CN100585392C - Silk screen printing electrode and producing process, and sensor and detecting method - Google Patents

Silk screen printing electrode and producing process, and sensor and detecting method Download PDF

Info

Publication number
CN100585392C
CN100585392C CN 200710067411 CN200710067411A CN100585392C CN 100585392 C CN100585392 C CN 100585392C CN 200710067411 CN200710067411 CN 200710067411 CN 200710067411 A CN200710067411 A CN 200710067411A CN 100585392 C CN100585392 C CN 100585392C
Authority
CN
China
Prior art keywords
electrode
printed
substrate
electrodes
screen
Prior art date
Application number
CN 200710067411
Other languages
Chinese (zh)
Other versions
CN101021503A (en
Inventor
周海梦
孟凡国
李海龙
胡卫江
强 蔡
Original Assignee
嘉兴博泰生物科技发展有限公司;浙江清华长三角研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴博泰生物科技发展有限公司;浙江清华长三角研究院 filed Critical 嘉兴博泰生物科技发展有限公司;浙江清华长三角研究院
Priority to CN 200710067411 priority Critical patent/CN100585392C/en
Publication of CN101021503A publication Critical patent/CN101021503A/en
Application granted granted Critical
Publication of CN100585392C publication Critical patent/CN100585392C/en

Links

Abstract

A screen printing electrode contains a substrate printed electrode, external insulating layer printed on substrate and at least two electrode leading wires. It is characterized in that there are three electrodes printed on substrate, including a gold electrode, a carbon electrode and an Ag/AgCl electrode. Each electrode connects a leading wire correspondingly. Its manufacturing technology is: Firstly, select substrate, clean and drying for heat resisting. Then, print electrode leading wires, drying substrate. Print carbon electrode using carbon slurry and drying, Ag/AgCl electrode using Ag/AgCl slurry and drying in turn. Finally, utilize photofixation insulating slurry to print electrode standard layer and solidify it by ultraviolet light. The invention has simple electrode construction, convenient processing method and low cost. Sensor testing method depending on this electrode has convenient operation and high sensitivity.

