CN100591482C - A Method for Determining Grinding Time in Chemical Mechanical Polishing Process - Google Patents
A Method for Determining Grinding Time in Chemical Mechanical Polishing Process Download PDFInfo
- Publication number
- CN100591482C CN100591482C CN200710047057A CN200710047057A CN100591482C CN 100591482 C CN100591482 C CN 100591482C CN 200710047057 A CN200710047057 A CN 200710047057A CN 200710047057 A CN200710047057 A CN 200710047057A CN 100591482 C CN100591482 C CN 100591482C
- Authority
- CN
- China
- Prior art keywords
- grinding
- silicon wafers
- grinding time
- batch
- batches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000000126 substance Substances 0.000 title claims abstract description 24
- 238000007517 polishing process Methods 0.000 title claims abstract description 15
- 235000012431 wafers Nutrition 0.000 claims abstract description 101
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 98
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 98
- 239000010703 silicon Substances 0.000 claims abstract description 98
- 238000005498 polishing Methods 0.000 claims abstract description 20
- 238000005516 engineering process Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
本发明提供一种化学机械抛光工艺中确定研磨时间的方法,该方法中所述研磨时间由自动处理系统反馈给用于化学机械抛光的设备;所述自动处理系统通过上述抛光设备最近若干批硅片的研磨参数来确定下一批硅片的研磨时间;所述研磨参数包括最近m批硅片各自的研磨时间、最近一次检测到的研磨速率Rt、及最近m批硅片的平均研磨速率Rm;通过Rt与Rm的比值来修正研磨时间。本发明揭示的在化学机械抛光工艺中确定研磨时间的方法,考虑到了每天CMP机台研磨速率的变化和差异,用修正系数Rt/Rm来修正研磨时间,这种方法确定的时间将更精确。
The invention provides a method for determining the grinding time in a chemical mechanical polishing process. In the method, the grinding time is fed back to equipment for chemical mechanical polishing by an automatic processing system; The grinding parameters of the wafers are used to determine the grinding time of the next batch of silicon wafers; the grinding parameters include the respective grinding times of the latest m batches of silicon wafers, the last detected grinding rate Rt, and the average grinding rate Rm of the latest m batches of silicon wafers ; Correct the grinding time by the ratio of Rt to Rm. The method for determining the grinding time in the chemical mechanical polishing process disclosed by the present invention takes into account the daily variation and difference in the grinding rate of CMP machines, and uses the correction coefficient Rt/Rm to correct the grinding time. The time determined by this method will be more accurate.
Description
技术领域 technical field
本发明属于芯片制造领域,涉及化学机械抛光工艺,尤其涉及一种化学机械抛光工艺中确定研磨时间的方法。The invention belongs to the field of chip manufacturing and relates to a chemical mechanical polishing process, in particular to a method for determining the grinding time in the chemical mechanical polishing process.
背景技术 Background technique
硅片制造涉及薄膜的淀积和生长工艺,以及之后形成器件和内部互连结构所需的多次图形制作。先进的IC需要至少6层或更多的金属布线层,每层之间由层间介质(inter-layer-dielectric,简称ILD)隔开。建立器件结构和多层内连接线会很自然地在层之间形成台阶。表面起伏描述了这种生产过程中出现的不平整的硅片表面。层数增加时,硅片的表面起伏将更加显著,而一个可接受的台阶覆盖和间隙填充对于芯片的成品率和长期可靠性是至关重要的。Silicon wafer fabrication involves the deposition and growth of thin films, followed by the multiple patterning required to form devices and interconnect structures. Advanced ICs require at least 6 or more metal wiring layers, with each layer separated by an inter-layer-dielectric (ILD). Building device structures and multilayer interconnects naturally create steps between layers. Surface relief describes the uneven silicon wafer surface that occurs during this production process. Wafer surface relief becomes more pronounced as the number of layers increases, and an acceptable step coverage and gap fill is critical to chip yield and long-term reliability.
