CN101023241A - 钻有损耗地层的方法 - Google Patents

钻有损耗地层的方法 Download PDF

Info

Publication number
CN101023241A
CN101023241A CNA2005800318329A CN200580031832A CN101023241A CN 101023241 A CN101023241 A CN 101023241A CN A2005800318329 A CNA2005800318329 A CN A2005800318329A CN 200580031832 A CN200580031832 A CN 200580031832A CN 101023241 A CN101023241 A CN 101023241A
Authority
CN
China
Prior art keywords
pressure
fluid
drilling
well
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800318329A
Other languages
English (en)
Inventor
D·G·雷茨玛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN101023241A publication Critical patent/CN101023241A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/003Means for stopping loss of drilling fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Drilling And Boring (AREA)

Abstract

本发明涉及在压裂地层中钻井眼(106)的方法,包括步骤:在井眼(106)内布置钻管(112),其中在钻管(112)和井壁之间形成环空(115);通过主泵(138),把钻井液(150)通过钻管(112)的内部管道和钻管(112)远端附近的钻管流体出口(114)向井眼(106)内泵入;利用例如BOP上的旋转头之类的压力密封件(142)对环空(115)进行压力密封;通过井控管道(124)把井控流体泵入环空(115)内,该井控管道把处于压力密封件(142)和钻管流体出口(114)之间位置处的环空(115)和背压系统(131)连接起来;在压力密封件(142)和背压系统(131)之间进行井控流体的压力平衡。