Description

丝网印刷电极及制备工艺和传感器及检测方法技术领域本发明涉及的是一种可快速检测水中重金属含量的丝网印刷电极及制备工艺和丝网印刷电极制成的传感器及传感器用于检测重金属铅含量的方法,属于分析仪器技术领域。 Preparation and screen-printed electrodes and sensors and detection TECHNICAL FIELD The present invention relates to a screen-printed electrodes and the heavy metal detection sensors and sensor manufacturing process and screen printing of an electrode can be made rapid detection of heavy metals in water method for lead, belongs to the field of analytical instruments. 背景技术铅(Pb2+)是自然界中存在的一种有害重金属离子,对人的神经系统、消化系统、 造血机能和男性生殖系统等都有危害,尤其危害大脑正处于发育阶段的儿童。 BACKGROUND Lead (Pb2 +) is a harmful heavy metal ions exist in nature, the human nervous system, digestive system, hematopoietic function and harm the male reproductive system and others have, in particular, harm the brain is in the developmental stages of children. 为此,世界卫生组织规定水中的Pb2+含量不能超过10ixg/L。 To this end, the World Health Organization Pb2 + in water content can not exceed 10ixg / L. Pb2+的测定方法有双硫腙比色法、原子吸收法、等离子体质谱和电化学方法等;其中以质谱法最为灵敏,检测限可达1.0X 10-3 ug/L, 火焰原子吸收法的检出限可达1.0ug/L,电化学溶出法的灵敏度介于原子吸收法和质谱法之间,且仪器易于小型化,操作简便,适用于野外现场检测有毒重金属离子,因此该法日益引人关注。 Determination of Pb2 + with a dithizone colorimetry, atomic absorption spectrometry, mass spectrometry and electrochemical methods like plasma; wherein the most sensitive to mass spectrometry, the detection limit of 1.0X 10-3 ug / L, in Flame Atomic Absorption Spectrometry the detection limit of 1.0ug / L, the sensitivity is between the electrochemical stripping voltammetry atomic absorption spectrometry and mass spectrometry, and the instrument is easy to compact, easy to operate, suitable for field detection of toxic heavy metal ions, thus increasing the Act primer people are concerned. 溶出伏安分析的高灵敏度是源于痕量金属在工作电极表面的富集作用,采用合适的扫描方法,溶出伏安分析不仅可以提供重金属浓度,也可以分析重金属的化学形态。 High sensitivity analysis is derived from the stripping voltammetry enrichment of trace metal working electrode surface, using a suitable scanning method, stripping voltammetry analysis can not only provide concentrations of heavy metals, may also be analyzed chemical form of heavy metals. 近年来, 溶出伏安分析在重金属的测量方面得到较快发展,新的传感器技术替代了传统的滴汞电极,免除了除氧等步骤,手持型的溶出伏安分析仪也得到了迅速商业化。 In recent years, rapid development stripping voltammetry analysis obtained in the measurement of heavy metals, new sensor technology to replace the traditional dropping mercury electrode, the step of eliminating the oxygen and the like, by stripping voltammetry handheld analyzer and a rapid commercialization . 其中,汞膜电极溶出法是最有效的测Pb2+方法之一,但由于汞具有环境毒性,研究人员采用了金膜、银膜、铂膜和碳膜修饰电极来替代汞膜电极。 Wherein mercury film electrode Stripping voltammetry measurement is the most effective method of Pb2 +, but because of environmentally toxic mercury, researchers used a gold film, silver film, a platinum film and a modified carbon electrode to replace mercury film electrode. 电化学传感器的实际应用中,因为实际样本的复杂性,传感器存在着"电极中毒"的现象,使传感器的表面容易受到破坏,因此,近年来普遍研究一次性传感器以消除检测过程对于电极本身的污染。 Practical application of electrochemical sensor, since the complexity of real samples, there is the phenomenon of the sensor "electrode poisoning" the surface of the sensor is easily damaged, and therefore, in recent years, studies generally disposable sensors for the detection process to remove the electrode itself Pollution. 发明内容本发明的目的在于克服上述现有技术存在的不足,而提供一种结构简单、操作方便、 成本低且检测灵敏度高的丝网印刷电极及制备工艺和传感器及检测方法。 Object of the present invention is to overcome the above disadvantages of the prior art, to provide a simple structure, easy operation, low cost and high sensitivity of the screen-printed electrodes and sensors and the preparation and testing methods. 它是一种电极, 这种电极采用丝网印刷工艺制备,饮用差分脉冲阳极溶出伏安分析,可以快速检测水中痕量铅Pb,可以用于湖泊、水库、河流、污水厂等的重金属污染快速监测,也可以用于蔬菜等重金属残留、血铅的快速检测。 It is an electrode, such an electrode prepared using a screen printing process, drinking differential pulse anodic stripping voltammetry analysis, can quickly detect Determination of Trace Pb, can be used for heavy metal contaminated lakes, reservoirs, rivers, sewage plants and other quick monitoring can also be used for vegetables and other heavy metals, rapid detection of blood lead. 为解决上述技术问题,本发明采用如下技术方案: 一种丝网印刷电极,包括一印制电说明书第2/4页极的基片、基片上印制的外部绝缘层和至少两根电极引线,所述的基片上还印制有三个电极,分别为一个金电极、 一个碳电极和一个Ag/AgCl电极,各电极对应连接有一电极引线。 To solve the above problems, the present invention adopts the following technical solution: A screen printing printed on the electrode, comprising a printed wiring specification on page 2/4 electrode substrate, the substrate insulating layer and at least two outer electrode lead on said substrate is also printed with three electrodes, namely a gold electrode, a carbon electrode and a Ag / AgCl electrode, each electrode connected to a corresponding electrode lead a. 