自20世纪90年代中期以来,化学机械平坦化(Chemical MechanicalPlanarization,简称CMP)成为实现多层金属技术的主要平坦化技术。CMP通常也被称为化学机械抛光或抛光,它在光学镜片抛光和硅片生产中的硅片抛光领域应用了很多年。20世纪80年代后期,IBM发展了CMP技术,并将其应用于制造工艺中对半导体硅片的平坦化。Since the mid-1990s, chemical mechanical planarization (CMP) has become the main planarization technology for multilayer metal technology. CMP is also commonly referred to as chemical mechanical polishing or polishing, and it has been used for many years in the field of optical lens polishing and silicon wafer polishing in silicon wafer production. In the late 1980s, IBM developed CMP technology and applied it to the planarization of semiconductor silicon wafers in the manufacturing process.
CMP技术是一种表面全局平坦化技术,它通过硅片和一个抛光头之间的相对运动来平坦化硅片表面,在硅片和抛光头之间有磨料,并同时施加压力。CMP technology is a global surface planarization technology, which flattens the surface of the silicon wafer through the relative movement between the silicon wafer and a polishing head, with abrasives between the silicon wafer and the polishing head, and applying pressure at the same time.
然而,现有的化学机械抛光工艺中存在着不足之处。现有的化学机械抛光工艺中,抛光设备针对每批硅片的研磨时间是通过自动处理系统(APC系统)反馈给抛光设备研磨时间来完成这一研磨过程的。APC系统通过上一批产品的研磨参数来决定下一批产品应得到的时间;通常,一批硅片为25片。所述APC系统通过上述抛光设备最近若干批硅片的研磨参数来确定下一批硅片的研磨时间;所述研磨参数包括最近m批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-m+1),其中T(n)为第n批硅片的研磨时间、即最近一批硅片的研磨时间、即倒数第一批硅片的研磨时间,T(n-m+1)为倒数第m批硅片的研磨时间。However, there are deficiencies in the existing chemical mechanical polishing process. In the existing chemical mechanical polishing process, the grinding time of the polishing equipment for each batch of silicon wafers is fed back to the polishing equipment through the automatic processing system (APC system) to complete the grinding process. The APC system determines when the next batch of products should be obtained by the grinding parameters of the previous batch of products; usually, a batch of silicon wafers is 25 pieces. The APC system determines the grinding time of the next batch of silicon wafers through the grinding parameters of the recent batches of silicon wafers of the above-mentioned polishing equipment; the grinding parameters include the respective grinding times T(n) and T(n- 1), T(n-2), ..., T(n-m+1), where T(n) is the grinding time of the nth batch of silicon wafers, that is, the grinding time of the latest batch of silicon wafers, that is, the penultimate The grinding time of a batch of silicon wafers, T(n-m+1) is the grinding time of the last m batch of silicon wafers.
计算公式为:下一件硅片的研磨时间T(n+1)=T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1-i)2+……+T(n-m+1)*i*(1-i)m-1,其中i<1,m≥2,n>m,m及n为整数。The calculation formula is: grinding time of the next silicon wafer T(n+1)=T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i* (1-i) 2 +...+T(n-m+1)*i*(1-i) m-1 , wherein i<1, m≥2, n>m, m and n are integers.
这种计算方法忽略了每天CMP机台研磨速率的变化和差异,如果机台的研磨速率比平时大,则相应的研磨时间就应该适当的减小;尤其当同一类产品很多天没有研磨的时候,这种反馈更加不精确。This calculation method ignores the changes and differences in the grinding rate of CMP machines every day. If the grinding rate of the machine is higher than usual, the corresponding grinding time should be appropriately reduced; especially when the same type of product has not been ground for many days. , this feedback is more imprecise.
发明内容 Contents of the invention
本发明的目的是提供一种可以更加精确地确定化学机械抛光工艺中确定研磨时间的方法。The purpose of the present invention is to provide a method for more accurately determining the grinding time in the chemical mechanical polishing process.
