但是具有极长的半衰期(104~108年的数量级)。对于这种材料,来自自发衰变的计数率太慢,使得无源探测不可靠。而且,较少量的放射性材料可以位于大货物运输工具中。而且,难以通过标准X射线扫描将核装置及核材料与物体内所装有的其它致密物区分开。
可以利用这样的辐射束来增强可通过X射线扫描得到的物体内容的材料成分信息:该辐射束的能谱具有和物体内容不同地相互作用的两个不同能量端点(峰值能量)。相互作用和材料有关。例如,可以通过具有6MeV和9MeV或更高加速电势的X射线源,来提供两个具有能谱的X射线束,该X射线源分别产生具有6MeV和9MeV峰值能量的X射线辐射束。对于具有6MeV峰值能量的X射线束,X射线辐射将主要通过康普顿(Compton)散射而衰减。在大部分能谱上没有很多电子对产生。对于具有9MeV或更高峰值能量的X射线束,诱发了更多的电子对产生。也发生了康普顿散射。在两个能量端点下探测的透过辐射的比值可以指示辐射束所通过的材料的原子数(automic number)。虽然电子对在1.022MeV开始产生,但是康普顿散射起主要作用,直到达到更高的峰值能量为止。
例如,美国专利No.5,524,133公开了用于如集装箱的大物体中或运载工具上的货物的扫描系统。在一个实施例中,提供了两个固定的X射线辐射源,每个辐射源都发出被校准(准直)为扇形射束的射束。辐射源面向货物的相邻侧,且扇形射束相互垂直。固定探测器阵列被放置在货物的对侧和每个辐射源相对,以便接收透过货物的辐射。另外,每个辐射源都发出两种不同能量的X射线辐射。一种能量大大高于另一种能量。例如,可以使用1MeV和5MeV或6MeV的能量。确定探测器阵列整体在每个能量端点下对每一层探测的平均X射线数的比值或探测器阵列的每个探测器在每个能量端点探测的平均X射线数的比值(ratio),并将其和查找表进行比较,以识别与该比值对应的平均原子数。由此确定货物的材料内容。
X射线扫描的更复杂因素在于,与被检物体相互作用后的辐射的测量是统计意义上的。例如,透过物体的X射线辐射的测量精度受用于进行测量的光子数以及系统固有噪声的限制。相同量的重复测量典型地产生以均值为中心的一簇测量值簇。这簇测量值的曲线典型地形成“正态分布”曲线。单个测量的离散(正态分布曲线的宽度)以标准差来表征。在利用单色X射线束的X射线扫描中使用泊松统计,测量的百分比误差是1除以除系统噪声外的被探测光子数的平方根。当探测到更多的光子时,标准差减小,并且测量精度提高。虽然可以通过增加扫描时间来增加探测到的光子数,但是放慢典型X射线扫描系统的吞吐率一般是不可接受的。例如,在当前市场中,大大延迟货物运输工具通过港口或边界、或者在机场延迟筛分乘客的袋子或行李,是不可接受的。
例如,设法识别如铀之类的材料的扫描系统的精度可以以其“灵敏度”及其“专一性”为特征。灵敏度是能够识别货物运输工具中存在铀的概率。高灵敏度系统将比低灵敏度系统识别更多的真报(true positive)(正确识别铀的存在)和更少的漏报(铀的漏探测)。然而,灵敏度的提高可能导致误报数量的增加,这可能是不可接受的。例如,作为精度统计度量的专一性是扫描系统能够正确识别货物运输工具中不存在铀的概率。高专一性系统将比低专一性系统识别更少的误报(当货物运输工具中不存在铀时,识别铀)。
不足的光子收集可能导致大标准差的测量分布。因此,所关心的如铀之类的材料分布可能与其它无威胁材料的分布重叠。因此,可能不清楚特殊测量是否指示所关心的材料,由此导致误报。仍然需要用于高精度地探测货物运输工具和其它物体内隐藏的核材料的可行、高效及非入侵方法和系统。
发明内容
可裂变、易裂变和增殖性材料(核材料)具有高原子数(Z)。例如,铀的原子数(Z)为92,钚的原子数为94。比其它易裂变材料更容易经历裂变的特种核材料(SNM)被美国核管制委员会定义为包括钚、铀-233和富含同位素铀-233或铀-235的铀。通常用如铅(Z=82)、钨(Z=74)和钯(Z=46)的高原子数材料来屏蔽放射性材料,其中一些放射性材料可能具有比核材料低的原子数(例如钴-60的原子数为27)。相反,作为货物运输工具中装运的大多数工业品的主要材料的铁具有26的原子数。也可在货物运输工具中装运的农产品具有更低的原子数。农产品主要由具有更低原子数的碳(Z=6)、氮(Z=7)和水(H2O,H(Z=1);O(Z=8))组成。本发明的实施例检查物体,以将物体分类为可能是核材料的高原子数材料。也可以检查其它物体内的物体以及埋入地下的物体。
根据本发明实施例,通过以下方法来检查物体:用具有诸如不同能量端点的不同能量的辐射束来扫描物体;计算在两种能量下探测的辐射的函数;以及至少部分地根据该函数来确定物体是否包括原子数大于预定原子数的材料。例如,物体可以是货物运输工具,且这两个能量端点都可以大于1MeV。例如,能量端点可以是9MeV和5MeV。例如,函数可以是在两个能量端点下探测的辐射之比。这种比值在此被称为透射比(TR)。原子数大于预定原子数的材料被称为高原子数材料(HANM)。可以将第一函数和至少部分地基于预定原子数的第二函数进行比较,以进行确定。例如,第二函数可以是阈值。例如,阈值可以至少部分地基于通过在相同的两个能量端点下扫描具有预定原子数的测试材料而得到的比值(也是TR)。可以将阈值进一步调节预定的整数个或非整数个标准差。改变标准差数通常将以相反方向影响系统的灵敏度和专一性。例如,增加标准差数可以提高专一性、减少误报数,但是它也可以降低灵敏度、减少对真报的探测。在特殊应用中,需要平衡专一性和灵敏度。
根据本发明实施例,公开了一种检查物体的方法,该方法包括:用第一能量的第一辐射束扫描物体的第一多个部分,并探测第一辐射束与第一多个部分相互作用后的第一辐射。该方法继续用第二辐射束扫描物体的第二多个部分,并探测第二辐射束与第二多个部分相互作用后的第二辐射。该方法进一步包括,对对应的第一部分和第二部分计算第一辐射和第二辐射的函数的比值,并至少部分地根据每个比值与阈值的比较来确定物体的内容是否至少潜在地包括原子数大于预定原子数的高原子数材料。
根据另一实施例,公开了一种检查物体的系统,该系统包括用于在第一和第二辐射能量下扫描物体至少一部分的装置。提供了用于探测与物体相互作用后第一和第二辐射能量下的辐射的装置。也提供了用于计算在第一和第二能量下探测的辐射的函数的装置;以及用于至少部分地根据该函数来确定物体是否至少潜在地包括原子数比预定原子数高的高原子数材料的装置。
根据相关实施例,公开了一种检查物体的系统,该系统包括至少一个辐射源,用于以第一和第二辐射能量扫描物体的至少一部分。放置至少一个探测器,以探测与物体相互作用后第一和第二辐射能量下的辐射。该至少一个处理器连接到探测器。处理器被编程,以便:计算在第一和第二能量下探测的辐射的函数;以及至少部分地根据该函数来确定物体是否至少潜在地包括原子数大于预定原子数的高原子数材料。
术语“辐射能量(radiation energy)”指的是辐射束的能量特征。例如,该特征可以是射束的能量端点或峰值能量。辐射能量也可以指射束能量的平均或标称值。也可以使用其它射束能量特征。
附图说明
图1a是对于多种材料的,作为9MeV下透射辐射的函数的、9MeV和5MeV下的透射辐射测量的曲线图;
图1b示出了在9MeV下透过与铅块相邻的铁块的辐射和在5MeV下透过该铁块的辐射之比的表面曲线;
图1c显示了5条曲线,这5条曲线代表作为9MeV下的透射辐射的函数的、在9MeV和5MeV下通过被识别材料的透射辐射模拟测量的比值;
图2是货物运输工具的X射线图像一部分的例子的示意图;
图3是在多个像素透过货物运输工具一部分的9MeV X射线辐射的值阵列(array)的例子;
图4是在多个像素透过图6的货物运输工具一部分的5MeV的X射线辐射的值阵列的例子;
图5是根据本发明实施例基于图3和4中测量的X射线辐射的一组合成像素(resultant pixel)的透射比(TR)阵列的例子;
图6a是供本发明实施例之用的TR计算方法的例子的流程图;
图6b是用于调节透过背景图像致密区的探测辐射的方法的例子的流程图;
图7是本发明实施例中为了对各种尺寸的检查窗口和各种标准差实现万分之一的虚警率所需的最少TR像素数的条形图;
图8是根据图7的实施例的“检查窗测试”的例子的流程图;
图9是根据本发明实施例的用于向操作者提供检查输出的方法的例子的流程图;
图10是根据本发明另一实施例的“邻接测试(contiguitytest)”的例子的流程图;
图11是供本发明实施例之用的,代表货物集装箱一部分的一组像素的TR阵列的例子;
图12是根据图11的实施例的“矩阵测试”的例子的流程图;
图13是根据本发明实施例的阈值计算方法的例子的流程图;
图14是根据本发明另一实施例的基于货物运输工具的内容来选择阈值的方法的例子的流程图;
图15a是为核材料而检查物体的方法的例子;
图15b是为核材料而检查物体的另一方法的例子;
图16是被编程以便实施本发明实施例的货物扫描系统的正视图;
图17是类似于图15系统的显示了两个相邻X射线辐射源的货物扫描系统的一部分的顶视图;
图18是可以实施本发明实施例的另一X射线扫描系统的透视示意图;以及
图19是图18系统的背视图。
具体实施方式
根据本发明实施例,利用在两种不同能量下通过物体的辐射的透射或衰减的函数,来把物体或物体内的物品(item)或部位分类为高原子数材料(HANM),该HANM可以是核材料或屏蔽这种材料的材料。函数可以是比值。可以将该比值或其它这种函数与在相同的两种能量下通过已知原子数测试材料的辐射的透射或衰减的相同函数进行比较。如果材料具有比测试材料更高的原子数,则可以将该材料分类为HANM。测试材料可以是原子数小于所关心材料的原子数的任何材料。例如,测试材料可以是铁。例如,物体可以是货物运输工具。而且,根据本发明实施例,可以以期望的统计置信度进行确定。
铁的原子数(Z)为26。因为货物运输工具中的典型物品包括铁和原子数小于铁的其它材料,所以原子数大于铁的任何材料的存在都是可疑的。因此,足以筛分HANM而不用识别特殊材料(尽管这是一种选项)。虽然某些HANM可能不是核材料,但是如铅(Pb,Z=82)、钨(W,Z=74)和铋(Bi,Z=83)的非核HANM可用于屏蔽核材料,因此也是可疑材料。货物运输工具等中极少存在合法的HANM,并且当存在合法的HANM时,应该在货物运输工具的货物清单上标识它们。例如,银(Ag,Z=47)具有医疗、工业和摄影用途。如果为这种合法用途而运输银,则应该在货物清单上标识银。另外,可以通过核材料的透射及图像中的核材料形状,来把核材料和其它HANM区分开。因此,核对货物清单并在视觉上检查货物运输工具的X射线图像可以避免将HANM识别为核材料,由此降低误报发生率。
为演示在不同能量下通过不同材料的透射比能将材料分类为HANM,利用具有9MeV(测量半值层(HVL)1.16英寸,2.95cm)和5MeV(HVL 1.04英寸,2.64cm)标称能量的辐射束来扫描铁、铅、路赛特(Lucite)和钨的样品。利用可以从加利福尼亚Palo Alto的创新医疗系统有限公司(Varian Medical Systems,Inc.,Palo Alto,California)得到的M9 Linatron
Figure 058067975_0
直线加速器来提供辐射束,该M9Linatron
Figure 058067975_1
直线加速器被设为在8.5MeV和4.5MeV下操作。可以将M9从一个能量端点切换到另一个能量端点。在一个能量端点下扫描每个样品并收集数据,然后在第二能量端点下扫描每个样品并收集数据。利用沿辐射源的中心轴放置的距辐射源大约2米的Paxscan
Figure 058067975_2
4030氧化钆(GdO)闪烁晶体,来探测透过每个样品的辐射。探测器的电子学部分被铅覆盖。对于8.5MeV数据采集,探测器以300脉冲每秒(pps)操作,并且探测器以1.5帧每秒(fps)操作。对于4.5MeV数据采集,辐射源以200pps操作,并且探测器以3fps操作。对128帧合计图像。
将可变厚度的铁、铅和路赛特的样品单独放在辐射源和探测器之间。不同厚度导致不同的透射量。对于每个样品,获取两幅图像并以.viv格式存储。对每幅图像进行标准化,以校正探测器非均匀性并存储。另外,将不同材料的样品相互紧接着放置。例如,将钨和铁分别放在铅之后。而且,可以沿射束的方向将多种材料的样品一个接一个地放置。例如,将钨和铅分别放在铁之后。
