CN101043121A - Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device - Google Patents

Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device Download PDF

Info

Publication number
CN101043121A
CN101043121A CNA2006101543585A CN200610154358A CN101043121A CN 101043121 A CN101043121 A CN 101043121A CN A2006101543585 A CNA2006101543585 A CN A2006101543585A CN 200610154358 A CN200610154358 A CN 200610154358A CN 101043121 A CN101043121 A CN 101043121A
Authority
CN
China
Prior art keywords
nitride
based semiconductor
layer
formed
region
Prior art date
Application number
CNA2006101543585A
Other languages
Chinese (zh)
Inventor
狩野隆司
畑雅幸
野村康彦
Original Assignee
三洋电机株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006078726A priority Critical patent/JP4928811B2/en
Application filed by 三洋电机株式会社 filed Critical 三洋电机株式会社
Publication of CN101043121A publication Critical patent/CN101043121A/en

Links

Abstract

A method of fabricating a nitride-based semiconductor light-emitting device capable of suppressing reduction of characteristics and a yield is obtained. This method of fabricating a nitride-based semiconductor light-emitting device comprises steps of forming a groove portion on a nitride-based semiconductor substrate by selectively removing a prescribed region of a second region of the nitride-based semiconductor substrate other than a first region corresponding to a light-emitting portion of a nitride-based semiconductor layer up to a prescribed depth and forming the nitride-based semiconductor layer having a different composition from the nitride-based semiconductor substrate on the first region and the groove portion of the nitride-based semiconductor substrate.

Description

氮化物类半导体发光元件及其制造方法 Nitride-based semiconductor light emitting device and manufacturing method

技术领域 FIELD

本发明涉及氮化物类半导体发光元件的制造方法和氮化物类半导体发光元件,特别是涉及在氮化物类半导体基板上形成有氮化物类半导体层的氮化物类半导体发光元件的制造方法和氮化物类半导体发光元件。 The present invention relates to a method and a nitride-based semiconductor light-emitting element nitride-based semiconductor light-emitting device, particularly to a manufacturing method is formed and a nitride has a nitride-based semiconductor layer is a nitride-based semiconductor light-emitting element on the nitride-based semiconductor substrate, semiconductor light-emitting element.

背景技术 Background technique

至今为止,已知有在作为氮化物类半导体基板的GaN基板上,形成有氮化物类半导体层的氮化物类半导体激光元件等的氮化物类半导体发光元件。 So far, there is known on a GaN substrate as the nitride semiconductor substrate, a nitride-based semiconductor light-emitting element nitride-based semiconductor laser element or the like has a nitride-based semiconductor layer. 例如在特开2000-58972号公报上就公开了这样的氮化物类半导体发光元件。 For example, in the Laid-Open Patent Publication No. 2000-58972 discloses just such a nitride-based semiconductor light-emitting element.

在上述特开2000-58972号公报上公开了在具有平坦表面的n型GaN基板上,通过依次生长n型氮化物类半导体层、发光层和p型氮化物类半导体层而形成的氮化物类半导体激光元件。 In the above-mentioned JP-A No. 2000-58972 discloses a nitride-based on the n-type GaN substrate having a flat surface by sequentially growing an n-type nitride semiconductor layer, light emitting layer and a p-type nitride based semiconductor layer is formed The semiconductor laser element. 在上述特开2000-58972号公报上公开的现有的氮化物类半导体激光元件中,作为在n型GaN基板上形成的n型氮化物类半导体层的n型包覆层,具有n型AlGaN层与不掺杂GaN层相互层叠100层的构造。 Conventional nitride-based semiconductor laser element disclosed in the above Laid-Open Patent Publication No. 2000-58972, as an n-type cladding layer is n-type nitride-based semiconductor layer formed on the n-type GaN substrate, n-type AlGaN having layer and an undoped layer 100 are layered structure GaN layer.

可是在上述特开2000-58972号公报上公开的现有的氮化物类半导体激光元件中,在具有平坦表面的n型GaN基板上使构成n型包覆层的n型AlGaN层生长时,存在有在n型AlGaN层中产生的裂纹的量增加的不利情况。 However, the conventional nitride-based semiconductor laser element disclosed in the above Laid-Open Patent Publication No. 2000-58972, the n-type AlGaN layer constituting the n-type cladding layer is grown on the n-type GaN substrate having a flat surface, there is has a disadvantage that increasing the amount produced in the n-type AlGaN layer cracks. 具体说如图32所示,在具有平坦表面的n型GaN基板201上,使n型AlGaN层202生长的情况下,由于n型GaN基板201与n型AlGaN层202之间的晶格常数差的原因,在n型AlGaN层202产生变形时,难以对该变形进行缓解。 As shown in FIG particular lower, on the n-type GaN substrate 201 having a flat surface of the n-type AlGaN layer 32 grown case 202, since the lattice constant between the n-type GaN substrate 201 and the n-type AlGaN layer 202, a difference reason, when the n-type AlGaN layer 202 is deformed, the deformation is difficult to alleviate. 因此,在具有平坦表面的n型GaN基板201上使n型AlGaN层202生长的情况下,如图33所示,在n型AlGaN层202上产生的、沿[11-20]方向(参照图34)以及与[11-20]方向等效的[1-210]方向和[-2110](参照图34)方向延伸的裂纹203的量将会增加。 Therefore, the n-type AlGaN layer on the n-type GaN substrate 201 having a flat surface 202 grown case, as shown in FIG 33 is generated in the n-type AlGaN layer 202, along the [11-20] direction (see FIG. 34) and equivalent to the [11-20] direction [1-210] direction and a [-2110] (see FIG. 34) extending in the direction of the crack amount 203 will increase. 此外,图34中的θ为120°。 Further, in FIG. 34 θ is 120 °.

而在上述特开2000-58972号公报中,在n型AlGaN层(n型氮化物类半导体层)上的裂纹产生量增加的情况下,在n型氮化物类半导体层上依次形成的发光层和p型氮化物类半导体层,也会出现产生大量裂纹的不利情况。 Light-emitting layer in the above Laid-Open Patent Publication No. 2000-58972, a case where the amount of generation of cracks in the n-type AlGaN layer (n-type nitride based semiconductor layer) is increased, on the n-type nitride semiconductor layer are sequentially formed and a p-type nitride based semiconductor layer, a disadvantage of a large number of cracks will appear. 因此,在上述特开2000-58972号公报中,因为在具有n型氮化物类半导体层、发光层和p型氮化物类半导体层的氮化物类半导体元件层上产生大量裂纹,不仅会增加因裂纹而无法提供给氮化物类半导体元件层的发光部分的漏电流,而且还存在有因裂纹产生妨碍光波导的不利情况。 Thus, in the above Laid-Open Patent Publication No. 2000-58972, since the n-type nitride having a large number of cracks on nitride-based semiconductor layer, a light emitting layer and a p-type nitride semiconductor layer based semiconductor element layer, not only because of increased cracks can not be supplied to the drain current of the light emitting portion nitride-based semiconductor element layer, but also due to the presence of cracks disadvantages hinder the optical waveguide. 其结果,在上述特开2000-58972号公报中,存在有氮化物类半导体激光元件特性和成品率降低的问题。 As a result, in the above Laid-Open Patent Publication No. 2000-58972, the presence of nitride-based semiconductor laser device characteristics and the yield is lowered.

发明内容 SUMMARY

本发明就是为了解决上述课题而作出的,本发明的目的之一是提供一种能够抑制特性降低和成品率降低的氮化物类半导体发光元件的制造方法。 The present invention is made to solve the above problems, and an object of the present invention is to provide a method for reducing the manufacturing characteristics and reduction in yield nitride-based semiconductor light-emitting element can be suppressed.

本发明的另外一个目的是提供一种能够抑制特性降低和成品率降低的氮化物类半导体发光元件。 Another object of the present invention is to provide a nitride-based semiconductor light-emitting element characteristics and reduction in yield reduction can be suppressed.

为了达到上述目的,本发明的第一个方面的氮化物类半导体发光元件的制造方法包括:通过将与氮化物类半导体基板上形成的氮化物类半导体层的发光部分对应的氮化物类半导体基板的第一区域以外的第二区域的规定区域有选择地去除到规定的深度,在氮化物类半导体基板形成槽部的工序;和在氮化物类半导体基板的第一区域和槽部上,形成具有与所述氮化物类半导体基板不同组成的氮化物类半导体层的工序。 To achieve the above object, a method of manufacturing a nitride-based semiconductor light emitting device of the first aspect of the present invention includes: a nitride-based semiconductor substrate by a light emitting portion of the nitride-based semiconductor layer formed on the nitride semiconductor substrate corresponding the second predetermined region other than the region of the first region is selectively removed to a predetermined depth, a step of forming the groove portion in the nitride-based semiconductor substrate; and a groove portion on the first region and the nitride-based semiconductor substrate, forming a step of the nitride-based semiconductor substrate of different compositions nitride-based semiconductor layer.

如上所述,在本发明的第一个方面的氮化物类半导体发光元件的制造方法中,通过将对应于发光部分的氮化物类半导体基板的第一区域以外的第二区域的规定区域,有选择地去除到规定的深度,并在氮化物类半导体基板上形成槽部,在槽部的侧面垂直于氮化物类半导体基板表面的情况下以及槽部的开口宽度在从槽部的底面向开口端逐渐减小的情况下,使用金属有机物化学气相沉积(MOCVD)法等,在氮化物类半导体基板上形成氮化物类半导体层时,由于氮化物类半导体层的构成材料难以在槽部的侧面上堆积,所以可以使在槽部的侧面上形成的氮化物类半导体层的厚度,小于在第一区域上形成的氮化物类半导体层的厚度。 Predetermined region described above, the method of manufacturing a nitride-based semiconductor light-emitting device of the first aspect of the present invention, the second region other than the first region by the light emitting portion corresponding to the nitride-based semiconductor substrate, there is selectively removed to a predetermined depth, and a groove is formed on the nitride-based semiconductor substrate, the vertical side surface of the groove portion in the case where the surface of the substrate a nitride-based semiconductor and an opening width of the groove from the bottom of the groove portion facing the opening when the end of the case gradually decreases, using a metal organic chemical vapor deposition (MOCVD) method or the like, a nitride-based semiconductor layer is formed on the nitride-based semiconductor substrate, since the nitride-based semiconductor material constituting the hard layer side surface of the groove portion the accumulation, it is possible to make the thickness of the nitride-based semiconductor layer formed on the side of the groove portion is smaller than the thickness of the nitride-based semiconductor layer formed on the first region. 这种情况下,即使由于氮化物类半导体基板和氮化物类半导体层之间晶格常数差的原因而在氮化物类半导体层上产生变形,由于该变形集中在位于槽部侧面上的氮化物类半导体层厚度小的部分上,所以也可以使在第一区域的氮化物类半导体层上产生的变形减小。 In this case, even if due to a difference in lattice constant between the nitride-based semiconductor substrate and the nitride-based semiconductor layer to be deformed on the nitride-based semiconductor layer, since the deformation is concentrated in the groove portion located on the side surface of the nitride the small thickness portion based semiconductor layer, so that deformation may be made in the nitride-based semiconductor layer of the first region is reduced.

此外,氮化物类半导体基板是GaN基板,氮化物类半导体层是AlGaN层,并且在槽部的开口宽度在从槽部的底面向开口端逐渐增大的情况下,可以使在槽部侧面上形成的氮化物类半导体层的Al组成比,小于在第一区域上形成的氮化物类半导体层的Al组成比。 Further, the nitride-based semiconductor substrate is a GaN substrate, a nitride based semiconductor layer is an AlGaN layer, and the opening width of the groove bottom of the groove in a case where the end portion facing the opening gradually increases can be made in the side surface of the groove portion Al nitride based semiconductor layer formed of the composition ratio is smaller than the nitride-based semiconductor layer formed on the first region Al composition ratio. 其原因可以认为是由于使用MOCVD法等,在氮化物类半导体基板上形成氮化物类半导体层时,氮化物类半导体层的构成材料的一部分的Ga与Al相比,容易移动生长表面,Ga容易向槽的侧面一侧移动。 When it is considered that the reason for using the MOCVD method or the like, a nitride-based semiconductor layer is formed on the nitride-based semiconductor substrate, a part of Al with Ga as compared to the material constituting the nitride-based semiconductor layer, the growth surface is easy to move, easy Ga moving side to side groove. 因此,在位于槽部的侧面上的氮化物类半导体层(AlGaN层)的Al组成比低的部分的晶格常数,与氮化物类半导体基板(GaN基板)的晶格常数接近,所以在位于槽部的侧面上的氮化物类半导体层Al组成比低的部分中,可以使氮化物类半导体基板与氮化物类半导体层之间的晶格常数差变小。 Therefore, Al composition in the groove portion located on the side of the nitride-based semiconductor layer (AlGaN layer) is lower than the lattice constant portion, the lattice constant of nitride semiconductor substrate (GaN substrate) close, so located Al nitride-based semiconductor layer on the side of the groove portion than the lower portion of the composition can be made nitride-based semiconductor in lattice constant between the substrate and the nitride-based semiconductor layer becomes small. 这种情况下,即使由于氮化物类半导体基板和氮化物类半导体层之间晶格常数差的原因而在氮化物类半导体层上产生变形,该变形也可以在位于槽部的侧面上的氮化物类半导体层的Al组成比低的部分中得到缓解,所以可以使在第一区域的氮化物类半导体层上产生的变形变小。 In this case, even if the deformed on the nitride-based semiconductor layer due to a difference in lattice constant between the nitride-based semiconductor substrate and the nitride-based semiconductor layer, the nitrogen may be modified in the groove portion located on the side of the Al compound composition based semiconductor layer is lower than alleviated section, so that the deformation can be generated in the nitride-based semiconductor layer of the first region becomes smaller.

这样在第一方面中,由于可以使氮化物类半导体层上产生的变形变小,可以抑制因氮化物类半导体层产生的变形大而发生在氮化物类半导体层上产生的裂纹的量增加的不利情况。 Thus the amount of cracking in the first aspect, since the nitride-based semiconductor layer on the deformation becomes small, because a large deformation can be suppressed nitride semiconductor layer produced occurs on the nitride-based semiconductor layer generates increased adverse conditions. 因此,可以抑制因裂纹而无法提供给氮化物类半导体层发光部分的漏电流增加,以及因裂纹而产生的妨碍光波导的不利情况。 Accordingly, the leak current can be suppressed in the light emitting portion of the nitride-based semiconductor layer due to cracks can not provide increased, and disadvantages hinder the optical waveguide due to cracks generated. 其结果,可以抑制氮化物类半导体发光元件特性和成品率的降低。 As a result, it is possible to suppress a decrease nitride-based semiconductor light emitting device characteristics and yield.

在上述构成中,优选的是氮化物类半导体基板包括GaN基板,氮化物类半导体层包括含有Al、Ga和N的层。 In the above configuration, it is preferable that the nitride semiconductor substrate comprises a GaN substrate, a nitride-based semiconductor containing layer comprising Al, Ga and N layers. 如采用这样的构成,在具有包括GaN基板和在GaN基板上形成的AlGaN层(含有Al、Ga和N的层)的氮化物类半导体层的氮化物类半导体发光元件中,可以容易地抑制起因于GaN基板与AlGaN层之间的晶格常数差,发生在氮化物类半导体层上产生的裂纹的量增加的不利情况。 As such a configuration, the nitride-based semiconductor light-emitting element having a nitride-based semiconductor layer comprises a GaN substrate and an AlGaN layer (layer containing Al, Ga and N) formed on the GaN substrate can be easily suppressed due in lattice constant between the GaN substrate and the AlGaN layer is poor, the amount of increase occurs on the nitride-based semiconductor layer is generated a disadvantage that cracks.

在上述氮化物类半导体基板包括GaN基板,并且氮化物类半导体层包括含有Al、Ga和N的层的构成中,优选的是在氮化物类半导体基板上形成氮化物类半导体层的工序中,包括在氮化物类半导体基板的第一区域的上面上、槽部的底面和侧面上形成氮化物类半导体层的工序,在槽部的侧面上形成的氮化物类半导体层的Al组成比,比在第一区域的上面上形成的氮化物类半导体层的Al组成比低。 In the nitride semiconductor substrate comprises a GaN substrate, and the nitride-based semiconductor layer comprises a Al, constituting the layers of Ga and N, it is preferable that the step of a nitride-based semiconductor layer is formed on the nitride-based semiconductor substrate, on top of the first region including a nitride-based semiconductor substrate, a step nitride-based semiconductor layer formed on the bottom and side portions of the groove, Al composition ratio of the nitride-based semiconductor layer formed on the side surface of the groove portion than Al nitride-based semiconductor layer formed on top of the first region is lower than the composition. 如采用这样的构成,由于在位于槽部的侧面上的氮化物类半导体层(AlGaN层)的Al组成比低的部分的晶格常数,与氮化物类半导体基板(GaN基板)的晶格常数接近,所以在位于槽部的侧面上的氮化物类半导体层Al组成比低的部分中,可以使氮化物类半导体基板与氮化物类半导体层之间的晶格常数差变小。 As such a configuration, since the Al composition in the groove portion located on the side surface of the nitride-based semiconductor layer (AlGaN layer) than the lattice constant of the lower portion of the nitride-based semiconductor substrate (GaN substrate) lattice constant close, so the nitride-based semiconductor layer containing Al in the groove portion located on the side surface of the lower portion of the compositional ratio can be made nitride-based semiconductor in lattice constant between the substrate and the nitride-based semiconductor layer becomes small. 这样,即使因氮化物类半导体基板和氮化物类半导体层之间的晶格常数差而在氮化物类半导体层上产生变形,该变形可以在位于槽部的侧面上的氮化物类半导体层的Al组成比低的部分中得到缓解。 Thus, even if the lattice constants between the nitride semiconductor substrate and the nitride-based semiconductor layer on the difference deformation nitride-based semiconductor layer, and the deformation nitride based semiconductor layer may be located on the side surface of the groove portion Al composition ratio eased lower portion.

这种情况下,优选的是在氮化物类半导体基板上形成槽部的工序中,包括以从槽部的底面向开口端逐渐扩大的方式,形成槽部的开口宽度的工序。 In this case, it is preferable that a step is formed in the groove portion of the nitride-based semiconductor substrate, comprising from the bottom end of the groove facing the opening portion gradually enlarged manner, the opening width of the groove formed in the step portion. 如采用这样构成,使用MOCVD法等,在氮化物类半导体基板上形成氮化物类半导体层时,认为由于氮化物类半导体层的构成材料的一部分的Ga与Al相比,容易移动生长表面,Ga容易向槽的侧面一侧移动,所以可以容易地使在槽部的侧面上形成的氮化物类半导体层Al组成比,低于在第一区域的上形成的氮化物类半导体层的Al组成比。 With this configuration, such as when using a MOCVD method or the like, a nitride-based semiconductor layer is formed on the nitride-based semiconductor substrate, since that portion of the Al and Ga material constituting the nitride-based semiconductor layer as compared to the growth surface easily moved, Ga easily moved to the side of one side of the groove, it is possible to easily make the Al nitride-based semiconductor layer formed on the side portion of the composition ratio of the groove, below the nitride-based semiconductor layer formed on the first region Al composition ratio .

在上述构成中,优选的是在氮化物类半导体基板上形成槽部的工序中,包括在氮化物类半导体基板的第一区域的上面上、槽部的底面和侧面上形成氮化物类半导体层的工序,在槽部的侧面上形成的氮化物类半导体层的厚度比在第一区域上形成的氮化物类半导体层的厚度小。 In the above configuration, it is preferable that a step portion of the groove is formed on the nitride-based semiconductor substrate, the upper surface comprising a first region of the nitride-based semiconductor substrate, the nitride-based semiconductor layer is formed on the bottom and side portions of the groove step, the thickness of the nitride-based semiconductor layer formed on the side of the groove portion is smaller than the thickness of the nitride-based semiconductor layer formed on the first region. 如采用这样的构成,即使因氮化物类半导体基板和氮化物类半导体层之间的晶格常数差而在氮化物类半导体层上产生变形,由于该变形集中在位于槽部的侧面上的氮化物类半导体层厚度小的部分上,所以可以容易缓解在第一区域的氮化物类半导体层的变形。 As such a configuration, even deformed on the nitride-based semiconductor layer due to lattice constant difference between a nitride-based semiconductor substrate and the nitride-based semiconductor layer is poor, because the deformation is concentrated in the groove portion located on the side of the nitrogen a small thickness portion on the compound based semiconductor layer, can be easily modified to ease the nitride based semiconductor layer in the first region.

在上述槽部的侧面上形成的氮化物类半导体层的厚度,比在第一区域的上面上形成的氮化物类半导体层的厚度小的情况下,在氮化物类半导体基板上形成槽部的工序中,也可以包括以实质上垂直于氮化物类半导体基板表面的方式形成槽部的侧面的工序。 The thickness of the nitride-based semiconductor layer formed on the side of the groove portion, the small thickness of a nitride-based semiconductor layer is formed in the upper surface than the first region, the groove portion is formed on the nitride-based semiconductor substrate, step may include a step in a manner substantially perpendicular to the surface of the nitride semiconductor substrate is formed in the side surface of the groove portion. 如采用这样的构成,在使用MOCVD法等,在氮化物类半导体基板上形成氮化物类半导体层时,氮化物类半导体层的构成材料难以在槽部的侧面上堆积,所以可以容易地使在槽部的侧面上形成的氮化物类半导体层的厚度,比在第一区域上形成的氮化物类半导体层的厚度小。 As such a configuration, when using the MOCVD method or the like, a nitride-based semiconductor layer on the nitride-based semiconductor substrate, the constituent material of the nitride-based semiconductor layer is hard on the side of the groove portion is deposited, it can be easily made in the thickness of the nitride-based semiconductor layer formed on the side surface of the groove portion is smaller than the thickness of the nitride-based semiconductor layer formed on the first region.

在上述槽部的侧面上形成的氮化物类半导体层的厚度,比在第一区域的上面上形成的氮化物类半导体层的厚度小的情况下,在氮化物类半导体基板上形成槽部的工序中,也可以包括以从槽部的底面向开口端逐渐缩小的方式,形成槽部的开口宽度的工序。 The thickness of the nitride-based semiconductor layer formed on the side of the groove portion, the small thickness of a nitride-based semiconductor layer is formed in the upper surface than the first region, the groove portion is formed on the nitride-based semiconductor substrate, step, may also be included in the groove portion from the bottom facing the open end of the tapering manner, forming an opening width of the groove portion. 如采用这样的构成,在使用MOCVD法等,在氮化物类半导体基板上形成氮化物类半导体层时,与槽部的侧面实质上垂直于氮化物类半导体基板的表面的情况相比,由于氮化物类半导体层的构成材料难以在槽部的侧面上堆积,所以可以更容易地使在槽部的侧面上形成的氮化物类半导体层的厚度,比在第一区域上形成的氮化物类半导体层的厚度小。 As such a configuration, when using the MOCVD method or the like, a nitride-based semiconductor layer on a nitride-based semiconductor substrate, in case where the surface of the nitride semiconductor substrate compared to the side surface portion substantially perpendicular to the groove, since the nitrogen material constituting the compound-based semiconductor layer is hard on the side of the groove portion is deposited, it is possible to more easily make the thickness of the nitride-based semiconductor layer formed on the side surface of the groove portion, the nitride-based semiconductor than formed on the first region the small thickness of the layer.

根据上述构成,在氮化物类半导体基板上形成槽部的工序中,也可以包括在氮化物类半导体基板上将槽部形成为在规定方向延伸的细长形的工序。 According to the above configuration, a step is formed in the groove portion of the nitride-based semiconductor substrate, and may also include a step of forming an elongated shape extending in a predetermined direction on the nitride-based semiconductor substrate groove part. 如采用这样的构成,可以抑制在与规定方向交叉的方向上以延伸的方式产生的裂纹,在对应于在规定方向延伸的槽部的区域的横穿和扩展。 As such a configuration, it is possible to suppress generation of cracks as to extend in a direction intersecting the predetermined direction, and the transverse expansion in the region of the groove portion extending in a corresponding predetermined direction.

在上述构成中,优选的是氮化物类半导体基板的表面具有(H、K、-HK、L)面(H和K为整数,H和K中的至少有一个不为0)。 In the above configuration, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) surface (K is an integer and H, H and K have at least one non-zero). 一般在氮化物类半导体层上施加有面内变形的情况下,氮化物类半导体基板的表面为(0001)面时,在氮化物类半导体层上产生的压电电场最大,通过使氮化物类半导体基板的表面为(0001)面以外的面的(H、K、-HK、L)面,由于可以使在由氮化物类半导体构成的发光层上产生的压电电场变小,所以可以使发光效率提高。 When applied to the case where the deformation of the inner surface on ships on the nitride-based semiconductor layer, a surface of the nitride-based semiconductor substrate is (0001) plane, the piezoelectric field generated in the nitride-based semiconductor layer is maximum, the nitride-based by surface of the semiconductor substrate other than the (0001) plane of the (H, K, -HK, L) plane, since the piezoelectric field generated in the light-emitting layer made of a nitride-based semiconductor is reduced, it is possible to make luminous efficiency is improved.

这种情况下,优选的是氮化物类半导体基板的表面具有(H、K、-HK、L,0)面。 In this case, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L, 0) plane. 如采用这样的构成,由于在由氮化物类半导体构成的发光层上不产生压电电场,所以可以使发光效率提高。 As such a configuration, since the piezoelectric field is not generated on the light emitting layer made of a nitride-based semiconductor, it is possible to improve the luminous efficiency.