为了实现上述目的,本发明提供一种化学机械抛光工艺中确定研磨时间的方法,该方法中所述研磨时间由自动处理系统反馈给用于化学机械抛光的设备;所述自动处理系统通过上述抛光设备最近若干批硅片的研磨参数来确定下一批硅片的研磨时间;该方法包括以下步骤:In order to achieve the above object, the present invention provides a method for determining the grinding time in the chemical mechanical polishing process, the grinding time in the method is fed back to the equipment for chemical mechanical polishing by the automatic processing system; The grinding parameters of several recent batches of silicon wafers of the equipment determine the grinding time of the next batch of silicon wafers; the method comprises the following steps:
A、获取最近m批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-m+1),其中T(n)、T(n-1)、T(n-2)、……、T(n-m+1)为最近m批硅片各自的研磨时间,其中T(n)为第n批硅片的研磨时间、即最近一批硅片的研磨时间、即倒数第一批硅片的研磨时间,T(n-m+1)为倒数第m批硅片的研磨时间;A. Obtain the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-m+1) of the latest m batches of silicon wafers, where T(n), T (n-1), T(n-2), ..., T(n-m+1) are the respective grinding times of the latest m batches of silicon wafers, where T(n) is the grinding time of the nth batch of silicon wafers, That is, the grinding time of the most recent batch of silicon wafers, that is, the grinding time of the last batch of silicon wafers, T(n-m+1) is the grinding time of the last mth batch of silicon wafers;
B、根据步骤A中所述最近m批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-m+1)确定下一批硅片的模糊研磨时间T1;B. Determine the next step according to the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-m+1) of the latest m batches of silicon wafers described in step A Fuzzy grinding time T1 of a batch of silicon wafers;
C、获取最近一次检测到的研磨速率Rt、最近m批硅片的平均研磨速率Rm,计算修正系数K,修正系数K在[Rt/Rm-0.3,Rt/Rm+0.3]的范围内;C. Obtain the last detected grinding rate Rt, the average grinding rate Rm of the latest m batches of silicon wafers, and calculate the correction coefficient K, and the correction coefficient K is within the range of [Rt/Rm-0.3, Rt/Rm+0.3];
D、确定下一批硅片的研磨时间T(n+1)=T1/K;D, determine the grinding time T(n+1)=T1/K of the next batch of silicon wafers;
其中,n>m,m及n为整数。Wherein, n>m, m and n are integers.
作为本发明的一种优选方案,所述模糊研磨时间T1=T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1-i)2+……+T(n-m+1)*i*(1-i)m-1,其中,0.5≤i<1,m≥3。As a preferred solution of the present invention, the fuzzy grinding time T1=T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1- i) 2 +...+T(n-m+1)*i*(1-i) m-1 , where, 0.5≤i<1, m≥3.
作为本发明的一种优选方案,步骤C中,Rt/Rm-0.2≤K≤Rt/Rm+0.2。As a preferred solution of the present invention, in step C, Rt/Rm-0.2≤K≤Rt/Rm+0.2.
作为本发明的一种优选方案,步骤C中,Rt/Rm-0.1≤K≤Rt/Rm+0.1。As a preferred solution of the present invention, in step C, Rt/Rm-0.1≤K≤Rt/Rm+0.1.
作为本发明的一种优选方案,步骤C中,K=Rt/Rm。As a preferred solution of the present invention, in step C, K=Rt/Rm.
作为本发明的一种优选方案,在所述关系式中,0.6≤i≤0.9。As a preferred solution of the present invention, in the relational formula, 0.6≤i≤0.9.
作为本发明的一种优选方案,在所述关系式中,i=0.8。As a preferred solution of the present invention, in the relational formula, i=0.8.
作为本发明的一种优选方案,在所述关系式中,5≤m≤100。As a preferred solution of the present invention, in the relational formula, 5≤m≤100.
作为本发明的一种优选方案,在所述关系式中,15≤m≤30。作为本发明的一种优选方案,在所述关系式中,m=20。As a preferred solution of the present invention, in the relational formula, 15≤m≤30. As a preferred solution of the present invention, in the relational formula, m=20.