例如,利用可以从http://rsb.info.nih.gov/ij/的国家健康学会(National Institute of Health)得到的免费软件程序ImageJ-用Java编写的图像处理与分析程序,来处理每幅图像。也可以使用该技术领域中公知的其它图像处理软件。在每幅图像中的固定位置获得图像的所关心区域的直方图,并记录从所关心区域收集的数据的均值和标准差。在某些情况下,当把两种不同材料相互紧接着放置时,必须用手而不是用宏(macro),来选择所关心区域。因此,在两种能量下扫描的样品的对应位置不完全相同。ImageJ中的位置指示器使得位置能够至少非常接近。
通过使图像的直方图均值除以在不存在样品的情况下以相同的能量获得的图像直方图均值,来计算每幅图像的能量透射,以对图像进行标准化。然后,计算并记录8.5MeV下的能量透射和4.5MeV下的能量透射之比。也记录8.5MeV下的透射。
图1a显示了结果,图1a是沿Y轴的9MeV标称能量的辐射束的透射与4.5MeV标称能量的辐射束的透射之比、对沿X轴的8.5MeV下透射的曲线图。X轴是半对数轴。曲线A引导我们的眼睛连接所计算的铁的不同透射比,其对应于样品的不同厚度。曲线B连接所计算的铅的不同透射比。曲线C连接所计算的路赛特的不同透射比。点D显示了紧接在钨之后的铁的透射比。点E显示了紧接在铁之后的铅的透射比。点F显示了通过3英寸(76.2mm)铁后面的1.5英寸(38.1mm)钨的透射比。点G显示了在不同的图像中3英寸(76.2mm)铁后面的1.5英寸(38.1mm)钨的透射比。点H显示了3英寸(76.2mm)铁后面的3英寸(76.2mm)铅的透射比。
图1a中的曲线和点显示了在低透射(高衰减)下材料之间的良好分离度。在大约0.1和更小的透射下,可以清楚地区分铁、铅和路赛特,对于铁后面的钨和铅也是这样的。另外,在该例子中,曲线的相对位置显示出,随着原子数增加,材料的透射比将减小。因此,例如可以根据每种材料的透射比以及各个透射比与铁的透射比的比较,来将材料分类为HANM。注意,当接近完全透射(X=1)时,曲线会聚。例如在优化系统中,如果探测更多的光子,并且存在较少的散射,则也可能在较高的透射(较小的衰减)下确定分离度。
图1b是在8.5MeV和4.5MeV下通过与1.5英寸(38.1mm)铅相邻的3英寸(76.2mm)钢(铁)的透射的比值图像的表面曲线。使用不同的厚度,使得通过两种材料的透射相同。图像的I部分是钢(铁)的图像,并且图像的J部分是铅的图像。在8.5MeV下,钢(铁)和铅具有大约相同的能量透射,如利用探测器所测量的。比值大大不同。每个表面的粗糙度是由比值测量的统计变化而引起的。可以容易地区分这两种材料,因为它们的比值相隔多个标准差。在透射较低的情况下,标准差将较大,比值将更靠近在一起,并且将需要更复杂的统计分析。
在上述实验中,辐射源和探测器靠近在一起,需要宽辐射束,这降低了入射辐射的均匀性。另外,散射没有减少,并且探测器效率低。图1c显示了5条曲线,这5条曲线描述了根据没有这些问题情况下的模拟所模拟的,作为9MeV下透射能量的函数的在9MeV下透过5种不同材料的辐射和在5MeV下透过这5种不同材料的辐射之比。探测器包括30mm钨酸镉(CdWO4)。在模拟中,与以上实际测试相比,散射减少了,辐射源和探测器进一步分开了(大约13米)。材料是水(H2O)、铝、铁、铀和金,如图所示。曲线比以上测试更平滑,并且当9MeV下的透射增大时,曲线会聚。如上所述,在入射辐射的高衰减(低透射)下,不同材料之间存在大的分离度。随透射减小(衰减增大)而增大的分离度显示出原子数相关性。另外,在该例子中,比值随原子数增加而减小。如果通过使较低能量除以较高能量来计算比值,则比值将随原子数增加而增大。
不限于任何特殊理论,人们相信比值和原子数之间的关系是从不同能量下的康普顿散射和电子对产生的区分效应(differentialeffect)而产生的。在低原子数材料(如铝(Z=13)和水(H2O,H(Z=1),O(Z=8)))的情况下,在高能量如9MeV下,康普顿散射是占优势地位的机制。康普顿散射使低原子数材料以高于散射如9MeV光子之类的较高能量光子的速率来散射如5MeV光子之类的较低能量光子,这增大了低原子数材料的透过辐射的比值。对于较高原子数材料,如银(Z=47)和铀(Z=92),电子对产生造成高能量光子的迁移,由此减小比值。另外,当能量透射增大时,比值的变化对能量透射的变化不太敏感,导致了几乎平直的曲线。
在图1a和1c中,如果把一般在货物运输工具中发现的材料中具有最高原子数的铁(Fe,Z=26)用作测试材料,则所计算的比值小于铁的比值就指示存在原子数大于铁的材料。如上所述,货物运输工具中的典型物品包括铁和原子数小于铁的其它材料。因此,原子数大于铁的任何材料的存在都是可疑的。
图1a和1c也显示出,当能量透射增大时(因为材料更薄),不同材料的比值之差减小了。虽然图1a和1c显示出,当能量透射减小时(对于更厚物体),不同元素和物质的比值之差更大,但是注意,当能量透射变小时,可探测的每像素光子数更少了。这可能增大测量比值的误差容限,由此降低可以区分材料的精度。本发明的实施例统计地说明有噪数据。
在本发明实施例的例子中,利用以两种不同能量通过材料的辐射的透射或衰减之比和材料原子数之间的关系,来确定物体至少潜在地包含原子数大于预定原子数的材料,该材料被认为是HANM。选择预定原子数,使得HANM可能是核材料或用于核材料的屏蔽材料。
在一个例子中,利用至少两种具有不同最大能级的不同X射线能量分布或能谱来扫描物体,最大能级也称为端点(endpoint)或峰值能量。可以使用的能量分布的例子包括5MeV和9MeV、1MeV和9MeV以及5MeV和15MeV。利用探测器阵列的探测元件,来测量在两个不同能量端点下透过物体的辐射。例如,也可以在物体刚要进入相应辐射束之前,在辐射束透过空气之后在每个能量端点下探测辐射,以供标准化之用。空气透射的标准化是任选的。每个探测元件都沿着从X射线源通过物体部分到达探测元件的射束路径,来接收辐射。沿每条射束路径透射的辐射在表面上的投影被称为“像素”。表面可对应于探测器阵列的接收面的全部或一部分,例如该表面可以是平面的或曲面的,如该技术领域所周知的。每个像素可以对应于探测器阵列的一个或多个探测元件。如果产生了图像,在本发明的实施例中这是可选的,但不是必需的,则像素可以对应于图像的像素。
计算在两个不同能量端点下对对应部分或像素探测到的辐射的函数。“对应”部分或像素是由通过物体的相同或基本上相同射束路径而产生的。因为在扫描期间物体通常横移过辐射束,所以在第一和第二能量端点下的扫描之间,物体可能移动微小的距离。因此,对应像素可能不是从通过货物运输工具的完全相同射束路径得到的。优选地,如果通过货物运输工具的各像素射束路径至少重叠一半,则认为像素“对应”,尽管这不是必须的。例如,像素可以重叠少于一半。对于本领域技术人员,显然在某些情况下,例如如果可以容忍较低的灵敏度和专一性,则对应像素可以彼此邻近(彼此在几个像素内),并且不必重叠。
例如如上所述,函数可以是在较高能量端点(如9MeV)探测的辐射和在较低能量端点(如5MeV)探测的辐射之比,或反之亦然。这种比值被称为透射比(TR)。在一个例子中,为计算透射比,对多个对应像素,使在较高能量端点探测的透射辐射除以在较低能量端点探测的透射辐射。可以把被称为“合成像素(resultant pixel)”或仅称为“像素”的对应像素的TR表示为与各个合成像素的位置关联的数(对应于比值)的阵列或矩阵。不测量辐射透射,而可以测量辐射衰减,并将其用于比值中。也可以使用其它函数。例如,可以使用非对称参数函数,如以下之间的比值:1)在第一能量端点探测的能量加上在第二能量端点探测的能量,以及2)在第一能量端点探测的能量减去在第二能量端点探测的能量。换句话说,(在9MeV下探测的辐射+在5MeV下探测的辐射)÷(在9MeV下探测的辐射-在5MeV下探测的辐射),或反之亦然。
在本发明的实施例中,将合成像素的TR和基于具有预定原子数(在该预定原子数上的材料被认为是HANM)的测试材料的第二函数进行比较。至少部分地根据TR是否满足关于第二函数的准则,来识别潜在的HANM。例如,第二函数可以是阈值,并且准则可以是TR是在阈值之上还是之下。可以通过对测试材料的合成像素计算在与系统用来扫描被检物体的两个能量端点一样的两个能量端点下的透射辐射的平均TR,来确定阈值。可以分析所有的合成像素,或者可以分析统计上足够多的合成像素来表征测试件。优选地,将平均TR调节整数或非整数个TR标准差,以获得期望的灵敏度和专一性。而且,优选地计算不同厚度测试件的平均TR。因为透射随厚度而变,由此可以计算特殊阈值,并将其用于在每个像素探测的特殊透射或透射范围。可以利用较高能量端点(在此为9MeV)下的透射来选择阈值。相反,可以使用5MeV下的透射。
优选地,测试材料的原子数具有等于或大于周知的可接受材料的最高原子数。例如,放射性材料如铀(Z=92)和钚(Z=94)是特别关心的,因为它们可以经历自持裂变反应(self-sustaining fissionreaction)。因此,测试材料优选地具有小于铀原子数的原子数。如上所述,铅(Z=82)、钨(Z=74)和铋(Z=83)也是特别关心的,因为它们可用于屏蔽放射性材料。因此,更为优选地,测试材料具有小于钨的原子数。更为优选地,测试材料是铁(Z=26),铁是一般在货物运输工具及大量行李中发现的最高原子数材料。也可以使用原子数接近于铁的铜(Z=29)和镍(Z=28)。如果货物运输工具或其它这样的物体装有农产品,例如可以根据货物运输工具的货物清单来确定这些农产品,则可以使用基于塑料测试件如Lucite
Figure 058067975_3
或Delrin
Figure 058067975_4
的阈值。也可以利用铁、铜、镍或具有比所关心的材料少的原子数的其它材料,来分析装有农产品的货物运输工具。
像素的TR与阈值的比较结果指示,被辐射束横过的物体的体积中的材料的原子数是高于还是低于测试件材料的原子数。在通过使高能像素的值除以对应低能像素的值来计算TR的情况下,如果TR小于阈值,则被导致那些像素的辐射束所横过的体积至少潜在地包括原子数高于测试件材料原子数的材料,并被识别为至少为潜在HANM。原子数低于测试件材料原子数的材料被分类为非HANM。在通过使低能像素的值除以对应高能像素的值来计算TR的情况下,如果TR大于阈值,则被导致那些像素的辐射束所横过的体积至少潜在地包括原子数高于测试件材料原子数的材料,并被识别为至少为潜在HANM。注意,根据本发明的这些实施例,不必识别材料的原子数,尽管这是任选的,如该领域所周知的。例如,以上讨论的美国专利No.5,524,133描述了一种双能量技术,用于根据在每种能量下探测的X射线辐射比来识别材料的平均原子数。
图2是包含物品405、物品410和选定像素的货物运输工具一部分的图像10,这些选定像素包括说明性像素A、B、F、G和H。像素A位于物品405内。像素B位于物品410内。也示出了检查窗W,以下将对其详细讨论。像素的尺寸可以取决于包括探测器的探测元件的尺寸和/或数量、成像积分时间等。最小像素尺寸可以对应于单个探测元件或多个探测元件。在一个例子中,每个探测元件和每个像素的尺寸是0.5cm×0.5cm。
如果用于扫描货物运输工具10的辐射束是垂直扇形射束,则图2代表由扫描货物运输工具而产生的多个相邻的一维垂直扫描阵列的组合。如果辐射束是锥形射束,则图2代表由扫描货物运输工具10而产生的一个或多个二维扫描区。
把在这些和其它像素处探测的透射辐射值作为阵列存储在扫描系统的存储器中,以便用处理器如计算机进行处理。图3是在多个像素对透过货物运输工具一部分的9MeV辐射探测到的辐射能量值阵列的一部分的例子。图4是在对应像素处对透过货物运输工具对应部分的5MeV辐射探测到的辐射的对应阵列的例子。例如,在9MeV下,在像素X处探测的标准化透射辐射为5.9×10-3,并且在5MeV下,在像素X’处探测的标准化透射辐射为2.4×10-3。因为所有的透射辐射测量都具有相同的数量级(10-3),所以以下省略10-3。和图3及图4一样,图5是所计算的货物运输工具相同部分的TR阵列的例子。显示了通过使X的值(5.9)除以X’的值(2.4)而产生的合成像素A的TR,得到2.5的TR。合成像素典型地具有和初始像素一样的尺寸和形状。所有这些值都是假定的。