在上述氮化物类半导体基板的表面具有(H、K、-HK、L)面的构成中,优选的是氮化物类半导体基板的表面具有(H、K、-HK、L)面(L为不是0的整数)。 With the surface of the nitride semiconductor substrate (H, K, -HK, L) to form a surface, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) plane (L is It is not an integer 0). 如采用这样的构成,在原子的排列上,由于可以在表面上形成原子层高度的台阶,结晶生长的方式容易变成以台阶为起点生长的台阶流动生长(ステツプフロ一成長),其结果,可以使结晶性能提高。 As such a configuration, in the arrangement of atoms, since it is possible to form a highly stepped atomic layer on the surface, the way crystal growth tends to become step-flow to step was growing growth (su Te tsu pu fu ro a growth), as a result, can be so improve crystalline property.

根据上述氮化物类半导体基板的表面具有(H、K、-HK、L)面的构成,优选的是在氮化物类半导体基板上形成槽部的工序中,包括在氮化物类半导体基板上形成沿[K、-H、HK、0]方向延伸的槽部的工序。 The surface of the nitride-based semiconductor substrate having accordance with (H, K, -HK, L) configuration, it is preferable that the surface of the groove portion in a step comprising forming on a substrate a nitride-based semiconductor is formed on the nitride-based semiconductor substrate, in [K, -H, HK, 0] direction of the step portion extending in the groove. 如采用这样的构成,可以有效地抑制裂纹向与容易产生裂纹的 As such a configuration, it is possible to effectively suppress cracks and cracks readily

[0001]方向交叉的方向扩展。 Direction [0001] direction intersecting the extension.

根据上述构成,在氮化物类半导体基板上形成槽部的工序中,也可以包括在氮化物类半导体基板上形成格子形的包围第一区域、在第一方向和与第一方向交叉的第二方向延伸的细长形槽部的工序。 According to the above configuration, is formed on the nitride-based semiconductor substrate, a step groove portion may include a first region surrounded by a lattice formed on the nitride-based semiconductor substrate, the first direction crossing the first direction and the second step elongated groove portion extending in a direction. 如采用这样的构成,至少可以抑制在与第一方向交叉的方向上延伸产生的裂纹,在对应于在第一方向延伸的槽部的区域的横穿和扩展,并且在至少可以抑制在与第二方向交叉的方向延伸的裂纹,在对应于在第二方向延伸的槽部的区域的横穿和扩展。 As such a configuration, at least possible to suppress the crack extension in a direction crossing the first direction generated in the region of the groove and extend across the corresponding portions extending in a first direction, and at least the first can be suppressed two crack direction intersecting a direction extending across the expansion in the region of the groove and corresponding to the portion extending in a second direction. 因此,由于可以割断在第一方向和第二方向的两个方向延伸产生的裂纹,所以可以更有效地抑制裂纹量的增加。 Thus, since the cut crack propagation in both directions of the first and second directions is produced, it is possible to more effectively suppress the increase of the amount of crack.

在上述的构成中,氮化物类半导体层也可以构成为包括:由与在氮化物类半导体基板的第一区域和第二区域上形成的氮化物类半导体基板不同组成的氮化物类半导体构成的层,以及由至少在第一区域上形成的氮化物类半导体构成的发光层。 In the above configuration, the nitride-based semiconductor layer may be configured to include: a nitride-based semiconductor different from the substrate is formed on the first region and the second region of the nitride-based semiconductor substrate composed of the nitride-based semiconductor layer, and a light emitting layer made of a nitride semiconductor formed at least on the first region.

本发明的第二方面的氮化物类半导体发光元件包括:氮化物类半导体基板,其包括对应于发光部分的第一区域,和通过具有规定高度的台阶部配置成与上述第一区域邻接第二区域;氮化物类半导体层,其形成在氮化物类半导体基板的第一区域的上面和台阶部的侧面上,并且具有与氮化物类半导体基板不同的组成。 Nitride-based semiconductor light-emitting device of the second aspect of the present invention includes: a nitride-based semiconductor substrate including a first region corresponding to the light emitting portion, and the height of the stepped portion configured to have a predetermined region adjacent to said first and second region; nitride-based semiconductor layer which is formed on the upper side and the stepped portion of the first region of the nitride-based semiconductor substrate and the nitride-based semiconductor having a different composition of the substrate. 而且,在台阶部的侧面上形成的氮化物类半导体层的厚度,比在第一区域的上面上形成的氮化物类半导体层的厚度小。 Further, the thickness of the nitride-based semiconductor layer formed on the side of the stepped portion, the small thickness of the nitride-based semiconductor layer is formed in the upper surface than the first region.

在本发明的第二方面的氮化物类半导体发光元件中,如上所述,通过使在氮化物类半导体基板的台阶部的侧面上形成的氮化物类半导体层的厚度,比在对应于发光部分的氮化物类半导体基板的第一区域的上面上形成的氮化物类半导体层的厚度小,在使用MOCVD法等在氮化物类半导体基板上形成氮化物类半导体层时,即使因氮化物类半导体基板和氮化物类半导体层之间的晶格常数差而导致在氮化物类半导体层上产生变形,由于变形集中在位于台阶部的侧面上的氮化物类半导体层厚度小的部分上,所以也可以使在第一区域的氮化物类半导体层上产生的变形变小。 In the nitride-based semiconductor light-emitting device of the second aspect of the present invention, as described above, by making the thickness of the nitride-based semiconductor layer formed on the side of the stepped portion of the nitride semiconductor substrate than the light emitting portion corresponding to the small thickness of the nitride-based semiconductor layer formed on top of the first region of the nitride-based semiconductor substrate, when forming the nitride-based semiconductor layer on the nitride-based semiconductor substrate using MOCVD method or the like, even if the nitride-based semiconductor in lattice constant between the substrate and the nitride-based semiconductor layer caused by difference in the deformation of the nitride-based semiconductor layer, since the deformation is concentrated in the stepped portion located on the side of the small thickness portions of the nitride-based semiconductor layer, so it the deformation can be made on the nitride-based semiconductor layer of the first region becomes smaller. 因此,可以抑制由于在氮化物类半导体层产生的变形大而导致的在氮化物类半导体层上产生的裂纹的量增加的不利情况。 Thus, it is possible to suppress the amount of generated on the nitride-based semiconductor layer, a crack due to a large deformation in the nitride-based semiconductor layer is generated increases resulting disadvantages. 因此,因裂纹而无法提供给氮化物类半导体层发光部分的漏电流的增加,和因裂纹而产生的妨碍光波导的不利情况可以得到抑制。 Thus, due to cracks can not be supplied to the light emitting portion of the increase in leakage current of the nitride-based semiconductor layer, and disadvantages hinder the optical waveguide due to cracks generated can be suppressed. 其结果,可以抑制氮化物类半导体发光元件特性和成品率的降低。 As a result, it is possible to suppress a decrease nitride-based semiconductor light emitting device characteristics and yield.

在上述构成中,优选的是氮化物类半导体基板的表面具有(H、K、-HK、L)面(H和K为整数,H和K中的至少有一个不为0)。 In the above configuration, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) surface (K is an integer and H, H and K have at least one non-zero). 一般在氮化物类半导体层上施加有面内变形的情况下,氮化物类半导体基板的表面为(0001)面时,在氮化物类半导体层上产生的压电电场最大,在氮化物类半导体基板的表面为(0001)面以外时,在氮化物类半导体层上产生的压电电场比(0001)面时产生的压电电场小。 When applied to the case where the deformation of the inner surface on ships on the nitride-based semiconductor layer, a surface of the nitride-based semiconductor substrate is (0001) plane, the piezoelectric field generated in the nitride-based semiconductor layer is maximum, the nitride-based semiconductor small piezoelectric field is the surface of the substrate (0001) is outside the plane, the piezoelectric field generated in the nitride-based semiconductor layer is generated than the (0001) plane. 这样通过使氮化物类半导体基板的表面为(0001)面以外的面的(H、K、-HK、L)面,由于可以使在由氮化物类半导体构成的发光层上产生的压电电场变小,所以可以使发光效率提高。 By this nitride-based semiconductor substrate surface is (0001) plane (H, K, -HK, L) outside the plane surface, since the piezoelectric field generated in the light-emitting layer made of a nitride-based semiconductor becomes smaller, it is possible to improve the emission efficiency.

在上述氮化物类半导体基板的表面具有(H、K、-HK、L)面的构成中,优选的是氮化物类半导体基板的表面具有(H、K、-HK、0)面。 With the surface of the nitride semiconductor substrate (H, K, -HK, L) to form a surface, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, 0) plane. 如采用这样的构成,由于在由氮化物类半导体构成的发光层上不产生压电电场,所以可以进一步使发光效率提高。 As such a configuration, since the piezoelectric field is not generated on the light emitting layer made of a nitride-based semiconductor, it is possible to further improve luminous efficiency.

这种情况下,优选的是以沿[K、-H、HK、0]方向延伸方式形成台阶部。 In this case, preference is given in [K, -H, HK, 0] direction, a stepped portion is formed to extend. 如采用这样的构成,可以有效地抑制裂纹向与容易产生裂纹的 As such a configuration, it is possible to effectively suppress cracks and cracks readily

[0001]方向交叉的方向扩展。 Direction [0001] direction intersecting the extension.

在上述氮化物类半导体基板的表面具有(H、K、-HK、L)面的构成中,优选的是氮化物类半导体基板的表面具有(H、K、-HK、L)面(L为不是0的整数)。 With the surface of the nitride semiconductor substrate (H, K, -HK, L) to form a surface, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) plane (L is It is not an integer 0). 如采用这样的构成,在原子的排列上,由于可以在表面上形成原子层高度的台阶,结晶生长的方式容易变成以台阶为起点生长的台阶流动生长,其结果,可以使结晶性能提高。 As such a configuration, in the arrangement of atoms, because the height of the step may be formed on the surface atomic layers, the way the crystal growth tends to become step-flow growth in the growth step as a starting point, as a result, can improve the performance of the crystal.

在上述的构成中,氮化物类半导体层也可以构成为包括:由与在氮化物类半导体基板的第一区域和第二区域上形成的氮化物类半导体基板不同组成的氮化物类半导体构成的层,和由至少在第一区域上形成的氮化物类半导体构成的发光层。 In the above configuration, the nitride-based semiconductor layer may be configured to include: a nitride-based semiconductor different from the substrate is formed on the first region and the second region of the nitride-based semiconductor substrate composed of the nitride-based semiconductor layer, and a light emitting layer made of nitride semiconductor formed at least on the first region.

本发明的第三方面的氮化物类半导体发光元件包括:氮化物类半导体基板,其包括对应于发光部分的第一区域,和通过具有规定高度的台阶部,配置成与上述第一区域邻接的第二区域;氮化物类半导体层,其形成在氮化物类半导体基板的第一区域的上面和台阶部的侧面上,并且具有与氮化物类半导体基板不同的组成,含有Al、Ga和N。 A third aspect of the present invention, a nitride-based semiconductor light emitting device comprising: a nitride-based semiconductor substrate including a first region corresponding to the light emitting portion, and having a predetermined height by the stepped portion, arranged adjacent to the first region a second region; nitride-based semiconductor layer which is formed on the upper side and the stepped portion of the first region of the nitride-based semiconductor substrate, and having a nitride-based semiconductor substrate of different compositions, containing Al, Ga and N. 而且,在台阶部的侧面上形成的氮化物类半导体层的Al组成比,低于在第一区域的上面上形成的氮化物类半导体层的Al组成比。 Further, Al nitride-based semiconductor layer formed on the side of the stepped portion of the composition ratio is lower than the nitride-based semiconductor layer formed on the upper region of the first Al composition ratio.

在本发明的第三方面的氮化物类半导体发光元件中,如上所述,通过使在氮化物类半导体基板的台阶部的侧面上形成的含有Al、Ga和N的氮化物类半导体层的Al组成比,低于对应于发光部分的氮化物类半导体基板的第一区域的上面上形成的氮化物类半导体层的Al组成比,使用MOCVD法等在氮化物类半导体基板上形成氮化物类半导体层时,由于位于台阶部的侧面上的氮化物类半导体层的含有Al、Ga和N的氮化物类半导体层的Al组成比低的部分的晶格常数,接近于具有与含有Al、Ga和N的氮化物类半导体层不同组成的氮化物类半导体基板的晶格常数,所以在位于台阶部的侧面上的氮化物类半导体层的Al组成比低的部分中,可以使氮化物类半导体基板与氮化物类半导体层之间的晶格常数差减小。 In the nitride-based semiconductor light-emitting element of the third aspect of the present invention, as described above, by containing Al is formed on the side of the stepped portion of the nitride-based semiconductor substrate, Ga, and N is a nitride-based semiconductor layer is Al composition ratio, lower than the Al composition ratio, MOCVD method or the like using nitride-based semiconductor layer formed on top of the first region corresponding to the light emitting portion of the nitride-based semiconductor substrate, forming a nitride-based semiconductor on the nitride-based semiconductor substrate, when the layer containing Al since the nitride-based semiconductor layer is positioned on the side surface of the stepped portion, the composition Al Ga N and nitride-based semiconductor layer is lower than the lattice constant of the portion, having a close containing Al, Ga and N nitride-based semiconductor layers having different lattice constant of nitride semiconductor substrate composed of Al composition so located on the stepped portion of the side surface of the nitride-based semiconductor layer is lower than the portion can be made nitride-based semiconductor substrate, and in lattice constant between the nitride-based semiconductor layer difference is reduced. 因此,即使因氮化物类半导体基板和氮化物类半导体层之间的晶格常数差而导致在氮化物类半导体层上产生变形,由于在位于台阶部的侧面上的氮化物类半导体层的Al组成比低的部分中可以缓解变形,故也可以减小在氮化物类半导体层上产生的变形。 Thus, even if the lattice constants between the nitride semiconductor substrate and the nitride-based semiconductor layer caused by difference in the deformation of the nitride-based semiconductor layer, since Al nitride-based semiconductor layer is positioned on the side surface of the stepped portion composition ratio can relieve lower portion deformed, it is possible to reduce strain generated on the nitride-based semiconductor layer. 因此,可以抑制因为在氮化物类半导体层产生的变形大而导致在氮化物类半导体层上产生的裂纹量增加的不利情况。 Accordingly, a large deformation can be suppressed since the nitride-based semiconductor layer caused by the amount of generated cracks on nitride-based semiconductor layer increases unfavorable conditions. 因此,因裂纹而无法提供给氮化物类半导体层发光部分的漏电流的增加,和因裂纹而产生的妨碍光波导的不利情况可以得到抑制。 Thus, due to cracks can not be supplied to the light emitting portion of the increase in leakage current of the nitride-based semiconductor layer, and disadvantages hinder the optical waveguide due to cracks generated can be suppressed. 其结果,可以抑制氮化物类半导体发光元件特性和成品率的降低。 As a result, it is possible to suppress a decrease nitride-based semiconductor light emitting device characteristics and yield.

在上述构成中,优选的是氮化物类半导体基板的表面具有(H、K、-HK、L)面(H和K为整数,H和K中的至少有一个不为0)。 In the above configuration, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) surface (K is an integer and H, H and K have at least one non-zero). 一般在氮化物类半导体层上施加有面内变形的情况下,氮化物类半导体基板的表面为(0001)面时在氮化物类半导体层上产生的压电电场最大,氮化物类半导体基板的表面为(0001)面以外时在氮化物类半导体层上产生的压电电场比(0001)面时产生的压电电场小。 Case of a general applied strain on the inner surface on the nitride-based semiconductor layer, a surface of the nitride-based semiconductor substrate is (0001) plane when a piezoelectric field generated in the nitride-based semiconductor layer is maximum, the nitride-based semiconductor substrate, small piezoelectric field generated when the ratio of (0001) plane of the piezoelectric field is generated on the surface (0001) plane is outside on the nitride-based semiconductor layer. 这样通过使氮化物类半导体基板的表面为(0001)面以外的面的(H、K、-HK、L)面,由于可以使在由氮化物类半导体构成的发光层上产生的压电电场变小,所以可以使发光效率提高。 By this nitride-based semiconductor substrate surface is (0001) plane (H, K, -HK, L) outside the plane surface, since the piezoelectric field generated in the light-emitting layer made of a nitride-based semiconductor becomes smaller, it is possible to improve the emission efficiency.

这种情况下,优选的是氮化物类半导体基板的表面具有(H、K、-HK、0)面。 In this case, it is preferable that the surface of the nitride-based semiconductor substrate having (H, K, -HK, 0) plane. 如采用这样的构成,由于在由氮化物类半导体构成的发光层上不产生压电电场,所以可以进一步使发光效率提高。 As such a configuration, since the piezoelectric field is not generated on the light emitting layer made of a nitride-based semiconductor, it is possible to further improve luminous efficiency.

在上述氮化物类半导体基板的表面具有(H、K、-HK、L)面的构成中,氮化物类半导体基板的表面具有(H、K、-HK、L)面(L为不是0的整数)。 With the surface of the nitride semiconductor substrate (H, K, -HK, L) to form a surface, the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) plane (L is not zero integer). 如采用这样的构成,在原子的排列上,由于可以在表面上形成原子层高度的台阶,结晶生长的方式容易变成以台阶为起点生长的台阶流动生长,其结果,可以使结晶性能提高。 As such a configuration, in the arrangement of atoms, because the height of the step may be formed on the surface atomic layers, the way the crystal growth tends to become step-flow growth in the growth step as a starting point, as a result, can improve the performance of the crystal.

这种情况下,优选的是以沿[K、-H、HK、0]方向延伸方式形成台阶部。 In this case, preference is given in [K, -H, HK, 0] direction, a stepped portion is formed to extend. 如采用这样的构成,可以有效地抑制裂纹向与容易产生裂纹的 As such a configuration, it is possible to effectively suppress cracks and cracks readily

[0001]方向交叉的方向扩展。 Direction [0001] direction intersecting the extension.

在上述的构成中,氮化物类半导体层也可以构成为包括:由在氮化物类半导体基板的第一区域和第二区域上形成的含有Al和Ga的氮化物类半导体构成的层;和由至少在第一区域上形成的氮化物类半导体构成的发光层。 In the above configuration, the nitride-based semiconductor layer may be configured as comprising: a layer made of nitride semiconductor containing Al and Ga and formed on the first region and the second region of the nitride-based semiconductor substrate; and a a light emitting layer composed of a nitride based semiconductor formed at least on the first region.

附图说明 BRIEF DESCRIPTION

图1是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 1 is a plan view of a manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图2是沿图1的100-100线的断面图。 FIG 2 taken along line 100-100 of FIG. 1 is a sectional view.

图3是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 3 is a plan view of a manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图4是沿图3的200-200线的断面图。 FIG 4 taken along line 200-200 of FIG. 3 is a sectional view.

图5是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 5 is a plan view of a manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图6是沿图5的300-300线的断面图。 FIG 6 is a sectional view taken along the line 300-300 of FIG. 5.

图7是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG. 7 is a sectional view of a manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图8是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 8 is a sectional view of the manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图9是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的断面图。 9 is a sectional view of a manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图10是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 10 is a sectional view of the manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图11是用于说明本发明的第一实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 11 is a sectional view of the manufacturing process of the first embodiment of the present invention is a nitride based semiconductor laser element.

图12是表示使用本发明的第一实施方式的氮化物类半导体激光元件的制造工艺形成的氮化物类半导体激光元件的构造的断面图。 FIG 12 is a sectional view showing a structure of a nitride based semiconductor laser device manufacturing process the nitride-based semiconductor laser device using a first embodiment of the present invention is formed.

图13是用于说明本发明的第二实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 13 is a plan view showing a manufacturing process of a second embodiment of the present invention is a nitride based semiconductor laser element.

图14是用于说明本发明的第二实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 14 is a sectional view of a manufacturing process of the nitride-based semiconductor laser element of the second embodiment of the present invention. FIG.

图15是表示使用本发明的第二实施方式的氮化物类半导体激光元件的制造工艺形成的氮化物类半导体激光元件的构造的断面图。 FIG 15 is a sectional view showing structure of a nitride-based semiconductor laser device manufacturing process the nitride-based semiconductor laser device according to the second embodiment of the present invention is formed.

图16是用于说明本发明的第三实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 16 is a plan view of a manufacturing process of a third embodiment of the present invention is a nitride based semiconductor laser element.

图17是用于说明本发明的第四实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 17 is a sectional view of a fourth embodiment of a manufacturing process of the present invention is a nitride based semiconductor laser element.

图18是用于说明本发明的第四实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 18 is a sectional view of a fourth embodiment of a manufacturing process of the present invention is a nitride based semiconductor laser element.

图19是用于说明本发明的第四实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 19 is a sectional view of a manufacturing process of a nitride based semiconductor laser device of the fourth embodiment of the present invention. FIG.

图20是表示使用本发明的第四实施方式的氮化物类半导体激光元件的制造工艺形成的氮化物类半导体激光元件的构造的断面图。 FIG 20 is a sectional view showing structure of a nitride-based semiconductor laser device manufacturing technology nitride-based semiconductor laser device of a fourth embodiment of the present invention is formed.

图21是用于说明本发明的第五实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 21 is a sectional view of a fifth embodiment of a manufacturing process of the present invention is a nitride based semiconductor laser element.

图22是用于说明本发明的第六实施方式的氮化物类半导体激光元件的制造工艺的断面图。 FIG 22 is a sectional view of a manufacturing process of a sixth embodiment of the present invention is a nitride based semiconductor laser element.

图23是用于说明本发明的第七实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 23 is a plan view of a manufacturing process of a seventh embodiment of the present invention is a nitride based semiconductor laser element.

图24是沿图23的400-400线的断面图。 FIG 24 is a view taken along line 400-400 of FIG. 23.

图25是用于说明本发明的第八实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 25 is a plan view of a manufacturing process of an eighth embodiment of the present invention is a nitride based semiconductor laser element.

图26是沿图25的500-500线的断面图。 FIG 26 is a sectional view along line 500-500 in FIG. 25.

图27是用于说明本发明的第九实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 27 is a plan view of a ninth embodiment of the manufacturing process of the present invention is a nitride based semiconductor laser element.

图28是沿图27的600-600线的断面图。 FIG 28 is a sectional view taken along the line 600-600 of FIG. 27.

图29是用于说明本发明的第十实施方式的氮化物类半导体激光元件的制造工艺的平面图。 FIG 29 is a plan view of a manufacturing process of a tenth embodiment of the present invention is a nitride based semiconductor laser element.

图30是沿图29的700-700线的断面图。 FIG 30 is a sectional view taken along line 700-700 29.

图31是表示第一~第十实施方式的变形例子的氮化物类半导体激光元件的n型GaN基板的断面图。 FIG 31 is a sectional view of the n-type GaN substrate, a nitride based semiconductor laser device according to a modification of the first to tenth embodiments.

图32是表示在具有平坦表面的n型GaN基板上使n型AlGaN层生长时的状态的断面图。 FIG 32 is a sectional view showing that the state where the n-type AlGaN layer is grown on the n-type GaN substrate having a flat surface.

图33是表示图32所示的n型AlGaN层上的裂纹生成状态的平面图。 FIG 33 is a plan view showing the state of crack formation on the n-type AlGaN layer 32 as shown in FIG.

图34是表示六方晶系的GaN基板的结晶方向的示意图。 FIG 34 is a schematic view showing the GaN substrate crystal orientation of hexagonal.

具体实施方式 Detailed ways

下面根据附图对本发明的实施方式进行说明。 Next, embodiments of the present invention will be described with reference to the drawings.

(第一实施方式)下面参照图1~图12和图34,对第一实施方式的氮化物类半导体激光元件的制造工艺进行说明。 (First Embodiment) Referring to FIG. 1 to FIG. 12 and FIG. 34, the manufacturing process of the nitride-based semiconductor laser device of the first embodiment will be described.

在第一实施方式的氮化物类半导体激光元件的制造工艺中,如图1和图2所示,首先准备具有(0001)面的表面,并且具有低位错密度的n型GaN基板1。 In the manufacturing process of the nitride-based semiconductor laser element of the first embodiment, as shown in FIG. 1 and FIG. 2, is first prepared having a surface (0001) plane, and having a low dislocation density GaN n-type substrate 1. 该n型GaN基板1具有约0.3189nm(a轴方向)的晶格常数。 The n-type GaN substrate 1 having about 0.3189nm (a-axis) lattice constant. 此外,n型GaN基板1是本发明的“氮化物类半导体基板”的一个例子。 Further, n-type GaN substrate 1 is an example of the "nitride-based semiconductor substrate" in the present invention. 然后用电子束蒸发沉积法等,在n型GaN基板1上的规定区域形成具有约0.4μm厚的Ni层构成的条纹状(细长形)的掩模层17。 Followed by electron beam evaporation deposition method, a stripe-shaped layer made of Ni having a thickness of about 0.4μm (elongated) mask layer 17 in a predetermined region on the 1 n-type GaN substrate. 具体说,以沿[1-100]方向延伸的方式形成掩模层17。 Specifically, the mask layer 17 is formed in the manner [1-100] direction extends. 此外,将邻接[11-20]方向的掩模层17之间的距离W1设定成约50μm,并且将掩模层17的[11-20]方向的宽度W2设定成约200μm。 Further, the distance between the mask layer 17 adjacent to the [11-20] direction W1 is set to about 50 m, and a width of 17 [11-20] direction of the mask layer W2 is set to approximately 200μm.