所述的基片上还印制有一电极规范层,该层位于电极和绝缘层之间。 Said substrate electrode has a further printed layer specification, the layer between the electrode and the insulating layer. 一种如上所述丝网印刷电极的制备工艺是:首先选取基片清洁并干燥耐热;然后印制电极引线;接着烘干基片,依次用碳糊浆料印制碳电极并烘干、Ag/AgCl浆糊印制Ag/AgCl 电极并烘干和金浆料印制金电极并烘干;再接着采用光固绝缘浆印制电极规范层并用紫外光固化;最后采用光固绝缘浆印制电极绝缘层并用紫外光固化。 A method of preparing a screen printing process described above, the electrodes are: First select the cleaned and dried substrate is heat; and then printed electrode lead; then drying the substrate successively with a carbon paste carbon electrodes printed and dried paste, Ag / AgCl paste printed Ag / AgCl electrode and the gold and drying the slurry and drying the printed gold electrode; then using another photo-curable insulating paste layer was printed with an electrode specification UV-curable; Finally photocurable printing an insulating paste an insulating layer made of an electrode and cured with ultraviolet light. 所述的金电极印制过程中,烘干温度为60—80度,时间15—30分钟,碳电极以及Ag/AgCl电极印制过程中,烘干温度为100—150度,时间8 — 15分钟。 The gold electrode printing process, the drying temperature is 60-80 degrees, 15-30 minutes time, carbon electrodes and Ag / AgCl electrode printing process, a drying temperature of 100-150 degrees, the time 8--15 minute. 所述的金电极印制过程,烘千温度为70度,时间20分钟,碳电极以及Ag/AgCl电极印制过程中,烘干温度为120度,时间10分钟。 The gold electrode printing process, one thousand drying temperature of 70 degrees, 20 minutes, carbon electrodes and Ag / AgCl electrode printing process, a drying temperature of 120 degrees for 10 minutes. 一种采用如上所述丝网印刷电极制成的传感器,它至少包括一丝网印刷电极和一外部结构,丝网印刷电极与外部结构固定连接,在印刷电极与外部结构之间设置有一T型检测空腔。 One kind of screen printing using a sensor electrode made as described above, comprising at least a screen-printed electrodes and an external structure with an external screen printed electrode structure is fixedly connected, is provided with a T-shaped detection electrode between the printing and the external structure cavity. 所述的外部结构为固定在丝网印刷电极一侧的补强板和另一侧的上盖和支撑架,所述的T型空腔设置在支撑架上。 Said external structure is a support frame fixed to the upper and screen printed electrode side and the other side of the reinforcement plate, the T-shaped cavity provided in the support frame. 一种利用如上所述传感器用于检测重金属铅含量的方法,采用方波伏安分析法,首先, 将所述的传感器与电化学分析仪器相连;其次,将代测样本与0.1MHCl在5mL试管中混合形成检测溶液;最后,将传感器电极下端浸入溶液开始方波伏安分析法。 As described above utilizing a sensor for detecting lead content of heavy metals, the method using square wave voltammetry, first, connected to said sensor and electrochemical analysis instruments; secondly, the generation of the test sample in 5mL tube 0.1MHCl mixed forming detector solution; Finally, the lower end of the sensor electrode is immersed in the solution began to square wave voltammetry. 所述的检测溶液的混合比例为:0.8—lml的代测样本、3—5ml的去离子水和5ml0.1M 的HCL溶液;所述的方波伏安法分析参数为:稳定电压+0,5V30妙,富集电位—0.5V120 妙,平衡时间30妙,方波幅度28mV,电位步进值3mV,频率15Hz,工作电位窗口:— 0.5—+0.2V。 The mixing ratio of the test solution are: generation of a measurement sample 0.8-lml, 3-5ml of deionized water and a solution HCL 5ml0.1M; said square wave voltammetry parameters: +0 stable voltage, 5V30 Miao, accumulation potential -0.5V120 Miao, Miao equilibration time 30, square wave amplitude 28mV, the potential 3mV step value, the frequency of 15Hz, the working potential window: - 0.5- + 0.2V. 本发明与现有技术相比,具有丝网印刷电极结构简单,加工方法简便、成本低,用该丝网印刷电极制成的传感器检测方法操作方便、检测灵敏度高等特点。 Compared with the prior art the present invention, having a screen printed electrode structure is simple, easy processing method, low cost, convenient method of detecting a sensor electrode made of the operation of the screen printing, and high sensitivity. 附图说明图1是本发明丝网印刷电极结构示意图图2是本发明丝网印刷电极制成的传感器的结构示意图具体实施方式4下面将结合附图对本发明作详细的介绍:如图l所示,本发明所述的丝网印刷电极, 包括一印制电极的基片7、基片上印制的外部绝缘层2和至少2根电极引线1,所述的基片上还印制有3个电极,分别是: 一个金电极4、 一个碳电极5和一个Ag/AgCl电极6, 各电极对应连接有一电极引线,所述的基片上还印制有一电极规范层3,该层位于电极和绝缘层之间。 BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic structural diagram of a screen printed electrode 2 of the present invention is a binding Embodiment 4 below shows a specific embodiment of the sensor of the present invention made of a screen-printed electrode DRAWINGS The invention is described in detail: as shown in Figure l shown, screen printed electrode according to the present invention, the substrate comprises a printed electrode 7, printed on the substrate 2 and the outer insulating layer at least two electrode leads 1, the substrate 3 is also printed with electrodes, namely: a gold electrode 4, a carbon electrode 5, and an Ag / AgCl electrode 6, the respective corresponding electrodes are connected to an electrode lead on the substrate has an electrode specification layer 3 is further printed, the layer the electrode and the insulating layer.