图6a是可以用X射线扫描系统自动实现的计算和分析TR的方法800的例子的流程图。在该例子中,在步骤801和802,分别在5MeV和9MeV下探测多个对应像素的透射。在步骤803中,通过使在9MeV下测量的像素透射辐射除以在5MeV下测量的对应像素透射辐射,来计算每个合成像素的TR,如图5所示。然后,在步骤805选择当前合成像素用于分析。在该例子中,选择合成像素A。在步骤808,优选地根据在能量端点之一下探测的透射来选择用于和当前像素的TR进行比较的阈值。可能需要根据对存储的阈值进行插值来计算可适用的阈值,如以下进一步讨论的。在步骤808,该选择基于9MeV下探测的透射。相反,该选择可以基于5MeV下探测的透射。在该例子中,选择的阈值为4.35。
然后,在步骤810确定当前合成像素A的TR是否在4.35的阈值之下。因为2.5小于4.35,所以满足该条件。因此,合成像素A可能是HANM。在步骤815,通过标记该像素在图6a的阵列中的位置,来将该像素“标记”为潜在HANM。然后,在步骤820确定合成像素A是否为要分析的最后像素。因为还有其它像素要分析,所以不满足该条件,并且方法返回到步骤805以选择新的像素进行分析,并且该方法继续。在计算机完成对所有像素的TR的分析之后,因为当前像素是最后像素,所以步骤820中的条件变为真。可以通过扫描系统的处理器如计算机,来实施方法800的处理步骤。
可以用周知技术进行预扫描,以确定物体是否包含要进一步检查的一个或多个致密区,由此提高扫描系统的吞吐量。假如是这样的话,可以执行在此描述的测试中的一项或多项测试。如果不是这样,物体可以通过系统而不用进一步检查。预扫描可以包括,用具有能量端点之一的辐射束来扫描物体。优选地使用较低能量端点辐射束,因为它一般更灵敏。可以相对于指示可能的可疑材料的辐射衰减或透射,来分析结果。例如,这可以通过将探测的辐射或反差和阈值进行比较来实现。也可以产生图像,并在视觉上检查图像。
和HANM相交的辐射束路径通常将和“背景”材料相交,如HANM前面和/或后面的农业材料或工业制品。可以通过根据背景材料的透射辐射以及占用相同辐射束的可疑HANM和背景材料的组合透射辐射,分别计算嵌入背景材料中的可疑HANM的每个像素的TR,来对可疑HANM的背景进行标准化,由此提高扫描系统100的灵敏度和专一性。根据该技术领域中周知的处理技术,如分割,可以识别指示可能的HANM的致密区相对于背景的边界。如上所述,可以在能量端点之一下对被检查物体进行预扫描的期间,识别这种致密区。然后,可以通过在每个能量端点下使通过致密区的像素的透射辐射除以通过背景的透射辐射,来计算通过致密区的每个像素的透射辐射。然后,如上所述,可以通过除每个能量端点下的被调节透射辐射,来计算致密区中的每个像素的TR。
为了使致密区和背景具有可比的TR值统计精度,优选地这样选择背景的大小,以致背景面积大约等于致密区面积或者与致密区面积具有相同的数量级。在一个例子中,可以把预定区,如致密区边界以外每个方向上的周围1至5厘米内容,看作是背景材料。背景材料的TR可以是构成背景的像素的TR的平均值或其它数学函数。例如,也可以使用中值。例如,可以在致密区的像素周围定义两个圈环。例如,最靠近致密区的圈环可以在每个方向上和致密区的边界相隔2至3个像素,以说明确定致密区准确边界的不精确。可以包围和可疑HANM相同的面积的下一个环可以被认为包围背景材料。
图6b是可以通过处理器如计算机来执行以便对致密区的背景来调节通过物体可疑致密区的探测辐射的方法850的例子。在步骤855,识别物体的致密区。例如,可以在能量端点之一下对物体进行预扫描的期间,识别致密区。在步骤860,确定致密区的边界。例如,可以使用该技术领域众所周知的图像处理技术,如分割。
在步骤862识别致密区的背景,并在步骤864确定在每个能量端点下通过背景的平均透射,如上所述。在步骤866,在每个能量端点下,使包括沿射束路径的背景的致密区的每个像素的探测辐射除以透过背景的平均探测辐射。在没有沿射束路径的背景的影响的情况下,结果是每个能量端点下的致密区的透射辐射。然后,该方法可以前进到图6a的步骤803,以便根据所计算的对应像素的透射来计算致密区合成像素的TR,并将这些TR和阈值进行比较。
对于一些特殊应用,根据单独TR和阈值的比较来确定低TR像素至少潜在地指示HANM的灵敏度和专一性可能是不足的。本发明的实施例设法通过增加所分析的像素数,来提高该确定的专一性和灵敏度。扫描系统的处理器,如计算机,可以根据下述本发明实施例,进一步分析结果数据。
检查窗测试
在本发明一个实施例中,检查具有预定面积的一组像素(称为检查窗)中所包含的具有低于阈值的TR的像素(低TR像素)的数目。例如,检查窗可以是3像素×3像素或9像素×9像素的像素矩阵。图2示出了9×9像素检查窗W。如果检查窗中的低TR像素数超过了预定数,则认为存在HANM。可以这样选择阈值(测试件的平均TR减去/加上标准差值)、窗口大小、以及被认为有威胁的最少低TR像素数,以致非HANM将满足威胁准则的概率乘以物体中具有至少一个低于阈值的像素的独立检查窗(独立窗不共享共同像素)的数目,小于期望的灵敏度和专一性。根据以下统计分析,来选择检查窗的大小,以及要从测试材料的平均TR中减去以计算阈值的标准差数。该测试被称为“检查窗测试”。
检查窗的大小可以对应于扫描系统能够探测的所关心的最小HANM的横截面积。通常,以球的形状走私HANM。检查窗可以是与该球的横截面内部配合的最大正方形。一旦选定窗口大小,就选择阈值,以及如果被发现就将被认为有威胁的最少阈值以下像素数。优选地,选择最小标准差,因为当标准差数增加时,对真HANM的响应的概率将减小。这样选择阈值和最少像素数,以致非HANM将满足探测准则的概率乘以所分析的独立检查窗数,小于期望的虚警率。可接受虚警率的例子是小于百分之一。优选地小于千分之一。更为优选地是小于万分之一。
在一个例子中,在和该相同扫描系统将用来扫描货物运输工具的两个能量端点一样的两个能量端点下,扫描铁测试件。在每个像素测量的TR被认为是铁的TR的独立测量。对于测试物体的平均TR以下的每个标准差值(整数或非整数个标准差),由于统计波动,而不是由于存在HANM,将存在单个测量将小于平均TR减去那个给定标准差值的每像素概率“p”。在检查“N”个像素后,也是由于统计波动,将存在这些像素中正好有“n”个像素将在阈值以下的概率“P”。用二项式分布来给出该概率:
P ( n | N ) = N ! n ! ( N - n ) ! p n ( 1 - p ) N - n .
因此,可以计算每个期望结果的概率。可以识别那些在统计上具有很小发生概率,因此具有高的是真正HANM的概率的低TR像素。对于给定情形,设置虚警率“Pfa”,并计算似乎不指示高原子数材料存在的所有低TR像素的概率。把这些概率相加,直到总和与1之差小于Pfa为止。该概率之和对应于将成为误报的低TR像素的数目。该对应数目以上的任何低TR像素数都指示真正HANM的存在。
例如,假设9×9像素窗口,并且阈值等于铁的平均TR减去两个标准差。然后,由于统计波动而引起的像素在阈值以下的每像素概率为p=0.02275。由于统计波动而引起的在9×9窗口中有n个像素在阈值以下的概率P(n|N)为:
    n     P(n|81)     概率和
    0     0.1550     0.1550
    1     0.2923     0.4474
    2     0.2722     0.7197
    3     0.1669     0.8865
    4     0.0757     0.9623
    5     0.0272     0.9894
    6     0.0080     0.9974
    7     0.0020     0.9994
    8     0.0004     0.9999
由于统计波动而将发现8个像素在阈值以下的概率P(n|81)是0.0004。由于统计波动而将发现8个像素在阈值以下的概率之和是0.9999。因此,由于统计波动而不是由于存在HANM,发现8个或更多像素在阈值以下的概率为万分之一。这是基于8个或更多像素的每检查窗的漏报或虚警率Pfa。在该例子中,9个或更多低TR像素是统计波动结果的概率小于万分之一的虚警率Pfa。因此,为获得每窗口小于万分之一的虚警率Pfa,则需要在检查窗中找到9个或更多的低TR像素。
图7是对于各种检查窗和标准差大小,为获得万分之一虚警率Pfa所需的最少低TR像素数的条形图。例如,如果选择较大数量(3或更大)的标准差,则检查窗大小可能相对不重要,因为在那个虚警率Pfa下为指示HANM所需的最少像素数只变化很小量(像素的一小部分)。如果使用较少数量的标准差,如1,则在特殊虚警率Pfa下为指示存在HANM所需的最少像素数是与检查窗大小具有较强关系的函数。例如,对于9×9矩阵窗口大小和1个标准差,在万分之一虚警率Pfa的情况下需要27个像素来指示HANM。在8×8矩阵窗口大小的情况下,需要24个像素。
可以进行两项检查,一项检查是利用较大检查窗来探测较大量的HANM,并且另一项检查是利用较小检查窗来探测较小量的HANM。如上所述,在该系统中,可以用9×9矩阵来探测较大量HANM。例如,较小检查窗可以是3×3矩阵。在3×3矩阵情况下,例如从测试物体的平均TR减去的标准差数可以是2或2.5。在2.5个标准差和3×3矩阵的情况下,在万分之一虚警率Pfa的情况下有3个像素在阈值以下将指示HANM,如图7所示。检查窗测试可以是用于确定是否存在HANM的单独测试,或者检查窗测试可以和其它检查技术一起使用,包括下述本发明其它实施例。
可以通过分析横移过物体的TR的检查窗,来检查整个物体。例如,可以开始将检查窗放在如物体的边角之类的一个位置,然后将检查窗一次一列像素地移到对角。随后,可以将检查窗向下移动一行像素,然后使检查窗一次一列像素地横移过TR。分析每个窗中的像素,并且当分析了物体的所有可能检查窗时,分析结束。
在检查窗测试的实施例子中,在货物扫描系统的操作期间,使货物运输工具受到两种X射线辐射束,每种辐射束具有不同的能量端点,如9MeV和5MeV。用探测器来探测在和货物运输工具相互作用后每个辐射端点下的辐射。以下讨论可以对其进行编程以实施本发明该实施例和其它实施例的货物扫描系统的例子。
图8是例如可以通过如计算机的处理器来执行以实施检查窗测试的方法900的例子。例如,在图6a的方法800(且任选地连同图6b的方法850)中计算合成像素的TR之后,在步骤910计算机选择像素,并构造以所选定像素为中心的检查窗如9×9矩阵。在步骤912,计算机识别检查窗中的低TR(被标记的)像素的数目,并在步骤915将其与预定数进行比较。如上所述,预定数是在选定条件下可能成为误报的最高统计确定的低TR像素(即使不是HANM也具有低TR的像素)数目。以下,例如参考图13来进一步描述阈值的计算。
如果低TR像素数大于或等于预定数,则在步骤920把货物运输工具中和低TR像素对应的区域分类为HANM。如果检查窗中的低TR像素数小于预定数,则在步骤925确定当前检查窗是否为要分析的最后检查窗。
如果不是要分析的最后检查窗,则在步骤910使检查窗适当地向左移动一列像素,向下移动一行像素,以构造新的当前检查窗。然后,计算机重复方法900的所有步骤,如上所述。可以用较小的检查窗,不同数量的标准差和不同的预定数,来重复方法900。如果当前检查窗是要分析的最后检查窗,则在步骤930向操作者提供输出。
图9是可以通过如计算机的处理器来执行以便向货物扫描系统100的操作者显示分析结果的方法950的例子。例如在步骤960,处理器检查是否存在任何具有大于或等于预定数的被标记像素数的检查窗,如方法900的步骤915中所确定的。如果任何检查窗中的被标记像素数(即便有的话)都不大于或等于预定数,则处理器前进到步骤970,并显示消息“没有HANM”。如果任何检查窗中的被标记像素数大于预定数,则处理器前进到步骤980,以便例如显示消息“发现HANM”,由此警告操作者货物运输工具中存在高原子数材料。在步骤990,处理器也可以显示检查窗或表示HANM存在的窗口的图像。也可以显示包括窗口的整幅图像、或者和窗口的图像一起显示包括窗口的整幅图像,而不是显示窗口图像。
如果输出指示存在HANM,则操作者可以有几种选项。例如,可以检查货物运输工具的货物清单,以确定HANM是否被适当地声明并且没有威胁。例如,HANM可能是HANM而不是放射性材料,如应该在货物清单上标识的工业或医用银。HANM也可能是应该在货物清单上声明的医用放射性材料。操作者也可以使扫描装置和处理器对货物运输工具执行附加扫描以及/或者对测量进行数学分析,包括在此讨论的其它测试,并且/或者操作者可以对货物运输工具进行手动检查。可以从检查区移走由于存在可疑HANM而使检查失败的货物运输工具,并按照周知的程序进行处理。