Description

钻有损耗地层的方法
技术领域
本发明涉及一种钻有损耗地层的方法。在本说明书范围内,“有损耗地层”是用于表示钻井过程中很大部分钻井液在其中损耗的地层的术语,例如天然压裂的地层或渗透率异常的地层。
背景技术
从地下地层勘探和开发烃根本上需要到达地层并从中开采烃的方法。这通常通过由钻机钻井来实现。在其最简单的形式中,它包括陆基钻机,该钻机用于支撑和旋转钻柱,该钻柱包括一系列钻井用管,而钻头安装在其端部。此外,泵系统用于沿着钻柱循环流体,该流体包括通常为水或油的基本流体和各种添加剂,接着流体从旋转的钻头流出,并通过在井壁和钻头之间形成的环空流回地面。在通过井眼循环后,钻井液通常地流回泥浆处理系统,该泥浆处理系统通常包括移除固体的振动台、泥浆池和用于添加各种化学药品或添加剂以按照钻井作业的需要保持返回流体性质的手动或自动装置。一旦流体已经被处理了,它可以通过利用泵系统重新注入钻柱的顶部而循环进入井眼。
在钻井作业中,流体向井壁施加压力,该压力主要由与泥浆柱重量相关的流体静压部分和与摩擦压力损失相关的流体动压力部分构成,该摩擦压力损失由例如流体循环速度或钻柱的运动引起。
然而,在一些地质系统中,地层具有许多天然裂缝和/或极其具有渗透性。因此,(大量)钻井液在钻井液循环过程中漏失在地层裂缝中。
有时,出现一种叫做“地层呼吸(formation breathing)”的现象,其中当向井眼泵送新鲜钻井液被中断时,地层返回流体,大部分与最初的钻井液的密度不同。这导致井涌,一种井控问题,通常导致有损耗井眼部分或井。在井的计划阶段,严重地层呼吸的预期可以导致基于风险分析而取消井。
然而大量钻井液保留在地层中。
一种处理这样的循环流体损耗的方法是接受损耗并向前钻。这已知是“泥浆失去循环的钻进”、“浮式钻井”、“封泥钻(mudcap drilling)”或“封闭孔循环钻井”。沿着钻柱泵入清洁并优选地廉价的钻井液,以损耗到地层中。为了控制油藏,过平衡泥浆将以高于烃运移速度的速度泵入环空内。井控能力是非常有限的,而且为了安全的原因,“泥浆失去循环的钻进”因此已经被限制仅应用到低压和/或非酸性地层。
发明内容
本发明涉及一种在有损耗地层中钻井眼的方法,包括步骤:
-在井眼内布置钻管,其中在钻管和井壁之间形成环空;
-通过钻管的内部管道和钻管远端附近的钻管流体出口向井眼内泵入钻井液;
-利用压力密封件对环空进行压力密封;
-通过井控管道向环空内泵入井控流体,该井控管道把处于压力密封件和钻管流体之间位置处的环空和背压系统连接起来;
-在压力密封件和背压系统之间进行井控流体的压力平衡。
本发明能够供应井控流体直接进入压力密封下的环空,因此保证压力可以在压力密封和背压系统之间平衡。井下压力是井控流体柱产生的流体静压和压力密封与背压系统施加在井控流体上的压力的综合结果。
压力密封和背压系统之间的井控流体压力平衡可以由通过钻管内的内部管道连续向井眼内泵入钻井液而实现。那么,这样的钻井液将“上推”井控流体,从而由于过平衡几乎没有井控流体需要损耗在裂缝中。
当然,钻井液将损耗在地层内,为了保持穿过钻管的特定流量,必须使钻井液损耗在地层内,该特定流量是井眼清洗、钻头冷却、和选择性的随钻测量(MWD)接头作业所需要的。
由于压力密封和背压系统之间的压力平衡,现在在“泥浆失去循环的钻进”中也可以使用基本上相同的流体作为钻井液和井控流体。
压力密封可以以旋转头或旋转防喷器(旋转BOP)的形式提供。
一方面,本发明能够在“泥浆失去循环的钻进”中控制环空压力,这通过主动地控制压力密封和背压系统之间的压力平衡实现,例如通过利用背压系统在地面的环空口处产生受控制的可变背压。这包括允许泵入的井控流体在可变化的流动限制装置上流出和主动地控制流动限制装置上的压力降落。
优选地,压力平衡是自动控制的。自动控制可以包括利用模型计算预测的井下压力,与期望的井下压力比较预测的井下压力,利用计算的和期望的压力的差控制压力平衡,全部通过可编程的压力监测和控制系统实现。
在一个实施例中,本发明利用与井眼、钻井工艺、钻机和钻井液相关的信息输入模型以预测井下压力。本发明还可以利用实际的井下压力来标定模型并修改输入参数以较接近地使预测井下压力与测量井下压力相关联。
应当意识到利用指压控制环空压力对地层孔隙压力的突然变化较敏感。
附图说明
通过参照下面的附图结合优选实施例的详细描述可以获得本发明的更好理解,其中:
附图1是用于实施本发明优选方法的装置的示意图。
具体实施方式
本发明意欲在钻井、完井和修井作业中实现井眼的动态环空压力控制(DAPC),尤其涉及有损耗地层,例如天然压裂的地层或渗透率异常高的地层。
附图1是描述使用本发明的地面钻井系统100的示意图。应当理解,海上钻井系统也同样可以使用本发明。钻井系统100被示出为包括用于支持钻井作业的钻机102。用在钻机上的很多部件,例如方钻管、动力钳、滑块、绞车和其它设备,为了描述方便都没有示出。钻机102用于支持在地层104中的钻井和勘探作业。井眼106利用已经布置在井眼106内的钻管112已经被部分钻出。在钻管112和井壁之间形成环空115。
钻管112通常包括一串管段,通常指钻柱,管段通常以螺纹连接。钻管112设有大致为纵向的内部管道,它把出现在地面钻管近端附近的钻管流体入口和出现在井眼106内的钻管远端附近的钻管流体出口114流体地连接起来。
钻管112支撑底部钻具(BHA)113,该底部钻具组件通常包括:钻头120;MWD/LWD传感器组119,它包括压力传感器116,以确定环空115内容纳的流体的压力,即环空压力;止回阀10,以防止流体从环空115回流。它也可以包括遥测包122,用于传输将在地面接收的压力数据和/或MWD/LWD数据和/或钻井信息。它也可以包括泥浆马达118。
钻管流体出口114通常是以钻头120上的一个或多个冲洗出口的形式设置,但是这对本发明来说不是必须的。
在实例中,已经设置了套管108并用水泥胶结109在适当位置。在优选实施例中,当整个钻管112位于在阀110上面时,在套管108中安装套管关闭机构或井下配置阀110,以选择性地关闭环空115并有效地用作阀以关闭处于套管108下面的井孔106的所谓裸井部分。
钻井过程需要使用储存在储罐136中的钻井液150。钻井液可以是任何便于在钻井现场使用的钻井液,包括泥浆或盐水。储罐136与把钻井液泵送穿过管道140的一个或多个主钻井液泵138流体连通。管道140与钻柱112的最后接头连接以建立流体从管道140经过钻管流体入口进入钻管112的内部管道的通路。钻管112穿过防喷器(BOP)的顶部上的旋转控制头142。当被促动时,BOP顶部上的旋转控制头在钻管112周围上形成压力密封,隔离了环空115内的压力,但是仍然允许钻管旋转和往复。
提供一背压系统131,以能够在整个钻井和完井过程尤其在钻入有损耗地层时保持可调节的背压。能实现这一点的能力是比现有技术“泥浆失去循环的钻进”更为显著的进步。