所述的丝网印刷电极的加工工艺是:首先选取基片7清洁并干燥耐热,基片为PET基片;然后印制电极引线l;接着烘干基片7,依次用碳糊浆料印制碳电极5并烘干,烘干温度为100—150度,时间8—15分钟、Ag/AgCl浆糊印制Ag/AgCl电极6并烘干,烘干温度为100—150度,时间8—15分钟,金浆料印制金电极4并烘干,烘干温度为60—80 度,时间15—30分钟;再接着采用光固绝缘浆印制电极规范层3并用紫外光固化;最后采用光固绝缘浆印制电极绝缘层2并用紫外光固化。 The screen printing process is the electrode: First select the cleaned and dried substrate 7 heat the substrate a PET substrate; then printed electrode lead L; then drying the substrate 7, carbon paste slurry was washed successively with 5 printed carbon electrodes and dried, the drying temperature is 100-150 degrees, 8-15 minutes time, Ag / AgCl paste printed Ag / AgCl electrodes 6 and dried, the drying temperature of 100-150 degrees, the time 8-15 minutes, gold paste printed gold electrode 4 and dried, the drying temperature is 60-80 degrees, time 15-30 minutes; and then followed by light solid insulating layer 3 specification electrode paste printed and cured with ultraviolet light; Finally curing the insulating paste printed electrode 2 and the insulating layer cured with ultraviolet light.