如果输出不指示存在HANM,则可以认为货物运输工具“通过”检查。然而,如果操作者仍然怀疑存在HANM(例如根据预扫描),则操作者仍然可以进行手动检查。而且,如果图6b的方法850不和图6a的方法800中的TR计算一起使用,则可以执行方法850,重新计算TR,然后如上所述那样进行分析。如果仍然未显示出HANM,则可以进行在此描述的任何或全部其它测试或该技术领域周知的其它测试。一旦操作者满意了,货物运输工具就可以“通过”。
邻接测试
一旦发现满足测试准则的第一合成像素(例如,如参考图6a所描述的),增加所分析的合成像素数的另一种方法就是分析像素的环境,以识别和那个像素邻接的、也满足测试准则的像素。分析那个第一合成像素的环境提高了测量统计精度(减小了标准差),因为如果邻接像素也是HANM的一部分、则第一像素更有可能是HANM的一部分。分析第一像素周围的像素也有效地增加了有助于确定的光子数。如果邻接像素的面积大于或等于预定面积,则HANM识别的灵敏度和专一性大于基于单个像素或具有小于预定面积的面积的一组像素的确定的灵敏度和专一性。
预定面积可以是能够产生自持核反应的最小HANM的横截面积。例如,面积可以是4.5cm×4.5cm正方形的面积——20.25cm2。该尺寸的正方形代表包围这些尺寸的正方形的最小球体的横截面积。可以通过对被标记的像素计数,来确定面积大小(见以上讨论的图6a中的步骤815,其中低TR像素被标记)。也可以使用其它更小或更大的面积。邻接像素区不必是正方形形状。
如果发现覆盖大于或等于预定面积的面积的邻接像素,则认为至少潜在地存在HANM。在一个例子中,共享边缘的像素,如图2中的像素G和像素H,被认为是邻接的,而只共享顶点的像素如像素F和G不被认为是邻接的。可以使用不同的“邻接”定义,例如可以包括共享顶点的像素。本发明的该实施例被称为“邻接测试”。基于面积而不是形状的比较被认为更可靠,但也可以考虑形状。
图10是可以通过处理器如计算机来执行以实施邻接测试的方法1000的例子。在步骤1010选择被标记的像素。在步骤1020,确定是否存在和所选定的像素邻接的附加被标记像素。从所选定的被标记像素起,在所有方向上检查并累积阵列中的像素,直到在每个方向上都到达第一“未标记”像素(其TR高于阈值)为止。用于这种分析的方法在该技术领域中是众所周知的。
如果存在和所选定的被标记像素邻接的被标记像素,则在步骤1030对邻接的被标记像素的面积大小和预定面积进行比较,如系统100被设计探测的最小HANM的面积——在该例子中为20.25cm2。例如,优选地通过对被标记像素计数,来确定由步骤1030中“累积”的被标记像素所覆盖的面积。例如,如果每个像素为0.5cm×0.5cm,则以图5所示的像素A为中心的81个邻接被标记像素所覆盖的面积等于20.25cm2(4.5cm×4.5cm)。虽然在该例子中区域为正方形,但这不是必需的。如果满足步骤1030中的条件,则在步骤1040把邻接被标记像素的区域标记为HANM。任选地,可以产生该区域的图像,以便显示给操作者。
如果被标记像素所覆盖的面积小于预定面积,则在步骤1050把邻接被标记像素的区域标记为未确认的HANM。在步骤1040或1050之后,在步骤1060确定是否有另一个被标记像素要处理。如果是这样的,则在步骤1010选择新的被标记像素,并重复方法1000。如果没有其它像素要处理,则不满足步骤1060中的条件,并且在步骤1070计算机向操作者提供输出。注意,一旦单个像素是先前被标记区的一部分,则不必再用该过程对它进行分析(虽然也可以这样)。因此,可以将步骤1010限于选择不是先前被标记区一部分的被标记像素。类似地,可以将步骤1060限于确定是否存在另一个不是先前被标记区一部分的被标记像素。
邻接测试可以单独使用,或者可以与其它检查技术一起使用,包括在此描述的其它实施例测试。操作者可以响应所提供的输出,如以上相对于检查窗测试所描述的。
如果在每个合成像素处只探测到有限数量的光子,则分析可疑合成像素的环境也是有用的。例如,某些无威胁材料(非HANM),如农产品,可能是非常致密的。因为通过致密材料的低透射,所以即使材料不是HANM、也可能发现低TR像素,由此造成高的统计不精确度。邻接测试可以通过考虑在像素环境中探测到的辐射,来提高基于像素的测量辐射的确定的统计精度。
矩阵测试
在另一实施例中,对合成像素分组,并分析像素组中的TR的函数。例如,函数可以是像素组中的TR的平均值或中值。可以在可疑像素的周围形成组,或者可以设置多个分组(groupings)来包括所有像素。例如,分组可以是矩阵。因此,该测试被称为“矩阵测试”。
图2中的物品410是货物运输工具内的另一个物品的例子。像素B是物品410内的低TR像素,因此是可疑像素。图2中的3×3像素矩阵B3是在像素B周围“构造”的分组的例子。图11是货物运输工具10一部分的TR阵列的例子,它示出了低TR像素B和矩阵B3。例如,通过对矩阵中每个像素的TR进行平均来计算矩阵B3的平均TR。然后,对平均TR和阈值进行比较。如果平均TR低于阈值,则可以认为发现HANM。在像素尺寸为0.5cm的一个例子中,3×3像素矩阵B3可用于识别具有至少大约1.5cm×1.5cm横截面积的潜在HANM。可以根据矩阵中像素的透射的平均值或其它这样的函数,来选择用于比较的阈值。
3×3矩阵的TR统计精度比单个低TR像素的TR统计精度高三倍。因为误报可能造成对货物运输工具的不必要、高代价、费时和破坏性的检查,所以在确定发现像素B属于HANM之前优选地获得更高精度的附加确认。
为进一步提高对较大物体的确定精度(减小标准差),在检查3×3矩阵后,优选地以相同的被选定低TR像素B为中心来生成更大的矩阵如9×9像素矩阵B9,图2和图11也显示了矩阵B9。相反或者也可以构造其它尺寸的矩阵,如5×5和7×7像素矩阵。更大矩阵的尺寸可能取决于要识别的物品的尺寸和像素的尺寸。9×9像素矩阵包含81个附加邻近像素,这些附加邻近像素的数据有助于确定是否存在HANM。产生更大矩阵的像素的平均TR,并且类似地将该平均TR和阈值进行比较。如果第一矩阵和第二矩阵的平均TR都在阈值以下,则以更大的置信度确定当前的低TR像素代表HANM。在该例子中,3×3像素矩阵B3提供对潜在HANM的第一识别,并利用9×9像素矩阵B9以更大的置信度来验证潜在HANM的存在。
继续分析,直到所有低TR像素都处理完为止。可以横过阵列构造多个重叠的3×3矩阵及重叠的9×9矩阵。例如,图2示出了和矩阵B3重叠的附加3×3矩阵B4。
在另一个例子中,如果探测元件为1.5cm×1.5cm且像素尺寸为1.5cm,则3×3像素矩阵将包围边长为4.5cm的HANM立方体。如果探测元件为0.1cm且像素尺寸为0.1cm,则将需要45像素×45像素矩阵来包围边长为4.5cm的HANM体方体或包围覆盖20.25cm2面积的HANM。
图12是可以通过如计算机的处理器来执行以实施矩阵测试的方法1100的例子。在该例子中,像素尺寸为0.5cm×0.5cm。在步骤1105,在执行图6a中的方法800以识别和标记低HANM像素后,并且任选地在实施邻接测试之后(在图10的方法1000中示出了邻接测试的例子),选择当前被标记像素。例如,选择图2中的物体410内的低TR像素B。在步骤1115,“构造”以像素B为中心的3×3矩阵B3,以识别包围0.5cm×0.5cm和更大面积的HANM。
然后,在步骤1120,通过对矩阵B3中的9个TR求和并使TR之和除以单个像素数,来计算矩阵B3的平均TR。在该例子中,矩阵B3的平均TR是2.7。然后,在步骤1125确定矩阵B3的平均TR是否低于阈值。该例子中的阈值是3.9。因为2.7小于3.9,所以满足该条件。这意味矩阵B3代表HANM,且其精度是最初单独根据像素B具有低TR来怀疑像素B可能是HANM的精度的3倍。
在该例子中,对于包围4.5cm×4.5cm和更大横截面积的HANM,同样在步骤1130中优选地构造以像素B为中心的9×9矩阵B9,以提供比3×3像素矩阵更高的HANM发现灵敏度和专一性。图12示出了9×9矩阵B9的例子。在步骤1135计算矩阵B9的平均TR。对矩阵B9中的TR求和,并使该TR之和除以81(单个像素数)。在该例子中,图11的矩阵B9的平均TR是2.9。因为考虑了9倍的像素,所以矩阵B9的TR精度的统计概率比矩阵B3的TR精度的统计概率大3倍。在步骤1138对矩阵B9的平均TR和阈值进行比较。然后,在步骤1138确定平均TR是否小于阈值。如果是这样的,则在步骤1140以更高的灵敏度和专一性确认当前被标记像素对应于HANM。因为2.9小于3.9,所以满足条件。然后,在步骤1145确定像素B是否为要分析的最后被标记像素。因为还有其它被标记像素要分析,所以不满足条件,该方法1100返回到步骤1105,并且对下一被标记像素重复方法1100。
如果矩阵B9的平均TR不小于阈值,则在步骤1140中像素B不被确认为HANM,并且方法1100前进到步骤1145,如上所述。在所有被标记像素的所有TR都分析完后,步骤1145中的条件变为真,并且向操作者提供输出。操作者可以响应输出,如以上相对于检查窗测试所描述的。
人们相信,矩阵测试可以识别例如20cm厚铁挡板后面的、边长为4.5cm的HANM立方体,如铀立方体。可以单独执行矩阵测试,或者可以和在此描述的任何或全部其它测试、或该技术领域周知的其它测试一起执行矩阵测试。例如,如果物品410的面积小于以上讨论的邻接测试的预定尺寸,则该测试将不把物品410识别为HANM。然而,它仍然可能是危险的HANM,因为可以在一个或多个货物运输工具中走私几个特种核材料(SNM)物体,并将它们组合成一个大得足以维持核反应的物体。小于预定尺寸的HANM也可用于“脏”弹中。可以利用小于邻接测试预定面积的矩阵,通过矩阵测试来识别小于邻接测试预定面积的物品。当利用矩阵测试检查小于邻接测试预定尺寸的区域中的低TR像素时,只需选择不是大于预定尺寸的物体部分的低TR像素来供矩阵测试进行分析,但这不是必需的。
注意,对于较小物品-其中只有小矩阵(如3×3像素矩阵B3)才包围足以至少潜在地将物品识别为HANM的物品部分,HANM的识别可能不象使用较大矩阵那样可靠。然而,这种潜在的识别可以证明进一步的检查,如执行在此描述或该技术领域周知的其它测试、检查货物清单、以及/或者进行手动检查。还要注意,可以将不同于矩阵的分组的TR的平均值或其它这种函数与阈值进行比较,以确定分组是否至少潜在地是HANM。例如,如上所述,分组可以是预扫描中识别的致密区。可以如上所述定义致密区的边界,可以对致密区的像素的TR进行平均,并将平均值和阈值进行比较。
阈值计算
如上所述,优选地为每个扫描系统计算用于把HANM和非HANM分开的阈值。当周期地校准货物扫描系统时,可以进行阈值计算。阈值计算部分地取决于系统的期望灵敏度和专一性。如上所述,可以用与将要用于扫描货物运输工具的两种能量一样的两种能量,来扫描原子数比所关心材料(如铀)的最低原子数小的测试材料,由此确定阈值。优选地,测试件的原子数也大于或等于普通许用材料的原子数,以避免误报。铁、镍和铜是优选测试材料的例子。
测试件优选地具有可变厚度,使得可以在通过测试件的不同透射下计算阈值。例如,测试件可以是楔形或阶梯形的。厚度可以对应于可接受材料和HANM的期望透射范围。在不同厚度下计算的阈值可以和应用于具有对应透射的合成像素的测试准则一起使用。例如,测试件的厚度可以从大约1mm到大约400mm。可以使用在任一能量端点下的透射。如果测试件是阶梯形,则对跨越每个阶梯的TR计算标准差。如果测试件是楔形的,则对通过楔的特殊厚度部分的TR计算标准差。对于每种厚度,可以使用一列或几列数据。在检查物体期间,利用该标准差在测量的透射之间进行插值,以计算基于测试件所计算的阈值之间的阈值。作为选择,可以使用最接近测量透射的计算阈值,但这可能不如那样精确。
在每种厚度下计算TR,并对TR进行求和及平均。如该技术领域所周知的,测量值是如TR的被测量量统计变化的概率是测量值分布的算术平均和所考虑的测量值之间的距离的函数。用标准差来度量该距离。在表中表示了这种概率,并且这种概率在该技术领域中是众所周知的。例如,与多个测量值的算术平均偏离3个标准差的测量值是统计变化的概率为0.0013左右。该概率是虚警率,在该例子中为万分之十三。因此,为降低TR以0.0013的不正确概率是实际TR的统计变化的概率,在该例子中,在每种厚度下选择3个标准差来计算阈值。所使用的标准差值可以是整数,例如在该例子中为3,或者可以是非整数,如2.5。优选地,在每种厚度下使用相同的标准差。