然后如图3和图4所示,使用Cl2的反应离子腐蚀(RIE)法,将掩模层17作为蚀刻掩模,蚀刻到距n型GaN基板1的上面约2μm的深度。 Then, as shown in FIGS. 3 and 4, the use of Cl2 reactive ion etching (RIE) method, the mask layer 17 as an etch mask, is etched to a depth from the top of the n-type GaN substrate 1 of about 2μm. 此外,这种情况下的蚀刻选择比(掩模层17/n型GaN基板1)为1∶10。 Further, in this case the etching selection ratio (the mask layer 17 / n-type GaN substrate 1) is 1:10. 此外,作为蚀刻条件,蚀刻压力:约3.325kPa、等离子体功率:约200W、蚀刻速度:约140nm/秒~约150nm/秒。 Further, as the etching conditions, the etching pressure: about 3.325kPa, plasma power: 200W, etching rate: about 140nm / sec to about 150nm / sec. 这样在n型GaN基板1上,形成具有约50μm的宽度W1和约2μm的深度D1,并且沿[1-100]方向延伸的条纹状(细长形)的槽部1a。 Thus on the n-type GaN substrate 1, W1 of about 2μm is formed to a width of about 50μm depth D1, and the direction [1-100] stripe-shaped (elongate) extending in a direction groove portion 1a. 此外,在上述的蚀刻条件的情况下,槽部1a的侧面垂直于n型GaN基板1的上面。 Further, in the case of the above etching conditions, the groove portion perpendicular to the upper surface 1a of the n-type GaN substrate 1. 而在n型GaN基板1中,具有夹在槽部1a中间的约200μm的[11-20]方向的宽度W2的区域1b,成为与后面叙述的氮化物类半导体元件层10的发光部分对应的区域。 1b region width W2 in the n-type GaN substrate 1, having a [11-20] direction is about 200μm sandwiching the groove portion 1a, a light-emitting portion of the nitride-based semiconductor element layer 10 described later and the corresponding region. 此外,n型GaN基板1的区域1b是本发明的“第一区域”的一个例子,形成有n型GaN基板1的槽部1a的区域是本发明的“第二区域”的一个例子。 Further, an n-type GaN substrate region 1b is an example of the "first region" of the present invention, a region where the groove portions 1a of the n-type GaN substrate 1 is an example of the "second region" of the present invention. 此后除去掩模层17。 After removing the mask layer 17.

然后如图5和图6所示,用MOCVD法,在n型GaN基板1的区域1b的上面上、槽部1a的底面和侧面上,隔着缓冲层2,依次形成构成氮化物类半导体元件层10的氮化物类半导体的各层(3~9)。 Then, as shown in FIGS. 5 and 6, by MOCVD, on the upper region 1b of the n-type GaN substrate 1, the upper side surface and the bottom surface of the groove portions 1a, via a buffer layer 2, and elements constituting the nitride-based semiconductor is formed the layers of the nitride-based semiconductor layer 10 (3 to 9).

具体地说如图6所示,首先将形成有槽部1a的n型GaN基板1,插入到氢和氮氛围的反应炉中。 Specifically, as shown in FIG. 6, the first one, is inserted into the furnace atmosphere of hydrogen and nitrogen is formed with a groove portion 1a of the n-type GaN substrate. 此后,将氮化物类半导体的各层(2~9)的氮原料的NH3气体提供到反应炉内,并且将基板温度加热到约1160℃。 Thereafter, the layers (2 to 9) of the nitride-based semiconductor feedstock NH3 gas such as nitrogen is supplied to the reaction furnace, and the substrate is heated to a temperature of about 1160 ℃. 然后,在基板温度达到了约1160℃附近时,通过使用作为载流气体的H2气,向反应炉内提供Ga原料的三甲基镓(TMGa)气和Al原料的三甲基铝(TMAl)气体,在n型GaN基板1上,使由具有约0.8μm厚的不掺杂Al0.01Ga0.99N构成的缓冲层2,以约1.1μm/小时的速度生长。 Then, when the substrate temperature reaches the vicinity of about 1160 ℃, by using a Ga source providing a gas into the reaction furnace as a carrier gas of H2 trimethyl gallium (of TMGa) gas and trimethyl aluminum Al raw material (TMAI) gas, on the n-type GaN substrate 1, so that a thickness of about 0.8μm buffer layer made of undoped Al0.01Ga0.99N 2 to about 1.1μm / hr growth. 此后,通过使用作为载流气体的H2气,向反应炉内提供TMGa气、TMAl气和作为n型夹杂的Ge原料的GeH4(甲锗烷)气,在缓冲层2上,使由具有约1.8μm厚的掺杂Ge的n型Al0.07Ga0.93N构成的n型包覆层3,以约1.1μm/小时的速度生长。 Thereafter, by using H2 gas as the carrier gas is provided into the reaction furnace TMGa gas, GeH4 TMAl gas inclusions and an n-type Ge raw material (germyl) gas, on the buffer layer 2, so having about 1.8 n-type cladding layer is doped with Ge-μm thick n-type Al0.07Ga0.93N formed of 3 to about 1.1μm / hr growth. 该n型Al0.07Ga0.93N构成的n型包覆层3的晶格常数约为0.3184nm(a轴方向)。 The lattice constant of the n-type cladding layer 3 made of n-type Al0.07Ga0.93N about 0.3184nm (a-axis direction). 由该n型Al0.07Ga0.93N构成的n型包覆层3的晶格常数是根据GaN的晶格常数(约0.3814nm(a轴方向))、AlN的晶格常数(约0.3112nm(a轴方向)),计算出来的值。 Lattice constant of the n-type cladding layer 3 made of n-type Al0.07Ga0.93N is a lattice constant of GaN (about 0.3814nm (a-axis direction)), the lattice constant of AlN (about 0.3112nm (a axis direction)), the calculated value. 此外,n型包覆层3是本发明的“氮化物半导体层”的一个例子。 Further, n-type cladding layer 3 is an example of the "nitride semiconductor layer" of the present invention. 再有,通过使用作为载流气体的H2气,向反应炉内提供TMGa气和TMAl气,在n型包覆层3上,使由具有约20μm厚的不掺杂的Al0.2Ga0.8N构成的n侧载子限制层4(carrier block layer),以约1μm/小时的速度生长。 Further, by using H2 gas as a carrier gas, TMGa gas and TMAl gas provided into the reactor, on the n-type cladding layer 3, constituting a Al0.2Ga0.8N having about 20μm thick undoped n-side carrier confinement layer 4 (carrier block layer), of about 1μm / hr growth.

此后将基板温度从约1160℃降到约850℃。 After the substrate temperature was lowered to about 850 deg.] C from about 1160 ℃. 然后,通过使用作为载流气体的N2气,向反应炉内提供Ga原料的三甲基镓(TMGa)气和In原料的三甲基铟(TMIn)气,在n侧载子限制层4上,使由具有约20nm厚的不掺杂的In0.02Ga0.98N构成的四个阻挡层(图中没有表示)、和由具有约3.5nm厚的不掺杂的In0.15Ga0.85N构成的三个量子井层(图中没有表示),交替以约0.25μm/小时的速度生长。 Then, by using N2 gas as a carrier gas, to provide feedstock into the reactor Ga trimethyl gallium (of TMGa) gas, and trimethyl indium In starting materials (of TMIn) gas, the n-side carrier confinement layer 4 the four barrier layers (not shown) made of undoped In0.02Ga0.98N having a thickness of about 20nm, and made of undoped In0.15Ga0.85N having a thickness of about 3.5nm three quantum well layer (not shown), alternating with about 0.25μm / hr growth. 这样,形成具有四个阻挡层和三个量子井层交替层叠的多重量子井(multiple quantumwell(MQW))构造的MQW活性层5。 In this way, a multiple quantum well (multiple quantumwell (MQW)) constructed in the MQW active layer 5 has three layers and four barrier layers alternately stacked quantum wells. 随后在MQW活性层5上,使由具有约0.1μm厚的不掺杂的In0.01Ga0.99N构成p侧光导层6生长。 Then the MQW active layer 5, the p-side optical guide layer 6 grown by the thickness of In0.01Ga0.99N about 0.1μm undoped configuration. 此后,通过使用作为载流气体的N2气,向反应炉内提供TMGa气和TMAl气,在p侧光导层6上,使由具有约20nm厚的不掺杂Al0.2Ga0.8N构成的p侧载子限制层7,以约1.2μm/小时的速度生长。 Thereafter, by using N2 gas as a carrier gas, TMGa gas and TMAl gas provided into the reactor, on the p-side optical guide layer 6, so that the p-side configuration of undoped Al0.2Ga0.8N having a thickness of about 20nm carrier confinement layer 7 to about 1.2μm / hr growth.

然后将基板温度从约850℃加热到约1000℃。 The substrate temperature was then heated from about 850 deg.] C to about 1000 ℃. 然后,通过使用作为载流气体的N2气,向反应炉内提供TMGa气、TMAl气以及作为p型夹杂的Mg原料的Mg(C5H5)2(环戊二烯合镁)气,在p侧载子限制层7上,使由具有约0.45μm厚的掺杂Mg的p型Al0.07Ga0.93N构成的p型包覆层8,以约1.1μm/小时的速度生长。 Then, by using N2 gas as a carrier gas, TMGa gas provided into the reactor, and TMAI Mg gas as a raw material of p-type inclusions Mg (C5H5) 2 (cyclopentadienyl magnesium) gas, contained in the p-side confinement layer 7 made of p-type Mg-doped p-type Al0.07Ga0.93N having a thickness of about 0.45μm clad layer 8, from about 1.1μm / hr growth. 此后,将基板温度从约1000℃降到约850℃。 Thereafter, the substrate temperature was lowered to about 850 deg.] C from about 1000 ℃. 然后,通过使用作为载流气体的N2气,向反应炉内提供TMGa气和TMIn气,在p型包覆层8上,使由具有约3nm厚的不掺杂In0.07Ga0.93N构成的p侧接触层9,以约0.25μm/小时的速度生长。 Then, by using N2 gas as a carrier gas, TMGa gas and TMIn gas provided into the reactor, on the p-type cladding layer 8, so that p In0.07Ga0.93N consisting of about 3nm thick undoped side contact layer 9 of about 0.25μm / hour growth rate. 这样,在n型GaN基板1的区域1b的上面上、槽部1a的底面和侧面上,隔着缓冲层2,形成由氮化物类半导体的各层(3~9)构成的氮化物类半导体元件层10。 Thus, the region 1b on the upper surface of n-type GaN substrate 1, the upper side surface and the bottom surface of the groove portions 1a, via a buffer layer 2 is formed (3-9) a nitride-based semiconductor layers made of a nitride-based semiconductor element layer 10.

此时,在第一实施方式中,沿[1-100]方向(参照图5)延伸的槽部1a的侧面上形成的氮化物类半导体的各层(2~9)的厚度,分别比n型GaN基板1的区域1a上形成的氮化物类半导体的各层(2~9)的厚度小。 At this time, in the first embodiment, along the [1-100] direction (see FIG. 5) the thickness of each layer (2 to 9) of the nitride-based semiconductor is formed on the side surface of the groove portions 1a extending, respectively, ratio n the layers of small thickness (2 to 9) of the nitride-based semiconductor is formed on a region of type GaN substrate 1a 1. 因此,即使由于具有约0.3189nm晶格常数的n型GaN基板1和由具有约0.3184nm晶格常数的n型Al0.07Ga0.93N构成的n型包覆层3之间的晶格常数差而导致在n型包覆层3上产生变形,由于该变形集中在位于槽部1a侧面上的n型包覆层3厚度小的部分,所以在位于n型GaN基板1的区域1b的n型包覆层3上产生的变形得到缓解。 Thus, even if the lattice constant between 1 and n-type cladding layer made of n-type Al0.07Ga0.93N having about 3 0.3184nm lattice constant difference due to the n-type GaN substrate having a lattice constant of approximately 0.3189nm and resulting in deformation on the n-type cladding layer 3, due to the small thickness portion 3 of the deformation is concentrated in the groove portion 1a is located on the side of the n-type cladding layer, the n-type package in the region of the n-type GaN substrate. IB 1 modification produced on the cladding layer 3 eased. 这样如图5所示,因在n型包覆层3上产生大的变形而导致在n型包覆层3上产生的裂纹19a~19c的量增加的不利情况可以得到抑制。 Thus as shown in Figure 5, due to a large deformation on the n-type cladding layer 3 caused cracks in the amount of the n-type cladding layer 3 19a ~ 19c disadvantage is increased can be suppressed. 因此,也可以抑制在包括n型包覆层3的氮化物类半导体元件层10上产生的裂纹19a~19c的量增加。 Thus, an increase can be suppressed in the amount of cracks 10 on the nitride-based semiconductor element layer includes an n-type cladding layer 19a ~ 19c of 3.

此外在第一实施方式中,由于沿[11-20]方向延伸产生的裂纹19a、沿[1-210](参照图34)方向延伸产生的裂纹19b、和沿[-2110](参照图34)方向延伸产生的裂纹19c,与对应于沿[1-100]方向延伸的槽部1a的区域交叉,所以可以抑制裂纹19a~19c在对应于槽部1a的区域的横穿和扩展。 Further, in the first embodiment, since the cracks along the 19a [11-20] direction extending generated along the [1-210] (see FIG. 34) extending in the direction of the crack generated 19b, and along the [-2110] (see FIG. 34 ) produced crack 19c extending in a direction, corresponding to the direction [1-100] region intersecting groove portions 1a extending in a direction, it is possible to suppress cracks 19a ~ 19c and extend transverse to the groove portion corresponding to the region 1a.

此后,将形成有氮化物类半导体元件层10的n型GaN基板1从反应炉内取出。 Thereafter, there is formed a nitride-based semiconductor element layer 10 n-type GaN substrate 1 is removed from the reactor.

然后如图7所示,使用等离子体CVD法,在对应于p侧接触层9上的n型GaN基板1的区域1b的规定区域上,形成由SiO2膜构成的条纹状(细长形)的掩模层18。 Then, as shown in FIG. 7, a plasma CVD method, a predetermined region of the n-type GaN contact layer 9 on the substrate corresponding to the p-side region 1b 1, in stripes made of an SiO2 film (elongated shape) the mask layer 18. 具体说,以沿[1-100]方向(参照图5)延伸的方式形成掩模层18。 In particular, along the [1-100] direction (see FIG. 5) extend mask layer 18 is formed. 此外,掩模层18的[11-20]方向(参照图5)的宽度设定为约1.5μm。 In addition, the width of the [11-20] direction (see FIG. 5) of the mask layer 18 is set to about 1.5μm.

然后如图8所示,使用Cl2的RIE法,将掩模层18作为蚀刻掩模,从p侧接触层9和p型包覆层8的上面蚀刻约0.4μm的厚度。 Then, as shown by RIE using Cl2, the mask layer 818 as an etching mask, etching the upper layer has a thickness of about 0.4μm 8 from the p-side contact layer 9 and the p-type cladding. 由此形成由p型包覆层8的凸部和p侧接触层9构成,并且沿[1-100]方向(参照图5)延伸的条纹状(细长形)的隆起部11。 Whereby the p-type cladding layer and the p-side projecting portion of the contact layer 8 constituting 9, and along the [1-100] direction (see FIG. 5) extending in a stripe shape (elongated) ridge portion 11 is formed. 此外,隆起部11被形成为具有约1.5μm的[11-20]方向(参照图5)的宽度和约0.402μm的突出高度。 Further, the raised portion 11 is formed to have a height of about 1.5μm projecting a [11-20] direction (see FIG. 5) of a width of about 0.402μm. 该隆起部11为电流通路,并且该隆起部11的下方为发光部分。 The raised portion 11 as a current path, and the raised portion 11 is below the light emitting portion. 此外,p型包覆层8的凸部以外的平坦部的厚度约为0.05μm。 Further, the thickness of the flat portion other than the convex portion of the p-type cladding layer 8 is about 0.05μm. 此后除去掩模层18。 After removing the mask layer 18.

然后如图9所示,使用等离子体CVD法,在整个面上形成约0.2μm厚度的SiO2膜,然后通过除去对应于该SiO2膜的隆起部11的区域,在对应于隆起部11的区域,形成具有开口部12a的电流阻挡层12(current block layer)。 Then, as shown in FIG. 9, a plasma CVD method, a SiO2 film of about 0.2 m thickness is formed on the entire surface, and then through the region of the raised portion 11 corresponding to the removed SiO2 film, in the region corresponding to the raised portion 11, having an opening portion 12a formed in the current blocking layer 12 (current block layer).

下面如图10所示,使用电子束蒸发沉积法,在构成隆起部11的p侧接触层9上,形成p侧欧姆电极13。 Below 10, using electron beam evaporation deposition method, on the p-side contact layer 9 of the raised portion 11, a p-side ohmic electrode 13. 形成该p侧欧姆电极13时,从下层到上层依次形成具有约1nm厚度的Pt层和具有约10nm厚度的Pd层。 Forming the p-side ohmic electrode 13, a Pt layer having a thickness of about 1nm sequentially from the lower layer to the upper layer and the Pd layer having a thickness of about 10nm. 此后,使用电子束蒸发沉积法,在电流阻挡层12上以与p侧欧姆电极13的上面接触的方式,形成p侧衬垫电极14(pad electrode)。 Thereafter, using electron beam evaporation deposition method, a current blocking layer 12 in contact with the above p-side ohmic electrode 13, a p-side pad electrode 14 (pad electrode). 形成此p侧衬垫电极14时,从下层到上层依次形成具有约30nm厚度的Ti层、具有约150nm厚度的Pd层和具有约3nm厚度的Au层。 Forming a p-side pad electrode 14, a Ti layer having a thickness of about 30nm sequentially from a lower layer to an upper layer, the Pd layer having a thickness of about 150nm, and Au layer having a thickness of about 3nm.

下面如图11所示,将n型GaN基板1的背面研磨至后面叙述的解理工序中容易解理的厚度。 Below 11, the back surface of n-type GaN substrate 1 is polished to the cleavage step described later readily cleaved in thickness. 此后,使用电子束蒸发沉积法,在n型GaN基板1的背面上的规定区域,依次形成n侧欧姆电极15和由具有约300nm厚度的Au层构成的n侧衬垫电极16。 Thereafter, using an electron beam evaporation method, in a predetermined region on the back surface of n-type GaN substrate 1 sequentially forming the n-side ohmic electrode 15 and the n-side pad electrode 16 by a layer composed of Au having a thickness of about 300nm. 此外,在形成n侧欧姆电极15时,从n型GaN基板1的背面依次形成具有约6nm厚度的Al层和具有约10nm厚度的Pd层。 Further, in forming the n-side ohmic electrode 15, an Al layer having a thickness of about 6nm from the back surface of n-type GaN substrate 1 having a Pd layer sequentially and a thickness of about 10nm.

最后在图11的构造体中,通过在[1-00]方向(参照图5)沿n型GaN基板1的槽部1a的中心对元件进行分离,并且在[11-20]方向(参照图5)将元件解理成各芯片,即可形成如图12所示的第一实施方式的氮化物类半导体激光元件。 Finally, the structure of FIG. 11, by separating element along the center of the groove portions 1a of the n-type GaN substrate 1 in the [1-00] direction (see FIG. 5), and in the [11-20] direction (see FIG. 5) the element cleaved into chips, to form a nitride-based semiconductor laser element 12 in the first embodiment shown in FIG.

此外,如图12所示,在用第一实施方式的制造工艺形成的氮化物类半导体激光元件中,n型GaN基板1的槽部1a(参照图11)通过上述的元件分离工序,成为有垂直侧面的台阶部1c。 Further, as shown in FIG. 12, the nitride based semiconductor laser device formed by the manufacturing process of the first embodiment, n is groove-type GaN substrate portion 1a (see FIG. 11) of the elements 1 by the above-described separation step, become the step portion 1c of the vertical side. 也就是,在用第一实施方式的制造工艺形成的氮化物类半导体激光元件中,在n型GaN基板1的台阶部1c的侧面上形成的氮化物类半导体的各层(2~9)的厚度,分别比在n型GaN基板1的区域1b上形成的氮化物类半导体的各层(2~9)的厚度要小。 That is, in the nitride-based semiconductor laser element is formed by the manufacturing process of the first embodiment, the nitride-based semiconductor layers formed on the side surface of the step portion 1c of the n-type GaN substrate 1 (2 to 9) thickness, respectively, than the nitride semiconductor layers formed on a region 1b n-type GaN substrate 1 (2 to 9) has a thickness smaller.

如上所述,在第一实施方式中,在n型GaN基板1上隔着缓冲层2形成氮化物类半导体元件层10时,通过使在槽部1a的侧面上形成的由n型Al0.07Ga0.93N构成的n型包覆层3的厚度,小于在n型GaN基板1的区域1b上形成的n型包覆层3的厚度,即使具有约0.3189nm晶格常数的n型GaN基板1和具有约0.3184nm晶格常数的由n型Al0.07Ga0.93N构成的n型包覆层3之间的晶格常数差而导致在n型包覆层3上产生了变形,由于该变形集中在位于槽部1a侧面上的n型包覆层3厚度小的部分,所以在位于n型GaN基板1的区域1b的n型包覆层3上产生的变形可以得到缓解。 As described above, in the first embodiment, on the n-type GaN substrate 1 via a buffer layer 10 is formed 2 nitride-based semiconductor element layer, by making the n-type Al0.07Ga0 formed on the side surface of the groove portions 1a thickness of the n-type cladding layer 3 composed of .93N, smaller than the thickness of the n-type cladding layer formed on a region of n-type GaN substrate. IB 1 to 3, even if the n-type GaN substrate having a lattice constant of about 1 and 0.3189nm the n-type cladding layer having n-type Al0.07Ga0.93N about 0.3184nm lattice constant between the lattice constants of the constituting 3 resulted in a difference in deformation on the n-type cladding layer 3, since the deformation is concentrated in 3 is located in a small thickness portion of the n-type cladding layer on the side surface of the groove portion 1a, the deformation generated on the n-type cladding layer located on the n-type region. IB 3 of GaN substrate 1 can be alleviated. 这样,可以抑制因在n型包覆层3上产生大的变形而导致在n型包覆层3上产生的裂纹19a~19c的量增加的不利情况。 Thus, it is possible to suppress a large deformation on the n-type cladding layer 3 caused cracks in the amount of the n-type cladding layer 3 19a ~ 19c is increased disadvantages. 因此,由于可以抑制在包括n型包覆层3的氮化物类半导体元件层10上产生的裂纹19a~19c的量的增加,因此,因裂纹19a~19c而无法提供给氮化物类半导体元件层10发光部分的漏电流的增加,和因裂纹19a~19c而产生的妨碍光波导的不利情况。 Accordingly, since it is possible to suppress the crack generation on 10 includes a nitride-based semiconductor element layer 3 is an n-type cladding layer 19a ~ 19c of the amount of increase, and therefore, due to cracks 19a ~ 19c unable to provide a nitride-based semiconductor element layer increase in leakage current of the light emitting portion 10, 19a ~ 19c, and due to cracks generated in the optical waveguide interfere disadvantage. 其结果,可以抑制氮化物类半导体激光元件特性和成品率的降低。 As a result, it is possible to suppress decrease the nitride based semiconductor laser device characteristics and yield.

此外在第一实施方式中,在n型GaN基板1上形成槽部1a时,通过使槽部1a的侧面形成为垂直于n型GaN基板1的上面,在n型GaN基板1上隔着缓冲层2形成n型包覆层3时,由于n型包覆层3的构成材料(AlGaN)难以堆积在槽部1a的侧面上,所以可以容易地使在槽部1a的侧面上形成的n型包覆层3的厚度,小于在n型GaN基板1的区域1b上形成的n型包覆层3的厚度。 Further in the first embodiment, the groove portions 1a are formed on the n-type GaN substrate 1, the side surface of the groove portion 1a is formed to be perpendicular to the above n-type GaN substrate 1 through the buffer on the n-type GaN substrate 1 layer 2 is an n-type cladding layer 3, since the material constituting the n-type cladding layer 3 (AlGaN) stacked on the side of the groove is difficult portion 1a, can be easily formed in the n-type on the side surface of the groove portions 1a the thickness of the clad layer 3, smaller than the thickness of the n-type cladding layer 3 is formed on a region of the n-type GaN substrate. IB 1.

此外在第一实施方式中,在n型GaN基板1上形成槽部1a时,通过使槽部1a以沿[1-100]方向延伸的方式形成,由于沿[11-20]方向延伸产生的裂纹19a、沿[1-210]方向延伸产生的裂纹19b和沿[-2110]方向延伸产生的裂纹19c,与对应于沿[1-100]方向延伸的槽部1a的区域交叉,所以可以抑制裂纹19a~19c在对应于槽部1a的区域的横穿和扩展。 Further, in the first embodiment, the forming 1a, 1a are formed by the groove portions along the [1-100] direction extending groove portions manner on the n-type GaN substrate 1, since in the [11-20] direction extending generated cracks 19a, along the crack 19b [1-210] direction and the crack generation 19c extending extending along the [-2110] direction is generated, corresponding to the direction [1-100] region intersecting groove portions 1a extending in a direction, can be suppressed crack 19a ~ 19c and extend transverse to the groove portion corresponding to the region 1a.

(第二实施方式)参照图13~图15和图34,在此第二实施方式中,与上述第一实施方式不同,对在n型GaN基板上形成沿[11-20]方向延伸的条纹状(细长形)的槽部的情况进行说明。 (Second Embodiment) Referring to FIGS. 13 to 15 and 34, in this second embodiment, different from the above-described first embodiment, formed on the n-type GaN substrate along the [11-20] direction extending stripe the case of the groove-like portion (elongated) will be described.