为了达到最佳的烘干效果,所述的金电极4印制过程,烘干温度为70度,时间20分钟,碳电极(5)以及Ag/AgCl电极6印制过程,烘干温度为120度,时间10分钟。 For best drying results, 4 of the gold electrode printing process, a drying temperature of 70 degrees, 20 minutes, carbon electrode (5) and Ag / AgCl electrodes 6 printing process, the drying temperature was 120 degrees, 10 minutes.

如图2所示,用丝网印刷电极制成的传感器,它至少包括一丝网印刷电极IO和一外部结构,丝网印刷电极10与外部结构采用粘合剂固定连接,在印刷电极10与外部结构之间设置一T型检测空腔12,所述的外部结构为固定在丝网印刷电极一侧的补强板11和另一侧的上盖8和支撑架9,所述的T型空腔12设置在支撑架9上。 2, made of a screen-printed sensor electrode which comprises at least one screen-printed electrodes and an external IO structure, screen-printed electrodes and the external structure 10 is fixedly connected with an adhesive, printed with external electrodes 10 detecting a T-shaped cavity is provided between the structures 12, 11 of the outer structure and the other side is fixed to the screen-printed electrode side reinforcing plate 8 and the upper cover support bracket 9, the T-empty chamber 12 is provided on the support bracket 9.

本发明传感器用于检测重金属铅含量的方法,采用方波伏安分析法,首先,将所述的传感器与电化学分析仪器相连;其次,将代测样本与0.1MHCl在5mL试管中混合形成检测溶液,溶液的混合比例为:0.8—lml的代测样本、3—5ml的去离子水和5ml0.1M的HCL 溶液;最后,将传感器电极下端浸入溶液开始方波伏安分析法,伏安法分析参数为:稳定电压+0.5V30妙,富集电位—0.5V 120妙,平衡时间30妙,方波幅度28mV,电位歩进值3mV,频率15Hz,工作电位窗口: 一0.5—+0.2V。 The method of the present invention is a sensor for detecting lead content of heavy metals, square wave voltammetry, first, connected to said sensor and electrochemical analysis instruments; secondly, the generation of test samples mixed with 0.1MHCl 5mL detection tube is formed solution, the mixing ratio of the solution to: 0.8-lml generation of the test sample, 3-5ml of deionized water and a solution HCL 5ml0.1M; finally, the lower end of the sensor electrode is immersed in the solution began to square wave voltammetry analysis, voltammetry analysis parameters are: a stable voltage + 0.5V30 Miao, accumulation potential -0.5V 120 Miao, Miao equilibration time 30, square wave amplitude 28mV, the potential value ho into 3mV, frequency 15Hz, working potential window: a 0.5- + 0.2V.

实施例:检测自来水中加标试样中的Pb Detection tap water spiked sample Pb: Example

采用Cffl660A电化学分析仪(CHI公司),其中碳电极浆料为闩本Jujo,金浆料、AgCl 和绝缘浆料为Acheson, PET基片来自保定乐凯胶片厂。 Cffl660A using an electrochemical analyzer (CHI Corporation), wherein the carbon electrode paste is present Jujo latch, gold paste, the insulating paste for forming AgCl and Acheson, PET substrate from Baoding Lucky Film Factory. 取嘉兴地区自来水样,配制0〜 30X10—6g/LPb离子的一系列加标溶液。 Jiaxing water sample taken to prepare 0~ 30X10-6g / series of spiking solutions LPb ions. 按照本发明所述方法,进行检测试验,可以得到如下图中的方波伏安曲线,Pb离子浓度标定,读取一0.24¥电位时的峰电流,Pb离子浓度采用公式:C=AXI,其中I是电流10"A, C是铅离子浓度,单位1(T6g/L。 A是校准系数,典型值为0.01。 The method according to the present invention, for testing, square-wave voltammograms obtained in the following figure, Pb ion concentration calibration, the read peak current at a potential of 0.24 ¥, Pb ion concentration using the equation: C = AXI, wherein I is the current 10 "A, C is the concentration of lead ions, unit 1 (T6g / L. A is the calibration factor, typically 0.01.

结果表明,该方法线性区间为0〜50X10—VL,灵敏度0.08 A /g Ll,检测精度0.5X 1(Tg/L。对10X I06g/L进行10次重复试验,表明误差小于10% 。 The results show that the linear range for 0~50X10-VL, sensitivity of 0.08 A / g Ll, the detection accuracy of 0.5X 1 (Tg / L. Of 10X I06g / L with 10 repeated tests, indicating an error less than 10%.