为获得不同的灵敏度和专一性,可以从测试件的低原子数材料的平均TR减去不同的标准差值,假定任何给定的透射辐射测量可以来自HANM或非HANM,选择要从低原子数材料的TR减去的标准差数,以实现可接受误报数和漏报数之间的期望平衡。例如,从低原子数材料的TR减去8个标准差将导致0误报,但是可能导致不可接受的漏报数。如上所述,如果可以容忍更多的误报,则可以不必考虑标准差。
如果使较高能量端点下的测量除以较低能量端点下的测量,则从测试件的平均TR减去标准差。如果使较低能量端点下的测量除以较高能量端点下的测量,则使测试件的平均TR加上标准差值。特定的标准差数将确定系统的灵敏度和专一性。
图13描述了可以通过如计算机的处理器来执行以计算阈值的方法1200例子。在步骤1210,在多种厚度下,通过货物扫描系统,利用具有如9MeV的第一高能量端点的辐射来扫描测试件。而且在步骤1210中,对每个像素探测透过测试件的辐射。相反,可以首先在5MeV下进行扫描。
然后,在步骤1220,利用具有小于第一能量端点的如5MeV的第二能量端点的第二辐射束来扫描测试件,并对与步骤1210的像素相对应的多个像素探测在多种厚度下透过测试件的辐射。在步骤1230,对于对应像素、使9MeV下测量的透射辐射除以5MeV下测量的透射辐射(或反之亦然),由此计算合成像素的TR。
在步骤1240,确定所计算的TR的标准差。优选地,在测试件的每种厚度下计算TR的标准差,以用于在实际测量期间在所计算的阈值之间进行插值。可以按照以下公式来计算标准差:
S = Σ i = 1 N ( x i - x ‾ ) 2 N - 1 ,
其中xi是像素i的测量衰减辐射,是所有像素的测量衰减辐射的算术平均(平均值),根据公式 x ‾ = Σ i = 1 N x i N 来计算,并且N是像素数。在该说明性例子中,所计算的透射辐射的测试测量的标准差是0.2。其它统计方法可以和测量衰减辐射的不同分布一起使用。
在步骤1250,计算每种厚度下的TR的平均TR。在步骤1260,计算每种厚度下的阈值。优选地,在步骤1250,取决于期望的灵敏度和专一性,将测试件每种厚度下的平均TR调节整数或非整数个标准差,由此计算阈值。在步骤1270,存储所计算的阈值。例如,可以把测试件每种厚度下的阈值和对应透射及标准差关联地存储在阈值数据库中。
利用基于可能大约为4.5的铁平均TR的阈值,来区分嵌入2米边长农产品立方体(可能具有大约7的TR)内的4.5cm×4.5cmHANM(可能具有大约2.5的TR),可能是困难的。因为典型农产品的原子数比铁的原子数更加远离HANM的原子数,所以与把HANM和铁区分开相比,更容易以所需的统计精度把HANM和农产品区分开。为了提高HANM识别的灵敏度和专一性,可以根据正在检查的货物运输工具的内容来选择阈值。因此,如果已知货物运输工具装有农产品,则可以利用农产品或代表农产品的材料如塑料或水的TR代替铁或其它这种材料的TR,来确定阈值。例如,可以使用Lucite或Derlin
Figure 058067975_6
。如上所述,优选地使用可变厚度的测试件。也可以把计算的阈值存储在阈值数据库中,以供上述检查技术之用。也可以把计算的阈值存储在阈值数据库中,以供上述关于分组的检查技术之用。
例如,可以通过海关货物清单获得足够的关于货物运输工具的内容的信息。货物运输工具的发货人或所有者所提交的典型货物清单声明允许在货物运输工具中装运的货物类型,如农产品、工业制品等。
图14是根据货物清单中声明的内容类型来选择阈值的方法1600的例子。在步骤1605检查货物清单,以确定货物运输工具104是否装有工业制品。如果装有工业制品,则在步骤1610例如选择如上所述的基于铁和探测辐射的阈值,作为要用于分析货物运输工具104的内容的阈值。相反,阈值可以基于铜或镍。如果货物清单没有指出货物运输工具装有工业制品,则在步骤1615确定货物清单是否指出货物运输工具装有农产品。如果装有农产品,则选择基于农产品的阈值,用于分析货物运输工具的内容。如果没有装有农产品,则在步骤1610选择基于铁的阈值。可以由操作者复查正在检查的货物运输工具的货物清单,来实施方法1600。然后,操作者可以输入要用于上述测试中的阈值或阈值组。例如,如果电子地输入了货物清单,则如计算机的处理器可以实施方法1600。
核测试
其它X射线扫描和/或分析技术可以和上述关于分组的技术一起使用,以进一步提高断定可疑像素是HANM的精度,以及减小虚警率。以上测试确定货物运输工具内的任何材料是否可被分类为HANM。HANM可以是核材料(可裂变、易裂变或增值性材料),需要以高灵敏度和专一性来识别核材料的存在。如上所述,铀-235、钚-239和铀-233是易裂变材料的例子。可裂变材料包括易裂变材料和铀-238。增值性材料包括可转变成钚-239的铀-238,以及可转变成铀-233的钍-232。一些比其它材料更容易经历裂变的易裂变材料被称为特种核材料(SNM)。当前,美国核管制委员会定义SNM包括钚、铀-233或富含同位素铀-233或铀-235的铀。如该技术领域所周知的,因为在由于受到足够能量的X射线辐射曝光而造成核材料的核裂变后,发生了β衰变,使得核材料在曝光后发射1~2μs的缓发中子。因为非核材料不发射缓发中子,所以缓发中子的存在可用于识别核材料的存在。例如,可以用中子探测器来探测缓发中子,并对探测的缓发中子计数。以下进一步讨论中子探测器。
为诱发核材料光致裂变所需的最小能量取决于材料,该最小能量被称为光致裂变或裂变阈值。表I标识了根据选定元素的物质过剩值(mass excess value)所计算的选定元素裂变阈值。从NuclearWallet Cards获得该物质过剩值,可以从NNDC Brookhaven Laboratory,January,1985得到Nuclear Wallet Cards。Nuclear Wallet Cards的当前版本可以在www.nndc.bnl.gov/wallet/wallet-2000.pdf得到。注意,在受到X射线辐射曝光的很短时间(10-15秒)内,核材料和非核材料都可以产生光中子(photoneutron)。光中子被集装箱中的材料和X射线扫描系统的部件所吸收。表I也显示了对于选定核材料的光中子发射的阈值。在http://+2.lan/gov/data/photonuclear.html从T-2 Nuclear InformationService,Los Alamos获得光中子数据。也可以容易地从该领域技术人员所周知的其它多种来源得到光致裂变和光中子数据。
表I
  相互作用 类型   U-233阈    U-235阈    U-238阈   Th-232阈   Pu-239阈
  光中子(γ,n),MeV   5.7    5.3    6.1   6.4   5.6
  光致裂变(γ,f),MeV   5.1    5.8    5.8   5.0   5.4
因为所有核材料的裂变阈值都在5.0MeV至大约5.8MeV的范围内,所以利用至少大约5.8MeV的X射线辐射来扫描核材料将在所有这些材料中诱发光致裂变和缓发中子。将能量提高到阈值以上将增加将要发射的缓发中子数,这样便于探测。如以上的例子中一样,可以使用9MeV。优选地,在关闭X射线束时,并在光中子发射停止之后,探测缓发中子。另外,到现在,也不存在可能干扰缓发中子计数的X射线光子。
现在描述探测由于光致裂变而产生的缓发中子的操作顺序的例子。首先,在时间t=0秒,用9MeV电子的电子脉冲串撞击靶,由此产生X射线光子,如该技术领域所周知的。对这些X射线光子进行校准,并将它们投射到待检查的货物运输工具上。电子脉冲串通常持续几微秒。脉冲宽度的典型值在2.0至4.5μs之间。在X射线光子产生结束后的1.0~2.0μs,接通中子探测系统,以探测来自核材料(如果存在)光致裂变的缓发中子。获取时间可以持续到下一电子脉冲串将要发射到靶的时点为止,典型地在时间t=0后的2.5~5.0毫秒(ms)。该第二脉冲串可以是9MeV或5MeV的。例如,可以在每个高能脉冲串(在此为9MeV)后接通中子探测系统。在另一个例子中,只在TR像素测试指示合成像素阵列中可能存在HANM之后(例如在如上所述的在两个能量端点下扫描、计算TR以及分析结果之后),才接通中子探测器。
可以对整个货物运输工具或只对货物运输工具的可疑区分析光致裂变结果。可疑区可以是具有低于阈值的TR的合成像素或一组合成像素,指示可能存在HANM。在一个例子中,可疑区的识别可能具有不可接受的灵敏度和专一性,由此促使进一步测试。在另一个例子中,如果以可接受的灵敏度和专一性识别了HANM,则可以分析光致裂变结果,以确定是否存在SNM或其它核材料。
任何缓发中子的探测都指示货物运输工具内存在核材料。也可识别这种核材料的一般位置,如该技术领域所周知的。另外,可以确定核材料的身份。可以把通过以不同峰值能量诱发SNM光致裂变所产生的多个缓发中子的实验计数以及缓发中子的衰变时间,组织在5或6个范围中,每个范围都对应于特殊的核材料。把被测试的物体的缓发中子计数和这些范围进行比较,使能识别特殊的核材料(及其原子数)。实时缓发中子计数和中子探测技术是该技术领域所周知的。例如,见Tsahi Gozani,核材料的主动非破坏性分析,国家技术信息服务1981,第173~205页(Tsahi Gozani,Active Non-Destructive Analysisof Nuclear Materials,National Technology Information Service 1981,pp.173~205)。
如果需要进一步确认货物运输工具中的特殊位置存在如SNM的核材料(例如在执行手动检查之前),可以在13MeV至15MeV的核材料光致裂变峰值能量范围,诱发另一次光致裂变反应。在更高能级执行的该第三次扫描使光致裂变所产生的缓发中子数达到最多,便于中子探测。可以通过分开的辐射源或在其它能量端点下产生辐射的同一辐射源,来提供高能辐射束。
图15a是实施中子探测的方法1700的例子。在步骤1710,例如用具有如5MeV的低能量端点的辐射来扫描物体的一部分。在步骤1720,探测和物体相互作用后的辐射。在步骤1730,用具有如9MeV的高能量端点的辐射来扫描物体的对应部分,并在步骤1740探测和物体相互作用后的辐射。物体部分可以是被每一辐射端点下的辐射束横穿的物体部分。例如,如果辐射束的形状为扇形射束,则物体的每个部分是被两个辐射束横穿的物体片。可以在5MeV和9MeV辐射束之间循环扫描,直到收集了覆盖足够面积的足够数目像素来实施以上讨论的测试之一或其它测试为止。
在步骤1744,分析结果。分析可以包括上述任何测试。可以足够快地对一对对应部分执行HANM识别,以决定是否接通中子探测系统。作为选择,根据上述测试,以期望灵敏度和专一性指示HANM存在的一个或足够数目像素的存在,可以促使中子探测系统的激活。
如果不怀疑是HANM,则对物体的另一部分重复方法1700。
如果在步骤1746中怀疑是HANM,则在步骤1750激活中子探测系统。如上所述,优选地在9MeV(在该例子中)的扫描结束之后,将中子探测系统激活1.0~2.0μs。
然后,在步骤1760确定是否探测到缓发中子。如果是这样的,则在步骤1770提供指示存在缓发中子的输出。如果不是这样的,则对物体的另一部分重复方法1700。如果整个物体都被扫描完了,则也提供指示缓发中子探测失败的输出。
如果在其它任何测试后怀疑存在HANM或核材料,包括上述测试和该技术领域所周知的其它测试,则可以进行核测试。例如,首先可以进行如在此被引入作为参考的美国专利No.5,524,133所描述的双能量比测试,来初步识别物体的实际材料内容,以确定物体是否至少潜在地包含特殊核材料。以上更详细地描述了美国专利No.5,524,133。例如,可以在图15a的方法1700的步骤1774中,进行这种双能量测试。也可以只在一个能量端点下进行测试。初始测试可能涉及结果的自动分析以及/或者一幅或多幅图像的视觉分析。如果不能识别所发现的物体,则也可以在手动检查后进行核测试。
图15b是方法1800的例子。在步骤1810,对物体的至少一部分进行第一测试。然后,在步骤1820确定是否至少怀疑核材料。如果不是,则如果需要测试物体的剩余部分,方法就返回到步骤1810。如果整个物体都扫描完了,则可以提供指示不怀疑核材料存在的输出。