在此第二实施方式的氮化物类半导体激光元件的制造工艺中,如图13所示,首先使用与图1~图4所示的第一实施方式相同的工艺,在n型GaN基板21上,形成具有约50μm的宽度W11和约2μm的深度,且具有侧面垂直于n型GaN基板21的上面的条纹状(细长形)的槽部21a。 In the manufacturing process of the nitride-based semiconductor laser device of this embodiment in a second embodiment, shown in FIG. 13, first, same as the first embodiment using FIG 1 to FIG. 4 process embodiment, on the n-type GaN substrate 21 , W11 is formed having a depth of about 2μm to about 50μm in width, and the groove portion has a side surface perpendicular to the upper surface of the n-type GaN substrate 21 in a stripe shape (elongated shape) 21a. 但是,在此第二实施方式中,槽部21a以沿[11-20]方向延伸的方式形成。 However, in this second embodiment, the groove portion 21a is formed along the [11-20] direction extending manner. 此外,将邻接[1-100]方向的槽部21a之间的距离W12,设定成比在后面叙述的解理工序中形成的解理面之间的距离(共振器长)大。 Further, the distance between the groove portions 21a adjacent to the [1-100] direction, W12, is set to be larger than a distance (resonator length) between the cleavage plane will be described later formed in the cleavage step. 而且,在n型GaN基板21中,被槽部21a夹住的区域21b为对应于后面叙述的氮化物类半导体元件层30的发光部分的区域。 Further, in the n-type GaN substrate 21, the region 21a sandwiched between the groove portions 21b of the corresponding region of the light emitting portion of the nitride-based semiconductor element layer 30 is described later on. 此外,n型GaN基板21是本发明的“氮化物类半导体基板”的一个例子。 Further, n-type GaN substrate 21 serves as a "nitride-based semiconductor substrate" in the present invention. 此外,n型GaN基板21的区域21b是本发明的“第一区域”的一个例子,形成有n型GaN基板21的槽部21a的区域是本发明的“第二区域”的一个例子。 Further, the n-type region 21b of GaN substrate 21 is an example of the "first region" of the present invention, a region where the groove portion 21a of the n-type GaN substrate 21 is an example of the "second region" of the present invention.

此外,第二实施方式的n型GaN基板21与上述第一实施方式的n型GaN基板1相同,具有(0001)面的表面,并且具有低的位错密度。 Further, the n-type GaN substrate 21 the same as the second embodiment the n-type GaN substrate 1 of the first embodiment, a surface having a (0001) plane, and has a low dislocation density. 此外,n型GaN基板21具有约0.3189nm的晶格常数。 Further, n-type GaN substrate 21 has a lattice constant of approximately 0.3189nm.

此后,使用与图6所示的第一实施方式相同的工艺,在n型GaN基板21的区域21b的上面上、槽部21a的底面和侧面上,隔着缓冲层22,形成氮化物类半导体元件层30。 Thereafter, in the same manner using the process of the first embodiment shown in FIG. 6, in the upper region of the n-type GaN substrate 21 and 21b, the upper side surface and the bottom surface of the groove portion 21a through the buffer layer 22, a nitride-based semiconductor element layer 30. 此时,从n型GaN基板21一侧依次形成缓冲层22、n型包覆层23、n侧载子限制层24、MQW活性层25、p侧光导层26、p侧载子限制层27、p型包覆层28和p侧接触层29。 In this case, a buffer layer formed sequentially from the side of the n-type GaN substrate 22 is 21, the n-type cladding layer 23, n-side carrier confinement layer 24, 25, p-side optical guide layer 26, p-side carrier confinement layer 27 MQW active layer , p-type cladding layer 28 and the p-side contact layer 29. 此外,在形成上述各层(22~29)时,形成与上述第一实施方式的氮化物类半导体的各层(2~9)相同的厚度和组成。 Further, at the time of forming the respective layers (22 to 29), forming nitride semiconductor layers of the above-described first embodiment (2 to 9) of the same thickness and composition. 也就是,在n型GaN基板21上,隔着缓冲层22形成的n型包覆层23由n型Al0.07Ga0.93N构成,而且具有约0.3184nm的晶格常数。 That is, on the n-type GaN substrate 21, via the n-type cladding layer 22 is formed the buffer layer 23 composed of an n-type Al0.07Ga0.93N, and has a lattice constant of approximately 0.3184nm. 此外,n型包覆层23是本发明的“氮化物类半导体层”的一个例子。 Further, n-type cladding layer 23 is an example of a "nitride-based semiconductor layer" of the present invention.

此时在第二实施方式中,与上述第一实施方式相同,在沿[11-20]方向的槽部21a的侧面上形成的氮化物类半导体的各层(22~29)的厚度,分别比n型GaN基板21的区域21b上形成的氮化物类半导体的各层(22~29)的厚度小。 At this time, in the second embodiment, the above-described first embodiment, the thickness of each layer (22 to 29) of the nitride-based semiconductor is formed on the side surface along the [11-20] direction of the groove portions 21a, respectively, smaller than the nitride semiconductor layers formed on a region 21b n-type GaN substrate 21 (22 to 29) thickness. 因此,在n型包覆层23上产生的变形集中在位于槽部21a侧面上的n型包覆层23厚度小的部分,所以位于n型GaN基板21的区域21b上的n型包覆层23上产生的变形变小。 Therefore, the deformation generated on the n-type cladding layer 23 located on the concentrate side surface of the groove portion 21a of the small portion of the thickness of the n-type cladding layer 23, the n-type cladding layer located on the region 21b of the n-type GaN substrate 21 23 the deformation becomes small. 因此可以抑制在n型包覆层23上产生的裂纹39a~39c的量增加,并且也可以抑制包括n型包覆层23的氮化物类半导体元件层30上产生的裂纹39a~39c的量增加。 Cracks can be suppressed on the n-type cladding layer 23 increases the amount of 39a ~ 39c, and the increase in the amount of cracks can be suppressed including the nitride-based semiconductor element layer 30 of n-type cladding layer 23 is produced 39a ~ 39c .

此外在第二实施方式中,沿[1-210](参照图34)方向延伸产生的裂纹39b、沿[-2110](参照图34)方向延伸产生的裂纹39c与对应于沿[11-20]方向延伸的槽部21a的区域交叉,所以可以抑制裂纹39b和39c在对应于槽部21a的区域的横穿和扩展。 Further, in the second embodiment, along the crack 39b [1-210] (see FIG. 34) extending in the direction generated in the [-2110] crack 39c (see FIG. 34) extending in a direction corresponding to the generated along the [11-20 ] region of the groove portion 21a extending in a direction crossing, it is possible to suppress the crack extension and traverse 39b and 39c in the portions corresponding to the groove region 21a.

下面如图14所示,使用与图7~图11所示的第一实施方式相同的工艺,形成沿[1-100]方向(参照图13)延伸的隆起部31,然后依次形成具有开口部32a的电流阻挡层32(参照图15)、p侧欧姆电极33和p侧衬垫电极34。 Shown below, using the same FIG. 7 to FIG. 11 of the first embodiment shown in FIG. 14 process embodiment, is formed along the [1-100] direction (see FIG. 13) extending ridge portion 31, followed by forming an opening portion having 32a of the current blocking layer 32 (see FIG. 15), p-side ohmic electrode 33 and the p-side pad electrode 34. 此外,在n型GaN基板21的背面上的规定区域,依次形成n侧欧姆电极15和n侧衬垫电极16。 Further, in a predetermined region on the back surface of n-type GaN substrate 21, and sequentially forming the n-side ohmic electrode 15 and the n-side pad electrode 16. 此外,图14的断面图是沿[1-100]方向的线的断面图。 In addition, cross-sectional view of FIG. 14 is a sectional view taken along the line [1-100] direction. 在此第二实施方式中,由于槽部21a以沿[11-20]方向(参照图13)延伸的方式形成,所以沿[1-100]方向延伸的隆起部31与槽部21a垂直。 In this second embodiment, the groove portion 21a because of the way along the [11-20] direction (see FIG. 13) is formed to extend, the direction [1-100] direction of the ridge portion 31 extending in the vertical groove portion 21a. 此外,隆起部31为电流通路,并且隆起部31的下方为发光部分。 Further, the raised portion 31 of the current path, and the lower raised portion 31 is a light emitting portion. 此外,在形成电流阻挡层32、p侧欧姆电极33和p侧衬垫电极34时,形成与上述第一实施方式的电流阻挡层12、p侧欧姆电极13和p侧衬垫电极14相同的厚度和组成。 Further, in forming the current blocking layer 32, the p-side ohmic electrode and the p-side pad electrode 33 when 34, 12 are formed, the same as the first embodiment of the current blocking layer 13 the p-side ohmic electrode and the p-side pad electrode 14 The thickness and composition.

此后,在图14所示的构造体中,在[1-100]方向(参照图13)进行元件分离,并且在[11-20]方向(参照图13)将元件解理成各芯片。 Thereafter, the structure shown in FIG. 14, a separate element in the [1-100] direction (see FIG. 13), and in the [11-20] direction (see FIG. 13) will be cleaved into chips element. 此时,以被解理的芯片的解理面之间的距离(图14的共振器长L)比槽部21a之间的距离W12(参照图13)小的方式,沿[11-20]方向,将对应于n型GaN基板21的区域21b的规定区域(对应于图14的虚线的区域)解理。 At this time, a distance (the resonator length L of FIG. 14) between the cleavage plane is cleaved chip than the distance W12 between the groove portion 21a (refer to FIG. 13) little way along the [11-20] direction, corresponding to a predetermined region of the n-type region 21b of GaN substrate 21 (corresponding to a region of a broken line in FIG. 14) cleaved. 这样就形成了图15所示的第二实施方式的氮化物类半导体激光元件。 Thus forming a nitride-based semiconductor laser element of the second embodiment shown in FIG. 15.

再有如图15所示,在用第二实施方式的制造工艺形成的氮化物类半导体激光元件中,对应于槽部21a的部分被上述解理工序全部除去。 Further shown in FIG. 15, the nitride based semiconductor laser device used in a manufacturing process of the second embodiment is formed in a portion corresponding to the groove portion 21a is removed all of the above cleavage step. 因此,在第二实施方式的氮化物类半导体激光元件中,与上述第一实施方式的氮化物类半导体激光元件不同,在n型GaN基板21上不存在台阶部。 Thus, the nitride-based semiconductor laser element of the second embodiment, the nitride based semiconductor laser device is different from the first embodiment, the stepped portion does not exist on the n-type GaN substrate 21.

如上所述,在第二实施方式中,在n型GaN基板21上,隔着缓冲层22,形成氮化物类半导体元件层30时,通过使在槽部21a的侧面上形成的由n型Al0.07Ga0.93N构成的n型包覆层23的厚度,比在n型GaN基板21的区域21b上形成的n型包覆层23的厚度小,与上述的第一实施方式相同,由于在n型包覆层23上产生的变形集中在位于槽部21a侧面上的n型包覆层23厚度小的部分,所以可以抑制位于在n型GaN基板21的区域21b上的n型包覆层23上产生的裂纹39a~39c的量增加,并且也可以抑制包括n型包覆层23的氮化物类半导体元件层30上产生的裂纹39a~39c的量增加。 As described above, in the second embodiment, on the n-type GaN substrate 21 through the buffer layer 22, 30 is nitride-based semiconductor element layer is formed, is formed by the groove portions 21a on the side of n-type Al0 .07Ga0.93N thickness of the n-type cladding layer 23 made of n-type cladding layer is smaller than that formed on a region 21b of the n-type GaN substrate 23 has a thickness of 21, the same as in the first embodiment, since the n the small thickness portion 23 of the deformation type cladding layer 23 located on the concentrate side surface of the groove portion 21a n-type cladding layer, it is possible to suppress an n-type cladding layer 23 is located on a region 21b of n-type GaN substrate 21 39a ~ 39c of the amount of generated cracks is increased, and the increase in the amount of cracks can be suppressed including the nitride-based semiconductor element layer 30 n-type cladding layer 23, 39a ~ 39c is generated. 其结果,与上述第一实施方式相同,由于可以抑制因裂纹39a~39c造成的漏电流的增加,并且可以抑制产生因裂纹39a~39c造成妨碍光波导的不利情况,故可以抑制氮化物类半导体激光元件特性和成品率的降低。 As a result, the above-described first embodiment, since it is possible to suppress an increase due to cracks 39a ~ 39c caused by leakage current can be suppressed and adversely interfere with the case of the optical waveguide due to cracks 39a ~ 39c, it is possible to suppress the nitride-based semiconductor the laser device characteristics and reduction in yield.

此外在第二实施方式中,在n型GaN基板21上形成槽部21a时,通过以沿[11-20]方向延伸的方式形成槽部21a,沿[1-210]方向延伸产生的裂纹39b、沿[-2110]方向延伸产生的裂纹39c与对应于沿[11-20]方向延伸的槽部21a的区域交叉,所以可以抑制裂纹39b和39c在对应于槽部21a的区域的横穿和扩展。 Further cracks 39b in the second embodiment, is formed on the n-type GaN substrate 21 when the groove portions 21a, 21a formed by the groove portions manner along the [11-20] direction of extension, extending along the [1-210] direction produced crack 39c in the [-2110] direction produced extending in the [11-20] direction of the groove portion extending in a region corresponding to the intersection of the edge 21a, 39b can be suppressed and cracks 39c in the area corresponding to the groove portion 21a and the crossing extension.

(第三实施方式)参照图16和图34,在该第三实施方式中,与上述第一和第二实施方式不同,对在n型GaN基板上形成格子状的沿[1-100]方向和[11-20]方向的两个方向延伸的条纹状(细长形)的槽部的情况进行说明。 (Third Embodiment) Referring to FIGS. 16 and 34, in this third embodiment, the above-described first embodiment and the second embodiment is different lattice shape formed along the n-type GaN substrate on the [1-100] direction striped two directions and [11-20] direction extending (elongated) in the case of the groove portions will be described.

在此第三实施方式的氮化物类半导体激光元件的制造工艺中,如图16所示,首先使用与图1~图4所示的第一实施方式相同的工艺,在n型GaN基板41上,形成具有约50μm的宽度W21和约2μm的深度,并且具有侧面垂直于n型GaN基板41的上面的条纹状(细长形)的槽部41a和41b。 In the manufacturing process of the nitride-based semiconductor laser device of this embodiment in a third embodiment, shown in Figure 16, first, same as the first embodiment using FIG 1 to FIG. 4 process embodiment, on the n-type GaN substrate 41 , W21 is formed having a depth of about 2μm to about 50μm in width, and the groove having a side surface perpendicular to the upper portion of the n-type GaN substrate 41 in a stripe shape (elongated shape) 41a and 41b. 但是,在此第三实施方式中,通过使槽部41a以沿[1-100]方向延伸的方式形成,而且使槽部41b以沿[11-20]方向延伸的方式形成,将槽部41a和41b配置成格子状。 However, in this third embodiment, the groove portion 41a by way along the [1-100] direction is formed to extend, and the groove portion 41b formed in a manner to [11-20] direction of the extending portion 41a of the groove and 41b arranged in a grid. 此外,将与[11-20]方向邻近的槽部41a之间的距离W22设定成约200μm。 In addition, the [11-20] direction of the adjacent groove portions 41a between the distance W22 is set to approximately 200μm. 此外,将与[1-100]方向邻近的槽部41b之间的距离W23设定成比在后面解理工序中形成的解理面之间的距离(共振器长)大。 Further, the distance between the groove portions 41b and the [1-100] direction adjacent to W23 is set to be larger than the distance (resonator length) between the cleavage plane is formed in the cleavage step back. 然后,在n型GaN基板41中,槽部41a和41b包围的区域41c,为对应于位于后面叙述的氮化物类半导体元件层40的隆起部(图中没有表示)的下方的发光部分的区域。 Region of the light emitting portion beneath Then, in the n-type GaN substrate 41, the groove portion 41a and the region 41b surrounded 41c, corresponding to the raised portion is located in the later-described nitride-based semiconductor element layer 40 (not shown) of the . 此外,n型GaN基板41的区域41c是本发明的氮化物类半导体基板的一个例子。 Further, the n-type region 41c of GaN substrate 41 is an example of a nitride-based semiconductor substrate of the present invention. 此外,n型GaN基板41的区域41c是本发明的“第一区域”的一个例子,形成有n型GaN基板41的槽部41a和41b的区域是本发明的“第二区域”的一个例子。 Further, the n-type region 41c of GaN substrate 41 is an example of the "first region" of the present invention, the region of the groove portions 41a and 41b of the n-type GaN substrate 41 is formed of an example of the "second region" of the present invention .

此外,第三实施方式的n型GaN基板41与上述第一实施方式的n型GaN基板1相同,具有(0001)面的表面,并且具有低的位错密度。 Further, the same n-type GaN substrate 41 of the third embodiment the n-type GaN substrate 1 of the first embodiment, a surface having a (0001) plane, and has a low dislocation density. 此外,n型GaN基板41具有约0.3189nm的晶格常数。 Further, n-type GaN substrate 41 has a lattice constant of approximately 0.3189nm.

此后,使用与图6所示的第一实施方式相同的工艺,在n型GaN基板41的区域41c的上面上、槽部41a和41b各自的底面和侧面上,隔着缓冲层(图中没有表示),形成氮化物类半导体元件层40。 Thereafter, the process using the same manner as the first embodiment shown in FIG. 6, in the upper region of the n-type GaN substrate 41 41c, the groove portions 41a and 41b on the respective side surface and a bottom surface, via a buffer layer (not shown), forming a nitride-based semiconductor element layer 40. 此外,在形成氮化物类半导体元件层40时,形成具有与上述第一实施方式的氮化物类半导体元件层10相同的构造。 Further, a nitride-based semiconductor element layer 40 is formed with the same configuration of the nitride-based semiconductor element layer 10 of the first embodiment of embodiment. 也就是,用第三实施方式的制造工艺形成的氮化物类半导体元件层40,包括在n型GaN基板41上隔着缓冲层形成的n型包覆层(图中没有表示)。 That is, the nitride-based semiconductor element layer is formed by the manufacturing process of the third embodiment 40, comprising an n-type cladding layer via a buffer layer formed on the n-type GaN substrate 41 (not shown). 此外,构成氮化物类半导体元件层40的n型包覆层,由n型Al0.07Ga0.93N构成,并且具有约0.3184nm的晶格常数。 Further, the n-type cladding layer constituting the nitride-based semiconductor element layer 40, an n-type Al0.07Ga0.93N, and has a lattice constant of approximately 0.3184nm.

此时在第三实施方式中,与上述第一实施方式相同,在沿[1-100]方向延伸的槽部41a和沿[11-20]方向延伸的槽部41b的各个侧面上形成的氮化物类半导体的各层的厚度,比在n型GaN基板41的区域41c形成的氮化物类半导体的各层的厚度小。 At this time, in the third embodiment, the above-described first embodiment, nitrogen is formed on the respective sides of the groove portions extending in the [1-100] direction and the groove portions 41a extending along the [11-20] direction of 41b the thickness of each layer based semiconductor compound, smaller than the thickness of each layer in the nitride-based semiconductor region of n-type GaN substrate 41 formed 41c. 因此,在构成氮化物类半导体元件层40的n型包覆层上产生的变形,集中在位于槽部41a和41b各自的侧面上的n型包覆层的厚度小的部分上,所以位于n型GaN基板41的区域41c上的n型包覆层上产生的变形变小。 Therefore, the deformation generated on the n-type cladding layer constituting the nitride-based semiconductor element layer 40 is focused on a small portion of the thickness of the n-type cladding layer on the respective side portions 41a and 41b of the groove, so that the n- strain generated on the n-type cladding layer 41c on the region type GaN substrate 41 becomes small. 因此可以抑制在n型包覆层上产生的裂纹49a~49c的量增加,并且也可以抑制包括n型包覆层的氮化物类半导体元件层40上产生的裂纹49a~49c的量增加。 Can be suppressed to increase the amount of cracks on the n-type cladding layer 49a ~ 49c, and the amount of increase can be suppressed occurrence of cracks on the n-type cladding layer 40 comprises a nitride-based semiconductor element layer 49a ~ 49c of.

此外,在第三实施方式中,由于沿[11-20]方向延伸产生的裂纹49a、沿[1-210](参照图34)方向延伸产生的裂纹49b和沿[-2110](参照图34)方向延伸产生的裂纹49c与对应于沿[1-100]方向延伸的槽部41a的区域交叉,所以可以抑制裂纹49a~49c在对应于槽部41a的区域的横穿和扩展。 Further, in the third embodiment, since the cracks along the [11-20] direction extending produced 49a, along the crack 49b [1-210] (see FIG. 34) extending in a direction along the generating and [-2110] (see FIG. 34 ) produced crack 49c extending in a direction corresponding to the direction [1-100] direction of the groove portion 41a extending in the crossing region, it is possible to suppress cracks 49a ~ 49c in a region corresponding to the groove portion 41a and the transverse extension. 此外,沿[1-210]方向延伸产生的裂纹49b和沿[-2110]方向延伸产生的裂纹49c与对应于沿[11-20]方向延伸的槽部41b的区域交叉,所以可以抑制裂纹49b和49c在对应于槽部41b的区域的横穿和扩展。 In addition, the crack 49b along the [1-210] direction and the crack generation 49c extending extending along the [-2110] direction corresponding to the generated along the [11-20] direction of the groove portion 41b extending in the crossing area, cracks can be suppressed 49b and 49c corresponding to the region of the groove portions 41b and traverses extension.

第三实施方式的此后的制造工艺与上述第一实施方式相同。 The subsequent manufacturing processes of the third embodiment of the first embodiment. 也就是,在第三实施方式的氮化物类半导体元件层40上,形成与沿[11-20]方向延伸的槽部41b垂直,并且在与槽部41a的延伸方向相同的[1-100]方向延伸的隆起部(图中没有表示)。 That is, in the nitride-based semiconductor element layer 40 of the third embodiment, the groove portion 41b is formed extending vertically along the [11-20] direction, and the extending direction of the groove portion 41a is the same [1-100] ridge portion extending in a direction (not shown).

如上所述,在第三实施方式中,在n型GaN基板41上,隔着缓冲层形成氮化物类半导体元件层40时,通过使在槽部41a和41b各自的侧面上形成的由n型Al0.07Ga0.93N构成的n型包覆层的厚度,比在n型GaN基板41的区域41c上形成的n型包覆层的厚度小,与上述第一实施方式相同,由于在n型包覆层上产生的变形集中在位于在槽部41a和41b各自的侧面上的n型包覆层厚度小的部分,因此可以抑制在位于n型GaN基板41的区域41c上的n型包覆层上产生的裂纹49a~49c的量增加,并且也可以抑制包括n型包覆层的氮化物类半导体元件层40上产生的裂纹49a~49c的量增加。 As described above, in the third embodiment, on the n-type GaN substrate 41 through the buffer layer forming a nitride-based semiconductor element layer 40, the n-type formed by a groove in the respective side portions 41a and 41b thickness of the n-type cladding layer made of Al0.07Ga0.93N, smaller than the thickness of the n-type cladding layer 41c is formed on a region of the n-type GaN substrate 41, same as in the first embodiment, since the n-type clad deformation of the upper cladding layer concentrated in a small thickness portion of the n-type cladding layer located on the respective sides of the groove portions 41a and 41b, it is possible to suppress an n-type cladding layer on a region of the n-type GaN substrate 41 of 41c 49a ~ 49c of the amount of generated cracks is increased, the amount of increase can be suppressed and occurrence of cracks on the n-type cladding layer 40 comprises a nitride-based semiconductor element layer 49a ~ 49c of. 其结果与上述第一实施方式相同,可以抑制因裂纹49a~49c造成的漏电流的增加,并且抑制因裂纹49a~49c而产生的妨碍光波导的不利情况。 As a result, the above-described first embodiment, it is possible to suppress an increase due to cracks 49a ~ 49c caused by leakage current, and suppressing disadvantages hinder the optical waveguide 49a ~ 49c due to cracks generated. 其结果,可以抑制氮化物类半导体激光元件特性和成品率的降低。 As a result, it is possible to suppress decrease the nitride based semiconductor laser device characteristics and yield.

此外在第三实施方式中,在n型GaN基板41上,通过将在[1-100]方向和[11-20]方向的两个方向上延伸的条纹状(细长形)的槽部41a和41b形成为格子状,沿[11-20]方向延伸产生的裂纹49a、沿[1-210]方向延伸产生的裂纹49b和沿[-2110]方向延伸产生的裂纹49c与对应于沿[1-100]方向延伸的槽部41a的区域交叉,所以可以抑制裂纹49a~49c在对应于槽部41a的区域的横穿和扩展。 Further, in the third embodiment, on the n-type GaN substrate 41, by a stripe-shaped (elongate shape) extending in two directions [1-100] direction and the [11-20] direction of the groove portion 41a and 41b formed in a lattice shape, the crack along the [11-20] direction extending produced 49a, along the crack 49b [1-210] direction and the crack generation 49c extending extending along the [-2110] direction corresponding to the generated along [1 100] direction of the groove portion 41a extending in the crossing region, it is possible to suppress cracks 49a ~ 49c in a region corresponding to the groove portion 41a and the transverse extension. 此外,沿[1-210]方向延伸产生的裂纹49b和沿[-2110]方向延伸产生的裂纹49c与对应于沿[11-20]方向延伸的槽部41b的区域交叉,所以可以抑制裂纹49b和49c在对应于槽部41b的区域的横穿和扩展。 In addition, the crack 49b along the [1-210] direction and the crack generation 49c extending extending along the [-2110] direction corresponding to the generated along the [11-20] direction of the groove portion 41b extending in the crossing area, cracks can be suppressed 49b and 49c corresponding to the region of the groove portions 41b and traverses extension.