在本发明的另一种实施方式:一种化学机械抛光工艺中确定研磨时间的方法,该方法中所述研磨时间由自动处理系统反馈给用于化学机械抛光的设备;所述自动处理系统通过上述抛光设备最近若干批硅片的研磨参数来确定下一批硅片的研磨时间;所述研磨参数包括最近m批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-m+1),其中T(n)为第n批硅片的研磨时间、即最近一批硅片的研磨时间、即倒数第一批硅片的研磨时间,T(n-m+1)为倒数第m批硅片的研磨时间;所述研磨参数还包括最近一次检测到的研磨速率Rt、最近m批硅片的平均研磨速率Rm;所述下一件硅片的研磨时间T(n+1)=[T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1-i)2+……+T(n-m+1)*i*(1-i)m-1]/(Rt/Rm),其中0.5≤i<1,m≥3,n>m,m及n为整数。In another embodiment of the present invention: a method for determining grinding time in a chemical mechanical polishing process, the grinding time in the method is fed back to equipment for chemical mechanical polishing by an automatic processing system; the automatic processing system passes The grinding parameters of the recent batches of silicon wafers of the above-mentioned polishing equipment determine the grinding time of the next batch of silicon wafers; the grinding parameters include the respective grinding times T (n), T (n-1), T ( n-2),..., T(n-m+1), where T(n) is the grinding time of the nth batch of silicon wafers, that is, the grinding time of the latest batch of silicon wafers, that is, the grinding time of the last batch of silicon wafers Grinding time, T(n-m+1) is the grinding time of the last m batch of silicon wafers; the grinding parameters also include the last detected grinding rate Rt, the average grinding rate Rm of the latest m batches of silicon wafers; The grinding time of the next silicon wafer T(n+1)=[T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1- i) 2 +...+T(n-m+1)*i*(1-i) m-1 ]/(Rt/Rm), where 0.5≤i<1, m≥3, n>m, m and n is an integer.
与现有技术相比,本发明揭示的在化学机械抛光工艺中确定研磨时间的方法,考虑到了每天CMP机台研磨速率的变化和差异,用修正系数Rt/Rm,即最近一次检测到的研磨速率Rt与最近m批硅片的平均研磨速率Rm的比值来修正研磨时间,这种方法确定的时间将更精确。Compared with the prior art, the method for determining the grinding time in the chemical mechanical polishing process disclosed by the present invention takes into account the variation and difference of the grinding rate of the CMP machine every day, and uses the correction coefficient Rt/Rm, that is, the last detected grinding time The ratio of the rate Rt to the average grinding rate Rm of the latest m batches of silicon wafers is used to correct the grinding time, and the time determined by this method will be more accurate.
附图说明 Description of drawings
图1是本发明确定研磨时间方法的流程图。Fig. 1 is a flow chart of the method for determining the grinding time of the present invention.
具体实施方式 Detailed ways
以下结合附图及实施例对本发明做具体介绍。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
本发明介绍了一种化学机械抛光工艺中确定研磨时间的方法,该方法中所述研磨时间由自动处理系统反馈给用于化学机械抛光的设备;所述自动处理系统通过上述抛光设备最近若干批硅片的研磨参数来确定下一批硅片的研磨时间。上述研磨参数包括最近m批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-m+1),其中T(n)、T(n-1)、T(n-2)、……、T(n-m+1)为最近m批硅片各自的研磨时间,其中T(n)为第n批硅片的研磨时间、即最近一批硅片的研磨时间、即倒数第一批硅片的研磨时间,T(n-m+1)为倒数第m批硅片的研磨时间;由于考虑到每天CMP机台研磨速率的变化和差异,所述研磨参数还包括最近一次检测到的研磨速率Rt、最近m批硅片的平均研磨速率Rm。The invention introduces a method for determining the grinding time in the chemical mechanical polishing process. In the method, the grinding time is fed back to the equipment used for chemical mechanical polishing by the automatic processing system; The grinding parameters of silicon wafers are used to determine the grinding time of the next batch of silicon wafers. The above grinding parameters include the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-m+1) of the latest m batches of silicon wafers, where T(n), T(n-1), T(n-2), ..., T(n-m+1) are the respective grinding times of the latest m batches of silicon wafers, where T(n) is the grinding time of the nth batch of silicon wafers , that is, the grinding time of the latest batch of silicon wafers, that is, the grinding time of the first batch of silicon wafers from the bottom, T(n-m+1) is the grinding time of the mth batch of silicon wafers from the bottom; The grinding parameters also include the latest detected grinding rate Rt and the average grinding rate Rm of the latest m batches of silicon wafers.