如果怀疑存在核材料,则在步骤1830以足够的能量扫描物体,以诱发缓发中子,以便进行核测试。可以使用至少5.8MeV能量端点的辐射束。然后,在步骤1840检查缓发中子的探测。如果在步骤1850探测到缓发中子,则在步骤1860输出指示识别出核材料存在的结果。如果在步骤1850没有探测到缓发中子,则方法返回到步骤1810扫描物体另一部分。如果整个物体都扫描完了,并且没有探测到缓发中子,则也可以提供合适的输出。如果在步骤1810的第一测试中使用足够高的能量,则不必执行步骤1830。
扫描系统
图16是被编程以便实施本发明实施例的货物扫描系统2000的例子的正视图。传送器系统2020在X射线源2060和探测器2070之间支撑并传送货物运输工具2040通过扫描系统100。例如,传送器系统2020可以是机械驱动的传送带、轨道或机械驱动的滚轮。X射线源2060使韧致辐射X射线辐射的辐射束R指向货物运输工具2040。屏蔽墙2080包围X射线源2060和探测器2070。传送器系统2020贯穿屏蔽墙2080的开口,以允许货物运输工具2040进入和退出。
货物运输工具2040被传送器系统2020传送通过屏蔽隧道2100。隧道2100具有第一窗口2110和第二窗口2120,以允许X射线辐射束R从X射线源2060传递到货物运输工具2040、以及从货物运输工具2040传递到探测器阵列2070。如果辐射束R和传送器系统2020相交,并且传送器系统2020是传送带或轨道,则造成低辐射衰减的材料可以用于传送带或轨道。如果传送器系统2020包括滚轮,则如有必要,可以在多个滚轮之间设置间隙。如有必要,也可以在支撑传送器系统2020的结构中设置窗口。可以在货物运输工具2040和探测器2070之间设置准直器(未示出),以阻止散射的辐射到达探测器。可以使传送器系统2020反转,以再次检查货物运输工具2040一部分和整个货物运输工具。如以下进一步讨论的,例如当货物运输工具2040正被传送通过扫描单元2000时,可以通过使X射线源2060在两个能量端点之间快速循环或者通过提供两个相邻的X射线源,来利用多种能量照射货物运输工具2040。
准直器2140从X射线源2060的末端伸出。准直器2140包括狭缝(未示出),该狭缝被形成为将X射线源2060所发射的X射线束校准为期望的形状,如校准为扇形射束或锥形射束。例如,狭缝可以具有垂直弧,该垂直弧从小于1度到大约50度变化、以定义具有弧θ的垂直扇形射束,并从大约5度到大约45度变化、以定义锥形射束。狭缝也可以具有其它形状。
探测器2070电连接到图像处理器2160,图像处理器2160连接到显示器2180。图像处理器2160包括模数转换和数字处理部件,如该技术领域所周知的。处理器如计算机2200电连接到X射线源2060、探测器阵列2070、传送器系统2020、图像处理器2160和显示器2180,并控制它们中的一个或多个的操作。为简化图,未显示处理器122和所有部件之间的连接。可以将处理器2200编程为实施上述任何或全部测试。处理器2200可以提供图像处理器2160的一些或全部处理功能。虽然示出了一个处理器2200,但是也可以提供附加的处理器或计算机。可以不同地排列和连接图像处理器2160、计算机2200和显示器2180。例如,图像处理器2160可以是计算机的一部分。可以用软件和/或硬件来编程计算机,以实施上述任何或全部测试。在一个例子中,例如可以通过专用集成电路(ASIC)来实施该程序。
探测器2070可以是探测器阵列。探测器2070的配置可以取决于被校准的辐射束R的形状。例如,如果辐射束R被校准为扇形射束,则可以提供包括一行探测元件的一维探测器阵列2040。如果被校准的辐射束是锥形射束,如非对称金字塔形锥束,则探测器阵列可以是包括两行或多行相邻探测元件的二维探测器阵列2040。探测器阵列2040可以包括多个探测器模块,每个探测器模块包括支撑于外壳中的一行或多行探测元件,如该技术领域所周知的。探测器或探测器阵列可以是直线的或L形的。图16的剖视图显示了L形探测器阵列的水平臂2070a。以下讨论的图19也显示了L形探测器。如果在图16中使用L形探测器,则X射线源2060可以位于下面垂直位置,辐射束R将更多地和水平臂2070a相交,并且探测器2070的垂直部分2070b可以更短。
如该技术领域所周知的,探测器2070可以是光子探测器,如包括无机闪烁晶体(scintillator)的光电二极管探测器阵列。例如,可以使用钨酸镉(CdWO4)闪烁晶体。也可以使用非晶硅(aSi)探测器,如可以从加利福尼亚Palo Alto的Varian医疗系统有限公司(VarianMedical Systems,Inc.,Palo Alto,California)得到的PaxScanTM探测器。
中子探测器2072、2074、2076和2078优选地位于货物集装箱周围的多个位置,以探测在所有方向上各向同性地发射的中子。例如,可以用X射线源来支撑中子探测器2072。可以用探测器2070支撑中子探测器2074。可以用探测器2070的上部或L形探测器的垂直臂,来支撑中子探测器2076(见2076a)。可以用货物运输工具2040下面的传送器系统2020或扫描系统其它某部分,来支撑中子探测器2078。
中子探测器2072~2078可以是充满3He的圆柱比例计数器。例如,它们可以具有大约15~25cm的有效长度,以供货物运输工具2040之用。在一个例子中,计数器被镉(Cd)和聚乙烯层覆盖。镉层用于吸收作为“慢中子”的热中子。快中子在被3He探测器探测到以前,在聚乙烯层中被热化。因此,在3He探测器中只探测到缓发中子。例如,可以在商业上从Canberra Industries,Meriden,CT获得合适的中子探测器。
图17是货物扫描系统2000a的例子的一部分的顶视图,它显示了两个相邻的辐射源2060a和2060b,每个辐射源都产生具有不同能量端点的辐射。与图16的系统2000相同的元件被相同地编号。传送器系统2020在第一X射线源2060a和第一探测器2070a之间,以及第二X射线源2060b和第二探测器2070b之间,支撑并传送货物运输工具2040通过扫描系统2000a。X射线源2060a和2060b使辐射束R1和R2指向货物运输工具2040。例如,X射线源2060a可以以5MeV的第一X射线能量端点来产生第一辐射束R1,且X射线源2060b可以以9MeV的第二能量端点来产生第二辐射束R2,或反之亦然。X射线源2060a和2060b位于相对于货物运输工具2040的相同角度,并位于同一水平面。它们可以紧挨着,或者可以将它们相互分开放置。也可以将它们放置成一个在另一个之上。人们相信,在具有两个X射线源的系统中可以在大约30至60秒内检查40英尺的集装箱。
为检查宽度大于大约5英尺(1.5米)的货物运输工具2040,X射线源2060a、2060b优选地产生具有大于大约1MeV的能量端点的辐射。如上所述,例如可以使用5MeV和9MeV。例如,用于宽度大于大约5英尺(1.5米)的货物运输工具的能量端点其它例子包括1MeV和9MeV以及5MeV和15MeV。为了进行中子测试,能量端点之一需要为至少5.8MeV。例如,X射线源可以是直线加速器,如可以从加利福尼亚Palo Alto的Varian医疗系统有限公司(Varian MedicalSystems,Inc.,Palo Alto,CA)(“Varian”)得到的、具有适当电平的加速电势的Linatron
Figure 058067975_7
直线加速器(“Linatron”)。在Varian Linatron
Figure 058067975_9
中,每秒输出360个脉冲。例如,Varian Linatron
Figure 058067975_10
具有大约20~30度的孔径角。例如,也可以使用其它X射线源,如静电加速器、电子回旋加速器和电子感应加速器。射线源也可以包括基于碳-12(C-12)、钴-60(Co-60)、钚-铍(Pu-Be)和/或镅-铍(Am-Be)的射线源。在检查宽度小于大约5英尺(1.5米)的物体的过程中,也可以使用发射keV范围能量的X射线管。对于这种较小的物体,可以使用一种低于1MeV的能量和一种高于1MeV的能量。例如,可以使用600keV和5MeV。两种能量也可以都在1MeV以下。例如,可以使用120keV和200keV,只要辐射将能穿透被检查的物体。
例如,如在此被引入作为参考的美国专利No.5,682,411和No.6,438,201中所描述的,也可以把具有单能量端点的单X射线束和单能量敏感探测器阵列一起使用,以分别探测能谱的高部分和低部分。如这些专利中所描述的,探测器阵列的不同部分如隔行,可能总能对一种能量的辐射更敏感。
也可以使用在能量端点之间切换的单辐射源。在2004年10月1日提交的美国专利申请No.10/957,212“驻波粒子束加速器(Standing Wave Particle Beam Accelerator)”中,可找到合适辐射源的描述,该专利申请被转让给了本发明的受让人、且在此处通过参考而被引入。在美国专利No.6,366,021 B1、No.4,400,650和No.4,382,208中也描述了可用于本发明中的其它直线加速器,这些美国专利也被转让给了本发明的受让人、且在此通过参考而被引入。利用机械开关如继电器和其它类型开关如固态开关来切换能量的技术是众所周知的。例如,可实现大约100毫秒的开关速度,以便在几分钟内扫描20英尺(6.1米)长的货物运输工具。
在另一个例子中,可以将上述技术用于移动系统中,以便实时检查卡车和牵引车拖车所运载的货物运输工具。例如,可以在高速公路休息站进行测试。系统可以包括两辆可伸缩牵引车拖车,如2003年6月6日提交的美国专利申请No.10/455,864(’864专利申请)中所描述的,该专利申请被转让给了本发明的受让人、且在此通过参考而被引入。在’864专利申请所描述的一个例子中,一辆可伸缩牵引车拖车运载X射线源。另一辆可伸缩牵引车拖车运载X射线光子探测器和数据分析设备。可以把被压缩、收缩状态下的可伸缩拖车驾驶到检查站,在检查站展开,并进行装配以便扫描。然后,可以把要检查的卡车停在两辆拖车之间。然后,使辐射源和探测器跨过各辆拖车的展开伸缩部分一致地移动,以扫描货物运输工具。
图18是’864专利申请中所描述的移动扫描系统2300的透视示意图。货物运输工具2302由卡车或牵引车拖车2304运载。也示出了发射扇形射束2307的辐射源2306以及包括水平部分2308a和垂直部分2308b的L形光子探测器2308的一部分。为简化图,没有显示用于支撑辐射源2306和探测器2308的伸缩拖车。一个中子探测器2310由辐射源2306支撑,另一个中子探测器2312由探测器2308的水平部分2308a支撑,并且另一个中子探测器2314(图19所示的)由探测器2308的垂直部分2308b支撑。
图19是沿图18的线19-19的系统2300背面示意图。相同的元件被相同地编号。附加的中子探测器2314由垂直臂2308b支撑。可以把另一个中子探测器2316放在,当停放卡车或拖车时货物运输工具2302位置之下的地面G的地沟T中。也可以使用垂直探测器2304,如’864专利申请所示。在那种情况下,例如可以把中子探测器2314支撑在垂直探测器的顶部或顶部附近。探测器2308~2316可以连接到如以上所示和描述的、被编程为实施上述任何或所有实施例的测试的处理器或计算机上。例如,辐射源2306可以是交替地产生9MeV和5MeV X射线辐射束的单辐射源。例如,也可以把两个辐射源堆叠起来,或者把它们相互紧挨着放置,一个用于产生第一能量辐射束,且另一个用于产生第二能量辐射束。可以利用上述任何或全部测试来自动探测HANM和核材料。
虽然本发明特别适合于扫描违禁品货物运输工具,但是也可以容易地使本发明适于在机场和海港扫描其它物体,如行李和手提袋。
另外,虽然在以上例子中描述了X射线源,但是例如辐射源可以提供其它类型的辐射,如延时中子束或伽马射线。
在以上例子中,使通过货物运输工具的较高能量辐射(例如9MeV)的透射除以通过货物运输工具的较低能量辐射(例如5MeV)的透射,以产生TR,并且潜在HANM的测试准则是TR小于阈值。然而,如上所述,可以使较低能量辐射的透射除以较高能量辐射的透射,在这种情况下,在以上所有例子中都将把高于阈值的TR看作是潜在HANM。另外,可以根据两个能量端点下的辐射衰减,而不是辐射透射,来计算TR。
本领域普通技术人员应该认识到,在不脱离由以下权利要求所定义的本发明精神和范围的情况下,可以对在此描述的实施例作出其它改变。