Claims (6)

1、一种丝网印刷电极,包括一印制电极的基片、基片上印制的外部绝缘层和至少两根电极引线,其特征在于所述的基片(7)上还印制有三个电极,分别为一个金电极(4)、一个碳电极(5)和一个Ag/AgCl电极(6),各电极对应连接有一电极引线;所述的基片(7)上还印制有一电极规范层(3),该层位于电极和绝缘层之间。 1 A screen-printed electrode, a substrate comprising a printed electrodes, printed on the substrate at least two outer insulating layer and the electrode leads, wherein said substrate (7) is also printed with three electrodes, respectively, a gold electrode (4), a carbon electrode (5), and a Ag / AgCl electrode (6), each of the corresponding electrodes are connected to an electrode lead; said substrate (7) is also printed with an electrode specification layer (3), which layer is located between the electrode and the insulating layer.
2、 一种如权利要求1所述的丝网印刷电极的制备工艺,其特征是:首先选取基片(7) 清洁并干燥耐热;然后印制电极引线(1);接着烘干基片(7),依次用碳糊浆料印制碳电极(5)并烘干、Ag/AgCl浆糊印制Ag/AgCl电极(6)并烘干和金浆料印制金电极(4) 并烘干;再接着采用光固绝缘浆印制电极规范层(3)并用紫外光固化;最后采用光固绝缘浆印制电极绝缘层(2)并用紫外光固化。 Followed by drying the substrate; selecting first substrate (7) to clean and dry heat; and then printed electrode lead (1): 2. A process as claimed in screen printed electrodes prepared according to claim 1, characterized in that (7) sequentially with carbon paste printed carbon electrode paste (5) and dried, Ag / AgCl paste printed Ag / AgCl electrode (6) and a gold paste printing and drying the gold electrode (4) and drying; then followed by light solid insulating layer paste printed specification electrode (3) and treated with UV-curable; Finally photocurable insulating paste printed electrode insulating layer (2) and cured with ultraviolet light.
3、 根据权利要求2所述的丝网印刷电极的制备工艺,其特征在于所述的金电极(4〉 印制过程,烘干温度为60—80度,时间〗5—30分钟,碳电极(5)以及Ag/AgCl电极(6) 印制过程,烘干温度为100—150度,时间8—15分钟。 3, the preparation process of screen-printed electrodes 2 claim, characterized in that said gold electrodes (4> printing process, the drying temperature is 60-80 degrees, the time〗 5-30 minutes, carbon electrode (5) and Ag / AgCl electrodes (6) printing process, a drying temperature of 100-150 degrees, time of 8-15 minutes.
4、 根据权利要求3所述的丝网印刷电极的制备工艺,其特征在于所述的金电极(4) 印制过程,烘千温度为70度,时间20分钟,碳电极(5)以及Ag/AgCl电极(6)印制过程,烘干温度为120度,时间10分钟。 4. The preparation process according to claim 3, screen printed electrodes claims, characterized in that said gold electrodes (4) printing process, one thousand drying temperature of 70 degrees, 20 minutes, carbon electrode (5) and Ag / AgCl electrode (6) printing process, a drying temperature of 120 degrees for 10 minutes.
5、 一种用权利要求1所述的丝网印刷电极制成的传感器用于检测重金属铅含量的方法,所述的传感器至少包括一丝网印刷电极(10)和一外部结构,丝网印刷电极(10)与外部结构固定连接,在印刷电极(10)与外部结构之间设置一T型检测空腔(12);所述的外部结构为固定在丝网印刷电极一侧的补强板(11)和另一侧的上盖(8)和支撑架(9), 所述的T型空腔(12)设置在支撑架(9〉上;其特征在于所述的方法是:它采用方波伏安分析法,首先,将所述的传感器与电化学分析仪器相连;其次,将待测样本与0.1MHC1 在5mL试管中混合形成检测溶液;最后,将传感器电极下端浸入溶液开始方波伏安分析法。 5. A use as claimed in claim 1, the sensor is made a screen printing method for detecting electrode for lead content, said sensor comprising at least a screen-printed electrode (10) and an outer structure, screen printed electrodes (10) fixedly connected to the external structure, provided with a T-type detection cavity (12) between the printing electrodes (10) and the outer structure; the external structure is fixed to the screen printing electrode side reinforcing plate ( 11) and the cover (8) and support bracket (9) on the other side, the T-shaped cavity (12) provided on the support frame (9>; wherein said method is: its use of square wave voltammetry, first, the sensor is connected with the electrochemical analysis instruments; secondly, mixing the test sample with 0.1MHC1 forming detector solution 5mL tube; Finally, the lower end of the sensor electrode is immersed in the solution began to square wave V An analysis method.
6、 根据权利要求5所述的用丝网印刷电极制成的传感器用于检测重金属铅含量的方法,其特征在于所述的检测溶液的混合比例为- 0.8 — hBl的待测样本、3—5ml的去离子水和5ml0.1M的HCl溶液;所述的方波伏安法分析参数为:稳定电压+0.5V30秒,富集电位一0.5V120秒,平衡时间30秒,方波幅度28mV,电位步进值3mV,频率15Hz,工作电位窗口: 一0.5—+0.2V。 6. The method of claim made by screen printing an electrode sensor for detecting the lead content of heavy metals according to claim 5, characterized in that the mixing ratio of the solution is detected - 0.8 - hBl the test sample, 3- 5ml of deionized water and HCl solution 5ml0.1M; said square wave voltammetry parameters: a stable voltage + 0.5V30 seconds, a potential of the enriched 0.5V120 seconds, 30 seconds equilibration time, 28mV amplitude of the square wave, potential step value 3mV, frequency 15Hz, working potential window: a 0.5- + 0.2V.
CN 200710067411 2007-03-01 2007-03-01 Silk screen printing electrode and producing process, and sensor and detecting method CN100585392C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710067411 CN100585392C (en) 2007-03-01 2007-03-01 Silk screen printing electrode and producing process, and sensor and detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710067411 CN100585392C (en) 2007-03-01 2007-03-01 Silk screen printing electrode and producing process, and sensor and detecting method