请参阅图1,本发明确定研磨时间的方法包括以下步骤:Please refer to Fig. 1, the method that the present invention determines grinding time comprises the following steps:
A、获取最近m批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-m+1),其中T(n)、T(n-1)、T(n-2)、……、T(n-m+1)为最近m批硅片各自的研磨时间,其中T(n)为第n批硅片的研磨时间、即最近一批硅片的研磨时间、即倒数第一批硅片的研磨时间,T(n-m+1)为倒数第m批硅片的研磨时间;A. Obtain the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-m+1) of the latest m batches of silicon wafers, where T(n), T (n-1), T(n-2), ..., T(n-m+1) are the respective grinding times of the latest m batches of silicon wafers, where T(n) is the grinding time of the nth batch of silicon wafers, That is, the grinding time of the most recent batch of silicon wafers, that is, the grinding time of the last batch of silicon wafers, T(n-m+1) is the grinding time of the last mth batch of silicon wafers;
B、根据步骤A中所述最近m批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-m+1)确定下一批硅片的模糊研磨时间T1;T1=T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1-i)2+……+T(n-m+1)*i*(1-i)m-1,其中,0.5≤i<1,m≥3,n>m,m及n为整数;B. Determine the next step according to the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-m+1) of the latest m batches of silicon wafers described in step A Fuzzy grinding time T1 of a batch of silicon wafers; T1=T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1-i) 2 +… …+T(n-m+1)*i*(1-i) m-1 , wherein, 0.5≤i<1, m≥3, n>m, m and n are integers;
C、获取最近一次检测到的研磨速率Rt、最近m批硅片的平均研磨速率Rm,计算修正系数K,修正系数K在[Rt/Rm-0.3,Rt/Rm+0.3]中取一值,最优取Rt/Rm;C. Obtain the last detected grinding rate Rt, the average grinding rate Rm of the latest m batches of silicon wafers, calculate the correction coefficient K, and the correction coefficient K takes a value in [Rt/Rm-0.3, Rt/Rm+0.3], The best choice is Rt/Rm;
D、确定下一批硅片的研磨时间T(n+1)=T1/K,即T(n+1)=[T(n)*i+T(n-1)*i*(1-i)+T(n-2)*i*(1-i)2+……+T(n-m+1)*i*(1-i)m-1]/(Rt/Rm)。D. Determine the grinding time T(n+1)=T1/K of the next batch of silicon wafers, that is, T(n+1)=[T(n)*i+T(n-1)*i*(1- i)+T(n-2)*i*(1-i) 2 +...+T(n-m+1)*i*(1-i) m-1 ]/(Rt/Rm).
当K的值大于1时,研磨时间(=T1/K)要比通常的研磨时间T1调小些,来确保本发明确定的时间更精确;相反,当K的值小于1时,研磨时间(=T1/K)要较通常的研磨时间T1调大些。When the value of K was greater than 1, the grinding time (=T1/K) was adjusted less than the usual grinding time T1 to ensure that the time determined by the present invention was more accurate; on the contrary, when the value of K was less than 1, the grinding time ( =T1/K) should be larger than the usual grinding time T1.
另外,为使确定的时间精确,修正系数K在[Rt/Rm-0.2,Rt/Rm+0.2]、甚至在[Rt/Rm-0.1,Rt/Rm+0.1]中取值;0.6≤i≤0.9,最优取0.8;m在[5,100]取值,优选取值范围为[15,30],最优值为20。In addition, in order to make the determined time accurate, the correction coefficient K takes a value in [Rt/Rm-0.2, Rt/Rm+0.2], or even in [Rt/Rm-0.1, Rt/Rm+0.1]; 0.6≤i≤ 0.9, the optimal value is 0.8; the value of m is in [5, 100], the preferred value range is [15, 30], and the optimal value is 20.