Claims (18)

1.一种检查物体的方法,包括:
以兆伏范围内的第一和第二辐射能量扫描物体的至少一部分,其中,第一和第二辐射能量不同;
探测所述第一和第二辐射能量透过物体的至少一部分后的透射辐射;
计算在第一和第二辐射能量下探测的透射辐射的比值;
比较所述比值和阈值,其中,所述阈值至少部分地基于预定原子数;以及
至少部分地根据所述比较,来确定物体是否至少潜在地包括原子数比预定原子数高的高原子数材料。
2.根据权利要求1所述的方法,包括:
至少部分地根据在以第一和第二辐射能量扫描原子数等于预定原子数的测试材料后所探测的透射辐射,来计算所述阈值。
3.根据权利要求2所述的方法,包括通过以下步骤来计算所述阈值:
计算所述第一和第二辐射能量与测试材料相互作用后探测的透射辐射的比值。
4.根据权利要求1所述的方法,包括:
对物体的对应部分计算在第一和第二辐射能量下探测的透射辐射之间的比值。
5.根据权利要求4所述的方法,其中,通过物体的对应部分的射束路径至少重叠一半。
6.一种检查物体的方法,该方法包括:
用兆伏范围内的第一能量的第一辐射束来扫描物体的第一多个部分;
探测第一辐射束透过第一多个部分后的第一辐射;
用兆伏范围内的不同于第一能量的第二能量的第二辐射束来扫描物体的第二多个部分;
探测第二辐射束透过第二多个部分后的第二辐射;
对对应的第一和第二部分计算第一辐射和第二辐射的比值;
比较所述比值和至少一个相应阈值,其中,所述阈值至少部分地基于预定原子数;以及
至少部分地根据所述比较,来确定物体的内容是否至少潜在地包括原子数大于所述预定原子数的高原子数材料。
7.根据权利要求6所述的方法,进一步包括:
至少部分地通过以下步骤来计算所述至少一个阈值:
用第一能量的第三辐射束来扫描包括原子数等于预定原子数的材料的第二物体的至少一部分;
探测第三辐射束透过第二物体至少一部分后的第三辐射;
用第二能量的第四辐射束扫描第二物体的至少一部分;
探测第四辐射束透过第二物体至少一部分后的第四辐射;以及
计算探测的第三辐射与探测的第四辐射之间的第二比值。
8.根据权利要求7所述的方法,其中,扫描第二物体的至少一部分包括:
扫描包括原子数少于铀原子数的材料的第二物体的至少一部分。
9.根据权利要求8所述的方法,包括:
扫描包括原子数少于铅原子数的材料的第二物体的至少一部分。
10.根据权利要求9所述的方法,包括:
扫描从包括铁、铜、镍的组中选择的第二物体的至少一部分。
11.根据权利要求7所述的方法,进一步包括通过以下步骤来计算阈值:
从第二比值减去预定数的标准偏差,其中,预定数可以是整数或非整数。
12.根据权利要求6所述的方法,其中:
第一能量大于第二能量;
计算比值包括使第一辐射除以第二辐射;以及
如果各个对应部分的比值小于阈值,则确定物体的多个对应部分的至少一个对应部分至少潜在地包括高原子数材料。
13.根据权利要求6所述的方法,进一步包括:
根据在第一辐射和第二辐射至少之一下探测的透射辐射,来选择阈值。
14.一种检查物体的系统,包括:
用于以兆伏范围内的第一和第二辐射能量扫描物体至少一部分的装置,其中,第一和第二辐射能量不同;
用于探测所述第一和第二辐射能量透过物体后的透射辐射的装置;
用于计算在第一和第二辐射能量下探测的透射辐射的比值的装置;
用于比较所述比值和阈值的装置,其中,所述阈值至少部分地基于预定原子数;以及
用于至少部分地根据所述比较来确定物体是否至少潜在地包括原子数比预定原子数高的高原子数材料的装置。
15.一种检查物体的系统,该系统包括:
至少一个辐射源,用于以兆伏范围内的第一和第二辐射能量扫描物体的至少一部分,其中,第一辐射能量不同于第二辐射能量;
至少一个探测器,该至少一个探测器被放置成探测所述第一和第二辐射能量透过物体后的透射辐射;
连接到探测器的至少一个处理器,该至少一个处理器被编程,以便:
计算在第一和第二辐射能量下探测的透射辐射的比值;
比较所述比值和阈值,其中,所述阈值至少部分地基于预定原子数;以及
至少部分地根据所述比较,来确定物体是否至少潜在地包括原子数大于预定原子数的高原子数材料。
16.根据权利要求15所述的系统,其中,处理器被编程以便至少部分地根据以下来计算所述阈值:
在分别用第一和第二辐射能量透过原子数等于预定原子数的材料后所探测的第三和第四辐射。
17.根据权利要求15所述的系统,其中,处理器进一步被编程以便:
对物体的多个对应部分计算所述比值;
比较所述比值和至少一个相应阈值;以及
至少部分地根据所述比较,来确定物体是否至少潜在地包括原子数大于预定原子数的高原子数材料。
18.一种检查物体的方法,包括:
由兆伏范围内的具有第一能量的第一辐射束以相对于物体的一个角度扫描物体的至少一部分;
由兆伏范围内的具有不同于第一能量的第二能量的第二辐射束以相对于物体的基本相同角度扫描物体的所述至少一部分;
探测所述第一和第二辐射束与物体的所述至少一部分相互作用后的透射辐射;
计算在第一和第二能量下探测的透射辐射的比值;
比较所述比值和阈值,其中,所述阈值至少部分地基于预定原子数;以及
至少部分地根据所述比较,来确定物体是否至少潜在地包括原子数比预定原子数高的高原子数材料。
CN2005800067975A 2004-03-01 2005-02-28 物体的双能量辐射扫描 Active CN101048653B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US54909304P 2004-03-01 2004-03-01
US60/549,093 2004-03-01
US56854104P 2004-05-05 2004-05-05
US60/568,541 2004-05-05
PCT/US2005/006809 WO2005084352A2 (en) 2004-03-01 2005-02-28 Dual energy radiation scanning of objects