此外,第三实施方式的其他的效果与上述第一实施方式相同。 Furthermore, other effects of the third embodiment is the same as the above-described first embodiment.

(第四实施方式)在第四实施方式中,与上述第一~第三实施方式不同,参照图17~图20和图34,对将在n型GaN基板上形成的槽部的开口宽度,从槽部的底面向开口端逐渐扩大的情况进行说明。 (Fourth Embodiment) In a fourth embodiment, the above-described first to third embodiments differ, with reference to FIG. 17 to FIG. 20 and FIG. 34, the opening width of the groove portion is formed on the n-type GaN substrate, will be described from the bottom portion of the groove faces the open end of the case gradually expands.

在第四实施方式的氮化物类半导体激光元件的制造工艺中,如图17所示,首先准备具有(0001)面的表面,并且具有低位错密度的n型GaN基板51。 In the manufacturing process of the nitride-based semiconductor laser device of the fourth embodiment, as shown in FIG. 17, the first prepared surface having a (0001) plane, and having a low dislocation density GaN n-type substrate 51. 此n型GaN基板51具有约0.3189nm的晶格常数。 This n-type GaN substrate 51 has a lattice constant of approximately 0.3189nm. 此外,n型GaN基板51是本发明的“氮化物类半导体基板”的一个例子。 Further, n-type GaN substrate 51 serves as a "nitride-based semiconductor substrate" in the present invention. 然后,使用等离子体CVD法,在n型GaN基板51上的规定区域上,形成由具有约0.5μm厚度的SiO2膜构成的条纹状(细长形)的掩模层65。 Then, a plasma CVD method, a predetermined region on the n-type GaN substrate 51, a stripe-like (elongated) made of SiO2 film having a thickness of about 0.5μm mask layer 65 is formed. 具体说,以沿[1-100]方向延伸的方式形成掩模层65。 Specifically, the mask layer 65 is formed in the manner [1-100] direction extends. 此外,将邻接的掩模层65之间的距离W31设定成约50μm,并且将掩模层65的宽度W32设定成约200μm。 Further, the distance between the mask layer 65 adjacent to W31 is set to about 50 m, and the width of the mask layer 65 is set to W32 of approximately 200μm.

然后如图18所示,使用Cl2的反应离子腐蚀(RIE)法,将掩模层65作为蚀刻掩模,蚀刻到距n型GaN基板51的上面约2μm的深度。 Then, as shown in FIG. 18, the use of Cl2 reactive ion etching (RIE) method, the mask layer 65 as an etch mask, is etched to a depth from the top of the n-type GaN substrate 51 is approximately 2μm. 此外,这种情况下的蚀刻选择比(掩模层65/n型GaN基板51)为1∶10。 Further, in this case the etching selection ratio (the mask layer 65 / n-type GaN substrate 51) is 1:10. 此外,作为蚀刻条件,蚀刻压力:约3.325kPa、等离子体功率:约200W、蚀刻速度:约140nm/秒~约150nm/秒。 Further, as the etching conditions, the etching pressure: about 3.325kPa, plasma power: 200W, etching rate: about 140nm / sec to about 150nm / sec. 这样在n型GaN基板51上,形成具有约50μm的宽度(开口端的宽度)W31和约2μm的深度D31,并且沿[1-100]方向延伸的条纹状(细长形)的槽部51a。 Thus on the n-type GaN substrate 51, is formed W31 D31 depth of about 2μm to about 50μm has a width (opening width end), and along a [1-100] stripe-shaped (elongate) extending in a direction groove portion 51a. 此外,将由SiO2膜构成的掩模层65作为蚀刻掩模,并且在上述的蚀刻条件下对n型GaN基板51进行了蚀刻的情况下,槽部51a的断面形状成为台面型。 Further, the case where the mask layer 65 as an etching mask, and the n-type GaN substrate 51 is etched under the above etching conditions by the SiO2 film, the cross-sectional shape of the groove portion 51a becomes mesa. 也就是,槽部51a的开口宽度为从槽部51a的底面到开口端逐渐扩大。 That is, the opening width of the groove portion 51a is gradually enlarged from the bottom surface of the groove portion 51a to the open end. 具体说,槽部51a的底面和侧面所成的角度α约为40°。 Specifically, the groove bottom surface and the side surface portion 51a of the angle α is approximately 40 °. 所以在n型GaN基板51中,被槽部51a夹住的具有约200μm的宽度W32的区域51b,成为对应于后面叙述的氮化物类半导体元件层60的发光部分的区域。 Therefore, the n-type GaN substrate 51, the clamped portion 51a having a groove width of about 200μm region of the W32 51b, becomes the light emitting region corresponding to the portion described later nitride-based semiconductor element layer 60. 此外,n型GaN基板51的区域51b是本发明的“第一区域”的一个例子,形成有n型GaN基板51的槽部51a的区域是本发明的“第二区域”的一个例子。 Further, the region 51b of the n-type GaN substrate 51 is an example of the "first region" of the present invention, a region where an n-type GaN substrate 51 in the groove portion 51a is an example of the "second region" of the present invention. 此后除去掩模层65。 After removing the mask layer 65.

此后如图19所示,使用与图6所示的第一实施方式相同的工艺,在n型GaN基板51的区域51b的上面上、槽部51a的底面和侧面上,隔着缓冲层52,形成氮化物类半导体元件层60。 19 Thereafter, in the same manner using the process of the first embodiment shown in FIG. 6, in the upper region 51b of the n-type GaN substrate 51, the side surface and the bottom surface of the groove portion 51a, a buffer layer 52 interposed therebetween, forming a nitride-based semiconductor element layer 60. 此时,从n型GaN基板51一侧依次形成缓冲层52、n型包覆层53、n侧载子限制层54、MQW活性层55、p侧光导层56、p侧载子限制层57、p型包覆层58和p侧接触层59。 In this case, the buffer layer 51 side from the n-type GaN substrate 52 is sequentially, an n-type cladding layer 53 is, n-side carrier confinement layer 54, MQW active layer 55, p-side optical guide layer 56, p-side carrier confinement layer 57 , p-type cladding layer 58 and the p-side contact layer 59. 此外,在形成上述各层(52~59)时,形成与上述第一实施方式的氮化物类半导体的各层(2~9)相同的厚度和组成。 Further, at the time of forming the respective layers (52 to 59), forming nitride semiconductor layers of the above-described first embodiment (2 to 9) of the same thickness and composition. 也就是,在n型GaN基板51上隔着缓冲层52形成的n型包覆层53由n型Al0.07Ga0.93N构成,而且具有约0.3184nm的晶格常数。 I.e., via the n-type cladding layer 52 formed on the buffer layer 53 of n-type Al0.07Ga0.93N on the n-type GaN substrate 51, and has a lattice constant of approximately 0.3184nm. 此外,n型包覆层53是本发明的“氮化物类半导体层”的一个例子。 Further, n-type cladding layer 53 is an example of a "nitride-based semiconductor layer" of the present invention.

其中在第四实施方式中,因槽部51a的断面形状为台面型,在n型GaN基板51上隔着缓冲层52形成由n型Al0.07Ga0.93N构成的n型包覆层53时,认为n型包覆层53的构成材料一部分的Ga容易向槽部51a的倾斜侧面移动。 In the fourth embodiment wherein, when the cross-sectional shape due to the groove portion 51a of the mesa type, via a buffer layer on the n-type GaN substrate 51 is an n-type cladding layer made of n-type Al0.07Ga0.93N 53 52 are formed, that part of the n-type cladding layer material 53 is easily moved Ga inclined groove portions 51a of the side surface. 因此,在槽部51a的侧面上形成的n型包覆层53的Al组成比,低于在n型GaN基板51的区域51b上形成的n型包覆层53的Al组成比。 Thus, the Al composition ratio of an n-type cladding layer formed on the side surface 51a of the groove portions 53 is lower than the Al composition ratio of an n-type cladding layer 51b is formed on a region 51 of n-type GaN substrate 53. 具体说,相对于在n型GaN基板51的区域51b上形成的n型包覆层53的Al组成比为约7%,在槽部51a的侧面上形成的n型包覆层53的Al组成比为约6.6%。 Specifically, with respect to the Al composition of the n-type cladding layer 51b is formed on a region 51 of n-type GaN substrate 53 is about 7%, Al composition of the n-type cladding layer formed on the side surface 51a of the groove portions 53 ratio of about 6.6%. 这种情况下,位于槽部51a的侧面上的n型包覆层53的Al组成比低的部分的晶格常数,接近于n型GaN基板51的晶格常数,所以在位于槽部51a的侧面上的n型包覆层53的Al组成比低的部分中,n型GaN基板51和n型包覆层53之间的晶格常数差变小。 In this case, the n-type cladding layer 53 located on the side of the groove portion 51a of the lower Al composition ratio of the lattice constant of the portion close to the lattice constant of the n-type GaN substrate 51, so that the groove portion 51a is located Al composition of the n-type cladding layer 53 on the side of the portion lower than the lattice constant between the n-type GaN substrate 51 and n-type cladding layer 53 becomes small. 因此,即使因为具有约0.3189nm的晶格常数的n型GaN基板51与具有约0.3184nm的晶格常数的由n型Al0.07Ga0.93N构成的n型包覆层53之间的晶格常数差,而导致在n型包覆层53上产生变形,该变形也可以在位于槽部51a的侧面上的n型包覆层53的Al组成比低的部分中得到缓解,所以在n型包覆层53上产生的变形变小。 Thus, if only because the lattice constant between the n-type cladding layer 51 and the n-type GaN substrate having an n-type Al0.07Ga0.93N about 0.3184nm lattice constant of a constituent having a lattice constant of about 53 0.3189nm difference, resulting in deformation on the n-type cladding layer 53, the modification may be an n-type cladding layer located on the side surface of the groove portion 51a of the Al composition ratio of 53 to ease lower section, so that the n-type clad deformation of the cladding layer 53 becomes small. 因此,可以抑制在n型包覆层53上产生的裂纹的量增加,并且也可以抑制包括n型包覆层53的氮化物类半导体元件层60上产生的裂纹的量增加。 Thus, it is possible to suppress an increase of the amount of generation of cracks on the n-type cladding layer 53, and may also suppress an increase in the amount of generation of cracks on nitride-based semiconductor element layer 60 comprises an n-type cladding layer 53.

此后,使用与图7~图11所示的第一实施方式相同的工艺,形成沿[1-100]方向(参照图34)延伸的隆起部61,然后依次形成有开口部62a的电流阻挡层62、p侧欧姆电极63和p侧衬垫电极64。 Thereafter, using FIGS. 7 to process the same manner as the first embodiment shown in FIG. 11, is formed along the [1-100] direction (see FIG. 34) extending ridge portion 61, and then sequentially forming the current blocking layer having an opening portion 62a 62, p-side ohmic electrode 63 and the p-side pad electrode 64. 此外,在n型GaN基板51的里面上的规定区域,依次形成n侧欧姆电极15和n侧衬垫电极16。 Further, in a predetermined region on the n-type GaN substrate 51 which are sequentially formed an n-side ohmic electrode 15 and the n-side pad electrode 16. 此外,在此第四实施方式中,由于槽部51a以沿[1-100]方向(参照图34)延伸的方式形成,所以沿[1-100]方向延伸的隆起部61不与槽部51a交叉。 Further, in this fourth embodiment, because of the way along the [1-100] direction (see FIG. 34) extending in the groove portion 51a is formed, so that in the [1-100] direction of the raised portion 61 does not extend to the groove portion 51a cross. 此外,隆起部61为电流通路,并且隆起部61的下方为发光部分。 Further, the raised portion 61 of the current path, and the raised portion 61 is below the light emitting portion. 此外,在形成电流阻挡层62、p侧欧姆电极63和p侧衬垫电极64时,形成与上述第一实施方式的电流阻挡层12、p侧欧姆电极13和p侧衬垫电极14相同的厚度和组成。 Further, the current blocking layer 62 is formed, the p-side ohmic electrode 63 and the p-side pad electrodes 64, 12 are formed, the same as the first embodiment of the current blocking layer 13 the p-side ohmic electrode and the p-side pad electrode 14 The thickness and composition.

此后,通过进行与上述第一实施方式相同的元件分离和解理,形成图20所示的第四实施方式的氮化物类半导体激光元件。 Thereafter, the same separation and cleavage of the first embodiment element by forming a nitride-based semiconductor laser element according to the fourth embodiment shown in FIG. 20.

此外如图20所示,在用第四实施方式的制造工艺形成的氮化物类半导体激光元件中,n型GaN基板51的槽部51a(参照图19)成为具有因上述的元件分离工序而倾斜的侧面的台阶部51c。 Further as shown, the nitride-based semiconductor laser element formed by the manufacturing process in the fourth embodiment, the groove portion 51a (see FIG. 19) n-type GaN substrate 51 becomes a member 20 having the above-described separation step by inclined the stepped portion 51c of the side surface. 也就是,在用第四实施方式的制造工艺形成的氮化物类半导体激光元件中,在n型GaN基板51的台阶部51c的侧面上形成的n型包覆层53的Al组成比,低于在n型GaN基板51的区域51b上形成的n型包覆层53的Al组成比。 That is, in the nitride-based semiconductor laser element is formed by the manufacturing process in the fourth embodiment, Al composition ratio of an n-type cladding layer formed on the side surface of the stepped portion 51c of the n-type GaN substrate 51, 53, is less than Al composition ratio of an n-type cladding layer 51b is formed on a region 51 of n-type GaN substrate 53.

如上所述,在第四实施方式中,在n型GaN基板51上,隔着缓冲层52形成氮化物类半导体元件层60时,通过使在槽部51a侧面上形成的n型包覆层53的Al组成比,低于在n型GaN基板51的区域51b上形成的n型包覆层53的Al组成比,因此,即使因为具有约0.3189nm的晶格常数的n型GaN基板51与具有约0.3184nm的晶格常数的由n型Al0.07Ga0.93N构成的n型包覆层53之间的晶格常数差,而导致在n型包覆层53上产生变形,该变形在位于槽部51a的侧面上的n型包覆层53的Al组成比低的部分中得到缓解,所以在n型包覆层53上产生的变形变小。 As described above, in the fourth embodiment, on the n-type GaN substrate 51 through the buffer layer 52 is formed nitride-based semiconductor element layer 60, n-type cladding layer 51a formed on the side surface of the groove portion 53 the composition ratio of Al, the Al composition ratio is lower than the n-type cladding layer 51b is formed on a region 51 of n-type GaN substrate 53, and therefore, even as having a lattice constant of about 0.3189nm n-type GaN substrate 51 having a the n-type cladding layer of approximately 0.3184nm lattice constant of the n-type Al0.07Ga0.93N formed of a lattice constant difference between the 53, resulting in deformation on the n-type cladding layer 53, which is located in the groove deformation the n-type cladding layer on the side surface portion 51a of the Al composition ratio of 53 to ease lower portion, the deformation generated on the n-type cladding layer 53 becomes small. 因此,可以抑制在n型包覆层53上产生的裂纹量增加的不利情况发生。 Thus, it is possible to suppress the occurrence on the n-type cladding layer 53 is increased adverse cracks occur. 因此可以抑制包括n型包覆层53的氮化物类半导体元件层60上产生的裂纹的量增加,所以可以抑制因裂纹而无法提供给氮化物类半导体元件层60的发光部分的漏电流的增加,和因裂纹而产生的妨碍光波导的不利情况。 It can be suppressed to increase the amount of generation of cracks of the nitride-based semiconductor device comprising a layer 60 of n-type upper cladding layer 53, it is possible to suppress the increase in leakage current of the light emitting portion due to cracks can not be supplied to the nitride-based semiconductor element layer 60 , and due to cracks generated hinder optical waveguide adverse circumstances. 其结果,可以抑制氮化物类半导体激光元件特性和成品率的降低。 As a result, it is possible to suppress decrease the nitride based semiconductor laser device characteristics and yield.

如上所述,在第四实施方式中,在n型GaN基板51上形成槽部51a时,通过使槽部51a的开口宽度从槽部51a的底面向开口端逐渐扩大地形成,在n型GaN基板51上隔着缓冲层52形成由n型Al0.07Ga0.93N构成的n型包覆层53时,n型包覆层53的构成材料一部分的Ga与Al相比,容易向生长表面移动,据认为Ga容易向槽部51a的侧面移动,所以可以容易地使在槽部51a的侧面上形成的n型包覆层53的Al组成比,低于在n型GaN基板51的区域51b上形成的n型包覆层53的Al组成比。 As described above, in the fourth embodiment, the groove portion 51a is formed on the n-type GaN substrate 51, the groove portion 51a through the opening width of the opening end face is formed gradually enlarged from the bottom of the groove portion 51a, the n-type GaN a buffer layer on the substrate 51 via an n-type cladding layer 52 made of n-type Al0.07Ga0.93N 53, compared to the material constituting the n-type cladding layer 53 of Ga and Al in part, is easily moved to the growth surface, Ga is believed to be easily moved to the side surface 51a of the groove portions, can be easily formed in the n-type cladding layer on the side surface of the groove portion 51a of the Al composition ratio of 53, on a region 51b is formed below the n-type GaN substrate 51 the n-type cladding layer of Al composition ratio of 53.

此外,第四实施方式的其他的效果与上述第一实施方式相同。 Furthermore, other effects of the fourth embodiment is the same as the above-described first embodiment.

(第五实施方式)图21是用于说明本发明的第五实施方式的氮化物类半导体激光元件的制造工艺的断面图。 (Fifth Embodiment) FIG. 21 is a sectional view of a manufacturing process of a fifth embodiment of the present invention is a nitride based semiconductor laser element. 参照图21,在此第五实施方式中,与上述第四实施方式不同,对将在n型GaN基板上形成的槽部的开口宽度,从槽部的底面向开口端逐渐减小的情况进行说明。 Referring to FIG 21, in this fifth embodiment, different from the above-described fourth embodiment, the opening width of the groove portion formed on the n-type GaN substrate, from the bottom portion of the groove faces the open end of the case will be gradually reduced instructions.

在第五实施方式的氮化物类半导体激光元件的制造工艺中,如图21所示,首先使用与图1~图4所示的第一实施方式相同的工艺,在n型GaN基板71上,形成具有约2μm的深度D41,并在规定方向上延伸的条纹状(细长形)的槽部71a。 In the manufacturing process of the nitride-based semiconductor laser device according to a fifth embodiment, shown in Figure 21, the first to use the same FIGS. 1 to 4 of the first embodiment illustrated process embodiment, the n-type GaN substrate 71, D41 is formed with a depth of about 2μm, and a stripe shape extending in a predetermined direction (elongated) in the groove portion 71a. 但是,在此第五实施方式中,在n型GaN基板71上形成槽部71a时,将n型GaN基板71倾斜设置在蚀刻装置的底座(图中没有表示)上,并且通过使n型GaN基板71边旋转边蚀刻,将槽部71a的断面形状形成为倒台面形。 However, in this fifth embodiment, is formed on the n-type GaN substrate 71 when 71a, the n-type GaN substrate 71 is inclined etching apparatus provided in the base (not shown) grooves, and by making the n-type GaN etching the substrate 71 while being rotated, the cross-sectional shape of the groove portion 71a is formed into an inverted mesa shape. 也就是,形成使槽部71a的开口宽度从槽部71a的底面向开口端逐渐减小。 That is, the opening width of the groove is formed from the bottom portion 71a faces the groove portion 71a is gradually reduced open end. 具体说,形成的槽部71a的开口宽度W41为约50μm,而且槽部71a的底面宽度W42为约53μm。 Specifically, an opening portion 71a formed in the groove width W41 is about 50 m, and the bottom surface of the groove portion 71a of a width W42 of about 53μm. 邻接的槽部71a之间的距离W43设定为约200μm。 The distance between the adjacent groove portions 71a W43 is set to about 200μm. 于是,在n型GaN基板71中,被槽部71a夹住的具有约200μm的宽度W43的区域71b,为对应于位于氮化物类半导体元件层的隆起部(图中没有表示)的下方的发光部分的区域。 Thus emission below the n-type GaN substrate 71, the groove portion 71a sandwiched between a region of approximately 200μm width W43 71b, corresponding to the raised portion is located nitride-based semiconductor element layer (not shown) of the part of the area. 此外,n型GaN基板71是本发明的“氮化物类半导体基板”的一个例子。 Further, n-type GaN substrate 71 serves as a "nitride-based semiconductor substrate" in the present invention. 此外,n型GaN基板71的区域71b是本发明的“第一区域”的一个例子,形成有n型GaN基板71的槽部71a的区域是本发明的“第二区域”的一个例子。 Further, the n-type region 71b of GaN substrate 71 is an example of the "first region" of the present invention, the region where the n-type GaN substrate 71 in the groove portion 71a is an example of the "second region" of the present invention.

此外,第五实施方式的n型GaN基板71与上述第一实施方式的n型GaN基板1相同,具有(0001)面的表面,并且具有低的位错密度。 Further, the n-type GaN substrate 71 the same as the fifth embodiment the n-type GaN substrate 1 of the first embodiment, a surface having a (0001) plane, and has a low dislocation density. 此外,n型GaN基板71具有约0.3189nm的晶格常数。 Further, n-type GaN substrate 71 has a lattice constant of approximately 0.3189nm.

此外,第五实施方式的此后的制造工艺与上述第一实施方式相同。 Further, after the fifth embodiment of the manufacturing process of the first embodiment.

如上所述,在第五实施方式中,在n型GaN基板71上形成的槽部71a时,通过形成使槽部71a的开口宽度从槽部71a的底面向开口端逐渐减小,在n型GaN基板71上形成氮化物类半导体层时,与槽部1a的侧面垂直于n型GaN基板1的上面的第一实施方式相比,氮化物类半导体层的构成材料难以在槽部71a的侧面上堆积,所以可以更容易使在槽部71a的侧面上形成的氮化物类半导体层的厚度,小于在n型GaN基板71的区域71b上形成的氮化物类半导体层的厚度。 As described above, in the fifth embodiment, when 71a, by forming the opening width of the groove portion 71a from the bottom of the groove portion 71a facing the opening end of the groove portion gradually decreases formed on the n-type GaN substrate 71, the n-type when the nitride-based semiconductor layer formed on the GaN substrate 71, perpendicular to the side surface of the groove portions 1a as compared to the above n-type GaN substrate 1 of the first embodiment, the material constituting the nitride-based semiconductor layer is difficult in the groove portions 71a of the side surface on stacking, it can be easier to thickness of the nitride-based semiconductor layer formed on the side surface of the groove portion 71a is smaller than the thickness of the nitride-based semiconductor layer formed on a region 71b n-type GaN substrate 71.

此外,第五实施方式的其他的效果与上述第一实施方式相同。 In addition, other effects of the fifth embodiment is the same as the above-described first embodiment.

(第六实施方式)参照图22,在此第六实施方式中,与上述第四和第五实施方式不同,对在n型GaN基板上形成的槽部的侧面有台阶形状的情况进行说明。 (Sixth Embodiment) Referring to FIG. 22, in this sixth embodiment, the above-described fourth embodiment and fifth embodiment is different where there is a step shaped side surface of the groove portion is formed on the n-type GaN substrate will be described.

在第六实施方式的氮化物类半导体激光元件的制造工艺中,如图22所示,首先使用与图1~图4所示的第一实施方式相同的工艺,在n型GaN基板81上,形成在规定方向上延伸的条纹状(细长形)的槽部81a。 In the manufacturing process of the nitride-based semiconductor laser element according to a sixth embodiment, shown in Figure 22, the first to use the same FIGS. 1 to 4 of the first embodiment illustrated process embodiment, the n-type GaN substrate 81, a stripe shape extending in a predetermined direction (elongated) in the groove portion 81a. 但是,在此第六实施方式中,用于形成槽部81a的蚀刻工序进行两次。 However, in this sixth embodiment, the etching step for forming the groove portion 81a twice. 具体说,在第一次的蚀刻工序中,形成具有约50μm的宽度W51、约1μm的深度D51的第一个槽部。 Specifically, in the first etching step, forming a first groove depth of approximately 1μm D51 has a width W51 of approximately 50μm. 此后,在第二次的蚀刻工序中,在第一次的蚀刻工序中形成的第一个槽部的底部,形成具有约30μm的宽度W52、约1μm的深度D52的第二个槽部。 Thereafter, the second etching step, the bottom portion of the first groove is formed in the first etching step, a second groove portion has a width of W52 of about 30μm, the depth D52 of about 1μm. 这样,在n型GaN基板81上,形成具有约50μm的宽度(开口端的宽度)W51和约2μm的深度D53,并且侧面有台阶形状的槽部81a。 Thus, on the n-type GaN substrate 81, is formed W51 D53 depth of about 2μm to about 50μm has a width (opening width end), and a stepped side groove-shaped portion 81a. 此外,将邻接的槽部81a之间的距离W53设定为约200μm。 Further, the distance between adjacent groove portions 81a W53 is set to about 200μm. 而在n型GaN基板81中,被槽部81a夹住的具有约200μm的宽度W53的区域81b,为与位于氮化物类半导体层的隆起部(图中没有表示)的下方的发光部分对应的区域。 In the n-type GaN substrate 81, the groove portion 81a is sandwiched between a region of approximately 200μm width W53 81b, corresponding to the light emitting portion of the raised portion is located below the nitride-based semiconductor layer (not shown) of region. 此外,n型GaN基板81是本发明的“氮化物类半导体基板”的一个例子。 Further, n-type GaN substrate 81 serves as a "nitride-based semiconductor substrate" in the present invention. 此外,n型GaN基板81的区域81b是本发明的“第一区域”的一个例子,形成有n型GaN基板81的槽部81a的区域是本发明的“第二区域”的一个例子。 Further, the region 81b of n-type GaN substrate 81 is an example of the "first region" of the present invention, a region where the groove portion 81a of the n-type GaN substrate 81 is an example of the "second region" of the present invention.

此外,第六实施方式的n型GaN基板81与上述第一实施方式的n型GaN基板1相同,具有(0001)面的表面,并且具有低的位错密度。 Further, the n-type GaN substrate 81 is the same as the sixth embodiment the n-type GaN substrate 1 of the first embodiment, a surface having a (0001) plane, and has a low dislocation density. 此外,n型GaN基板81具有约0.3189nm的晶格常数。 Further, n-type GaN substrate 81 has a lattice constant of approximately 0.3189nm.

此外,第六实施方式的此后的制造工艺与上述第一实施方式相同。 Further, after the manufacturing process of the sixth embodiment of the first embodiment.

如上所述,在第六实施方式中,通过在n型GaN基板上形成以在规定方向延伸的条纹状(细长形)的槽部81a,并且将槽部81a的侧面设置成台阶形状,可以得到与上述第一实施方式相同的效果。 As described above, in the sixth embodiment, by forming a stripe-like (elongated) extending in a predetermined direction, the groove portions 81a on the n-type GaN substrate, and the side surface of the groove portion 81a provided in a stepped shape, embodiment of the first embodiment to obtain the same effect.

在上述的第一~第六实施方式和以下所示的第七和第八实施方式中,在GaN基板的(0001)面上形成氮化物类半导体层,但本发明并不限于此,在GaN基板的其他面的取向面上,也可以形成氮化物类半导体层。 In the first to seventh and eighth embodiments and the sixth embodiment shown in the following embodiment, the nitride based semiconductor layer formed on a (0001) plane of the GaN substrate, but the present invention is not limited in GaN alignment surface of the other surface of the substrate may be a nitride-based semiconductor layer. 例如在(1-100)、(11-20)面等的(H、K、-HK、0)面上,也可以形成氮化物类半导体层。 For example, in (1-100), (11-20) plane or the like (H, K, -HK, 0) surface, may be a nitride-based semiconductor layer. 在此情况下,由于在发光层上不产生压电电场,所以可以使发光层的发光效率提高。 In this case, since the piezoelectric field is not generated on the light emitting layer, it is possible to improve the emission efficiency of the light emitting layer. 下面对这样的例子的第七和第八实施方式进行说明。 Next, the seventh embodiment and the eighth embodiment will be described such an example.

(第七实施方式)第七实施方式的氮化物类半导体激光元件与第一实施方式的氮化物类半导体激光元件的不同点在于,作为基板使用具有(11-20)面的表面的n型GaN基板91之点,以及槽部91a以沿[1-100]方向延伸的方式形成之点。 Different from nitride-based semiconductor laser element is a nitride based semiconductor laser element of the first aspect of embodiment (Seventh Embodiment) The seventh embodiment in that, as a substrate having a surface n-type GaN (11-20) plane point of the substrate 91, and the groove portions 91a along the [1-100] direction of the embodiment is formed to extend the point. 下面参照图23和图24,对本发明的第七实施方式的氮化物类半导体激光元件的制造工艺进行说明。 The process for manufacturing a nitride based semiconductor laser element according to a seventh embodiment of the present invention will be described with reference to FIGS. 23 and 24.

在第七实施方式中,也使用与图1~图4所示的第一实施方式相同的工艺,在n型GaN基板91上,形成具有约50μm的宽度W61和约2μm的深度,并且具有侧面垂直于n型GaN基板91的上面的条纹状(细长形)的槽部91a。 In the seventh embodiment, the same also FIGS. 1 to 4 of the first embodiment shown in process mode, on the n-type GaN substrate 91, forming a width of about 2μm W61 depth of about 50μm, and having a vertical side in the above n-type GaN substrate 91, a stripe-shaped (elongate) of the groove portion 91a. 但是如前所述,在第七实施方式中,n型GaN基板91具有(11-20)面,并且槽部91a以沿[1-100]方向延伸的方式形成。 As described above, however, in the seventh embodiment, n is type GaN substrate 91 having the (11-20) plane, and the groove portions 91a along the [1-100] direction formed to extend embodiment. 此时,被形成有槽部91a的区域夹住的具有 At this time, the region is formed with a groove portion 91a has sandwiching

[0001]方向的宽度W62的区域91b得以形成。 Region width W62 of the [0001] direction 91b is formed. 此外,n型GaN基板91是本发明的“氮化物类半导体基板”的一个例子,形成有槽部91a的区域是本发明的“第二区域”的一个例子,区域91b是本发明的“第一区域”的一个例子。 Further, n-type GaN substrate 91 serves as a "nitride-based semiconductor substrate" in the present invention, a region in which the groove portion 91a is an example of the "second region" of the present invention, a region 91b 'of the present invention. an example of a region ".

然后,使用与上述第一实施方式相同的工艺,在n型GaN基板91上,形成氮化物类半导体层90。 Then, using the above-described first embodiment, the same process, on the n-type GaN substrate 91, a nitride-based semiconductor layer 90. 此氮化物类半导体层90与上述第一实施方式相同,从n型GaN基板91一侧开始,形成n型包覆层、活性层和p型包覆层。 This nitride-based semiconductor layer 90 with the above-described first embodiment, start from the n-type GaN substrate 91 side, an n-type cladding layer, an active layer and a p-type cladding layer.

在包括在氮化物类半导体层90中的n型包覆层中,一般使用AlGaN层,此AlGaN层与n型GaN基板之间的晶格常数差因晶轴的方向不同而不同。 90 including the n-type cladding layer in a nitride based semiconductor layer, the AlGaN layer is generally used, AlGaN lattice constants between this layer and the n-type GaN substrate due to the difference in different crystal axis directions are different. 例如Al0.07Ga0.93N和GaN的a轴方向的晶格常数分别为约0.3184nm和约0.3189nm,它们的比为0.9984。 For example, the lattice constant of a-axis direction Al0.07Ga0.93N and GaN of approximately 0.3184nm to 0.3189nm about their ratio was 0.9984. 另一方面,Al0.07Ga0.93N和GaN的c轴方向的晶格常数分别为约0.5172nm和约0.5186nm,它们的比为0.9973。 On the other hand, Al0.07Ga0.93N and GaN lattice constant about the c-axis direction are about 0.5186nm to 0.5172nm, their ratio was 0.9973. 这样,Al0.07Ga0.93N与GaN之间的晶格常数比在a轴方向为0.9984,在c轴方向为0.9973,c轴方向偏离1的程度大。 Thus, the lattice constant between GaN and Al0.07Ga0.93N ratio of a-axis direction is 0.9984, is 0.9973 in the c-axis direction, a large degree of c-axis direction departing 1. 因此,与使用面内的轴向仅具有a轴的(0001)面的GaN基板的第一~第六实施方式相比,使用作为面内的轴向具有包括c轴方向的(11-20)面的n型GaN基板91的第七实施方式,在AlGaN层上施加的变形和应力变大。 Thus, the use of the axial inner surface has a first to sixth embodiment, only the GaN substrate (0001) plane as compared to the a-axis, comprising using a c-axis direction (11-20) as an axial inner surface n-type GaN substrate surface 91 of the seventh embodiment, the deformation and the stress exerted on the AlGaN layer is increased. 因此,在第七实施方式的氮化物类半导体激光元件中,与第一~第六实施方式的氮化物类半导体激光元件相比,在AlGaN层上容易产生裂纹,其结果,在氮化物类半导体层90上容易产生裂纹。 Thus, the nitride-based semiconductor laser device in the seventh embodiment, as compared with a nitride-based semiconductor laser element of the first to sixth embodiments, cracks easily occur on the AlGaN layer, as a result, the nitride-based semiconductor layer 90 cracks easily.

所以,在第七实施方式中,将设置在n型GaN基板91上的槽部91a设置成沿[1-100]方向延伸。 Therefore groove portion, in the seventh embodiment, will be provided on the n-type GaN substrate 91 is disposed to extend in the 91a [1-100] direction.

也就是,[1-100]方向相当于m轴方向,在晶体构造中m轴方向的变形或应力的大小与a轴方向的变形或应力的大小大体相等。 That is, the [1-100] direction corresponding to the m-axis direction, the size of the deformation or stress in the m-axis direction and the deformation magnitude of the stress or the a-axis direction is substantially equal in crystal structure. 因此在使用具有(11-20)面的基板的情况下,由于与[1-100]m轴方向相比, Thus in the case of a substrate having a (11-20) plane, as compared to the [1-100] m-axis direction,

[0001]c轴方向的变形或应力大,所以和与[1-100]方向交叉的方向相比,在与 [0001] c-axis direction deformation or stress is large, and so the direction intersecting the [1-100] direction, compared with the

[0001]方向交叉的方向上容易产生裂纹。 Cracks easily in the direction [0001] direction intersecting. 这样,通过象第七实施方式那样,沿与 Thus, by the seventh embodiment as above, along with

[0001]方向交叉的[1-100]轴方向设置槽部91a,可以有效地抑制在与 [0001] [1-100] axis direction groove portion 91a, can be effectively suppressed in a direction intersecting with

[0001]方向交叉的方向上产生的裂纹的扩展。 Generating a spreading [0001] direction intersecting cracks. 这样在第七实施方式中,由于能够在产生大量裂纹的方向抑制裂纹的扩展,所以可以得到更大的效果。 In this seventh embodiment, since the crack propagation can be suppressed in the direction of a large number of cracks, larger effect can be obtained.

此外在第七实施方式中,如上述第四实施方式那样,优选的是使在n型GaN基板91上形成的槽部91a的开口宽度,从槽部91a的底面向开口端逐渐扩大。 Further, in the seventh embodiment, the fourth embodiment as described above, it is preferable that the groove portion 91a is formed on the n-type GaN substrate 91 in opening width from the groove bottom portion 91a faces the open end is gradually expanding. 因为这样形成的槽部91a的断面形状为台面型,在n型GaN基板91上形成包括AlGaN层的氮化物类半导体层90时,据认为AlGaN层的构成材料的一部分的Ga容易向槽部91a的倾斜侧面一侧移动。 Because the cross-sectional shape of the groove portion 91a is so formed as mesa, forming 90 include an AlGaN layer is the nitride-based semiconductor layer on the n-type GaN substrate 91, it is thought that Ga part of the constituent material of the AlGaN layer tends to groove portion 91a moves toward the inclined side surface. 因此,在槽部91a的侧面上形成的AlGaN层的Al组成比,低于在n型GaN基板91的区域91b上形成的AlGaN层的Al组成比。 Thus, the Al composition ratio of AlGaN layer is formed on the side surface of the groove portion 91a, below the Al composition ratio of AlGaN layer is formed on a region 91b n-type GaN substrate 91. 具体说,作为AlGaN层形成Al组成比为约7%的层的情况下,相对于在n型GaN基板91的区域91b上形成的AlGaN层的Al组成比为约7%,在槽部91a的侧面上形成的AlGaN层的Al组成比为约1.4%。 Specifically, as the AlGaN layer an Al composition ratio in the case of about 7% of the layer, with respect to the Al composition of the AlGaN layer is formed on the area 91b n-type GaN substrate 91 is about 7%, the groove portion 91a of the Al composition of the AlGaN layer is formed on the side surface is about 1.4%. 这种情况下,位于槽部91a的侧面上的AlGaN层的Al组成比低的部分的晶格常数与n型GaN基板91的晶格常数接近,所以在位于槽部91a的侧面上的AlGaN层的Al组成比低的部分中,n型GaN基板91和AlGaN层之间的晶格常数差变小。 In this case, an AlGaN layer located on the side of the groove portion 91a of the Al composition ratio of the lattice constant of the low portion of the n-type GaN substrate 91 approaches, it is located on the side of the groove portion 91a of the AlGaN layer Al composition ratio lower section, the lattice constant between the n-type GaN substrate and the AlGaN layer 91 becomes small. 因此,即使因为n型GaN基板91与氮化物类半导体层90中的AlGaN层之间的晶格常数差,而导致在AlGaN层上产生变形,该变形在位于槽部91a的侧面上的AlGaN层的Al组成比低的部分中可以得到缓解,所以在AlGaN层上产生的变形变小。 Thus, if only because the lattice constant between the n-type GaN substrate 91 in the AlGaN layer 90 and the nitride-based semiconductor layer is poor, resulting in deformation on the AlGaN layer, the AlGaN layer is deformed portion located on the groove side face 91a Al composition ratio in the lower portion can be eased, so that deformation is small on the AlGaN layer. 这样,可以抑制在AlGaN层上产生的裂纹量的增加,并且也可以抑制包括AlGaN层的氮化物类半导体层90上产生的裂纹量的增加。 Thus, it is possible to suppress an increase in the amount of cracks in the AlGaN layer, can be suppressed, and an increased amount of cracks on nitride-based semiconductor layer 90 comprises AlGaN layer.

此外,第七实施方式的此后的制造工艺与上述第一实施方式的制造工艺相同。 Further, after the manufacturing process of the seventh embodiment of the manufacturing process is the same as the first embodiment.

此外,第七实施方式的效果与上述第一实施方式的效果相同。 In addition, the effects of the seventh embodiment effects the same as the first embodiment.

(第八实施方式)第八实施方式的氮化物类半导体激光元件与第一实施方式的氮化物类半导体激光元件的不同点在于,作为基板使用具有(1-100)面的表面的n型GaN基板101之点,以及槽部101a以沿[11-20]方向延伸的方式形成之点。 Nitride-based semiconductor laser element is different from a nitride-based semiconductor laser element of the first aspect of embodiment (Eighth Embodiment) The eighth embodiment in that, as a substrate having a surface n-type GaN (1-100) plane point of the substrate 101, and the manner of dots formed along the groove portions 101a [11-20] direction of extension. 下面参照图25和图26,对本发明的第八实施方式的氮化物类半导体激光元件的制造工艺进行说明。 The process for manufacturing a nitride based semiconductor laser device of the eighth embodiment of the present invention will be described with reference to FIGS. 25 and 26.

在第八实施方式中,也使用与图1~图4所示的第一实施方式相同的工艺,在n型GaN基板101上,形成具有约50μm的宽度W71和约2μm的深度,并且具有侧面垂直于n型GaN基板101的上面的条纹状(细长形)的槽部101a。 In the eighth embodiment, the same also FIGS. 1 to 4 of the first embodiment shown in process mode, on the n-type GaN substrate 101, a depth W71 of about 2μm is formed has a width of about 50μm, and having a vertical side on the upper surface of the n type GaN substrate 101 in a stripe shape (elongated) in the groove portion 101a. 但是如前所述,在第八实施方式中,n型GaN基板101具有(1-100)面,槽部101a则以沿[11-20]方向延伸的方式形成。 As described above, however, in the eighth embodiment, n is type GaN substrate 101 having a (1-100) plane, the groove portion 101a is formed in the manner places [11-20] direction of extension. 此时,被形成有槽部101a的区域夹住的具有 At this time, the region is formed with a groove 101a of the sandwiching portion having

[0001]方向的宽度W72的区域101b得以形成。 Area 101b of the width W72 [0001] direction is formed. 此外,n型GaN基板101是本发明的“氮化物类半导体基板”的一个例子,形成有槽部101a的区域是本发明的“第二区域”的一个例子,区域101b是本发明的“第一区域”的一个例子。 Further, n-type GaN substrate 101 is an example of a "nitride-based semiconductor substrate" in the present invention, a region in which the groove portion 101a is an example of the "second region" of the present invention, is the region 101b 'of the present invention an example of a region ".

然后使用与上述第一实施方式相同的工艺,在n型GaN基板101上,形成氮化物类半导体层100。 Then using the above-described first embodiment, the same process, on the n-type GaN substrate 101, a nitride-based semiconductor layer 100. 此氮化物类半导体层100与上述第一实施方式相同,从n型GaN基板101一侧开始,具有n型包覆层、活性层和p型包覆层。 This nitride-based semiconductor layer 100 with the above-described first embodiment, starting from the side of the n-type GaN substrate 101, an n-type cladding layer, an active layer and a p-type cladding layer.

在第八实施方式中使用的n型GaN基板101也与上述第七实施方式相同,面内方向包括有c轴方向。 n-type GaN substrate 101 used in the eighth embodiment is also the same as the seventh embodiment, the inner surface of the c-axis direction comprises a direction. 因此,与使用面内的轴向仅具有a轴的(0001)面的GaN基板的第一~第六实施方式相比,使用作为面内的轴向具有包括c轴方向的(1-100)面的n型GaN基板101的第八实施方式,在AlGaN层上施加的变形和应力变大。 Thus, the use of the axial inner surface has a first to sixth embodiment, only the GaN substrate (0001) plane as compared to the a-axis, having c-axis direction including the (1-100) plane as an axial inner eighth embodiment of the surface of n type GaN substrate 101, and the deformation stress applied on the AlGaN layer is increased. 因此,第八实施方式的氮化物类半导体激光元件与第一~第六实施方式的氮化物类半导体激光元件相比,在AlGaN层上也容易产生裂纹,其结果,在氮化物类半导体层100上容易产生裂纹。 Thus, the nitride-based semiconductor laser element compared to the nitride-based semiconductor laser element of the first to sixth embodiments, on the AlGaN layer can easily crack the eighth embodiment, as a result, the nitride-based semiconductor layer 100 the cracks easily.

所以,在第八实施方式中,将设置在n型GaN基板101上的槽部101a设置成沿[11-20]方向延伸。 Therefore groove portion, in the eighth embodiment, will be provided on the n-type GaN substrate 101, 101a is arranged to extend along the [11-20] direction.

也就是,[11-20]方向相当于a轴方向,在使用(1-100)面的n型GaN基板101的第八实施方式中,和与[11-20]方向交叉的方向相比,在与 That is, the [11-20] direction corresponds to the a-axis direction, in the eighth embodiment using the (1-100) plane of the n-type GaN substrate 101, and a direction intersecting the [11-20] direction compared, with

[0001]方向交叉的方向上容易产生裂纹。 Cracks easily in the direction [0001] direction intersecting. 因此,通过象第八实施方式那样,沿与 Thus, the eighth embodiment as above, along with

[0001]方向交叉的[11-20]轴方向设置槽部101a,可以有效地抑制在与 [0001] [11-20] axis direction groove portion 101a, can be effectively suppressed in a direction intersecting with

[0001]方向交叉的方向上产生的裂纹的扩展。 Generating a spreading [0001] direction intersecting cracks. 这样在第八实施方式中,由于能够在产生大量裂纹的方向抑制裂纹的扩展,所以可以得到更大的效果。 In this eighth embodiment, since the crack propagation can be suppressed in the direction of a large number of cracks, larger effect can be obtained.

此外在第八实施方式中,如上述第四实施方式那样,优选的是使在n型GaN基板101上形成的槽部101a的开口宽度,从槽部101a的底面向开口端逐渐扩大。 Further, in the eighth embodiment, the fourth embodiment as described above, it is preferable that the groove portion 101a is formed on the n-type GaN substrate 101, the opening width of the groove from the bottom portion 101a facing the open end is gradually expanding. 因为这样形成的槽部101a的断面形状为台面型,在n型GaN基板101上形成包括AlGaN层的氮化物类半导体层100时,据认为AlGaN层的构成材料的一部分的Ga容易向槽部101a的倾斜侧面一侧移动。 Because the cross-sectional shape of the groove portion 101a thus formed is a mesa-type, is formed on the n-type GaN substrate 101 a nitride based semiconductor layer comprises AlGaN layer 100, it is thought that Ga part of the constituent material of the AlGaN layer tends to groove portions 101a moves toward the inclined side surface. 因此,在槽部101a的侧面上形成的AlGaN层的Al组成比,低于在n型GaN基板101的区域101b上形成的AlGaN层的Al组成比。 Thus, the Al composition ratio of AlGaN layer is formed on the side surface of the groove portion 101a is lower than the Al composition ratio of AlGaN layer is formed on a region 101b n type GaN substrate 101. 具体说,作为AlGaN层形成Al组成比为约7%的层的情况下,相对于在n型GaN基板101的区域101b上形成的AlGaN层的Al组成比为约7%,在槽部101a的侧面上形成的AlGaN层的Al组成比为约0.7%。 Specifically, as the AlGaN layer an Al composition ratio in the case of about 7% of the layer, with respect to the Al composition of the AlGaN layer is formed on the area 101b n type GaN substrate 101 is about 7%, the groove portion 101a of the Al composition of the AlGaN layer is formed on the side surface is about 0.7%. 这种情况下,位于槽部101a的侧面上的AlGaN层的Al组成比低的部分的晶格常数与n型GaN基板101的晶格常数接近,所以在位于槽部101a的侧面上的AlGaN层的Al组成比低的部分中,n型GaN基板101与AlGaN层之间的晶格常数差变小。 In this case, an AlGaN layer located on the side of the groove portion 101a of the Al composition ratio of the lattice constant of the low portion of the n type GaN substrate 101 is close, it is located on the side of the groove portion 101a of the AlGaN layer Al composition ratio lower section, the lattice constant between the n-type GaN substrate and the AlGaN layer 101 becomes small. 因此,即使因为n型GaN基板101与氮化物类半导体层100中的AlGaN层之间的晶格常数差,而导致在AlGaN层上产生变形,该变形在位于槽部101a的侧面上的AlGaN层的Al组成比低的部分中可以得到缓解,所以在AlGaN层上产生的变形变小。 Thus, if only because the lattice constant between the n-type GaN substrate 101 and 100 in the nitride-based semiconductor layer, the AlGaN layer is poor, resulting in deformation on the AlGaN layer, the deformation of the AlGaN layer located on the side of the groove portions 101a Al composition ratio in the lower portion can be eased, so that deformation is small on the AlGaN layer. 这样,可以抑制在AlGaN层上产生的裂纹量的增加,并且也可以抑制包括AlGaN层的氮化物类半导体层100上产生的裂纹量的增加。 Thus, it is possible to suppress an increase in the amount of cracks in the AlGaN layer, can be suppressed, and an increased amount of cracks on nitride-based semiconductor layer 100 comprising AlGaN layer.

此外,第八实施方式的此后的制造工艺与上述第一实施方式的制造工艺相同。 Further, after the eighth embodiment of the manufacturing process and manufacturing process is the same as the first embodiment.

此外,第八实施方式的效果与上述第七实施方式的效果相同。 In addition, the effect and effect of the eighth embodiment is the same as the seventh embodiment.

(第九实施方式)第九实施方式的氮化物类半导体激光元件与第七实施方式的氮化物类半导体激光元件的不同点在于,作为基板使用具有(11-22)面的表面的n型GaN基板111之点,以及使槽部的开口端从槽部的底面向开口端逐渐扩大之点。 Nitride-based semiconductor laser element is different (Ninth Embodiment) nitride-based embodiment of the semiconductor laser element of the seventh embodiment of the ninth embodiment in that, as a substrate having a surface n-type GaN (11-22) plane point of the substrate 111, and causing the open end of the groove portion from the bottom portion of the groove facing the opening end point is gradually enlarged. 下面参照图27和图28,对本发明的第九实施方式的氮化物类半导体激光元件的制造工艺进行说明。 Referring now to FIGS. 27 and 28, the manufacturing process of the nitride-based semiconductor laser element according to a ninth embodiment of the present invention will be described.

在第九实施方式中,使用与图17~图20所示的第四实施方式相同的工艺,在n型GaN基板111上,形成具有约50μm的宽度(开口端的宽度)W81和约2μm的深度,并且具有台面状的断面形状的条纹状(细长形)的槽部111a。 In the ninth embodiment, the same used in the fourth embodiment shown in FIG. 17 to FIG. 20 embodiment process, on the n-type GaN substrate 111, having a depth of about 50μm in width (the width of the opening end) of about 2μm to W81, and the cross-sectional shape having a striped mesa-like (elongated) in the groove portion 111a. 但是如前所述,在第九实施方式中,n型GaN基板111具有(11-22)面,并且槽部111a以沿[1-100]方向延伸的方式形成。 As described above, however, in the ninth embodiment, n is type GaN substrate 111 having a (11-22) plane, and the groove portion 111a in a manner to form a [1-100] direction extends. 此时,被形成有槽部111a的区域夹住的具有后面叙述的y方向的宽度W82的区域111b得以形成。 At this time, the region is formed with a groove portion 111a, 111b sandwiching a region having a width W82 in the y direction to be described later is formed. 此外,n型GaN基板111是本发明的“氮化物类半导体基板”的一个例子,形成有槽部111a的区域是本发明的“第二区域”的一个例子,区域111b是本发明的“第一区域”的一个例子。 Further, n-type GaN substrate 111 is an example of a "nitride-based semiconductor substrate" in the present invention, a region in which the groove portion 111a is an example of the "second region" of the present invention, the region 111b is "of the present invention an example of a region ".

然后使用MOCVD法,在n型GaN基板111的区域111b的上面上、槽部111a的底面和侧面上,隔着缓冲层52依次形成构成氮化物类半导体层110的氮化物类半导体的各层(53~59)。 Then use the MOCVD method, on the upper region 111b of the n-type GaN substrate 111, the upper side surface and the bottom surface of the groove portion 111a, the buffer layer 52 are sequentially formed therebetween the respective layers constituting the nitride-based semiconductor nitride-based semiconductor layer 110 ( 53 to 59).