背压系统131包括管道124,它与在压力密封件142和钻管流体出口114之间位置的环空115流体连通。在管道124上包括可选择的流量计126,它可以是质量平衡类型或其它优选高分辨率流量计。管道124设有可变流动限制装置,例如抗磨损的节流器130。
节流器130可以设置成节流管道的形式。应当认识到,有节流器被设计成在钻井液150包含大量钻屑和其它固体的环境中操作。节流器130是一种这样的类型,并且还能在变化的压力、流量下操作并经过多个工作循环。
节流器130排放到阀5。阀5允许钻井液从环空115返回以被引导通过钻井液回收系统129到达储罐136,或通过管道4被引导到辅助储罐2。钻井液回收系统129被设计成从钻井液150移走过度的气体污染物,包括钻屑,并通常包括固体分离设备,例如泥浆振动筛和可选择的脱气装置。在通过固体分离装置129后,钻井液150返回到储罐136中。
除了储罐136之外,还可以提供辅助储罐2,以用作泥浆补给罐。泥浆补给罐通常用在钻机上以在往返操作中监测钻井液的增加和减少。在本发明中,这种功能可以被保留。
代替泥浆补给罐2,或除了泥浆补给罐2之外,也可以提供井控流体储罐156,以充满特定的井控流体151,该流体在其它任何一种储罐中(还)没有出现。这可以是与钻井液相同或类似类型的流体,例如泥浆或盐水,但是也可以使用水或海水。
背压系统131还设有背压泵128,在本发明中背压泵128可以用于通过管道124把井控流体直接泵入环空115内。背压泵128的高压端(将流体)排入环空115和节流器130之间的管道124内。设有选择阀125以在一边的或者管道127A或者127B和另一边的背压泵128的低压端之间建立流体连接。因此可以选择背压泵128是利用直接从节流器130(其中套管浮阀121可以被关闭)排出的流体进给,还是从其它的流体源进给。利用选择阀132可以选择其它流体源,它(将流体)排入管道127B,流体性地或者通过管道119A把储罐136、通过管道119B把泥浆补给罐2或者通过管道119C把井控流体储罐156连接到背压泵128的低压端。选择阀125和/或选择阀132可以设置成阀管道的形式。
设有阀123以能够从管道124选择性地隔离背压泵128的高压端,以便当背压泵128没有启动时保护背压泵。
本发明的优选实施例在管道140中还包括流量计152,以测量被泵入井孔106内的钻井液的量。或者,该体积可以根据钻机泵冲程数和体积计算。
系统(未示出)可替换实施例可以具有额外的双向阀,或选择阀管道,布置在管道140中主泵138的下游。这个阀提供了允许来自主钻井液泵138的钻井液被从管道140转移到处于环空115和节流器130之间的管道124的可能性。通过维持主泵138的泵行为,确保了通过节流器130的充分流动,不需要使用单独的背压泵128即可控制背压。
背压系统131可操作地连接到可编程的压力监测和控制系统146上,该系统146能够接收钻井操作数据,并能响应于钻井操作数据控制背压系统131和/或主钻井液泵138。
钻井系统100的,尤其是可编程的压力监测和控制系统146,以及其关于背压系统131和钻井系统100的操作的进一步的细节可以在国际公开WO2003/071091(校正版本)中找到,它也通过参考包括在这里。
上面描述的钻井系统100的正常操作,全部在在上之前介绍的国际公布WO2003/07109(校正版本)中公开,其中钻井液主要通过钻管112的内部管道循环进入井眼106内,随后通过管道124流出井眼106。
钻井液150被向下泵送穿过钻管112和BHA113,并流出钻井液出口114,在这里它把钻屑循环带离钻头120,并把它们首先通过裸眼部分然后通过井眼106的套管部分向上返回环空115。钻井液150返回地面并通过旋转头142下的侧面出口117进入管道124。
此后钻井液150前进到通常被称为是背压系统131的地方。应当认识到,例如通过使用流量计126和152监测流入和流出井眼106的流动及背压泵128泵送的体积,还考虑在地面进入和流出环空115的所有物质,操作人员或系统能够很容易地确定漏失到地层的钻井液150的量,或相反地,漏失到井眼106的地层流体的量。
简而言之,当钻井液150通过钻管112和环空115的循环充足时,节流器130在返回的流体流中施加了压力降落,由此在环空115中维持背压。背压的大小通过控制节流器130中的流动阻力来控制。
当来自环空115的钻井液的流量如此低以致节流器130不能方便地被调节成施加期望的背压时,启动背压泵128以把钻井液泵入管道124(阀123是打开的)内,由此确保通过节流器130的充足流体流动,以施加期望的背压,而维持期望的井下压力。典型地,阀125可以选择到或者管道119A或者管道119B。
然而,当大量钻井液漏失到地层内,例如当井眼106进入天然压裂和/或极端渗透性的地层内时可能发生的情况,环空115内的流体液面会下降。当启动背压泵128时,流体面将借助泵入管道124内的流体而恢复,其中至少部分流体将直接流入环空115内。在用流体冲满环空的过程中,可以关闭阀121。
环空115的流体液面已经恢复并已经打开阀121后,背压泵128的继续操作确保了可以维持通过节流器130的充足的流量,这样即使在大量钻井液漏失到地层的情况下,也可以通过调节至少由节流器130施加的流动限制而主动地控制背压。
通过管道124泵入环空115内的流体称为“井控流体”,以与通过钻管112泵入井眼106内的“钻井液”相区别。井控流体可以与钻井液150相同,此时通常可以选择阀125把背压泵128与管道119A或119B连接。在现有技术的封泥钻井方法中,不可能用与钻井液相同的井控流体继续钻压裂地层。
或者,可以选择阀125把背压泵128与管道119C连接起来,此时井控流体151可以是与钻井液150不同的流体。如果是那样的话,本发明由于具有主动控制背压的可能性而提供了增加的井底压力控制的优点。
本发明的一个优点是可以选择井控流体151的密度以与油藏流体的最低压力平衡或欠平衡。与压力密封件142和背压系统131的压力平衡允许了对井底压力额外的贡献。
井控流体与压力密封件142和背压系统131的压力平衡可以通过连续向钻管112内注入钻井液150而实现。压力平衡为避免把井控流体泵入地层作了贡献。因为通过钻管泵入井眼内的钻井液150现在向上推动井控流体(它向井底压力贡献了压力平衡),由于过平衡几乎没有任何井控流体需要漏失在裂缝内。
为了控制井底压力,可以或者通过中间操作者或者通过可编程的压力监测和控制系统146主动地控制背压系统131。
在此之前介绍的国际公布WO2003/071091(校正版本)也参考且描述了液压模型。在本发明中,那个液压模型或其可替换的实施例用于计算预测的井下压力,与期望的井下压力比较预测的井下压力,并利用计算的和期望的压力的差控制压力平衡。这全部包括在可编程的压力监测和控制系统146中。
本发明的方法可以应用在陆上和海上操作中。