Publications (2)

Publication Number Publication Date
CN101048653A CN101048653A (zh) 2007-10-03
CN101048653B true CN101048653B (zh) 2012-03-14

Family

ID=38727231

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2005800067975A Active CN101048653B (zh) 2004-03-01 2005-02-28 物体的双能量辐射扫描
CN2005800067918A Expired - Fee Related CN101019042B (zh) 2004-03-01 2005-02-28 通过双能量辐射扫描和缓发中子探测来检查物体

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2005800067918A Expired - Fee Related CN101019042B (zh) 2004-03-01 2005-02-28 通过双能量辐射扫描和缓发中子探测来检查物体

Country Status (1)

Country Link
CN (2) CN101048653B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435783B (zh) * 2007-11-15 2011-01-26 同方威视技术股份有限公司 物质识别方法和设备
CN102884422B (zh) * 2010-02-25 2016-09-28 拉皮斯坎系统股份有限公司 用以确定物质的原子序数的、高能量x射线的基于光谱学的检查系统和方法
CN105652332B (zh) * 2016-02-24 2019-02-12 北京君和信达科技有限公司 一种辐射源控制方法和速通式安检系统
US10386532B2 (en) * 2016-05-03 2019-08-20 Rapiscan Systems, Inc. Radiation signal processing system
CN106841248B (zh) * 2017-04-07 2023-10-31 北京华力兴科技发展有限责任公司 车辆或集装箱的安全检查系统
CN108344757A (zh) * 2018-01-26 2018-07-31 吉林大学 一种检测面粉中滑石粉含量的装置
GB2577737B (en) * 2018-10-05 2022-09-07 Smiths Heimann Sas Determination of material
CN109738936B (zh) * 2019-02-11 2024-04-05 北京华力兴科技发展有限责任公司 物质检测方法、装置及系统
CN113465696B (zh) * 2021-06-21 2022-07-01 中国原子能科学研究院 容器内熔体的液位的测量方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540882A (en) * 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US5838758A (en) * 1990-08-10 1998-11-17 Vivid Technologies Device and method for inspection of baggage and other objects
US6069936A (en) * 1997-08-18 2000-05-30 Eg&G Astrophysics Material discrimination using single-energy x-ray imaging system
US6088423A (en) * 1998-06-05 2000-07-11 Vivid Technologies, Inc. Multiview x-ray based system for detecting contraband such as in baggage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511799A (en) * 1982-12-10 1985-04-16 American Science And Engineering, Inc. Dual energy imaging
WO1997045755A1 (en) * 1996-05-31 1997-12-04 Massachusetts Institute Of Technology Coded aperture imaging
US6301326B2 (en) * 1998-11-02 2001-10-09 Perkinelmer Detection Systems, Inc. Sheet detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540882A (en) * 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US5838758A (en) * 1990-08-10 1998-11-17 Vivid Technologies Device and method for inspection of baggage and other objects
US6069936A (en) * 1997-08-18 2000-05-30 Eg&G Astrophysics Material discrimination using single-energy x-ray imaging system
US6088423A (en) * 1998-06-05 2000-07-11 Vivid Technologies, Inc. Multiview x-ray based system for detecting contraband such as in baggage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.Ogorodnikov and V.petrunin.Processing of interlaced images in 4-10MeV dual energycustoms system for material recognition.Physical Review Special Topics-Accelerators and beams5.2002,5104701-1----104701-11. *

Also Published As

Publication number Publication date
CN101019042B (zh) 2010-05-12
CN101019042A (zh) 2007-08-15
CN101048653A (zh) 2007-10-03

Similar Documents

Publication Publication Date Title
CN101833116B (zh) 通过中子和缓发中子识别特定核材料的存在
CN101048653B (zh) 物体的双能量辐射扫描
US8551785B2 (en) Dual angle radiation scanning of objects
US9915752B2 (en) Inspection systems with two X-ray scanners in a first stage inspection system
US7366282B2 (en) Methods and systems for rapid detection of concealed objects using fluorescence
CN102884422B (zh) 用以确定物质的原子序数的、高能量x射线的基于光谱学的检查系统和方法
US7492862B2 (en) Computed tomography cargo inspection system and method
CN101606083B (zh) 在安全和入口监测方面的粒子检测及其应用
CN106233160A (zh) 使用宇宙射线电子和μ子的散射和停止辨别低原子重量材料
US8290120B2 (en) Dual energy radiation scanning of contents of an object based on contents type
JPH10510621A (ja) 中性子問合せ及びx線撮像の組合せを用いた、爆発物を検出するための検査システム及び空間解像技術
Labov et al. Foundations for improvements to passive detection systems-final report
Lalor Reconstructing the Atomic Number of Cargo X-ray Images using Dual Energy Radiography
Staples et al. Los Alarnos

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170308

Address after: American Utah

Patentee after: Vision Co., Ltd.

Address before: American California

Patentee before: Varian Medical Systems Inc.