具体说,在基板温度达到约1160℃附近时,通过使用作为载流气体的H2气,向反应炉内提供TMGa(三甲基镓)气(约66μmol/分)和TMAl(三甲基铝)气(约0.26μmol/分),在n型GaN基板111上,使具有约0.8μm厚的由不掺杂Al0.01Ga0.99N构成的缓冲层52,以约1.1μm/小时的速度生长。 Specifically, when the substrate temperature reaches the vicinity of about 1160 ℃, by using H2 gas as the carrier gas is provided of TMGa (trimethyl gallium) gas (about 66μmol / min) and TMAI (trimethylaluminum) into the reactor gas (about 0.26μmol / min), on the n-type GaN substrate 111, so that a thickness of about 0.8μm 52 Al0.01Ga0.99N buffer layer composed of undoped, about 1.1μm / hr growth. 此后,通过使用作为载流气体的H2气,向反应炉内提供TMGa气(约90μmol/分)、TMAl气(约2.4μmol/分)、以及作为n型夹杂的Ge原料的GeH4(甲锗烷)气(约0.24μmol/分),在缓冲层52上,使具有约1.8μm厚的由掺杂Ge的n型Al0.07Ga0.93N构成的n型包覆层53,以约1.1μm/小时的速度生长。 Thereafter, by using H2 gas as a carrier gas, TMGa gas to provide (about 90μmol / min) into the reaction furnace, gas TMAI (about 2.4μmol / min), and an n-type inclusions GeH4 Ge raw material (germyl ) gas (about 0.24μmol / min), on the buffer layer 52, the n-type cladding layer composed of a Ge-doped n-type Al0.07Ga0.93N having a thickness 53 of about 1.8μm to about 1.1μm / hr the speed of growth.

再有,通过使用作为载流气体的H2气,还向反应炉内提供TMGa气(约48μmol/分)和TMAl气(约4.7μmol/分),在n型包覆层53上,使具有约20μm厚的由不掺杂的Al0.2Ga0.8N构成的n侧载子限制层54,以约1μm/小时的速度生长。 Further, by using H2 gas as a carrier gas, TMGa gas is also provided (about 48μmol / min) and TMAl gas (about 4.7μmol / min) into the reactor, on the n-type cladding layer 53, so that about n-side carrier 20μm thick non-doped confinement layer 54 made of Al0.2Ga0.8N, rate of about 1μm / hr of growth.

此后将基板温度从约1160℃降到约850℃。 After the substrate temperature was lowered to about 850 deg.] C from about 1160 ℃. 然后,通过使用作为载流气体的N2气,向反应炉内提供Ga原料的TMGa(三甲基镓)气和In原料的TMIn(三甲基铟)气,在n侧载子限制层54上,使具有约20nm厚的由不掺杂的In0.02Ga0.98N构成的四个阻挡层(图中没有表示)和具有约3.5nm厚的由不掺杂的In0.15Ga0.85N构成的三个量子井层(图中没有表示),交替以约0.25μm/小时的速度生长。 Then, by using N2 gas as a carrier gas, to provide feedstock into the reactor Ga of TMGa (trimethyl gallium) gas, and the raw material TMIn In (trimethyl indium) gas, the n-side carrier confinement layer 54 the four barrier layers made of undoped In0.02Ga0.98N having a thickness of about 20nm (not shown) and having a thickness of about 3.5nm is formed of non-doped In0.15Ga0.85N three the quantum well layer (not shown), alternating with about 0.25μm / hr growth. 这样,形成具有四个阻挡层和三个量子井层交替层叠的多重量子井构造的MQW活性层55。 Thus, the MQW active layer 55 is formed having four multiple quantum well layer and a barrier configured three quantum well layers are alternately stacked. 随后在MQW活性层55上,使具有约0.1μm厚的由不掺杂的In0.01Ga0.99N构成p侧光导层56生长。 Then the MQW active layer 55, so that having a thickness of approximately 0.1μm undoped In0.01Ga0.99N is grown p-side optical guide layer constitutes 56. 此后,通过使用作为载流气体的N2气,向反应炉内提供TMGa气(约103μmol/分)和TMAl气(约400μmol/分),在p侧光导层56上,使具有约20nm厚的由不掺杂Al0.2Ga0.8N构成的p侧载子限制层57,以约1.2μm/小时的速度生长。 Thereafter, by using N2 gas as a carrier gas, TMGa gas to provide (about 103μmol / min) and TMAl gas (about 400μmol / min) into the reactor, on the p-side optical guide layer 56, so that having a thickness of about 20nm an undoped p-side carrier confinement layer 57 made of Al0.2Ga0.8N, about 1.2μm / hr growth.

然后将基板温度从约850℃加热到约1160℃。 The substrate temperature was then heated from about 850 deg.] C to about 1160 ℃. 然后,通过使用作为载流气体的N2气,向反应炉内提供TMGa气(约54μmol/分)、TMAl气(约1.7μmol/分)以及作为p型夹杂的Mg原料的Mg(C5H5)2(环戊二烯合镁)气(约0.038μmol/分),在p侧载子限制层57上,使具有约0.45μm厚的由掺杂Mg的p型Al0.07Ga0.93N构成的p型包覆层58,以约1.1μm/小时的速度生长。 Then, by using N2 gas as a carrier gas, TMGa gas to provide (about 54μmol / min) into the reaction furnace, gas TMAI (about 1.7μmol / min) and Mg as p-type material is entrained Mg (C5H5) 2 ( cyclopentadienyl magnesium) gas (about 0.038μmol / min), the p-side carrier confinement layer 57, the p-type cladding having a thickness of about 0.45μm made of Mg-doped p-type Al0.07Ga0.93N cladding layer 58 of about 1.1μm / hr growth. 此外,与掺杂剂气体的种类和供给量相关联,AlGaN的Al组成和生长速度会改变,所以调整TMGa气和TMAl气的供给流量,使具有相同Al组成的n型包覆层53和p型包覆层58以相同的生长速度生长。 In addition, the dopant gas supply amount and the type associated with, AlGaN and the growth rate of Al composition change, so TMGa gas and adjusting a supply flow rate of TMAl gas, the n-type cladding layer 53 have the same Al composition and p type cladding layer 58 is grown at the same growth rate. 此后,将基板温度从约1160℃降到约850℃。 Thereafter, the substrate temperature was lowered to about 850 deg.] C from about 1160 ℃. 然后,通过使用作为载流气体的N2气,向反应炉内提供TMGa气和TMIn气,在p型包覆层58上,使具有约3nm厚的由不掺杂In0.07Ga0.93N构成的p侧接触层59,以约0.25μm/小时的速度生长。 Then, by using N2 gas as a carrier gas, TMGa gas and TMIn gas provided into the reactor, on the p-type cladding layer 58, so that having a thickness of about 3nm is formed of undoped p In0.07Ga0.93N side contact layer 59, of about 0.25μm / hour growth rate. 这样,在n型GaN基板111的区域111b的上面上、槽部111a的底面和侧面上,隔着缓冲层52,形成由氮化物类半导体的各层(53~59)构成的氮化物类半导体元件层110。 Thus, in the upper region 111b of the n-type GaN substrate 111, the upper side surface and the bottom surface of the groove portion 111a, a buffer layer 52 interposed therebetween, is formed (53 to 59) nitride semiconductor layers made of a nitride-based semiconductor element layer 110.

在包括在氮化物类半导体元件层110中的n型包覆层53中,使用AlGaN层,该AlGaN层与n型GaN基板之间的晶格常数差因基板的晶轴方向不同而不同。 Including the n-type cladding layer 53 in the nitride-based semiconductor element layer 110, the use of an AlGaN layer, the lattice constant between AlGaN layer and the n-type GaN substrate crystal axis direction of the substrate due to the difference differs. 例如Al0.07Ga0.93N和GaN的a轴方向的晶格常数分别为约0.3184nm和约0.3189nm,它们的比为0.9984。 For example, the lattice constant of a-axis direction Al0.07Ga0.93N and GaN of approximately 0.3184nm to 0.3189nm about their ratio was 0.9984. 另一方面,Al0.07Ga0.93N和GaN的c轴方向的晶格常数分别为约0.5172nm和约0.5186nm,它们的比为0.9973。 On the other hand, Al0.07Ga0.93N and GaN lattice constant about the c-axis direction are about 0.5186nm to 0.5172nm, their ratio was 0.9973. 这样,Al0.07Ga0.93N和GaN之间的晶格常数比在a轴方向为0.9984,在c轴方向为0.9973,以c轴方向偏离1的程度为大。 Thus, the lattice constant between GaN and Al0.07Ga0.93N ratio 0.9984 a-axis direction, in the c-axis direction is 0.9973 to 1 c-axis direction is large degree of deviation. 因此,在使用具有(11-22)面的GaN基板的第九实施方式中,面内的方向包括[1-100]方向以及垂直于[1-100]方向和[11-22]方向的方向(在此表示成y方向)。 Thus, the ninth embodiment having the GaN substrate (11-22) plane, the direction in the plane including the direction of [1-100] direction and perpendicular to the [1-100] direction and the [11-22] direction (denoted as y-direction). [1-100]方向的AlGaN和GaN的晶格常数比与a轴方向的AlGaN和GaN的晶格常数比相等。 AlGaN [1-100] direction and a lattice constant than GaN is equal to the ratio of a-axis lattice constant of AlGaN and GaN. 另一方面,y方向由于具有a轴方向和c轴方向的成分,y方向的AlGaN和GaN的晶格常数比为a轴方向和c轴方向的AlGaN和GaN的晶格常数比的中间值,比a轴方向的AlGaN和GaN的晶格常数比大。 On the other hand an intermediate value, y direction having a component due to the a-axis direction and the c-axis direction, Y direction AlGaN and GaN lattice constant ratio of c-axis and a-axis direction of the lattice constant of AlGaN and GaN ratio, It is larger than the lattice constant than AlGaN a-axis direction and GaN. 因此与使用面内的轴向仅具有a轴的(0001)面的GaN基板的第一~第六实施方式相比,使用具有(11-22)面的n型GaN基板111的第九实施方式在AlGaN层上施加的变形和应力变大。 n-type GaN substrate of the first embodiment to sixth embodiment the GaN substrate (0001) plane and thus only the inner axial face with the use of a shaft as compared with the use of the (11-22) plane 111 of the ninth embodiment deformation and stress imposed on the AlGaN layer is increased. 因此,在第九实施方式的氮化物类半导体激光元件中,与第一~第六实施方式的氮化物类半导体激光元件相比,在AlGaN层上容易产生裂纹,其结果,在氮化物类半导体层110上容易产生裂纹。 Thus, the nitride-based semiconductor laser device in the ninth embodiment, as compared with a nitride-based semiconductor laser element of the first to sixth embodiments, cracks easily occur on the AlGaN layer, as a result, the nitride-based semiconductor 110 layer cracks easily.

所以在第九实施方式中,将在n型GaN基板111上设置的槽部111a设置成沿[1-100]方向延伸。 Therefore, in the ninth embodiment, the groove portion disposed on the n type GaN substrate 111 111a disposed to extend in the [1-100] direction.

也就是,[1-100]方向相当于m轴方向,在晶体构造中m轴方向的变形或应力的大小与a轴方向的变形或应力的大小大体相等。 That is, the [1-100] direction corresponding to the m-axis direction, the size of the deformation or stress in the m-axis direction and the deformation magnitude of the stress or the a-axis direction is substantially equal in crystal structure. 因此在使用具有(11-22)面的基板的情况下,由于与[1-100]m轴方向相比,y方向的变形或应力大,所以和与[1-100]方向交叉的方向相比,在与y方向交叉的方向上容易产生裂纹。 Therefore the substrate having the (11-22) plane, in use, as compared with the [1-100] m-axis direction, y-direction deformation or stress is large, and so the direction intersecting the [1-100] direction ratio, cracks easily occur in a direction crossing the y-direction. 这样,通过象第九实施方式那样,沿与y方向交叉的[1-100]轴方向设置槽部111a,可以有效地抑制在与y方向交叉的方向上产生的裂纹的扩展。 [1-100] direction of this axis, by the ninth embodiment as above, the y-direction along a groove is provided intersecting portions 111a, extended in the direction generated in the y-direction intersecting with the crack can be effectively suppressed. 这样在第九实施方式中,由于能在产生大量裂纹的方向抑制裂纹的扩展,所以可以得到更大的效果。 In this ninth embodiment, since the crack propagation can be suppressed in the direction of a large number of cracks, larger effect can be obtained.

此外在第九实施方式中,如上述第四实施方式那样,使在n型GaN基板111上形成的槽部111a的开口宽度,从槽部111a的底面向开口端逐渐扩大。 Further, in the ninth embodiment, as described above fourth embodiment, the opening width of the groove portion 111a is formed on the n-type GaN substrate 111, from the bottom of the groove portion 111a facing the open end is gradually expanding. 因为这样形成的槽部111a的断面形状为台面型,在n型GaN基板111上形成包括AlGaN层的氮化物类半导体层110时,据认为AlGaN层的构成材料的一部分的Ga容易向槽部111a的倾斜侧面一侧移动。 Because the cross-sectional shape of the groove portion 111a thus formed is a mesa-type, is formed on the n-type GaN substrate 111 comprises a nitride-based semiconductor layer 110 of the AlGaN layer, it is thought that Ga part of the constituent material of the AlGaN layer tends to 111a groove portions moves toward the inclined side surface. 因此,在槽部111a的侧面上形成的AlGaN层的Al组成比,低于在n型GaN基板111的区域111b上形成的AlGaN层的Al组成比。 Thus, the Al composition ratio of AlGaN layer is formed on the side surface of the groove portion 111a is lower than the Al composition ratio of AlGaN layer is formed on a region 111b n-type GaN substrate 111. 具体说,作为AlGaN层形成Al组成比为约7%的层的情况下,相对于在n型GaN基板111的区域111b上形成的由掺杂Ge的n型AlGaN层构成的n型包覆层53的Al组成比为约7%,在槽部111a的侧面上形成的AlGaN层的Al组成比为约1.7%~约2.6%。 Specifically, the AlGaN layer is formed as the Al composition ratio of about 7% in the case of layers, with respect to the n-type cladding layer made of a Ge-doped n-type AlGaN layer 111b is formed on a region of n-type GaN substrate 111 53 Al composition ratio of about 7%, Al composition of the AlGaN layer is formed on the side surface of the groove portion 111a is from about 1.7% to about 2.6%. 此外,作为AlGaN层形成Al组成比为约7%的层的情况下,相对于在n型GaN基板111的区域111b上形成的由掺杂Mg的p型AlGaN层构成的p型包覆层58的Al组成比为约7%,在槽部111a的侧面上形成的AlGaN层的Al组成比为约3.9%~约4.3%。 Further, the AlGaN layer is formed as the Al composition ratio of about 7% in the case of layers, with respect to the p-type cladding layer made of Mg-doped p-type AlGaN layer is formed on a region 111b n-type GaN substrate 111 is 58 Al composition ratio of about 7%, Al composition of the AlGaN layer is formed on the side surface of the groove portion 111a is from about 3.9% to about 4.3%. 这种情况下,位于槽部111a的侧面上的AlGaN层的Al组成比低的部分的晶格常数与n型GaN基板111的晶格常数接近,所以在位于槽部111a的侧面上的AlGaN层的Al组成比低的部分中,n型GaN基板111和AlGaN层之间的晶格常数差变小。 In this case, an AlGaN layer located on the side of the groove portion 111a of the Al composition ratio of the lattice constant of the low portion of the n-type GaN substrate 111 is close, it is located on the side of the groove portion 111a of the AlGaN layer Al composition ratio lower section, the lattice constant between the n-type GaN substrate and the AlGaN layer 111 becomes small. 因此,即使因为n型GaN基板111和氮化物类半导体层110中的AlGaN层之间的晶格常数差,而导致在AlGaN层上产生变形,该变形在位于槽部111a的侧面上的AlGaN层的Al组成比低的部分中可以得到缓解,所以在AlGaN层上产生的变形变小。 Thus, if only because the lattice constant between the n-type GaN substrate 111 and the nitride-based semiconductor layer, the AlGaN layer 110 is poor, resulting in deformation on the AlGaN layer, the deformation of the AlGaN layer located on the groove portion 111a of the side surface Al composition ratio in the lower portion can be eased, so that deformation is small on the AlGaN layer. 这样,可以抑制在AlGaN层上产生的裂纹量的增加,并且也可以抑制包括AlGaN层的氮化物类半导体层110上产生的裂纹量的增加。 Thus, it is possible to suppress an increase in the amount of cracks in the AlGaN layer, can be suppressed, and an increased amount of cracks on nitride-based semiconductor layer comprises AlGaN layer 110.

此外,第九实施方式的此后的制造工艺与上述第七实施方式的制造工艺相同。 Further, after the ninth embodiment of the manufacturing process and manufacturing process is the same as the seventh embodiment.

如上所述,在第九实施方式中,通过以使n型GaN基板111的表面具有(H、K、-HK、L)面的(11-22)面的方式构成,一般在氮化物类半导体层上施加有面内变形的情况下,氮化物类半导体基板的表面为(0001)面时,在氮化物类半导体层上产生的压电电场最大,在氮化物类半导体基板的表面为(0001)面以外的面时,在氮化物类半导体层上产生的压电电场比在(0001)面时产生的压电电场小。 As described above, in the ninth embodiment, by the surface of the n-type GaN substrate 111 having (H, K, -HK, L) mode (11-22) plane of the structure, the nitride-based semiconductor is generally when there are a case where the surface modification layer applied to the surface of the nitride-based semiconductor substrate is (0001) plane, the piezoelectric field generated in the nitride-based semiconductor layer is maximum, the surface of the nitride-based semiconductor substrate is (0001 ) other than when the plane surface, a piezoelectric field generated in the nitride-based semiconductor layer is smaller than the piezoelectric field generated in the (0001) plane. 这样,通过使氮化物类半导体基板的表面为(0001)面以外的(11-22)面,可以减小在MQW活性层55上产生的压电电场。 Thus, through the nitride-based semiconductor substrate surface is (0001) (11-22) plane other than the plane, the piezoelectric field can be reduced on the MQW active layer 55 is generated. 这样,可以使发光效率提高。 Thus, light emission efficiency can be improved.

此外在第九实施方式中,通过使n型GaN基板111的表面为(11-22)面,在原子的排列上,由于可以在表面形成原子层高度的台阶,所以与在表面上原子层高度的台阶少的(0001)面、(11-20)面和(1-100)面上的生长相比较,结晶生长的方式容易变成以台阶为起点而生长的台阶流动生长,其结果,可以使结晶性能提高。 Further, in the ninth embodiment, by making the surface of the n-type GaN substrate 111 is (11-22) face in the arrangement of atoms can be formed due to the step height on the surface atomic layers, the height of the atomic layer on the surface step less (0001) plane, the growth of the (11-20) plane and (1-100) plane as compared with the way of crystal growth in step flow tends to become a starting point for the growth step of growing, as a result, can be so improve crystalline property.

此外,第九实施方式的其他效果与上述第七实施方式相同。 Furthermore, other effects of the ninth embodiment of the seventh embodiment.

(第十实施方式)第十实施方式的氮化物类半导体激光元件与第九实施方式的氮化物类半导体激光元件的不同点在于槽部的方向不同。 Different from nitride-based semiconductor laser element is a nitride based semiconductor laser device embodiment of the ninth embodiment (Tenth Embodiment) The eleventh embodiment is different from the direction of the groove portion. 下面参照图29和图30,对本发明的第十实施方式的氮化物类半导体激光元件的制造工艺进行说明。 The process for manufacturing a nitride based semiconductor laser element according to a tenth embodiment of the present invention will be described with reference to FIGS. 29 and 30.

在第十实施方式中,使用与上述第九实施方式相同的工艺,在n型GaN基板121上形成具有约50μm的宽度(开口端的宽度)W91和约2μm的深度,并且具有台阶形状的断面形状的条纹状(细长形)槽部121a。 In the tenth embodiment, the ninth embodiment uses the same process to form a depth W91 of about 2μm to about 50μm has a width (opening width end) on the n-type GaN substrate 121, and has a stepped cross-sectional shape of the shape a stripe-shaped (elongate) the groove portion 121a. 但是,在第十实施方式中,以沿上述第九实施方式的y方向延伸的方式形成槽部121a。 However, in the tenth embodiment, in a manner extending in the y direction of the ninth embodiment of the groove portion 121a is formed. 此时,被形成有槽部121a的区域夹住的具有[1-100]方向的宽度W92的区域121b得以形成。 At this time, the region is formed with a groove portion 121a of the sandwiching area 121b having the width W92 [1-100] direction is formed. 此外,n型GaN基板121是本发明的“氮化物类半导体基板”的一个例子,形成有槽部121a的区域是本发明的“第二区域”的一个例子,区域121b是本发明的“第一区域”的一个例子。 Further, n-type GaN substrate 121 is an example of a "nitride-based semiconductor substrate" in the present invention, a region in which the groove portion 121a is an example of the "second region" of the present invention, the region 121b is "on the present invention an example of a region ".

然后使用与上述第九实施方式相同的工艺,在n型GaN基板121上形成氮化物类半导体层120。 Then using the above-described same process as the ninth embodiment, the nitride-based semiconductor layer 120 is formed on the n-type GaN substrate 121. 该氮化物类半导体层120与上述第九实施方式相同,从n型GaN基板121一侧开始,具有n型包覆层53、MQW活性层55和p型包覆层58。 The nitride semiconductor layer 120 and the ninth embodiment described above, starting from the side of n type GaN substrate 121, an n-type cladding layer 53, MQW active layer 55 and p-type cladding layer 58.

此外,第十实施方式的其他的制造工艺与上述第九实施方式的制造工艺相同。 In addition, other manufacturing processes of a tenth embodiment of the manufacturing process is the same as the ninth embodiment.

在第十实施方式中,在n型GaN基板121上隔着缓冲层52形成氮化物类半导体层时,在槽部121a的侧面上形成的由n型Al0.07Ga0.93N构成的n型包覆层53的厚度(T1=1.1μm),小于在n型GaN基板121的区域121b上形成的n型包覆层53的厚度(T2=1.8μm)。 In the tenth embodiment, the nitride-based semiconductor 52 formed via a buffer layer on the layer of n-type GaN substrate 121, an n-type cladding made of n-type Al0.07Ga0.93N formed on the side surface portion 121a of the groove thickness of the n-type cladding layer 53 of a thickness (T1 = 1.1μm) layer 53, is smaller than the region 121b is formed on the n-type GaN substrate 121 (T2 = 1.8μm). 因此,即使因为具有约0.3189nm晶格常数的n型GaN基板121与具有约0.3184nm晶格常数的由n型Al0.07Ga0.93N构成的n型包覆层53之间的晶格常数差,而导致在n型包覆层53上产生变形,由于该变形集中在位于槽部121a侧面上的n型包覆层53厚度小的部分,所以在位于n型GaN基板121的区域121b的n型包覆层53上产生的变形可以得被缓解。 Thus, if only because the n-type GaN substrate having a lattice constant of about 0.3189nm lattice constant between the n-type cladding layer 121 formed of n-type Al0.07Ga0.93N and having about 53 0.3184nm lattice constant difference, resulting in deformation on the n-type cladding layer 53, due to the small thickness portion 53 of the deformation is concentrated in the groove portion 121a is located on the side surface of the n-type cladding layer, located in the region 121b of the n-type GaN substrate 121 of n-type deformation of the cladding layer 53 can be obtained ease. 这样,可以抑制起因于在n型包覆层53上产生的变形大,在n型包覆层53上产生的裂纹量增加的不利情况。 Thus, large deformations can be suppressed due to generated on the n-type cladding layer 53, increasing the amount of cracks on the n-type cladding layer 53 of disadvantages. 因此,也可以抑制在包括n型包覆层53的氮化物类半导体元件层120上产生的裂纹量繁荣增加,所以可以抑制因裂纹而无法提供给氮化物类半导体元件层120的发光部分的漏电流的增加,和因裂纹而产生的妨碍光波导的不利情况。 Accordingly, cracks can be suppressed to increase the amount produced in prosperous comprises nitride-based semiconductor element layer 53 of n-type cladding layer 120, it is possible to suppress the leakage due to cracks can not be supplied to the light emitting portion of the nitride-based semiconductor element layer 120 increase in current, and due to cracks generated in the optical waveguide interfere disadvantage. 其结果,可以抑制氮化物类半导体激光元件特性和成品率的降低。 As a result, it is possible to suppress decrease the nitride based semiconductor laser device characteristics and yield.

此外,第十实施方式的其他效果与上述第九实施方式相同。 In addition, another effect of the tenth embodiment and the ninth embodiment.

此外,这里公开的实施方式所有方面都是示例,不应该认为是限制的内容。 In addition, the embodiments disclosed herein are examples in all aspects and should not be considered to be limited. 本发明的范围不是对上述的实施方式的说明,而是由权利要求的范围表示,此外还包括与权利要求的范围等同的意思和在范围内的所有变更。 The scope of the present invention is not described in the above embodiment, but rather by the scope of the claims, also include equivalents of the claims and all modifications within the meaning range.

例如在上述第一~第十实施方式中,使用了n型GaN基板,但本发明并不限于此,也可以使用p型氮化物类半导体基板,并且在p型氮化物类半导体基板上,也可以依次形成p型氮化物类半导体层、活性层和n型氮化物类半导体层。 For example, in the first to tenth embodiments, the n-type GaN substrate was used, but the present invention is not limited thereto, p-type nitride-based semiconductor substrate may be used, and on the p-type nitride-based semiconductor substrate, and It may be sequentially formed a p-type nitride semiconductor layer, an active layer and an n-type nitride based semiconductor layer.