实施例一Embodiment one
本实施例中,上述关系式中的参数取值为:m=20,i=0.8,K=Rt/Rm。In this embodiment, the values of the parameters in the above relational formula are: m=20, i=0.8, K=Rt/Rm.
一种化学机械抛光工艺中确定研磨时间的方法,该方法中所述研磨时间由APC系统反馈给用于化学机械抛光的设备;所述APC系统通过上述抛光设备最近若干批硅片的研磨参数来确定下一批硅片的研磨时间。上述研磨参数包括最近20批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-19),其中T(n)为第n批硅片的研磨时间、即最近一批硅片的研磨时间、即倒数第一批硅片的研磨时间,T(n-19)为倒数第20批硅片的研磨时间;由于考虑到每天CMP机台研磨速率的变化和差异,所述研磨参数还包括最近一次检测到的研磨速率Rt、最近20批硅片的平均研磨速率R20。A method for determining grinding time in a chemical mechanical polishing process, wherein the grinding time is fed back to equipment for chemical mechanical polishing by an APC system; the APC system is determined by the grinding parameters of several recent batches of silicon wafers of the above polishing equipment Determine the grinding time for the next batch of wafers. The above grinding parameters include the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-19) of the latest 20 batches of silicon wafers, where T(n) is the nth The grinding time of a batch of silicon wafers, that is, the grinding time of the latest batch of silicon wafers, that is, the grinding time of the first batch of silicon wafers from the bottom, T (n-19) is the grinding time of the 20th batch of silicon wafers from the bottom; The changes and differences of the grinding rate of the machine, the grinding parameters also include the last detected grinding rate Rt, and the average grinding rate R 20 of the last 20 batches of silicon wafers.
本发明确定研磨时间的方法包括以下步骤:The method for determining grinding time of the present invention comprises the following steps:
步骤A、获取最近20批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-19),其中T(n)、T(n-1)、T(n-2)、……、T(n-19)为前20批硅片各自的研磨时间,其中T(n)为第n批硅片的研磨时间、即最近一批(倒数第一批)硅片的研磨时间,T(n-19)为倒数第20批硅片的研磨时间;Step A, obtain the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-19) of the latest 20 batches of silicon wafers, where T(n), T( n-1), T(n-2), ..., T(n-19) are the respective grinding times of the first 20 batches of silicon wafers, where T(n) is the grinding time of the nth batch of silicon wafers, that is, the latest Grinding time of the batch (first last batch) of silicon wafers, T(n-19) is the grinding time of the last 20th batch of silicon wafers;
步骤B、根据步骤A中所述最近20批硅片各自的研磨时间T(n)、T(n-1)、T(n-2)、……、T(n-19)确定下一批硅片的模糊研磨时间T1;T1=T(n)*0.8+T(n-1)*0.8*(1-0.8)+T(n-2)*0.8*(1-0.8)2+……+T(n-19)*0.8*(1-0.8)19,其中,n为整数,n>19;Step B. Determine the next batch according to the respective grinding times T(n), T(n-1), T(n-2), ..., T(n-19) of the last 20 batches of silicon wafers described in step A Fuzzy grinding time T1 of silicon wafer; T1=T(n)*0.8+T(n-1)*0.8*(1-0.8)+T(n-2)*0.8*(1-0.8) 2 +… +T(n-19)*0.8*(1-0.8) 19 , where n is an integer and n>19;
步骤C、获取最近一次检测到的研磨速率Rt、最近20批硅片的平均研磨速率R20,计算修正系数K,修正系数K=Rt/R20;Step C, obtain the latest detected grinding rate Rt, the average grinding rate R 20 of the latest 20 batches of silicon wafers, and calculate the correction coefficient K, the correction coefficient K=Rt/R 20 ;
步骤D、确定下一批硅片的研磨时间T(n+1)=T1/K,即T(n+1)=[T(n)*0.8+T(n-1)*0.8*(1-0.8)+T(n-2)*0.8*(1-0.8)2+……+T(n-19)*0.8*(1-0.8)19]/(Rt/R20)。Step D, determine the grinding time T(n+1)=T1/K of the next batch of silicon wafers, that is, T(n+1)=[T(n)*0.8+T(n-1)*0.8*(1 -0.8)+T(n-2)*0.8*(1-0.8) 2 +...+T(n-19)*0.8*(1-0.8) 19 ]/(Rt/R 20 ).
当然,上述参数仅是本发明一个实施例中的参数,本发明所保护的范围并不被限制于上述参数的范围。如,修正系数K可以在[Rt/R20-0.3,Rt/R20+0.3]的范围内,如K=Rt/R20-0.2或K=Rt/R20-0.1或K=Rt/R20+0.1或K=Rt/R20+0.2;m可以为大于3的其他值,如m=5或m=15或m=30或m=50或m=100或m=120;i可以选择[0.5,1)的其他值,如i=0.5或i=0.5或i=0.6或i=0.7或i=0.75或i=0.85或i=0.9。Of course, the above parameters are only parameters in one embodiment of the present invention, and the protection scope of the present invention is not limited to the scope of the above parameters. For example, the correction coefficient K can be in the range of [Rt/R 20 -0.3, Rt/R 20 +0.3], such as K=Rt/R 20 -0.2 or K=Rt/R 20 -0.1 or K=Rt/R 20 +0.1 or K=Rt/R 20 +0.2; m can be other values greater than 3, such as m=5 or m=15 or m=30 or m=50 or m=100 or m=120; i can be selected Other values of [0.5, 1), such as i=0.5 or i=0.5 or i=0.6 or i=0.7 or i=0.75 or i=0.85 or i=0.9.
实施例二Embodiment two
本实施例与实施例一的区别在于,本实施例中,上述关系式中的参数取值为:m=30,i=0.75,K=Rt/R30。因而,下一批硅片的研磨时间T(n+1)=[T(n)*0.75+T(n-1)*0.75*(1-0.75)+T(n-2)*0.75*(1-0.75)2+……+T(n-29)*0.75*(1-0.75)29]/(Rt/R30)。The difference between this embodiment and Embodiment 1 is that in this embodiment, the values of the parameters in the above relational formula are: m=30, i=0.75, K=Rt/R 30 . Therefore, the grinding time T(n+1) of the next batch of silicon wafers=[T(n)*0.75+T(n-1)*0.75*(1-0.75)+T(n-2)*0.75*( 1-0.75) 2 +...+T(n-29)*0.75*(1-0.75) 29 ]/(Rt/R 30 ).
以上实施例仅用以说明而非限制本发明的技术方案。如,确定下一批硅片的模糊研磨时间T1可以采用其他方式。不脱离本发明精神和范围的任何修改或局部替换,均应涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate rather than limit the technical solution of the present invention. For example, other methods may be used to determine the fuzzy grinding time T1 of the next batch of silicon wafers. Any modification or partial replacement that does not depart from the spirit and scope of the present invention shall fall within the scope of the claims of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710047057A CN100591482C (en) | 2007-10-16 | 2007-10-16 | A Method for Determining Grinding Time in Chemical Mechanical Polishing Process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710047057A CN100591482C (en) | 2007-10-16 | 2007-10-16 | A Method for Determining Grinding Time in Chemical Mechanical Polishing Process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101412202A CN101412202A (en) | 2009-04-22 |
CN100591482C true CN100591482C (en) | 2010-02-24 |
Family
ID=40593051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710047057A Expired - Fee Related CN100591482C (en) | 2007-10-16 | 2007-10-16 | A Method for Determining Grinding Time in Chemical Mechanical Polishing Process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100591482C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102029572B (en) * | 2009-09-25 | 2012-05-30 | 中芯国际集成电路制造(上海)有限公司 | Method for controlling chemical mechanical polishing time |
CN102039558B (en) * | 2009-10-23 | 2014-01-08 | 无锡华润上华科技有限公司 | Method for controlling grinding process |
CN102054738B (en) * | 2009-10-30 | 2012-08-29 | 无锡华润上华半导体有限公司 | Control method for shallow groove isolation step height |
TWI492288B (en) * | 2010-02-11 | 2015-07-11 | 聯華電子股份有限公司 | Method for controling polishing wafer |
CN102189469B (en) * | 2010-03-11 | 2013-04-10 | 中芯国际集成电路制造(上海)有限公司 | Method for dynamically adjusting time limit of chemically-mechanical polishing |
CN102380815A (en) * | 2010-09-01 | 2012-03-21 | 无锡华润上华半导体有限公司 | Chemical mechanical grinding method and chemical mechanical grinding system |
CN111229679B (en) * | 2020-01-21 | 2021-09-17 | 北京北方华创微电子装备有限公司 | Control method and control device of wafer cleaning equipment and wafer cleaning equipment |
CN111599665A (en) * | 2020-04-28 | 2020-08-28 | 杭州中欣晶圆半导体股份有限公司 | Method for adjusting silicon wafer grinding time in chemical mechanical polishing process |
CN115609469B (en) * | 2022-11-30 | 2023-04-28 | 合肥晶合集成电路股份有限公司 | Grinding time correction method, system and isolation structure manufacturing method |
CN116765976A (en) * | 2023-06-12 | 2023-09-19 | 上海中欣晶圆半导体科技有限公司 | A tape grinding method for silicon wafer processing |
CN116442112B (en) * | 2023-06-16 | 2023-10-03 | 合肥晶合集成电路股份有限公司 | Wafer grinding control method, system, device, equipment and storage medium |
-
2007
- 2007-10-16 CN CN200710047057A patent/CN100591482C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101412202A (en) | 2009-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100591482C (en) | A Method for Determining Grinding Time in Chemical Mechanical Polishing Process | |
US7083495B2 (en) | Advanced process control approach for Cu interconnect wiring sheet resistance control | |
CN111133559B (en) | Method for manufacturing silicon wafer | |
US7184853B2 (en) | Lithography method and system with correction of overlay offset errors caused by wafer processing | |
US9978582B2 (en) | Methods for improving wafer planarity and bonded wafer assemblies made from the methods | |
US7534725B2 (en) | Advanced process control for semiconductor processing | |
US7722436B2 (en) | Run-to-run control of backside pressure for CMP radial uniformity optimization based on center-to-edge model | |
US7642100B2 (en) | Method and system for yield and productivity improvements in semiconductor processing | |
US8216945B2 (en) | Wafer planarity control between pattern levels | |
CN102380815A (en) | Chemical mechanical grinding method and chemical mechanical grinding system | |
Sarfaty et al. | Advance process control solutions for semiconductor manufacturing | |
CN107104095A (en) | The control method and control system of a kind of layer capacitance | |
CN110071041A (en) | Preparation method of shallow trench isolation structure, chemical mechanical polishing method and system | |
US8394719B2 (en) | System and method for implementing multi-resolution advanced process control | |
CN107900788B (en) | Method for improving thickness stability of interlayer medium grinding process | |
US10500693B2 (en) | Run-to-run control for chemical mechanical planarization | |
US20070141735A1 (en) | Method of monitoring deposition temperature of a copper seed layer and method of forming a copper layer | |
US9378954B2 (en) | Plasma pre-treatment for improved uniformity in semiconductor manufacturing | |
US7142940B2 (en) | Method of processing semiconductor wafer | |
CN112530788A (en) | Wet etching method of semiconductor substrate | |
US6864189B2 (en) | Methodology for measuring and controlling film thickness profiles | |
CN100431096C (en) | Method for processing semiconductor wafer | |
CN115609469B (en) | Grinding time correction method, system and isolation structure manufacturing method | |
Khan et al. | Yield improvement at the contact process through run-to-run control | |
CN115939031A (en) | Wafer structure and wafer curvature regulation and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20111117 Address after: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Co-patentee after: Semiconductor Manufacturing International (Beijing) Corporation Patentee after: Semiconductor Manufacturing International (Shanghai) Corporation Address before: 201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Patentee before: Semiconductor Manufacturing International (Shanghai) Corporation |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100224 Termination date: 20181016 |
|
CF01 | Termination of patent right due to non-payment of annual fee |