Publications (2)

Publication Number Publication Date
CN101021503A CN101021503A (en) 2007-08-22
CN100585392C true CN100585392C (en) 2010-01-27

Family

ID=38709338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710067411 CN100585392C (en) 2007-03-01 2007-03-01 Silk screen printing electrode and producing process, and sensor and detecting method

Country Status (1)

Country Link
CN (1) CN100585392C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402327A (en) * 2013-08-07 2013-11-20 苏州扬清芯片科技有限公司 Manufacturing method of printing electrode for portable heavy metal detection

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702957B2 (en) 2007-06-29 2014-04-22 Arizona Board Of Regents For And On Behalf Of Arizona State University Electrochemical detection of silica species
CN101178380B (en) 2007-12-05 2011-11-09 浙江工商大学 Method for detecting lead content in tea-leaf
WO2009123645A1 (en) * 2008-04-04 2009-10-08 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Simultaneous electrochemical detection of multiple heavy metal ions in liquid
CN101344501B (en) 2008-08-22 2011-10-05 中南大学 Silk screen printing electrode, manufacturing technique and use thereof
US8411413B2 (en) 2008-08-28 2013-04-02 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
CN101666772B (en) 2008-09-04 2013-06-05 北京金达清创环境科技有限公司 Preparation method for screen printing cobalt sensor for detecting phosphate
CN102243210A (en) * 2010-05-14 2011-11-16 湖南友能高新技术有限公司 Portable heavy metal lead, cadmium, and zinc sensor, preparation method thereof, and detection method
CN103207223B (en) * 2012-11-23 2015-04-01 上海仪电科学仪器股份有限公司 Manufacturing method of portable heavy metal meter printing electrode
CN103932676A (en) * 2013-01-23 2014-07-23 四川锦江电子科技有限公司 Flexible circuit electrode
CN103149255A (en) * 2013-02-25 2013-06-12 长沙理工大学 Method for quickly determining lead content in blood

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2337332A (en) 1998-05-13 1999-11-17 Univ Cranfield Affinity electrode for electrochemical analysis
CN1441903A (en) 2000-07-14 2003-09-10 生命扫描有限公司 Hemoglobin sensor
CN1462880A (en) 2003-06-18 2003-12-24 浙江大学 biosensor for lactic acid in whole blood
CN1492998A (en) 2001-01-04 2004-04-28 台欣生物科技研发股份有限公司 Biosensors having improved sample application
CN1603809A (en) 2004-11-29 2005-04-06 清华大学 Disposable ampere type immunosensor for detecting two or four drops and preparing and using method thereof
CN2723998Y (en) 2004-08-23 2005-09-07 南开大学 Enzyme electrode for residual pesticide test

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2337332A (en) 1998-05-13 1999-11-17 Univ Cranfield Affinity electrode for electrochemical analysis
CN1441903A (en) 2000-07-14 2003-09-10 生命扫描有限公司 Hemoglobin sensor
CN1492998A (en) 2001-01-04 2004-04-28 台欣生物科技研发股份有限公司 Biosensors having improved sample application
CN1462880A (en) 2003-06-18 2003-12-24 浙江大学 biosensor for lactic acid in whole blood
CN2723998Y (en) 2004-08-23 2005-09-07 南开大学 Enzyme electrode for residual pesticide test
CN1603809A (en) 2004-11-29 2005-04-06 清华大学 Disposable ampere type immunosensor for detecting two or four drops and preparing and using method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
印刷三电极系统的制备及分析应用. 汪立忠等.分析化学,第22卷第11期. 1994
基于丝网印刷工艺的安培型酶免疫传感器的研究. 蔡强等.分析化学,第34卷第1期. 2006
基于平面印刷碳电极的重金属离子检测. 童基均等.传感技术学报,第1期. 2004
检测2,4-D的一次性安培型免疫传感器. 蔡强等.环境科学,第26卷第6期. 2005

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402327A (en) * 2013-08-07 2013-11-20 苏州扬清芯片科技有限公司 Manufacturing method of printing electrode for portable heavy metal detection
CN103402327B (en) * 2013-08-07 2016-09-21 苏州扬清芯片科技有限公司 The method of making a printed electrode for detecting portable heavy metal

Also Published As

Publication number Publication date
CN101021503A (en) 2007-08-22

Similar Documents

Publication Publication Date Title
Afkhami et al. Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite
Gao et al. Electrochemical detection of arsenic (III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold
Cheng et al. Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors
Liu et al. Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array
Zhang et al. Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers
Hoyer et al. Application of polymer-coated glassy carbon electrodes to the direct determination of trace metals in body fluids by anodic stripping voltammetry
Chaiyo et al. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode
Pandey et al. A review of sensor-based methods for monitoring hydrogen sulfide
Bansod et al. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms
Zhang et al. Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array
Armstrong et al. Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode
Lin et al. Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode
Arduini et al. Bismuth-modified electrodes for lead detection
Bowles et al. Determination of Methylmercury in Natural Water Samples by Steam Distillation and Gas Chromatography− Atomic Fluorescence Spectrometry
Bernalte et al. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes
Valentini et al. The electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes
Herdan et al. Field evaluation of an electrochemical probe for in situ screening of heavy metals in groundwater
Martínez-Máñez et al. A multisensor in thick-film technology for water quality control
CN100573108C (en) Heat controlled electric pole electrogenerated chemiluminescence testing apparatus and testing-pool preparation method
Güntner et al. E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer?
JP3289059B2 (en) Electrochemical detection methods and detection apparatus
Song et al. Simultaneous determination of cadmium (II), lead (II) and copper (II) by using a screen-printed electrode modified with mercury nano-droplets
El Mhammedi et al. Ca10 (PO4) 6 (OH) 2-modified carbon-paste electrode for the determination of trace lead (II) by square-wave voltammetry
Bernalte et al. Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples
Khaled et al. Chitosan modified screen-printed carbon electrode for sensitive analysis of heavy metals

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01