Claims (7)

1.一种在有损耗地层中钻井眼的方法,包括步骤:
-将钻管布置在井眼内,其中在钻管和井壁之间形成环空;
-通过钻管的内部管道和钻管远端附近的钻管流体出口向井眼内泵入钻井液;
-利用压力密封件对环空进行压力密封;
-通过井控管道向环空内泵入井控流体,该井控管道把位于压力密封件和钻管流体出口之间位置处的环空和背压系统连接起来;
-在压力密封件和背压系统之间进行井控流体的压力平衡。
2.如权利要求1所述的方法,其中压力平衡是主动控制的。
3.如权利要求2所述的方法,其中对压力平衡的主动控制包括允许泵送的井控流体在背压系统内通过可变化的流动限制装置流出和在流动限制装置上控制压力降低。
4.如权利要求2或3所述的方法,其中对压力平衡的主动控制包括通过控制背压系统的自动控制装置来自动控制压力平衡。
5.如权利要求4所述的方法,其中对压力平衡的自动控制包括使用模型计算预测的井下压力,将预测的井下压力与期望的井下压力进行比较,并利用计算的压力和期望的压力的差来控制压力平衡,这全部借助于可编程的压力监测和控制系统实现。
6.如权利要求1至5中的任意一项所述的方法,其中井控流体被选择成与钻井液本质上相同。
7.如权利要求6所述的方法,其中使用同一个泵装置将井控流体和钻井液泵入井眼,即,所述同一个泵装置也用于产生所选的流体的泵流、将所述流体的泵流分成井控制流和钻井液、将钻井液供给到钻管的内部管道以及将井控流体供给到井控制管道。
CNA2005800318329A 2004-09-22 2005-09-20 钻有损耗地层的方法 Pending CN101023241A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04104601.2 2004-09-22
EP04104601 2004-09-22