此外,在上述第一~第十实施方式中,使用了GaN基板,但本发明并不限于此,也可以使用GaN基板以外的氮化物类半导体基板。 Further, in the above-described first to tenth embodiments, the GaN substrate was used, but the present invention is not limited thereto, the nitride-based semiconductor substrate other than the GaN substrate may be used. 作为GaN基板以外的氮化物类半导体基板,可以举出,例如由AlGaN、AlN、AlGaInN或AlGaInBN构成的氮化物类半导体基板。 As the nitride semiconductor substrate other than the GaN substrate may include, for example, nitride-based semiconductor substrate made of AlGaN, AlN, AlGaInN or AlGaInBN.

此外,在上述第一~第十实施方式中,采用了在n型GaN基板上形成有底面的槽部,但本发明并不限于此,也可以在n型GaN基板上形成没有底面的槽部。 Further, in the first embodiment ~ the tenth embodiment, the use of the bottom surface of the groove portion is formed on the n-type GaN substrate, but the present invention is not limited thereto, the groove portions may be formed not on the bottom surface of the n-type GaN substrate in . 例如,如图31所示,在n型GaN基板131上,也可以形成断面形状为V字形的槽部131a。 For example, as shown in FIG 31, on the n-type GaN substrate 131 may be formed as a V-shaped cross-sectional shape of the groove portion 131a. 此外,n型GaN基板131是本发明的“氮化物类半导体基板”的一个例子。 Further, n-type GaN substrate 131 is an example of a "nitride-based semiconductor substrate" in the present invention. 如采用这样的构成,与上述第四实施方式相同,在使用MOCVD法等在n型GaN基板131形成AlGaN层时,据认为AlGaN层的构成材料的Ga容易向具有V字形断面形状的槽部131a的内面一侧移动。 As such a configuration, the same as in the fourth embodiment, when using the MOCVD method or the like is formed on the AlGaN layer 131 n-type GaN substrate, it is thought that Ga material constituting the AlGaN layer tends to have a V-shaped groove portion 131a of the cross-sectional shape the inner surface of the moving side. 由此,可以容易地使在槽部131a的内面上形成的AlGaN层的Al组成比,低于在槽部131a以外的区域上形成的AlGaN层的Al组成比。 Accordingly, the AlGaN layer can be easily made in the surface of the groove portion 131a is formed of an Al composition ratio below the Al composition ratio of AlGaN layer is formed on a region other than the groove portion 131a. 此外,在形成有n型GaN基板131的槽部131a的区域以外的区域131b,为对应于位于氮化物类半导体元件层的隆起部的下方的发光部分的区域。 Further, a region 131b is formed in a region other than the groove portion 131a of the n-type GaN substrate 131, the light emitting portion corresponding to the raised portion is located below the nitride-based semiconductor element layer region. 此外,n型GaN基板131的区域131b是本发明的“第一区域”的一个例子,形成有n型GaN基板131的槽部131a的区域是本发明的“第二区域”的一个例子。 Further, the n-type GaN region 131b of the substrate 131 is an example of the "first region" of the present invention, a region where the groove portion 131a of the n-type GaN substrate 131 is an example of the "second region" of the present invention.

此外,在上述第一~第十实施方式中,使用MOCVD法进行氮化物类半导体各层的结晶生长,但本发明并不限于此,也可以使用氢化物蒸气相定向生长法、以及使用将TMAl、TMGa、TMIn、NH3、肼、SiH4、GeH4和Mg(C5H5)2等作为原料气体的气体源的分子束定向生长法,进行结晶生长。 Further, in the first to tenth embodiments, the MOCVD method is crystallized nitride-based semiconductor layers were grown, but the present invention is not limited thereto, may be oriented using a hydride vapor phase growth method, and the use of TMAl , TMGa, TMIn, NH3, hydrazine, SiH4, GeH4, and Mg (C5H5) 2 and the like as the raw material gas, gas source molecular beam directional growth method, crystal growth.

此外,在上述第一~第十实施方式中,使用了具有(0001)面、(1-100)面和(11-22)面的表面的GaN基板,但也可以使用从这些面偏离约1.0°以下范围内的氮化物类半导体基板。 Further, in the above-described first to tenth embodiments, used having a (0001) plane, (1-100) plane and (11-22) GaN substrate surface plane, but may be used from about 1.0 deviate from these surfaces ° nitride-based semiconductor substrate in the following ranges.

此外,在上述的第九和第十实施方式中,使用了具有(11-22)面的表面的GaN基板,但本发明并不限于此,也可以使用具有(11-21)面、(11-23)面、(11-24)面、(11-25)面、(2-201)面、(1-101)面、(1-102)面、(1-103)面和(1-104)面等的面取向的氮化物类半导体基板。 Further, in the above-described ninth and tenth embodiments, used having a (11-22) GaN substrate surface plane, but the present invention is not limited thereto, may be used having a (11-21) plane, (11 -23) plane, (11-24) plane, (11-25) plane, (2-201) plane, (1-101) plane, (1-102) plane, (1-103) plane and (1 nitride-based semiconductor substrate surface orientation 104) plane or the like.

此外,在上述第一~第十实施方式中,使用了MQW构造的活性层,但本发明并不限于此,即使是具有没有量子效果的大厚度的单层活单一量子井构造的活性层,也可以得到相同的效果。 Further, in the first embodiment ~ the tenth embodiment, a MQW structure of the active layer, but the present invention is not limited to this, even if the active layer is a single layer having a single quantum well structure of live large thickness is not the quantum effect, the same effect can be obtained.

此外,在上述第四、第七、第八、第九和第十实施方式中,使在n型GaN基板上形成的台面状断面形状的槽部的底面与侧面所成的角度α(参照图18)为约40°,但本发明并不限于此,槽部的底面与侧面所成的角度α在约15°以上就可以。 Further, in the fourth, seventh, eighth, ninth and tenth embodiments, so that the bottom portion and the side groove-like cross-sectional shape of a mesa formed on the n-type GaN substrate an angle [alpha] (see FIG. 18) is about 40 °, but the present invention is not limited to this, the groove bottom surface and the side surface portion at an angle α can be above about 15 °. 此外,槽部侧面的倾斜舒缓时,也可以使在槽部侧面上形成的氮化物类半导体层(AlGaN层)的Al组成比,低于在槽部以外的区域上形成的氮化物类半导体层(AlGaN层)的Al组成比。 Further, when the side surface of the inclined groove portions soothing, may be nitride based semiconductor layer (AlGaN layer) formed on the side surface of the groove portion of the Al composition ratio, lower than the nitride-based semiconductor layer formed on a region other than the groove portions (AlGaN layer) Al composition ratio.

此外,在上述第四、第七、第八和第九实施方式中,采用了使槽部的断面形状关于(0001)面或y方向几乎成面对称的构成,但是非对称构成也可以。 Further, in the fourth, seventh, eighth and ninth embodiments, the cross-sectional shape of the groove employed to make the portion on the (0001) plane or a y-direction into a nearly symmetric configuration, but the configuration may be asymmetric. 也就是,在图18中,也可以是使槽部51a的底面与侧面所成的角度α为左右不同的角度。 That is, in FIG. 18, it may be that the groove bottom surface and the side surface portion 51a of the angle α is about different angles.

此外,在上述第七~第十实施方式中,还可以在[1-100]方向、[11-20]方向或者y方向延伸的槽部的基础上,进一步形成与[1-100]方向、[11-20]方向或者y方向垂直的方向上延伸的槽,并可以作成格子状的槽。 Further, in the seventh to tenth embodiments may also be, [11-20] direction or the y-direction extending base of the groove portions, is further formed in the [1-100] direction and [1-100] direction, [11-20] grooves extending in a direction perpendicular to the direction or the y direction, and can be made lattice-shaped groove.

此外,在上述第一~第十实施方式中,槽部深度优选的是比由AlGaN构成的n型层的厚度或由AlGaN构成的p型层的厚度大的值,更优选的是0.5μm~30μm的范围。 Further, in the first to tenth embodiment, the depth of the groove portion is preferably a thickness ratio of the n-type layer is made of AlGaN or p-type layer made of AlGaN large value, and more preferably of 0.5 m - 30μm range.

此外,在上述第一~第十实施方式中,槽部的宽度优选的是比由AlGaN构成的n型层的厚度或由AlGaN构成的p型层的厚度大的值,更优选的是5μm~400μm的范围。 Further, in the first to tenth embodiment, the width of the groove portion is preferably larger than the thickness of the n-type layer is made of AlGaN or p-type layer made of AlGaN value, and more preferably 5 m ~ 400μm range.

此外,在上述第一~第十实施方式中,对应于发光部分的区域的宽度优选的是10μm~400μm的范围。 Further, in the above-described first to tenth embodiments, the width of the region corresponding to the light emitting portion preferably in the range of 10μm ~ 400μm.

Claims (26)

1.一种氮化物类半导体发光元件的制造方法,其特征在于,包括:通过将与氮化物类半导体基板上形成的氮化物类半导体层的发光部分对应的所述氮化物类半导体基板的第一区域以外的第二区域的规定区域有选择地去除到规定的深度,在所述氮化物类半导体基板形成槽部的工序;和在所述氮化物类半导体基板的所述第一区域和所述槽部上,形成其组成与所述氮化物类半导体基板不同的氮化物类半导体层的工序。 1. A method of manufacturing a nitride-based semiconductor light-emitting element, comprising: a first light emitting portion by said nitride-based semiconductor layer is formed corresponding to the nitride-based semiconductor on the substrate a nitride-based semiconductor substrate the second predetermined region other than the region a region is selectively removed to a predetermined depth, a step is formed in the groove portion of the nitride semiconductor substrate; and the nitride-based semiconductor substrate and the first region the above-mentioned groove portions, are formed with different composition of the nitride-based semiconductor substrate, a step nitride-based semiconductor layer.
2.如权利要求1所述的氮化物类半导体发光元件的制造方法,其特征在于,所述氮化物类半导体基板包括GaN基板,所述氮化物类半导体层包括含有Al、Ga和N的层。 2. The method of manufacturing a nitride-based semiconductor light emitting device according to claim, wherein said nitride semiconductor substrate comprises a GaN substrate, the nitride-based semiconductor containing layer comprising Al, Ga and N layers .
3.如权利要求2所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板上形成所述氮化物类半导体层的工序包括:在所述氮化物类半导体基板上的所述第一区域的上面上、所述槽部的底面和侧面上,形成所述氮化物类半导体层的工序,在所述槽部的侧面上形成的所述氮化物类半导体层的Al组成比,比在所述氮化物类半导体基板的上面上形成的所述氮化物类半导体层的Al组成比低。 3. The method of manufacturing a nitride-based semiconductor light-emitting device according to claim 2, wherein the step of nitride-based semiconductor layer includes forming the nitride semiconductor substrate: the nitride-based on the upper surface of the upper substrate, a first semiconductor region, the bottom and side portions of the groove, the forming of the nitride-based semiconductor layer is formed on the side of the groove portion of the nitride-based semiconductor Al composition ratio of the layer, the composition ratio of Al lower than the nitride-based semiconductor layer formed on the upper surface of the nitride-based semiconductor substrate.
4.如权利要求3所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板上形成所述槽部的工序包括:以从所述槽部的底面向开口端逐渐扩大的方式,形成所述槽部的开口宽度的工序。 4. A method of manufacturing a nitride-based semiconductor light emitting device according to claim 3, characterized in that the step of forming the groove portion includes a nitride-based semiconductor on the substrate: In the groove portion from the bottom faces gradually increasing manner the open end, forming an opening width of the groove portion.
5.如权利要求1所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板上形成所述氮化物类半导体层的工序包括:在所述氮化物类半导体基板上的所述第一区域的上面上、所述槽部的底面和侧面上,形成所述氮化物类半导体层的工序,在所述槽部的侧面上形成的所述氮化物类半导体层的厚度,比在所述第一区域的上面上形成的所述氮化物类半导体层的厚度小。 5. A method of manufacturing a nitride-based semiconductor light emitting device according to claim, wherein the step of nitride-based semiconductor layer includes forming the nitride semiconductor substrate: the nitride-based on the upper surface of the upper substrate, a first semiconductor region, the bottom and side portions of the groove, the forming of the nitride-based semiconductor layer is formed on the side of the groove portion of the nitride-based semiconductor the thickness of the layer is smaller than the thickness of the nitride-based semiconductor layer formed on the upper surface of the first region.
6.如权利要求5所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板形成所述槽部的工序包括:以实质上垂直于所述氮化物类半导体基板表面的方式,形成所述槽部的侧面的工序。 The method for producing nitride-based semiconductor light-emitting device according to claim 5, wherein the groove portion comprises the step of forming the nitride semiconductor substrate: a substantially perpendicular to the nitride-based semiconductor substrate surface, the step of forming the side surface of the groove portion.
7.如权利要求5所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板形成所述槽部的工序包括:以从所述槽部的底面向开口端逐渐缩小的方式,形成所述槽部的开口宽度的工序。 7. A method of manufacturing a nitride-based semiconductor light emitting device according to claim 5, wherein the groove portion comprises the step formed in the nitride semiconductor substrate: the bottom of the groove from the opening portion facing the end tapering manner, forming an opening width of the groove portion.
8.如权利要求1所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板形成所述槽部的工序包括:在所述氮化物类半导体基板上将所述槽部形成为在规定方向延伸的细长形的工序。 8. A method of manufacturing a nitride-based semiconductor light emitting device according to claim 1, characterized in that, said groove portion comprises a step formed in the nitride semiconductor substrate: a semiconductor substrate on the nitride-based the groove portion is formed into an elongated shape extending in a predetermined direction step.
9.如权利要求1所述的氮化物类半导体发光元件的制造方法,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、L)面,其中,H、K是整数,H和K的至少有一个不为0。 The method of manufacturing a nitride-based semiconductor light emitting device as claimed in claim 1, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) faces, wherein, H, K is an integer of at least H and K a is not 0.
10.如权利要求9所述的氮化物类半导体发光元件的制造方法,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、0)面。 The method of manufacturing a nitride-based semiconductor light-emitting device as claimed in claim 9, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, 0) plane.
11.如权利要求9所述的氮化物类半导体发光元件的制造方法,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、L)面,其中,L是不为0的整数。 The method of manufacturing a nitride-based semiconductor light-emitting device as claimed in claim 9, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) plane, where, L is not is an integer of 0.
12.如权利要求9所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板形成所述槽部的工序包括:在所述氮化物类半导体基板上形成沿[K、-H、HK、0]方向延伸的所述槽部的工序。 The method of manufacturing a nitride-based semiconductor light-emitting device as claimed in claim 9, wherein the groove portion comprises the step formed in the nitride semiconductor substrate: forming on said nitride semiconductor substrate in [K, -H, HK, 0] direction of the step portion of the groove extends.
13.如权利要求1所述的氮化物类半导体发光元件的制造方法,其特征在于,在所述氮化物类半导体基板形成所述槽部的工序包括:在所述氮化物类半导体基板上,以包围第一区域的方式,将沿第一方向和与第一方向交叉的第二方向延伸的细长形的所述槽部形成为格子形状的工序。 The method of manufacturing a nitride-based semiconductor light-emitting device as claimed in claim 1, wherein the groove portion comprises the step formed in the nitride-based semiconductor substrate: in the nitride-based semiconductor substrate, said elongated groove portion to surround the first region, extending in the first direction and a second direction crossing the first direction formed in a lattice shape of a step.
14.如权利要求1所述的氮化物类半导体发光元件的制造方法,其特征在于,所述氮化物类半导体层包括:由具有与在所述氮化物类半导体基板的所述第一区域和所述第二区域上形成的所述氮化物类半导体基板不同组成的氮化物类半导体构成的层;和由至少在所述第一区域上形成的氮化物类半导体构成的发光层。 The method of manufacturing a nitride-based semiconductor light-emitting device as claimed in claim 1, wherein said nitride-based semiconductor layer comprising: having made in the nitride semiconductor substrate of the first region and layers of different composition of the nitride-based semiconductor substrate is formed on the second region of the nitride-based semiconductor; a light-emitting layer and made of a nitride semiconductor formed at least on the first region.
15.一种氮化物类半导体发光元件,其特征在于,包括:氮化物类半导体基板,其包括对应于发光部分的第一区域,和通过具有规定高度的台阶部,配置成与所述第一区域邻接的第二区域;氮化物类半导体层,其形成在所述氮化物类半导体基板的所述第一区域的上面和所述台阶部的侧面上,并且具有与所述氮化物类半导体基板不同的组成,其中,在所述台阶部的侧面上形成的所述氮化物类半导体层的厚度比在第一区域的上面上形成的所述氮化物类半导体层的厚度小。 15. A nitride-based semiconductor light-emitting element comprising: a nitride-based semiconductor substrate including a first region corresponding to the light emitting portion, and through the stepped portion having a predetermined height, configured, with the first region adjacent to the second region; nitride-based semiconductor layer which is formed on the upper side and the stepped portion of the nitride-based semiconductor substrate of the first region, and having the nitride-based semiconductor substrate, different compositions, wherein the thickness of the nitride-based semiconductor layer is formed on the side of the step portion is smaller than the thickness of the nitride-based semiconductor layer formed on top of the first region.
16.如权利要求15所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、L)面,其中,H、K是整数,H和K的至少有一个不为0。 Nitride-based semiconductor light-emitting element as claimed in claim 15, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) faces, wherein, H, K is an integer, At least one of H and K is not zero.
17.如权利要求16所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、0)面。 17. The nitride-based semiconductor light-emitting element according to claim 16, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, 0) plane.
18.如权利要求17所述的氮化物类半导体发光元件,其特征在于,所述台阶部以沿[K、-H、HK、0]方向延伸的方式形成。 18. The nitride-based semiconductor light-emitting element according to claim 17, wherein said stepped portion along [K, -H, HK, 0] direction is formed extending manner.
19.如权利要求16所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、L)面,其中,L是不为0的整数。 19. The nitride-based semiconductor light-emitting device according to claim 16, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) plane, where, L is not 0 integer.
20.如权利要求15所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体层包括:由与在所述氮化物类半导体基板的所述第一区域和所述第二区域上形成的所述氮化物类半导体基板组成不同的氮化物类半导体构成的层;和由至少在所述第一区域上形成的氮化物类半导体构成的发光层。 20. The nitride-based semiconductor light emitting device according to claim 15, wherein said nitride-based semiconductor layer comprising: a and in the nitride semiconductor substrate of the first region and the second the nitride-based semiconductor region formed on the substrate layer of a different composition of the nitride-based semiconductor; and a light emitting layer made of nitride semiconductor formed at least on the first region.
21.一种氮化物类半导体发光元件,其特征在于,包括:氮化物类半导体基板,其包括对应于发光部分的第一区域,和通过具有规定高度的台阶部,配置成与所述第一区域邻接的第二区域;氮化物类半导体层,其形成在所述氮化物类半导体基板的所述第一区域的上面和所述台阶部的侧面上,并且具有与所述氮化物类半导体基板不同的组成,含有Al、Ga和N,在所述台阶部的侧面上形成的所述氮化物类半导体层的Al组成比,比在所述第一区域的上面上形成的所述氮化物类半导体层的Al组成比低。 21. A nitride-based semiconductor light-emitting element comprising: a nitride-based semiconductor substrate including a first region corresponding to the light emitting portion, and through the stepped portion having a predetermined height, configured, with the first region adjacent to the second region; nitride-based semiconductor layer which is formed on the upper side and the stepped portion of the nitride-based semiconductor substrate of the first region, and having the nitride-based semiconductor substrate, different compositions, containing Al, Ga and N, Al composition ratio of the nitride-based semiconductor layer is formed on the side of the stepped portion, is formed on than the upper region of the first nitride-based Al composition of the semiconductor layer is lower than that.
22.如权利要求21所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、L)面,其中,H、K是整数,H和K的至少有一个不为0。 22. The nitride-based semiconductor light-emitting device according to claim 21, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) faces, wherein, H, K is an integer, At least one of H and K is not zero.
23.如权利要求22所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、0)面。 23. The nitride-based semiconductor light emitting device according to claim 22, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, 0) plane.
24.如权利要求22所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体基板的表面具有(H、K、-HK、L)面,其中,L是不为0的整数。 24. The nitride-based semiconductor light-emitting device according to claim 22, characterized in that the surface of the nitride-based semiconductor substrate having (H, K, -HK, L) plane, where, L is not 0 integer.
25.如权利要求24所述的氮化物类半导体发光元件,其特征在于,所述台阶部以沿[K、-H、HK、0]方向延伸的方式形成。 25. The nitride-based semiconductor light-emitting element according to claim 24, wherein said stepped portion along [K, -H, HK, 0] direction is formed extending manner.
26.如权利要求21所述的氮化物类半导体发光元件,其特征在于,所述氮化物类半导体层包括:由在所述氮化物类半导体基板的所述第一区域和所述第二区域上形成的含有Al和Ga的氮化物类半导体构成的层;和由至少在所述第一区域上形成的氮化物类半导体构成的发光层。 26. The nitride-based semiconductor light emitting device according to claim 21, wherein said nitride-based semiconductor layer comprises: a in the nitride semiconductor substrate of the first region and the second region nitride-based semiconductor layer containing Al and Ga and formed on the configuration; and a light emitting layer made of nitride semiconductor formed at least on the first region.
CNA2006101543585A 2005-03-24 2006-09-22 Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device CN101043121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078726A JP4928811B2 (en) 2005-03-24 2006-03-22 Nitride-based semiconductor light-emitting device manufacturing method and nitride-based semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
CN101043121A true CN101043121A (en) 2007-09-26

Family

ID=38808429

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101543585A CN101043121A (en) 2005-03-24 2006-09-22 Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device

Country Status (1)

Country Link
CN (1) CN101043121A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034853A (en) * 2009-09-24 2011-04-27 住友电气工业株式会社 Nitride semiconductor substrate, semiconductor device, and methods for manufacturing nitride semiconductor substrate and semiconductor device
CN102460866A (en) * 2009-06-19 2012-05-16 住友电气工业株式会社 Group iii nitride semiconductor laser diode
CN102668281A (en) * 2009-12-25 2012-09-12 住友电气工业株式会社 Group iii nitride semiconductor laser element, method for producing group iii nitride semiconductor laser element, and epitaxial substrate
CN101946338B (en) 2008-02-22 2013-08-28 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic semiconductor body and method for producing an optoelectronic semiconductor body
CN103560396A (en) * 2008-08-04 2014-02-05 住友电气工业株式会社 Gan semiconductor optical element, method for manufacturing gan semiconductor optical element, epitaxial wafer and method for growing gan semiconductor film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946338B (en) 2008-02-22 2013-08-28 奥斯兰姆奥普托半导体有限责任公司 Optoelectronic semiconductor body and method for producing an optoelectronic semiconductor body
CN103560396A (en) * 2008-08-04 2014-02-05 住友电气工业株式会社 Gan semiconductor optical element, method for manufacturing gan semiconductor optical element, epitaxial wafer and method for growing gan semiconductor film
CN102460866B (en) * 2009-06-19 2014-08-06 住友电气工业株式会社 Group iii nitride semiconductor laser diode
CN102460866A (en) * 2009-06-19 2012-05-16 住友电气工业株式会社 Group iii nitride semiconductor laser diode
US8917750B2 (en) 2009-06-19 2014-12-23 Sumitomo Electric Industries, Ltd. III-nitride semiconductor laser diode
CN102034853A (en) * 2009-09-24 2011-04-27 住友电气工业株式会社 Nitride semiconductor substrate, semiconductor device, and methods for manufacturing nitride semiconductor substrate and semiconductor device
CN102668281A (en) * 2009-12-25 2012-09-12 住友电气工业株式会社 Group iii nitride semiconductor laser element, method for producing group iii nitride semiconductor laser element, and epitaxial substrate
CN102668281B (en) * 2009-12-25 2014-05-28 住友电气工业株式会社 Group iii nitride semiconductor laser element, method for producing group iii nitride semiconductor laser element, and epitaxial substrate

Similar Documents

Publication Publication Date Title
US6741623B2 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
US8481991B2 (en) Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations
CN1160801C (en) Nitride semiconductor device
JP4880456B2 (en) Nitrogen compound semiconductor device and manufacturing method thereof
JP3898537B2 (en) Nitride semiconductor thin film forming method and nitride semiconductor light emitting device
CN101515700B (en) Group-iii nitride light-emitting device and method for manufacturing group-iii nitride based semiconductor light-emitting device
JP3864735B2 (en) Semiconductor light emitting device and manufacturing method thereof
US7751455B2 (en) Blue and green laser diodes with gallium nitride or indium gallium nitride cladding laser structure
US20090174035A1 (en) Semiconductor Device
US6835956B1 (en) Nitride semiconductor device and manufacturing method thereof
US20100096615A1 (en) Light-emitting device
JP2010518626A (en) Optimization of laser rod orientation for nonpolar and semipolar (Ga, Al, In, B) N diode lasers
US7813397B2 (en) Nitride semiconductor laser device
EP2312651A1 (en) Gan semiconductor optical element, method for manufacturing gan semiconductor optical element, epitaxial wafer and method for growing gan semiconductor film
JP3438648B2 (en) Nitride semiconductor device
CN1252883C (en) Gallium nitride compound semiconductor element
JP4513446B2 (en) Crystal growth method of semiconductor crystal
JP4204982B2 (en) Semiconductor laser element
US6797991B2 (en) Nitride semiconductor device
JP4352473B2 (en) Manufacturing method of semiconductor device
JP4173445B2 (en) Nitride semiconductor substrate, method for manufacturing the same, and semiconductor light emitting device using the same
US7664151B2 (en) Nitride semiconductor laser diode
JP2008306062A (en) Semiconductor light-emitting element and its fabrication process
US20090146160A1 (en) Gallium nitride semiconductor light emitting element
US20060043396A1 (en) Sapphire substrate, epitaxial substrate and semiconductor device

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent