CN101044417B - 油气藏监测方法 - Google Patents

油气藏监测方法 Download PDF

Info

Publication number
CN101044417B
CN101044417B CN2005800348466A CN200580034846A CN101044417B CN 101044417 B CN101044417 B CN 101044417B CN 2005800348466 A CN2005800348466 A CN 2005800348466A CN 200580034846 A CN200580034846 A CN 200580034846A CN 101044417 B CN101044417 B CN 101044417B
Authority
CN
China
Prior art keywords
resistivity
fluid
hydrocarbon
bearing pool
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800348466A
Other languages
English (en)
Other versions
CN101044417A (zh
Inventor
J·索利
D·O·小德弗格斯坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GeoContrast AS
Original Assignee
GeoContrast AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GeoContrast AS filed Critical GeoContrast AS
Publication of CN101044417A publication Critical patent/CN101044417A/zh
Application granted granted Critical
Publication of CN101044417B publication Critical patent/CN101044417B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/02Determining existence or flow of underground water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Hydrology & Water Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

借助将示踪剂流体注入到至少一个井眼中从而用于监测油气藏的一种或多种特性的方法。所述注入流体或是具有与地层和/或地层流体不同的电阻率,或是具有改变地层和/或地层流体的电阻率的能力。进行电阻率绘图从而监测被注入的示踪剂流体改变的电阻率区并且因此理解储层内的流体分布和流径的特性。

Description

油气藏监测方法
本发明涉及地下物理特性的地球物理制图。更具体而言,本发明涉及注入示踪剂流体,其目的在于:监测示踪剂在油气藏内的后续分布和运移以作为一种研究储层的特性和流体含量以及储层内的流体运动的手段。
地层允许流体通过的能力取决于孔隙尺寸、孔隙的连通性(渗透性)以及流体特性。该有效渗透性还取决于孔隙内各种流体的相对饱和状态。在油气藏内,所述渗透性对储层内的地层流体和注入流体的流径均产生影响。知晓储层的渗透性对于优化生产策略而言是有益的。
在通过利用放置在注入井内且在生产过程中得到探测的示踪剂从而追踪储层内示踪剂流体流的方面已经作出了多种尝试。美国专利6,645,769中描述了这样的一种技术。这些方法的应用受到了以下事实的限制,即示踪剂仅可在生产(开采)井中被检测到且必须钻至少两口井。
其它方法提议利用注入流体的声学性质从而追踪注射流体随时间的空间分布(参见美国专利4,479,204;4,969,130;5,586,082;6,438,069)。这些方法受到了以下事实的限制,即声学性质并不总是流体成分的可靠量度。
本发明的目的在于:将采用电阻率绘图技术可感测到的示踪剂流体注入到油气藏中以作为一种研究储层的特性和流体含量以及储层内的流体运动的手段,从而克服上述方法中存在的限制因素。所述示踪剂流体可以是电导率不同于储层流体的电导率的任何流体。
所述方法被用于监测和研究地层和/或地层内的流体的特性和/或几何范围。所述方法涉及将流体注入到至少一个井眼中。这些被注入的流体具有与地层和/或地层流体形成对比差异的电阻率且/或将会改变地层或地层流体的电阻率。随后将采用电阻率绘图技术对由于注入流体而造成的电阻率的变化进行绘图。为此可采用多种现有的电阻率绘图技术。在最终步骤中,对所述数据进行解释。
例如在美国专利4,617,518;4,633,182;5,770,945;6,603,313;6,842,006和6,717,411中对普通的电阻率绘图技术进行了描述。以前,时移远程电阻率研究方法已被用于进行环境工程研究(Loke,M.H.1999:Electrical imaging surveys for environmental andengineering studies(用于环境工程研究的电成像测绘))。对注入的导电/电阻性的溶液进行的绘图已被用于对地下水的流动型式进行估算(Aaltonen,J.2001:Ground monitoring using resistivitymeasurements in glaciated terrians(在冰蚀地面上采用电阻率测量法进行地面监测).;Park,S.1998:Fluid migration in the vadosezone from 3D inversion of resistivity monitoring data(由电阻率监测数据的三维反演产生的渗流区中的流体运移).;美国专利5,825,188)。美国专利6,739,165中披露了一种适用于监测储层的表面和井筒电阻性绘图的混合方法。在PCT专利WO03/023452中描述了一种用于实施时移电阻率监测的设备。Kaufman和Hoekstra给出了对适于对注入的导电/电阻性流体进行绘图的远程电阻率测绘的更概括的描述(Kaufman A.A.和Hoekstra,P.2001:Electromagneticsoundings(电磁发声探测)Elsevier)。
用于对地层、地层流体和/或注入流体的电阻率进行绘图的技术可以是远程的、直流的或以上两种方式相结合的方式。所述技术或是可应用在频率域中,或是可应用在时间域中。方法可包括,但不限于,采用受控源电磁、大地电磁、直流电方法或这些方法的任意组合进行电阻率绘图。可通过航空测绘从基于陆地的测量和/或基于海洋的测量中收集数据。还可以使用设在一个或多个井眼内的探测器在地下进行数据收集。电磁场、电场或磁场源可以是空中的、基于陆地或基于海洋的、或者被设在井眼内。所述井眼和/或油井套管也可被用作源,或者部分源。源与接收器位置的任意组合都是潜在可能的。
所述示踪剂是一种与地层和/或地层流体相比具有不同电阻率的注入流体。所述注入流体还可具有通过生物、化学或物理手段改变地层或地层流体的电阻率的能力。注入流体的电阻率可随时间而变化从而能够追踪地层内的流体运动。
采用在地球物理学领域众所周知的远程和/或直流电阻率绘图技术对注入流体在特定时间点或一定时间间隔的分布进行探测和绘图。电阻率是一个与流体类型高度相关的参数。电阻率绘图已用于进行油气勘探,如美国专利4,617,518;4,633,182;6,603,313;5,770,945;6,842,006和6,717,411中所述。电阻率绘图在储层监测中的应用如美国专利6,739,165中所述。
一旦已在地层中钻出至少一个井眼,就可以使用所述方法。所述方法可包括在进行注入之前对地层进行电阻率观察,虽然这并不是必需的。另外,注入流体或注入流体与地层流体的混合物可被点燃。在注入过程中和/或在注入后通过进行一次或在选定的时间间隔下进行电阻率绘图,则可以确定注入流体的流径,由此可以确定地层中的渗透性结构和流体含量。注入的示踪剂流体的电阻率或其它特性可随时间而变化。
监测和进行电阻率绘图的程序步骤可能涉及到数据的处理、迁移、建模和/或反演。可通过对在不同时间间隔条件下收集到的电阻率数据进行联合反演和/或连片处理,从而对时移数据进行处理。
除地质数据、生产数据、储层建模和储层模拟以外,地震、重力、磁性和其它地球物理数据也可与电阻率测量以任意组合方式被使用,从而对注入流体的分布或其变化效应进行绘图。这包括在进行电阻率绘图之前、之中和/或之后使用数据。
众所周知的是,地震测绘在探测流体特性和分布方面较差,而这些特性可通过电阻率测绘而更好地被探测到。根据本发明的示踪方法因此与现有方法相比具有明显的优势。
本发明的应用包括:
1)在生产前或在生产过程中对油气藏内的流体分布进行监测。
2)对油气藏或储层模拟装置的流体含量(包括饱和)、孔隙率和渗透性结构进行估算。
实例
本发明的典型应用的一个实例是用于增强开采目的烃(油气)的生产.在本实例中,所述注入流体可以是,但不限于,具有较强导电性的氢氯酸(HCl)和/或氯化钠(NaCl)的水溶液.将这样的示踪剂流体注入到储层中将会导致相对于周围地层和储层内的烃而言产生较大的电阻率差异.通过采用适当的包括现有的电阻率绘图技术可识别出这样的电阻率对比差异.例如,有可能采用受控源电磁发声探测,其中水平偶极子天线和一组电磁场接收器被放置在海床上或者符合任何其它的相关获取构型.相似地,可通过将一个或多个偶极子天线和/或一个或多个接收器放置在油井内从而识别电阻率对比差异.存在许多不同的构型,所述这些构型具有能够识别出电阻率对比差异的潜力且该思想对于不同的设定而言是灵活的.通过研究示踪剂流体的扩散,有可能估算出储层的多个参数,所述参数包括烃的运动、流体含量、渗透性、孔隙率以及更多.注入示踪剂流体可能具有其它优势,例如通过提高次生渗透率和孔隙率而使开采量得到提高.

Claims (20)

1.用于监测具有至少一个井眼的油气藏的一种或多种特性的方法,所述方法包括以下步骤:
将示踪剂流体注入到至少一个井眼中,所述示踪剂流体具有与油气藏的地层和地层流体不同的电阻率,或能够改变地层或地层流体的电阻率;
在油气藏上面的海洋中或空中或陆地上远程测量被注入的示踪剂流体改变的油气藏的电阻率;以及
对所述测量值进行解释,以确定油气藏的特性随时间的变化。
2.根据权利要求1所述的方法,其中还在所述至少一个井眼中进行所述电阻率的测量。
3.根据权利要求1所述的方法,其中注入的流体的任何特性随时间而变化。
4.根据权利要求1所述的方法,其中所述方法进一步包括确定注入流体和/或地层流体的几何范围。
5.根据权利要求1所述的方法,其中所述注入流体具有使得能够改变地层、包括地层流体的任何成分的电阻率的特性。
6.根据权利要求1所述的方法,其中所述注入流体和/或地层流体或这两种流体的任意混合物被点燃。
7.根据权利要求1所述的方法,其中采用受控源电磁方法进行所述电阻率测量,所述方法包括在空中或在陆地上或在海洋上,包括设置在一个或多个井眼外的接收器和/或源。
8.根据权利要求1所述的方法,其中采用大地电磁方法在井眼外、在陆地上或在空中或在海上进行所述电阻率测量。
9.根据权利要求1所述的方法,其中采用直流电方法在井眼内或井眼外或在陆地上或在空中或在海上进行所述电阻率测量。
10.根据权利要求1所述的方法,其中采用频率域方法进行所述解释。
11.根据权利要求1所述的方法,其中采用时间域方法进行所述解释。
12.根据权利要求4所述的方法,其中所述确定注入流体的几何范围包括对在不同时间间隔条件下收集到的电阻率绘图数据组进行联合处理。
13.根据权利要求4所述的方法,其中所述确定注入流体的几何范围包括对在不同时间间隔条件下收集到的电阻率绘图数据组进行联合反演。14、根据权利要求4所述的方法,其中在确定注入流体的几何范围的过程中使用地震数据。
15.根据权利要求4所述的方法,其中在确定注入流体的几何范围的过程中使用重力数据。
16.根据权利要求4所述的方法,其中在确定注入流体的几何范围的过程中使用磁性数据。
17.根据权利要求1所述的方法,其中所述注入流体是包括氢氯酸(HCl)和/或氯化钠(NaCl)的溶液。
18.根据权利要求1所述的方法,其中所述井眼和/或其套管被用作源或作为源的一部分用于进行电阻率测量。
19.根据权利要求1所述的方法,其中所述井眼和/或其套管被用作接收器或作为接收器的一部分用于进行电阻率测量.
20.用于绘图油气藏的电阻率的方法,所述方法包括:
将示踪剂流体注入到油气藏中,所述示踪剂流体具有与油气藏不同的电阻率;
采用受控源电磁方法、大地电磁方法、直流电方法中的至少一种,远程监测被注入的示踪剂流体改变的油气藏的电阻率;以及
对所述远程监测到的电阻率的改变进行解释,以确定油气藏的电阻率随时间的变化。
21.用于确定油气藏内的流体流动的方法,所述方法包括:
将示踪剂流体注入到油气藏中,所述示踪剂流体具有与油气藏不同的电阻率;
采用受控源电磁方法、大地电磁方法、直流电方法中的至少一种,远程感测被注入的示踪剂流体改变的油气藏的电阻率,其中在时间间隔内周期地对电阻率的改变进行远程感测;以及
根据所述周期地远程感测的电阻率的改变,确定油气藏的流体流动的特性。
CN2005800348466A 2004-10-13 2005-10-13 油气藏监测方法 Expired - Fee Related CN101044417B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20044358 2004-10-13
NO20044358A NO321856B1 (no) 2004-10-13 2004-10-13 Fremgangsmate for overvaking av resistivitet til en hydrokarbonholdig formasjon ved hjelp av et injisert sporingsfluid
PCT/NO2005/000380 WO2006041310A1 (en) 2004-10-13 2005-10-13 Method for hydrocarbon reservoir monitoring

Publications (2)

Publication Number Publication Date
CN101044417A CN101044417A (zh) 2007-09-26
CN101044417B true CN101044417B (zh) 2010-05-05

Family

ID=35057698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800348466A Expired - Fee Related CN101044417B (zh) 2004-10-13 2005-10-13 油气藏监测方法

Country Status (17)

Country Link
US (1) US8078404B2 (zh)
EP (1) EP1803001B1 (zh)
CN (1) CN101044417B (zh)
AP (1) AP2007003975A0 (zh)
AT (1) ATE544933T1 (zh)
AU (1) AU2005294880A1 (zh)
BR (1) BRPI0515978B1 (zh)
CA (1) CA2583693A1 (zh)
DK (1) DK1803001T3 (zh)
EA (1) EA012880B1 (zh)
EG (1) EG24708A (zh)
MA (1) MA28993B1 (zh)
MX (1) MX2007004523A (zh)
NO (1) NO321856B1 (zh)
TN (1) TNSN07134A1 (zh)
WO (1) WO2006041310A1 (zh)
ZA (1) ZA200703512B (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625422B (zh) * 2008-07-08 2011-05-25 中国石油集团东方地球物理勘探有限责任公司 一种固定场法时移微重力油气藏监测方法
US8554482B2 (en) * 2009-05-05 2013-10-08 Baker Hughes Incorporated Monitoring reservoirs using array based controlled source electromagnetic methods
EP2261459A1 (en) * 2009-06-03 2010-12-15 BP Exploration Operating Company Limited Method and system for configuring crude oil displacement system
DE102010035261A1 (de) * 2010-08-24 2012-03-01 Arnim Kaus Verfahren und Messvorrichtung zur Erkundung von Kohlenwasserstoff-Reservoirs im Untergrund
US9268052B2 (en) 2012-12-04 2016-02-23 Chevron U.S.A. Inc. Method and system of using a data weighted electromagnetic source for time-lapse monitoring of a reservoir production or hydraulic fracturing
US9846255B2 (en) 2013-04-22 2017-12-19 Exxonmobil Upstream Research Company Reverse semi-airborne electromagnetic prospecting
WO2015088563A1 (en) 2013-12-13 2015-06-18 Halliburton Energy Services, Inc. Methods and systems of electromagnetic interferometry for downhole environments
CN104122592B (zh) * 2014-07-31 2017-02-01 中国地质大学(武汉) 一种时移大地电磁信号采集和反演方法
CN104265276A (zh) * 2014-09-12 2015-01-07 中国石油集团长城钻探工程有限公司测井公司 基于电阻率示踪剂的流量测量方法及流量计
GB2546702A (en) * 2014-11-26 2017-07-26 Halliburton Energy Services Inc Offshore electromagnetic reservoir monitoring
US10302796B2 (en) 2014-11-26 2019-05-28 Halliburton Energy Services, Inc. Onshore electromagnetic reservoir monitoring
WO2016160770A1 (en) 2015-03-30 2016-10-06 Saudi Arabian Oil Company Monitoring hydrocarbon reservoirs using induced polarization effect
US9903977B2 (en) * 2016-06-08 2018-02-27 Baker Hughes, A Ge Company, Llc Radiation induced conductivity of oil based mud around pads of electrical imaging tools
CA3089719A1 (en) * 2018-02-06 2019-08-15 Conocophillips Company 4d seismic as a method for characterizing fracture network and fluid distribution in unconventional reservoir
US10711595B2 (en) * 2018-07-12 2020-07-14 Exxonmobil Upstream Research Company Hydrocarbon wells and methods for identifying production from a region of a subterranean formation
US11835675B2 (en) 2019-08-07 2023-12-05 Saudi Arabian Oil Company Determination of geologic permeability correlative with magnetic permeability measured in-situ
US11326440B2 (en) 2019-09-18 2022-05-10 Exxonmobil Upstream Research Company Instrumented couplings
US11248455B2 (en) 2020-04-02 2022-02-15 Saudi Arabian Oil Company Acoustic geosteering in directional drilling
EP4158153A1 (en) 2020-05-26 2023-04-05 Saudi Arabian Oil Company Instrumented mandrel for coiled tubing drilling
US11371326B2 (en) 2020-06-01 2022-06-28 Saudi Arabian Oil Company Downhole pump with switched reluctance motor
US20210389391A1 (en) 2020-06-11 2021-12-16 Technoimaging, Llc System and Method for Reservoir Monitoring Using SQUID Magnetic Sensors
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11879328B2 (en) 2021-08-05 2024-01-23 Saudi Arabian Oil Company Semi-permanent downhole sensor tool
CN113687442B (zh) * 2021-08-27 2022-05-06 中国矿业大学(北京) 以dts数据为导向的地下水变化分析方法和系统
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells
US11860077B2 (en) 2021-12-14 2024-01-02 Saudi Arabian Oil Company Fluid flow sensor using driver and reference electromechanical resonators
US11867049B1 (en) 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825188A (en) * 1996-11-27 1998-10-20 Montgomery; Jerry R. Method of mapping and monitoring groundwater and subsurface aqueous systems
WO2003023452A1 (en) * 2001-09-07 2003-03-20 The University Court Of The University Of Edinburgh Detection of subsurface resistivity contrasts with application to location of fluids
US20040069487A1 (en) * 2002-10-09 2004-04-15 Schlumberger Technology Corporation System and method for installation and use of devices in microboreholes

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931856A (en) * 1974-12-23 1976-01-13 Atlantic Richfield Company Method of heating a subterranean formation
US4068717A (en) * 1976-01-05 1978-01-17 Phillips Petroleum Company Producing heavy oil from tar sands
US4641099A (en) 1984-03-30 1987-02-03 The United States Of America As Represented By The Department Of Energy Methods for enhancing mapping of thermal fronts in oil recovery
US4734649A (en) * 1986-03-10 1988-03-29 Western Atlas International, Inc. Apparatus for measuring the resistivity of a sample
US4681164A (en) * 1986-05-30 1987-07-21 Stacks Ronald R Method of treating wells with aqueous foam
US5510394A (en) * 1991-02-19 1996-04-23 Ionics Incorporated High ionic conductance ion exchange membranes and their preparation
US5335542A (en) * 1991-09-17 1994-08-09 Schlumberger Technology Corporation Integrated permeability measurement and resistivity imaging tool
US5246860A (en) * 1992-01-31 1993-09-21 Union Oil Company Of California Tracer chemicals for use in monitoring subterranean fluids
US6061634A (en) * 1997-04-14 2000-05-09 Schlumberger Technology Corporation Method and apparatus for characterizing earth formation properties through joint pressure-resistivity inversion
US6766854B2 (en) * 1997-06-02 2004-07-27 Schlumberger Technology Corporation Well-bore sensor apparatus and method
MY131017A (en) * 1999-09-15 2007-07-31 Exxonmobil Upstream Res Co Remote reservoir resistivity mapping
US6840316B2 (en) * 2000-01-24 2005-01-11 Shell Oil Company Tracker injection in a production well
US6597177B1 (en) * 2000-11-20 2003-07-22 Em-Tech Sensors Llc Through casing resistivity measurement in permanently installed downhole production environment
FR2846996B1 (fr) * 2002-11-08 2004-12-24 Schlumberger Services Petrol Procede et dispositif de determination de la resistivite dans une formation geologique traversee par un puits tube
US7023213B2 (en) * 2002-12-10 2006-04-04 Schlumberger Technology Corporation Subsurface conductivity imaging systems and methods
US7337660B2 (en) * 2004-05-12 2008-03-04 Halliburton Energy Services, Inc. Method and system for reservoir characterization in connection with drilling operations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825188A (en) * 1996-11-27 1998-10-20 Montgomery; Jerry R. Method of mapping and monitoring groundwater and subsurface aqueous systems
WO2003023452A1 (en) * 2001-09-07 2003-03-20 The University Court Of The University Of Edinburgh Detection of subsurface resistivity contrasts with application to location of fluids
US20040069487A1 (en) * 2002-10-09 2004-04-15 Schlumberger Technology Corporation System and method for installation and use of devices in microboreholes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ElectricalImaging Surveys for Enviromental and Engineering Studies.1977,4, 5, 33-38,. *
Ground Monitoring Using Resistivity Measurements in Glaciated Terrains.2001,Chapter 5,.
Ground Monitoring Using Resistivity Measurements in Glaciated Terrains.2001,Chapter 5,. *

Also Published As

Publication number Publication date
EP1803001A1 (en) 2007-07-04
AP2007003975A0 (en) 2007-06-30
NO321856B1 (no) 2006-07-17
BRPI0515978B1 (pt) 2017-05-30
EA200700845A1 (ru) 2007-08-31
CN101044417A (zh) 2007-09-26
EP1803001A4 (en) 2010-04-07
BRPI0515978A (pt) 2008-08-12
DK1803001T3 (da) 2012-05-29
TNSN07134A1 (en) 2008-11-21
EG24708A (en) 2010-06-02
EA012880B1 (ru) 2009-12-30
EP1803001B1 (en) 2012-02-08
US20060076956A1 (en) 2006-04-13
MA28993B1 (fr) 2007-11-01
NO20044358L (no) 2006-04-18
NO20044358D0 (no) 2004-10-13
CA2583693A1 (en) 2006-04-20
WO2006041310A1 (en) 2006-04-20
AU2005294880A1 (en) 2006-04-20
MX2007004523A (es) 2007-07-20
US8078404B2 (en) 2011-12-13
ZA200703512B (en) 2008-09-25
ATE544933T1 (de) 2012-02-15

Similar Documents

Publication Publication Date Title
CN101044417B (zh) 油气藏监测方法
Zhu et al. Challenges of using electrical resistivity method to locate karst conduits—a field case in the Inner Bluegrass Region, Kentucky
CN107667302B (zh) 使用激发极化效应监测碳氢化合物储层
CN104656157B (zh) 一种识别页岩气甜点区的方法及装置
Boucher et al. Using 2D inversion of magnetic resonance soundings to locate a water-filled karst conduit
He et al. Field test of monitoring gas reservoir development using time-lapse continuous electromagnetic profile method
WO2010129556A2 (en) Monitoring reservoirs using array based controlled source electromagnetic methods
Gasperikova et al. A feasibility study of nonseismic geophysical methods for monitoring geologic CO 2 sequestration
Zhang et al. 3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes
US10175379B2 (en) System and method for surveying a subsurface of the earth
Montecinos-Cuadros et al. Characterization of the shallow structure of El Tatio geothermal field in the Central Andes, Chile using transient electromagnetics
CN106772677A (zh) 一种寻找覆盖区矽卡岩型铁铜金矿的方法
CN109991667A (zh) 一种含水层间水力联系的快速判断方法
Mirzaei et al. Application of Dipole–Dipole, Schlumberger, and Wenner–Schlumberger Arrays in Groundwater Exploration in Karst Areas Using Electrical Resistivity and IP Methods in a Semi-arid Area, Southwest Iran
Irons et al. Integrating geophysical monitoring data into multiphase fluid flow reservoir simulation
Arab-Amiri et al. Karstic water exploration using the Schlumberger VES and dipole–dipole resistivity profiling surveys in the Tepal area, west of Shahrood, Iran
Inverarity et al. Locating groundwater resources for Aboriginal communities in remote and arid parts of South Australia
Marsan et al. Aquifer characterization using 2D electrical resistivity imaging in Kidangpananjung, Cililin District, West Java
Carlson et al. The use of CSAMT and NSAMT in siting groundwater production wells: Two case histories
Ekpo et al. Geophysical Mapping and Assessment of Groundwater Potentials for Sustainable Development in Uyo, Akwa Ibom State
Sunwall et al. Alberto Marsala1, Michael S. Zhdanov2, 3, Vladimir Burtman3, 4, Leif Cox3
GEOLOGI Identification of unconfined aquifer using 3D resistivity analysis at Simpang 5 area, Semarang, Central Java, Indonesia
Muturi APPLICATION OF GEOPHYSICS FOR GROUNDWATER EVALUATION IN HARDROCK: CASE STUDY: KITUI FAULT ZONE
UkoEtim Determination of Aquiferous Zones in the Freshwater South-East Niger Delta, Using Vertical Electrical Sounding (VES) Method
Lynch et al. Electric and magnetic signatures of reducing springs at the Tablelands Ophiolite, Newfoundland, Canada

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100505

Termination date: 20131013