Publications (1)

Publication Number Publication Date
CN101023241A true CN101023241A (zh) 2007-08-22

Family

ID=34929603

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800318329A Pending CN101023241A (zh) 2004-09-22 2005-09-20 钻有损耗地层的方法

Country Status (8)

Country Link
US (1) US7828081B2 (zh)
CN (1) CN101023241A (zh)
CA (1) CA2579218C (zh)
EA (1) EA010191B1 (zh)
GB (1) GB2433529A (zh)
MY (1) MY140447A (zh)
NO (1) NO336623B1 (zh)
WO (1) WO2006032663A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234681A (zh) * 2013-06-18 2014-12-24 中国石油天然气股份有限公司 海上压裂工艺方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8955619B2 (en) * 2002-05-28 2015-02-17 Weatherford/Lamb, Inc. Managed pressure drilling
US7836973B2 (en) 2005-10-20 2010-11-23 Weatherford/Lamb, Inc. Annulus pressure control drilling systems and methods
US9435162B2 (en) 2006-10-23 2016-09-06 M-I L.L.C. Method and apparatus for controlling bottom hole pressure in a subterranean formation during rig pump operation
MX2009004270A (es) * 2006-10-23 2009-07-02 Mi Llc Metodo y aparato para controlar la presion del fondo de un pozo en una formacion subterranea durante la operacion de una bomba de plataforma petrolifera.
US7775299B2 (en) * 2007-04-26 2010-08-17 Waqar Khan Method and apparatus for programmable pressure drilling and programmable gradient drilling, and completion
US9284799B2 (en) * 2010-05-19 2016-03-15 Smith International, Inc. Method for drilling through nuisance hydrocarbon bearing formations
US8448711B2 (en) * 2010-09-23 2013-05-28 Charles J. Miller Pressure balanced drilling system and method using the same
CN102454373A (zh) * 2010-10-19 2012-05-16 中国石油化工集团公司 一种控制压力钻井用节流管汇
CN102454372A (zh) * 2010-10-19 2012-05-16 中国石油化工集团公司 一种井筒压力管理系统及方法
CN102011574B (zh) * 2010-11-16 2013-10-30 郑州大学 一种振动增产煤层气方法
CN102022134B (zh) * 2010-11-16 2012-11-07 郑州大学 钻、压、振三位一体卸压开采煤层气方法
CN102086760B (zh) * 2010-12-20 2013-02-20 郑州大学 区域井下高压水力掏穴卸压开采煤层气方法
CN102094668B (zh) * 2010-12-20 2013-02-20 郑州大学 上抽巷高压水力掏穴卸压消突方法
CN102080525B (zh) * 2010-12-20 2013-02-20 郑州大学 一种高压气体喷射掏穴卸压防突方法
CN103917740B (zh) * 2011-11-08 2016-09-14 哈利伯顿能源服务公司 对钻井操作中的流量转送的抢先处理的设定点压力补偿
CN103132968B (zh) * 2011-12-01 2016-03-16 中国海洋石油总公司 射孔压裂测试系统的压力控制装置
EP2817486A4 (en) * 2012-02-24 2016-03-02 Halliburton Energy Services Inc DRILLING DRILLING SYSTEMS AND METHOD WITH A LIQUID PUMPING FROM A RING
CN103573198B (zh) * 2012-08-03 2016-09-07 中国石油化工股份有限公司 井筒压力和流量管理系统及方法
US9664003B2 (en) 2013-08-14 2017-05-30 Canrig Drilling Technology Ltd. Non-stop driller manifold and methods
WO2015142819A1 (en) 2014-03-21 2015-09-24 Canrig Drilling Technology Ltd. Back pressure control system
US10988997B2 (en) * 2018-01-22 2021-04-27 Safekick Americas Llc Method and system for safe pressurized mud cap drilling
US11401771B2 (en) 2020-04-21 2022-08-02 Schlumberger Technology Corporation Rotating control device systems and methods
US11187056B1 (en) 2020-05-11 2021-11-30 Schlumberger Technology Corporation Rotating control device system
US11274517B2 (en) 2020-05-28 2022-03-15 Schlumberger Technology Corporation Rotating control device system with rams
US11732543B2 (en) 2020-08-25 2023-08-22 Schlumberger Technology Corporation Rotating control device systems and methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946565A (en) * 1953-06-16 1960-07-26 Jersey Prod Res Co Combination drilling and testing process
US2801077A (en) * 1953-12-30 1957-07-30 Pan American Petroleum Corp Recovery of lost circulation in a drilling well
US4630691A (en) * 1983-05-19 1986-12-23 Hooper David W Annulus bypass peripheral nozzle jet pump pressure differential drilling tool and method for well drilling
US6367566B1 (en) * 1998-02-20 2002-04-09 Gilman A. Hill Down hole, hydrodynamic well control, blowout prevention
GC0000342A (en) 1999-06-22 2007-03-31 Shell Int Research Drilling system
US6374925B1 (en) * 2000-09-22 2002-04-23 Varco Shaffer, Inc. Well drilling method and system
US20020112888A1 (en) * 2000-12-18 2002-08-22 Christian Leuchtenberg Drilling system and method
GB2416559B (en) * 2001-09-20 2006-03-29 Baker Hughes Inc Active controlled bottomhole pressure system & method
US7185719B2 (en) * 2002-02-20 2007-03-06 Shell Oil Company Dynamic annular pressure control apparatus and method
CA2477242C (en) 2002-02-20 2011-05-24 Shell Canada Limited Dynamic annular pressure control apparatus and method
US6904981B2 (en) * 2002-02-20 2005-06-14 Shell Oil Company Dynamic annular pressure control apparatus and method
US6926081B2 (en) * 2002-02-25 2005-08-09 Halliburton Energy Services, Inc. Methods of discovering and correcting subterranean formation integrity problems during drilling
US6755261B2 (en) * 2002-03-07 2004-06-29 Varco I/P, Inc. Method and system for controlling well fluid circulation rate
US20040023815A1 (en) * 2002-08-01 2004-02-05 Burts Boyce Donald Lost circulation additive, lost circulation treatment fluid made therefrom, and method of minimizing lost circulation in a subterranean formation
US6957698B2 (en) * 2002-09-20 2005-10-25 Baker Hughes Incorporated Downhole activatable annular seal assembly
AU2004265457B2 (en) * 2003-08-19 2007-04-26 @Balance B.V. Drilling system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234681A (zh) * 2013-06-18 2014-12-24 中国石油天然气股份有限公司 海上压裂工艺方法

Also Published As

Publication number Publication date
US7828081B2 (en) 2010-11-09
CA2579218A1 (en) 2006-03-30
CA2579218C (en) 2012-02-07
US20080035374A1 (en) 2008-02-14
GB0704505D0 (en) 2007-04-18
WO2006032663A1 (en) 2006-03-30
NO20072029L (no) 2007-06-21
EA200700698A1 (ru) 2007-08-31
EA010191B1 (ru) 2008-06-30
NO336623B1 (no) 2015-10-12
GB2433529A (en) 2007-06-27
MY140447A (en) 2009-12-31

Similar Documents

Publication Publication Date Title
CN101023241A (zh) 钻有损耗地层的方法
RU2586129C1 (ru) Система и способ управления давлением в кольцевом пространстве ствола скважины с применением газлифта в линии возврата бурового раствора
CN100343475C (zh) 动态环空压力控制装置和方法
US7185719B2 (en) Dynamic annular pressure control apparatus and method
CN102272410B (zh) 用来在钻探期间确定地层完整性和最佳钻探参数的方法
US8322439B2 (en) Arrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
RU2416711C2 (ru) Способ и система циркуляции текучей среды в системе скважин
US7677329B2 (en) Method and device for controlling drilling fluid pressure
CA2630576A1 (en) Method for varying the density of drilling fluids in deep water oil and gas drilling applications
CA2519365A1 (en) System and method for treating drilling mud in oil and gas well drilling applications
Elliott et al. Managed pressure drilling erases the lines
RU2519319C1 (ru) Способ для бурения через пласты, содержащие нежелательные углеводороды
Larroque et al. Shifting Paradigms-Underbalanced Drilling Technology Proves Highly Successful For Reservoir Evaluation And Drilling Performance Improvement In Kuwait

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication