CN100579078C - Method, base station and subscriber terminal for implementing ascending resource scheduling - Google Patents

Method, base station and subscriber terminal for implementing ascending resource scheduling Download PDF

Info

Publication number
CN100579078C
CN100579078C CN 200710111964 CN200710111964A CN100579078C CN 100579078 C CN100579078 C CN 100579078C CN 200710111964 CN200710111964 CN 200710111964 CN 200710111964 A CN200710111964 A CN 200710111964A CN 100579078 C CN100579078 C CN 100579078C
Authority
CN
China
Prior art keywords
uplink
interval
transmission time
time interval
block
Prior art date
Application number
CN 200710111964
Other languages
Chinese (zh)
Other versions
CN101197769A (en
Inventor
尹丽坤
明 房
王之曦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN 200710111964 priority Critical patent/CN100579078C/en
Publication of CN101197769A publication Critical patent/CN101197769A/en
Application granted granted Critical
Publication of CN100579078C publication Critical patent/CN100579078C/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/12Dynamic Wireless traffic scheduling ; Dynamically scheduled allocation on shared channel

Abstract

The invention discloses a method, a base station and a user terminal for realizing upstream resource scheduling. The method comprises the following procedures: an upstream resource assignment message comprises an upstream status identification message and a granular message is distributed, the granular message is used to represent the granularity and the distribution interval of an upstream block, the distribution interval is used to represent the interval of the send time of each upstream block within one granularity. With the technical proposal provided by the embodiment of the invention, the distribution interval which is set in the upstream resource assignment message represents the interval of send time of each upstream block within one granularity; after the user terminal detects the distribution interval, the data of the user can be sent on the alternative upstream blocks, which improves the probability that each upstream block transmits the data of the user, thereby improving the utilization rate of the channel resource and avoiding the waste of the upstream resource.

Description

实现上行资源调度的方法、基站和用户终端 Implemented method of uplink resource scheduling, the base station and the user terminal

技术领域 FIELD

本发明涉及无线资源分配领域,特别涉及一种实现上行资源调度的方法、 基站和用户终端。 The present invention relates to the field of radio resource allocation, and particularly relates to a method for implementing uplink resource scheduling, the base station and the user terminal. 背景技术 Background technique

在无线接入网的无线资源的分配方式中,上行和下行使用两种不同的机 In the allocation of a radio access network radio resource, the uplink and downlink use two different machines

制。 system. 临时块流(TBF)是移动台(MS)和网络之间临时的连接,只在数据转发的过程中才存在。 Temporary block flow (the TBF) the mobile station (MS) and a temporary connection between the network, it is present only in the data forwarding process. 它支持在分组物理信道上的分组数据单元的单向转发。 It supports one-way packet forwarding packet data physical channel unit. 一个TBF可以在一个或多个分组数据信道(PDCH)上使用无线资源。 TBF is a radio resource can be used on one or more packet data channels (PDCH). 网络为每个TBF分配了临时块流指示(TFI),在同时出现的TBF里,每个TBF的TFI 都不同。 Network assigned temporary block flow indicator (TFI) to each TBF, simultaneous occurrence of the TBF, the TFI that is different for each TBF. 网络通过控制信息为MS指配使用的PDCH。 Distribution network means PDCH using control information for the MS. 在分配的下行PDCH上, MS通过检测TFI识别该TBF的归属。 On the downlink PDCH assigned, MS TFI identifying a TBF by detecting the home. 在分配的上行PDCH上,MS通过监纟见对应下行PDCH上的上行状态标识(USF ),来确定使用的上行PDCH。 Assigned uplink PDCH in, MS an uplink state flag (the USF) on the corresponding downlink PDCH, an uplink PDCH is determined by monitoring the use of Si, see. 即每个PDCH 对应不同的MS有不同USF值,网络通过控制USF确定上行PDCH归哪个MS使用。 I.e., each corresponding to a different PDCH USF value different MS, the uplink network by determining which of the control MS PDCH USF normalized used.

目前数据传输在物理层的最小调度单元是无线块(Block),每个Block 由4个时隙组成,且分别位于4个连续的TDMA帧,Block内每个时隙的传输时延是一个TDMA帧的时长,约等于5ms,所以每个Block的传输时延都是20ms。 Currently the minimum data transmission scheduling unit is a physical layer radio blocks (Block), each Block consists of four slots, and are located in four consecutive TDMA frames, each time slot in the transmission delay is a TDMA Block when the frame length is approximately equal to 5ms, so each Block transmission delay is 20ms. 为减少这段时延,提出了减少传输时间间隔技术(RTTI) 。 To reduce this delay, the proposed technology to reduce transmission time interval (RTTI). RTTI总体思想是保持每个Block的大小不变,通过利用多载波或多时隙来减少传输时间间隔(TTI)。 RTTI general idea is to keep constant the size of each Block, or by using a multi-carrier time slots to reduce the transmission time interval (TTI).

时域RTTI技术,参见图l, B1代表RTTI之前的基本传输时间间隔技术(BTTI) , B2代^RTTI。 RTTI time domain techniques, see Fig L, the basic transmission time interval RTTI B1 represents prior art (BTTI), B2 substituting ^ RTTI. 其中B1在4个连续TDMA帧上,每帧用l个时隙,则Bl的TTI等于20ms; B2在2个连续的TDMA帧上,每帧用2个连续的时隙,贝'J B2的TTI等于10ms。 Wherein B1 in four consecutive TDMA frames, with each frame slots l, Bl is equal to the TTI of 20ms; B2 on 2 consecutive TDMA frames, each two consecutive time slots, Tony 'J B2 of TTI is equal to 10ms.

为兼容性考虑,在上行能够复用10msRTTIMS和20msBTTIMS, USF的位置不能改变,以保证两种MS都能监视读取USF。 Compatibility is considered, can be multiplexed in the uplink and 10msRTTIMS position 20msBTTIMS, USF can not be changed, can be monitored to ensure that the two kinds of MS reading USF. 下行USF仍为20ms,但是可以调度上行10ms的RTTI无线块。 Downlink USF is still 20ms, but may schedule uplink RTTI radio blocks of 10ms.

引ZvRTTI后,对于上行RTTI TBF有两种USF模式(mode): BTTI USF mode 和RTTI USF mode。 After cited ZvRTTI, for an uplink RTTI TBF has two USF mode (mode): BTTI USF mode and RTTI USF mode. 当采用RTTI USF mode时,只有RTTITBF;当采用BTTIUSFmode时,可以既有BTTI TBF又有RTTI TBF。 When RTTI USF mode, only RTTITBF; When BTTIUSFmode, both BTTI TBF can have RTTI TBF. 当USF—GRANULARITY = 1,对上行采用4块粒度调度。 When USF-GRANULARITY = 1, the uplink scheduling using four granularity.

参见图2, BTTIUSFmode下: Referring to Figure 2, BTTIUSFmode follows:

MS3和MS4采用的是BTTI TBF, MS1和MS2采用的是RTTI TBF。 MS3, and MS4 uses BTTI TBF, MS1 and MS2 uses RTTI TBF. 对于MS1和MS2而言,当MSl在块周期Bx时在成对下行信道中序号较低的PDCH上(DL PDCHO)读到指派的USF1 ,就可以从包括下一个块周期Bx+l 开始的连续4个块周期上(Bx+1, Bx+2, Bx+3, Bx+4)的前10ms发送上行数据;当MS2在块周期Bx时在成对下行信道中序号较高的PDCH上(DLPDCHl ) 读到指派的USF2,就可以/人包括下一个块周期Bx+l开始的连续4个块周期上(Bx+1, Bx+2, Bx+3, Bx+4)的后10ms发送上行数据。 For MS1 and MS2, when the MSl Bx paired downlink channel when the number of block periods lower PDCH (DL PDCHO) read USF1 assigned, can include a continuous Bx + l from the beginning of the next block period 4 block periods (Bx + 1, Bx + 2, Bx + 3, Bx + 4) prior to transmitting the uplink data 10ms; MS2 on the pair when the Bx downlink channel when the number of block periods higher PDCH (DLPDCHl ) assigned to read USF2, can / person include a lower block Bx + l cycle starting block periods on four consecutive (Bx + 1, Bx + 2, Bx + 3, Bx + 4) transmits the uplink data after 10ms . 并且网络将Bx之后的3个块周期(Bx+1, Bx+2, Bx+3)上序号较低或者较高的PDCH上设置USF 保留值(reservedUSF) , MSl和MS2可以忽略Bx周期之后3个块周期上所对应PDCH上的USF值。 After the three blocks and the network cycles after Bx (Bx + 1, Bx + 2, Bx + 3) Set retention USF value (reservedUSF) on a lower or a higher number on the PDCH, MSl and MS2 can be ignored Bx cycle 3 on a PDCH USF value corresponding to the block periods.

对于MS3和MS4而言,当MS3在块周期Bx读取指派的USF3,就可以从包括下一个块周期Bx+l开始的连续4个块周期上(Bx+1, Bx+2, Bx+3, Bx+4) 发送上行数据。 For MS3, and MS4, when the MS3 assigned block read cycle USF3 Bx, Bx + L can be started on 4 consecutive block periods (Bx + 1, Bx + 2, Bx from the next block period comprising 3 + , Bx + 4) to transmit uplink data. 当MS4在块周期Bx读取指派的USF4,就可以从包括下一个块周期Bx+l开始的连续4个块周期上(Bx+1, Bx+2, Bx+3, Bx+4)发送上行数据。 At block when MS4 Bx read cycle assigned USF4, can be (, Bx + 2, Bx + 3, Bx + 4 Bx + 1) from the uplink transmission includes a lower block Bx + l cycle starting block periods on four consecutive data.

参见图3, RTTIUSFmode下: Referring to Figure 3, RTTIUSFmode follows:

Block的周期被压缩为10ms, MSl在块周期Bx时在PDCHpair上读到指派的USFO,就可以A^包括下一个块周期Bx+l开始的连续4个块周期上(Bx+1, Bx+2, Bx+3, Bx+4)发送上行数据。 Block period is compressed 10ms, MSl when read in block Bx period assigned on the PDCHpair USFO, A ^ may include a lower block Bx + l cycle starting block periods on four consecutive (Bx + 1, Bx + 2, Bx + 3, Bx + 4) to transmit uplink data.

例如某些特殊的业务,如VOIP业务的一般情况下,用户的语音包基本上每20ms发送一次,RTTIUSFmode配置下会每10ms发送一个Block。 For example, certain specific operations, such as general VOIP service, the user transmits voice packet every 20ms time substantially, RTTIUSFmode each configuration will send a 10ms Block. 实际采用4块粒度分配时,在分配给MS的4个上行块中,由于是每10ms连续分配,对于每20ms发送的用户语音包,只会间隔的使用到2块(每个20ms的前10ms对应的块),另外两块(每个20ms的后10ms对应的块)没有数据发送,产生浪费, 降低信道的利用率。 The actual particle size distribution using 4, allocated to the MS in the uplink block 4, since every 10ms is allocated continuously, the user voice packet every 20ms transmitted using only the two spaced (every 20ms to 10ms before corresponding block), the other two (each block corresponding to the 10ms 20ms) no data is sent, is wasted, reducing the channel utilization. 在图3中上行信道(ULPDCHO和PDCH1)中的第2个和第4个就是两个没有发送数据的块。 Two block data is not transmitted in the uplink channel (ULPDCHO and PDCH1) 2nd and 4th FIG. 如果用户语音包每40ms发送一次,则使用4块粒度分配产生的浪费更大。 If the user larger voice packet every 40ms transmission time, the particle size distribution is generated using four waste. 同样,BTTIUSFmode配置下,用户语音包每40ms发送一次的情况也会产生信道资源的浪费。 Similarly, the BTTIUSFmode configuration, the user transmits a voice packet every 40ms situation will produce a waste of channel resources. 发明内容 SUMMARY

本发明实施例的目的在于提出一种实现上行资源调度的方法、基站和用户终端,充分利用信道资源,避免对上行资源的浪费。 Object of embodiments of the present invention is to provide a method for uplink resource scheduling implementation, base station and user terminals, make full use of channel resources, to avoid waste of uplink resources.

本发明实施例提供一种实现上行资源调度的方法,包括如下步骤: 生成上行资源指派消息,所述上行资源指派消息中包括上行状态标识信息和粒度信息,所述上行状态标识配置为减少传输时间间隔上行状态标识模式,所迷粒度信息用于表示上行减少传输时间间隔无线块的粒度及分配间隔, 所述分配间隔用于表示l个粒度内每个上行减少传输时间间隔无线块的发送时间间隔,其中所述减少传输时间间隔无线块的传输时间间隔为10ms;向用户终端下发所述上行资源指派消息。 Provides an uplink resource scheduling method of the present invention is implemented, comprising the steps of: generating uplink resource assignment message, the message includes uplink resource assignment information and uplink state flag information of granularity, the uplink state flag configured to reduce the transmission time interval uplink state flag mode, the fan size information indicating an uplink interval to reduce the size and distribution of the radio block transmission time interval, the assignment interval used to represent the uplink transmission to reduce the transmission time for each time interval within the radio block granularity l th interval wherein the transmission time interval to reduce the radio block transmission time interval of 10ms; issued to the user terminal the uplink resource assignment message.

本发明实施例还提供一种基站,包括: Embodiments of the invention further provides a base station, comprising:

指派单元,用于生成上行资源指派消息,所述上行资源指派消息中包括上行状态标识信息和粒度信息,所述上行状态标识配置为减少传输时间间隔上行状态标识模式,所述粒度信息用于表示上行减少传输时间间隔无线块的粒度及分配间隔,所述分配间隔用于表示1个粒度内每个上行减少传输时间间隔无线块的发送时间间隔;其中所述减少传输时间间隔无线块的传输时间间隔为10ms; Assigning means for generating an uplink resource assignment message, the message includes uplink resource assignment information and uplink state flag information of granularity, the uplink state flag state flag mode is arranged to reduce the uplink transmission time interval information indicating the size reducing the size and interval of the uplink transmission time interval allocated radio blocks, the assignment interval and represents a decrease of uplink transmission time interval within the radio block granularity of a transmission time interval; wherein said reduced transmission time interval of the radio block interval of 10ms;

发送单元,与所述指派单元的输出相连接,用于下发所述上行资源指派消息。 Transmission unit, an output of the assignment unit is connected, the assignment message sent to the uplink resource.

本发明实施例又提供一种用户终端,包括: Embodiments of the invention further provides a user terminal, comprising:

接收单元,用于接收上行资源指派消息,所述上行资源指派消息中包括上行状态标识信息和粒度信息,所述上行状态标识配置为减少传输时间间隔上行状态标识才莫式,所述粒度信息用于表示上行减少传输时间间隔无线块的粒度及分配间隔;其中所述减少传输时间间隔无线块的传输时间间隔为10ms。 Receiving means for receiving an uplink resource assignment message, the message includes uplink resource assignment information and uplink state flag information of granularity, the uplink state flag configured to reduce a transmission time interval before uplink state flag Mohs, the granularity information representing an uplink interval to reduce the size and distribution of the radio block transmission time intervals; wherein the transmission time interval to reduce the radio block transmission time interval of 10ms.

检测单元,与所述接收单元的输出相连接,用于根据所述上行资源指派消息,检测下行块中是否携带指派的上行状态标识,并生成检测结果;发送单元,与所述检测单元的输出相连接,用于根据所述检测结果,在下一个块周期开始的一个粒度的减少传^"时间间隔无线块上间隔发送用户数据。 Detecting means, connected to the output of the receiving unit, according to the uplink resource assignment message, detecting whether the block carries an uplink downlink state flag assignment, and generating a detection result; and a sending unit, an output of the detection means is connected, according to the detection result, a size of a next block transfer cycle start reduced ^ "interval interval to transmit user data on a radio block.

釆用本发明实施例提供的技术方案,在上行资源指派消息中设置分配间隔,表示l个粒度内每个上行块的发送时间间隔,用户终端检测到分配间隔后, 用户数据可以在间隔的上行块上发送,提高了每个上行块传输用户数据的几率,从而提高了信道资源的利用率,避免了上行资源的浪费。 Bian technical solutions provided by the present invention, the uplink resource set assignment interval assignment message indicating an uplink transmission time for each interval of the l-th block size, the user terminal detects the dispense interval, the uplink user data can be spaced transmitting the blocks increases the probability for each block transmission of uplink user data, thereby improving the utilization of channel resources, avoiding waste of uplink resource. 附图说明 BRIEF DESCRIPTION

图1为现有技术中时域上的RTTI示意图; Figure 1 is a schematic view of the prior art RTTI time domain;

图2为现有技术中BTTI USF mode时上行RTTI TBF和BTTI TBF复用配置的4块分配才喿作示意图; FIG 2 is a prior art four uplink RTTI TBF and BTTI TBF assignment multiplex configuration of BTTI USF mode when only a schematic view for Qiao;

图3为现有技术中RTTI USF mode时上行RTTI TBF配置的4块分配操作示意图; Figure 3 is a prior art four assigned uplink RTTI TBF schematic configuration RTTI USF mode when the operation;

图4为本发明实施例一中实现上行资源调度的方法流程示意图; 图5为本发明实施例二中RTTI USF mode时上行RTTI TBF配置的4块分配操作示意图; FIG 4 is a schematic flow diagram of a method for resource scheduling in uplink implemented embodiment of the invention; FIG. 54 schematic block allocation operation according to the second uplink RTTI USF mode when RTTI TBF configuration embodiment of the invention;

图6为本发明实施例三中RTTI USF mode时上行RTTI TBF配置的4块分配操作示意图; Embodiment 4 FIG. 6 illustrating the operation RTTI TBF allocated in the configuration according to a third uplink RTTI USF mode when the present invention;

图7为本发明实施例四中BTTI USF mode时上行RTTI TBF和BTTI TBF 复用配置的4块分配l喿作示意图; FIG 7 according to a fourth embodiment of the BTTI USF mode when an uplink RTTI TBF and multiplexing four BTTI TBF assignment for l Qiao schematic configuration of the present invention;

图8为本发明实施例五中RTTI USF mode时上行RTTI TBF配置的3块分配操作示意图; 3 assigned uplink RTTI TBF Figure 8 configuration when RTTI USF mode fifth embodiment of the present invention, a schematic view of the operation;

图9为本发明一实施例中基站的结构示意图; 9 a schematic structural diagram of an embodiment of the present invention, the base station;

图IO为本发明一实施例中用户终端的结构示意图。 FIG IO schematic structural diagram of a user terminal in the embodiment of the present invention. 具体实施方式 Detailed ways

本发明实施例通过修改上行资源指派消息的指示内容,来提高信道的利用率。 Embodiments of the invention assignment message indicating the content by modifying the uplink resource, to improve the utilization of the channel. 具体的说,是在上行资源指派消息中设置上行块的分配间隔,使得上 Specifically, the interval is set allocated uplink block in the uplink resource assignment message, such that the upper

行块间隔分配。 Row block allocation interval.

实施例一,实现上行资源调度的方法,参见图4,包括如下步骤:401 、基站下发上行资源指派消息,上行资源指派消息中包括上USF信息和粒度信息,粒度信息用于表示上行块的粒度及分配间隔,分配间隔用于表示l个粒度内每个上行块的发送时间间隔。 Example First, to achieve uplink resource scheduling, see FIG. 4, comprising the steps of: 401, issued by the base station uplink resource assignment message includes uplink resource assignment message information and the USF granularity information, size information indicating the uplink block and a particle size distribution interval, the distribution interval and represents a transmission time interval of the uplink block l granularities.

基站还可以根据上行资源指派消息中的USF信息和粒度信息,调度上行块对应的下行块间隔地下发。 The base station may also USF granularity information and assignment information message according to the uplink resource, an uplink scheduling downlink blocks corresponding to the block interval underground hair. 在具体实现时,基站可以采用如下两个步骤实现下行块间隔地下发: In specific implementation, the base station may use the following steps to achieve two spaced underground downlink blocks made:

402、 基站根据上行资源指派消息中的USF信息和粒度信息,生成上行块的调度信息; 402, the base station information and USF granularity of the information in the uplink resource assignment message, generates an uplink scheduling information block;

403、 基站根据上行块的调度信息,调度上行块对应的USF在下行块中间隔地下发。 403, issued underground station according to scheduling information corresponding uplink block, the USF scheduling interval uplink block in a downlink block. 采用本实施例的方案,基站4艮据分配间隔,间隔地下发下行块, 这样,用户数据可以在间隔的上行块上发送,提高了每个上行块传输用户数据的几率,从而提高了信道资源的利用率,避免了上行资源的浪费。 With this embodiment of the embodiment, base station 4 Burgundy data distribution intervals, and intervals underground hair downlink block, so that the user data may be sent on uplink block interval, increases the probability for each uplink block transmission of user data, thereby improving channel resources utilization, avoid the waste of uplink resources.

将本实施例中的^t术方案应用到不同的业务上,无线块的传输时间间隔会有所不同,当将本实施例中的技术方案应用到VoIP业务中时,USF信息为BTTI的相关参数或RTTI的相关参数;BTTI的相关参数包括BTTI USF的模式参数和TFI无线块;RTTI的相关参数包括RTTI USF的模式参数和TFI无线块。 The ^ t operation scheme is applied to the present embodiment different services, radio block transmission time intervals will vary when the present embodiment is applied to the technical solutions in the VoIP service, the USF information associated BTTI parameter or parameters of RTTI; a BTTI mode parameters include parameters related to the BTTI USF and TFI radio block; RTTI mode parameters include parameters related to the USF and TFI RTTI radio blocks. 上行块包括BTTI无线块和/或RTTI无线块,BTTI无线块的传输时间间隔为20ms, RTTI无线块的传输时间间隔为10ms。 BTTI radio block including uplink block and / or RTTI radio block, BTTI radio block transmission time interval of 20ms transmission time, RTTI radio block interval of 10ms.

上述步骤403中下行块间隔地下发的步骤具体实现的时候可以包括: When the above step in Step 403 downlink blocks spaced underground made specific implementation may include:

调度用户终端对应的USF在每个粒度的下行块中间隔地下发。 USF scheduling interval corresponding to the user terminal in downlink blocks each made underground sizes. 上述步骤401中的粒度为整数,分配间隔为无线块TTI的整数倍。 In step 401, the particle size is an integer multiple of an integer assignment interval TTI of a radio block. 分配间隔,除了可以在基站中预先设定之外,也可以根据用户的请求得到分配间隔,根据用户的请求获取分配间隔的方法包括如下步骤: Dispense interval, in addition to be preset in the base station, the assignment interval can be obtained according to a user's request to obtain the assignment interval according to a user request method comprising the steps of:

接收用户业务请求; Receiving a user service request;

根据所述业务请求,获取用户数据的发送时间间隔; 根据用户数据的发送时间,生成上行资源指派消息,上行资源指派消息中的分配间隔根据用户数据的发送时间间隔而定。 According to the service request, obtain the user data transmission time interval; according to the transmission time of the user data, generates an uplink resource assignment messages, uplink resource allocation assignment message transmission time interval according to the user data set intervals. 用户终端在检测到下行块中指派的USF后,在对应的一个粒度的上行块上间隔发送用户数据。 Upon detecting a user terminal downlink USF assigned block interval to transmit user data on a corresponding uplink block size.

其中,上行资源指派消息中的分配间隔根据用户数据的发送时间间隔而定,是根据网络中的现有资源情况,照应用户数据的实际发送需求,比如, 用户通过ftp上传文件,数据发送是连续的,也可以应用本发明实施例的技术方案实现上行资源的调度,网络发送一个确定粒度和间隔的指派消息给用户终端,网络可以根据现有资源情况,某个80ms分配两个粒度(每个粒度包括4 块上行块),就是相当于这80ms都调度给这个用户用;如发现现有资源比较紧张,则另一个80ms可以调度l个粒度(每个粒度包括4块上行块),在这个80ms的分配间隔为10ms。 Wherein the uplink resource allocation assignment message transmission time interval according to the user data set intervals, depending on the resources of the network, the user needs to take care of the actual transmission data, for example, the user ftp uploading files, data transmission is continuous may also be applied to the present invention is to achieve technical solutions in the embodiments of scheduling uplink resources, the network sends an assignment message to determine particle size and spacing to the user terminal, the network may be based on existing resources, a two particle size distribution 80ms (each uplink block size comprises four), which is equivalent to 80ms are scheduled by the user; found tight available resources, then the other may be scheduled 80ms l granularities (each including four uplink block size), in this 80ms allocation interval 10ms. 相同粒度下(如每粒度4块),时间间隔越小,每个粒度完成的时间越短,新的调度调整就越及时,调度越灵活。 Under the same size (e.g., particle size 4 each), the time interval is, the shorter the time of completion of each particle size, the more timely adjustments new schedule, the more flexible scheduling.

实施例二,将实施例一中的实现上行资源调度的方法应用到VoIP业务中,在RTTIUSFmode下,用户数据为每20ms发送一次,TTI为10ms,则根据用户数据的发送时间间隔10ms,生成上行资源指派消息,并下发给各移动台, 上行资源指派消息中包括上行状态标识和粒度信息,粒度信息用于表示上行块的粒度及分配间隔,粒度可以为整数,分配间隔数据为无线块传输时间间隔的整数倍,在本实施例中,无线块为减少传输时间间隔无线块,减少传输时间间隔无线块的传输时间间隔为10ms。 The method of the second embodiment, to realize the uplink resource scheduling example 1 of the embodiment is applied to the VoIP service, under RTTIUSFmode, user data every 20ms transmission time, the TTI is 10ms, then according to the transmission time of the user data interval of 10ms, generates an uplink resource assignment message, and delivers each mobile station, an uplink resource assignment message includes an uplink state flag information and size, particle size and particle size distribution information indicating uplink block interval granularity may be an integer, assignment interval of data transmission for the radio block an integer multiple of the time interval, for example, the radio block to reduce the radio block transmission time interval, reducing the transmission time interval of 10ms radio block interval in this embodiment. 在本实施例中,粒度信息采用lbit 的USF—GRANULARITY字符,USF—GRANULARITY-1 ,表示4块粒度(每个粒度分配4块)下,160ms内网络可以调度两个粒度,每个粒度内的分配间隔为30ms。 In the present embodiment, the particle size of information using the USF-GRANULARITY lbit character, USF-GRANULARITY-1, 4 represents the particle size (particle size distribution for each 4), the network may schedule the two granularity 160ms, in each particle size allocation interval of 30ms. 这样可以实现每20ms分配一块,贝'JTTI为10ms,分配间隔为10ms。 Such a distribution may be achieved every 20ms, Tony 'JTTI is 10ms, assignment interval of 10ms. 各MS分別读取相应的上行资源指派消息,在USF指示的上行块上,按照分配间隔,间隔发送用户教:据。 Each MS respectively read the corresponding uplink resource assignment message on the uplink block USF indicated, according to the allocation interval, the transmission interval of the user to teach: data.

参见图5, MS1在成对的下行信道DL PDCH0和PDCH1上监视USF,当读取到指派的USFO,则在下一个周期对应的上行信道UL PDCH0和PDCH1上发送数据,并在下一个40ms的上行信道ULPDCH0和PDCH1上发送下一个数据, 直至发完4个数据为止。 Referring to Figure 5, MS1 monitors on the pair of downlink channel DL PDCH0 and PDCH1 USF, transmission data when the read assigned USFO, at the next period corresponding to the uplink channel UL PDCH0 and PDCH1, and in the next uplink channel a of 40ms sending the next data ULPDCH0 and PDCH1, until the far end four data. MS—旦监视到指派的USF,就可以不必监视后续间隔下发的下行块中的USF,直到发送分配的本次粒度数目的最后一个上行块,再继续监视下行块中的USF,当然,在整个过程中,MS还是需要继续监视其他不是间隔下发的下行块中的USF。 Once assigned USF MS- monitored, it may not necessarily be delivered by the subsequent interval to monitor the downlink USF blocks, until the last block of the present time a number of uplink transmission allocation size, and then continues to monitor the USF in downlink blocks, of course, throughout the process, MS still need to continue to monitor other blocks than downlink interval issued in the USF. 这样,分配的每一个上行块均有数椐发送, 充分利用了信道资源。 Thus, each block allocated uplink transmission are noted in the number, full use of the channel resources.

其中,USF一GRANULARITY是本实施例中的粒度信息,用于表示上行块的粒度及分配间隔,粒度信息还可以采用2bit的USF—GRANULARITY字符, 当US^GRANULARITY为10时,表示上行块的粒度为4时,每20ms分配一块上行块,TTI为10ms,分配间隔为10ms;当USF—GRANULARITY为11时,表示上行块的粒度为4时,每40ms分配一块上行块,TTI为10ms,分配间隔为30ms ; 或者釆用USF—GRANULARITY字符和扩展位信息, USF一GRANULARITY字符表示上行块的粒度,扩展位信息表示分配间隔,例如USF一GRANULARITY为1时,表示上行块的粒度为4,在扩展位中取一位, 用于表示分配间隔,当扩展位中所取的位为O时,表示每20ms分配一块上行块, TTI为10ms,分配间隔为10ms;当扩展位中所取的位为l时,表示每40ms分配一块上行块,TTI为10ms,分配间隔为30ms;当然还可以釆用其他可以表示粒度信息的方式,例如增加USF一GRANULARITY的位 Wherein, the USF Granularity a particle size information is present in this embodiment, and for indicating a particle size distribution interval, block size information of the uplink may also be employed USF-GRANULARITY character 2bit when US ^ GRANULARITY 10, showing a block size of uplink is 4, every 20ms allocated one uplink block, the TTI is 10ms, assignment interval is 10ms; when USF-gRANULARITY 11, showing a particle size uplink block is 4, every 40ms allocated one uplink block, the TTI is 10ms, assignment interval is 30ms; or preclude the use of USF-gRANULARITY characters and an extension bit of information, USF a granularity character represents the particle size uplink block, the extension bit information indicating allocation intervals, e.g. USF a granularity is 1, represents the particle size uplink block is 4, in extended when taking a bit, for indicating assignment interval, when the extension bit in the bit taken is O, representing an allocated uplink block every 20ms, the TTI is 10ms, 10ms assignment interval; bit when the extension bit is taken when L, each represents a 40ms allocated uplink block, the TTI is 10ms, 30ms interval is assigned; course also preclude the use of other granular information may be represented manner, for example, increasing a USF bits gRANULARITY ,将其增加为2位或2位以上,以便表示更多种的分配间隔,或者在扩展位中取2位或2位以上,用于表示更多种的分配间隔,实现更灵活的上行资源的调度方式。 Which was increased to two or two or more, in order to show more of the dispense interval, or taken up in the extended position 2 or 2 above, is used to indicate more of the assignment interval, the uplink resource more flexible the scheduling mode.

用户数据的发送时间包括语音帧的打包发送时间或者信令的发送时间。 User data including the transmission time of the transmission time or the transmission time of packing signaling speech frame. 在通话状态下,如果有语音帧,即用户在通话中正常说话,而且用户20ms将l 个语音帧打包发送一次,则每20ms分配一个上行块;如果用户40ms将2个语音帧打包发送一次,则每40ms分配一个上行块;以此类推,如果用户60ms将3 个语音帧打包发送一次,则每60ms分配一个上行块......如果没有语音帧,即 In the call state, if speech frame, i.e., the normal user speak in a call, and the user 20ms frame packing l voice sent once, then every 20ms allocated uplink block; if the user 40ms frame packing two voice transmission time, every 40ms is assigned an uplink block; and so, if the user three 60ms speech frame is transmitted once packaged, each 60ms allocated uplink block ...... without a speech frame, i.e.,

用户在通话中静默,则用户数据的发送时间为信令的发送时间,该信令是系统随机或定期分配,用于表示通话继续的信令。 Silent call user, user data transmission time is the transmission time of signaling, the signaling system is periodically or randomly assigned to represent the call signaling to continue.

实施例三,在RTTI USF mode下,与实施例二的不同之处在于,上行块的分配间隔为10ms,则USF一GRANULARITY为lbit, USF_GRANULARITY=1, 表示4块粒度下,80ms内每20ms分配一块。 Embodiment 3 in RTTI USF mode, the second embodiment differs from that allocated uplink block at intervals of 10ms, the USF a GRANULARITY is lbit, USF_GRANULARITY = 1, represented by the following four granularity, every 20ms allocated within 80ms piece. 而且实施例二中的上行资源的分配方式为动态分配,即:每个MS需要在每一个分配的上行PDCH对应的下行PDCH上监视USF,当监视到对应的USF值,MS就在同一上行PDCH上的下一个无线块发送上行数据;而本实施例中的上行资源的分配方式为扩展动态分配,即:每隔MS从分配信道中序号最低的开始监视,然后由低到高依次监视,只要在某个信道接收到对应的USF值就不再向后监视,然后在同一信道及分配的所有后续信道上发送上行,不需要在每个对应的下行信道上都接收USF。 And uplink resource allocation according to a second embodiment of a dynamic allocation, i.e.: each MS needs to monitor in the uplink PDCH USF assigned to each of the corresponding downlink PDCH, when the monitored corresponding USF value, in the same uplink PDCH MS the next uplink radio block on the transmission data; and uplink resource allocation according to the present embodiment is extended dynamic allocation, i.e.: MS every channel allocated from the lowest number of starts monitoring and monitored sequentially from low to high, as long as in a channel reception corresponding USF value is no longer monitoring rearwardly, and in all subsequent uplink transmission channels and the same channel allocation is not required in every USF receives the corresponding downlink channel.

参见图6, MS1在MS1在成对的下行信道DLPDCH0和PDCH1上,以及成对的下行信道DLPDCH2和PDCH3上监视USF,当在下行信道DLPDCHO上读取到指派的USFO,则在下一个周期对应的上行信道UL PDCHO、 PDCH1、 PDCH2和PDCH3上发送数据,并在下一个20ms的上行信道UL PDCHO、 PDCH1、 PDCH2和PDCH3上发送下一个数据,直至发完4个数据为止。 Referring to FIG. 6, MS1 in MS1 ​​on a paired downlink channel DLPDCH0 and PDCH1, and monitor USF on paired downlink channel DLPDCH2 and PDCH3, when read assignment on a downlink channel DLPDCHO USFO, the next period corresponding to uplink channel UL PDCHO, transmitted on PDCH1, PDCH2 and PDCH3 data, and the lower the uplink channel UL in a 20ms PDCHO, PDCH1, PDCH2 and PDCH3 a lower data transmission until the far end four data. MS 一旦监视到指派的USF,就可以不必监视后续间隔下发的下行块中的USF,直到发送本次粒度数目的最后一个上行块,再继续监视下行块中的USF,当然, 在整个过程中,MS还是需要继续监视其他不是间隔下发的下行块中的USF。 MS Once monitored USF assigned, it may not be necessary to monitor delivered by the subsequent interval downlink block USF, until the last uplink block the transmission of this number of particle size, and then continues to monitor the downlink blocks the USF, of course, during the entire process , MS or downlink USF needs to continue to monitor other blocks are not issued in the interval. 这样,分配的每一个上行块均有数据发送,充分利用了信道资源,而且全部用户数据都被上行块发送出去,保证了数据发送的完整性。 Thus, each of the assigned uplink data transmission block has full use of the channel resources, and all user data are sent out uplink block, to ensure the integrity of data transmitted.

实施例四,在BTTIUSFmode下,用户包的发送时间为每40ms发送一次, TTI为10ms,则上^f亍块的分配间隔为30ms,则USF一GRANULARITY为lbit, USF—GRANULARITY-1,表示4块粒度下,160ms内每40ms分配一块。 Transmission time of the fourth embodiment, in BTTIUSFmode, user packet per 40ms transmission time, the TTI is 10ms, then the ^ f allocation right foot block interval is 30ms, the USF a Granularity is lbit, USF-GRANULARITY-1, represents 4 lower block size, an assignment within every 40ms 160ms. 在本实施例中,MS3和MS4采用的ABTTITBF, MS1和MS2采用的是RTTI TBF。 In the present embodiment, ABTTITBF MS3 and MS4 employed, MS1 and MS2 uses RTTI TBF.

参见图7,对于MS1和MS2而言,MS1和MS2分別在成对的下行信道DL PDCH0和PDCH1上监视USF,当MSl在块周期Bx时在成对下行信道中序号较低的PDCH上(DL PDCHO)读到指派的USF1,就可以从对应的上行信道UL PDCH0和PDCHl的前10ms发送数据,并在下一个40ms的上行信道ULPDCHO 和PDCH1的前1 Oms上发送下一个数据。 Referring to Figure 7, for purposes of MS1 and MS2, MS1 and MS2, respectively, the pair of monitor USF on downlink channel DL PDCH0 and PDCH1, when the MSl Bx paired downlink channel when the number of block periods lower PDCH (DL PDCHO) assigned USF1 read, data can be transmitted from the front 10ms and the uplink channel UL PDCH0 corresponding PDCHl, and a lower front 40ms 1 Oms ULPDCHO uplink channel and transmits the next data PDCH1. 当MS2在块周期Bx时在成对下行信道中序号4交低的PDCH上(DLPDCH0)读到指派的USF2,就可以^MJ?于应的上行信道UL PDCH0和PDCHl的后10ms发送数据,并在下一个40ms的上行信道UL PDCH0和PDCH1的后10ms上发送下一个数据。 When the pair MS2 on a downlink block period when Bx No. 4 cross-channel low PDCH (DLPDCH0) assigned USF2 read, can be ^ MJ? 10ms in the corresponding uplink channel UL PDCH0 PDCHl and transmission data, and a lower uplink channel UL transmission 40ms 10ms PDCH0 and at the rear of a PDCH1 data. MS1和MS2—旦监视到指派的USF,就可以不必监视后续间隔下发的下行块中的USF,直到发送本次粒度数目的最后一个上行块,再继续监视下行块中的USF,当然,在整个过程中, MS还是需要继续监视其他不是间隔下发的下行块中的USF。 MS1 and MS2- denier monitored assigned USF, it may not necessarily be delivered by the subsequent interval to monitor the downlink USF blocks, until the last number of the current uplink transmission block size, and then continues to monitor the USF in downlink blocks, of course, throughout the process, MS still need to continue to monitor other blocks than downlink interval issued in the USF.

在本实施例中,USF1和USF2分别对应不同的用户MS1和MS2,也可以设置USF1和USF2都对应于同一用户,例如MSl,分别用于表示MS1在同一时刻的不同业务,例如在通话中,分别用USF1表示MS1的语音帧的打包数据,USF2 表示系统分配给MS1的信令。 In the present embodiment, USF1 and USF2 corresponding to different users MS1 and MS2, may be provided USF1 and USF2 correspond to the same user, e.g. MS1, MS1 are used to represent different services at the same time, for example during a call, USF1 packed data respectively represent the speech frame MS1, USF2 a system is assigned to the signaling MS1.

对于MS3和MS4而言,MS3和MS4分别在成对的下行信道DL PDCHO和PDCH1上监视USF,当MS3在块周期Bx时在成对下行信道中序号较低的PDCH 上(DL PDCHO )读到指派的USF3,就可以从对应的上行信道UL PDCHO上发送数据,并在下一40ms的上行信道ULPDCH0上发送下一个数据。 For purposes MS3, and MS4, MS3, and MS4 respectively paired monitor USF on downlink channel DL PDCHO and PDCH1, when the MS3 Bx paired downlink channel is lower when the number of block periods PDCH (DL PDCHO) read USF3 assignment, data may be sent from an uplink channel corresponding to UL PDCHO, and transmits the next uplink data channel ULPDCH0 the next 40ms. 当MS2在块周期Bx时在成对下行信道中序号较低的PDCH上(DLPDCHO)读到指派的USF4,就可以从对应的上行信道ULPDCH1上发送数据,并在下一个40ms的上行信道UL PDCH1上发送下一个数据。 When the pair of the upper MS2 in a downlink block period Bx when a lower number of channels PDCH (DLPDCHO) assigned read USF4, data can be transmitted from the corresponding uplink channel ULPDCH1, and 40ms of the next uplink channel UL PDCH1 transmitting the next data. MS3和MS4—旦监视到指派的USF, 就可以不必监视后续间隔下发的下行块中的USF,直到发送本次粒度数目的最后一个上行块,再继续监视下行块中的USF,当然,在整个过程中,MS还是需要继续监视其他不是间隔下发的下行块中的USF。 MS4- denier and MS3 assigned USF monitored, it may not necessarily be delivered by the subsequent interval to monitor the downlink USF blocks, until the last number of the current uplink transmission block size, and then continues to monitor the USF in downlink blocks, of course, throughout the process, MS still need to continue to monitor other blocks than downlink interval issued in the USF.

实施例五,在RTTIUSFmode下,本实施例中,用户数据每20ms发送一次,TTI为10ms,用户数据的发送时间间隔为10ms,上行块的分配间隔为10ms, 上行块的粒度为3,则USF—GRANULARITY为lbit, USF—GRANULARITY-1 , 表示3块粒度下,60ms内每20ms分配一块。 Embodiment 5 In RTTIUSFmode, in this embodiment, the user data every 20ms transmission time, the TTI is 10ms, the transmission time of the user data interval of 10ms, allocated uplink block interval is 10ms, the particle size uplink block is 3, the USF -GRANULARITY is lbit, USF-gRANULARITY-1, 3 indicates the particle size, within a 60ms allocated every 20ms.

参见图8,MSl在成对的下行信iiDLPDCH0和PDCHl上监视USF,当MS1 在成对的下行信道DLPDCH0和PDCH1上读取到指派的USF0,则在下一个周期对应的上行信道UL PDCH0和PDCH1上发送数据,并在下一个20ms的上行信道ULPDCH0和PDCH1上发送第二个数据,再下一个20ms,在上行信道UL PDCH0和PDCH1上发送第三个数据。 Referring to FIG. 8, MSl paired monitor USF on downlink channels and iiDLPDCH0 PDCHl, when the pair of the MS1 the downlink channel DLPDCH0 PDCH1 and read USF0 assigned, then on the next cycle of the uplink channel corresponding to UL PDCH0 and PDCH1 transmission data, and transmitting on an uplink channel ULPDCH0 PDCH1 and a second data next 20ms, 20ms and then the next, third data transmission on the uplink channel UL PDCH0 and PDCH1. MS1—旦监视到指派的USF,就可以不必监视后续间隔下发的下行块中的USF,直到发送本次粒度数目的最后一个上行块,再继续监视下行块中的USF,当然,在整个过程中,MS还是需要继续监视其他不是间隔下发的下行块中的USF。 Once assigned USF MS1- monitored, it may not be necessary to monitor the subsequent interval issued USF in downlink blocks, until the last number of the current uplink transmission block size, and then continues to monitor the USF in downlink blocks, of course, in the process in, MS still need to continue to monitor other blocks than downlink interval issued in the USF.

对应以上各实施例,提出一种基站,参见图9,包括: Corresponding to the above embodiment, provides a base station, see Figure 9, comprising:

指派单元901,用于生成上行资源指派消息,上行资源指派消息中包括上行状态标识信息和粒度信息,粒度信息用于表示上行块的粒度及分配间隔, 分配间隔用于表示l个粒度内每个上行块的发送时间间隔;发送单元902,与指派单元901的输出相连接,用于下发上行资源指派消 Assignment unit 901, for generating an uplink resource assignment messages, uplink resource assignment message includes an uplink state flag information and the size information, and size information indicating size of the uplink block assignment interval, the assignment interval for indicating a size of each l uplink block a transmission time interval; transmitting unit 902 is connected to the output assignment unit 901, for uplink resource assignment cancellation issued

White

一种用户终端,参见图IO,包括: A user terminal, the IO Referring to FIG, comprising:

接收单元1001,用于接收上行资源指派消息,上行资源指派消息中包括上行状态标识信息和粒度信息,粒度信息用于表示上行块的粒度及分配间隔; The receiving unit 1001, configured to receive an uplink resource assignment messages, uplink resource assignment message includes an uplink state flag information and the size information, size information indicating allocated uplink block size and spacing;

检测单元1002,与接收单元1001的输出相连接,用于根据上行资源指派消息,检测下行块中是否携带指派的上行状态标识,并生成检测结果; Detecting unit 1002, receiving unit 1001 and the output is connected, according to uplink resource assignment message for detecting whether the block carries an uplink downlink assignment status identification, and generating a detection result;

发送单元1003,与检测单元1002的输出相连接,用于根据检测结果,在下一个块周期开始的一个粒度的上行块上间隔发送用户数据。 A transmitting unit 1003, connected to the output of the detection means 1002, according to the detection result, the interval to transmit user data on an uplink block size of a block next cycle begins.

用户终端可以是移动台、多媒体终端或个人计算机等多种用户侧的终 User terminal may be a plurality of user-side terminating mobile station, a personal computer or a multimedia terminal

之间多种业务应用中的上行资源的调度。 Scheduling uplink resources among a plurality of business applications.

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,包括如下步骤:下发上行资源指派消息,所述上行资源指派消息中包括上行状态标识信息和粒度信息,所述粒度信息用于表示上行块的粒度及分配间隔,所述分配间隔用于表示l个粒度内每个上行块的发送时间间隔,所述的存储介质,如:ROM/RAM、磁碟、光盘等。 Those of ordinary skill in the art may understand that the above-described embodiment, all or part of the method steps may be relevant hardware instructed by a program, the program may be stored in a computer readable storage medium, the program execution when, comprising the steps of: uplink resource assignment message is issued, the uplink resource assignment message includes an uplink state flag information and the size information, information indicating the size and the particle size distribution of the spacer uplink block, the assignment interval for representing each uplink transmission time interval within the l-th block size, the storage medium, such as: ROM / RAM, magnetic disk, optical disk.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 The above are only preferred embodiments of the present invention, it should be noted that those of ordinary skill in the art, in the present invention without departing from the principles of the premise, further improvements and modifications may be made, these improvements and modifications should also be the protection scope of the present invention.

1 1

Claims (12)

1、一种实现上行资源调度的方法,其特征在于,包括如下步骤: 生成上行资源指派消息,所述上行资源指派消息中包括上行状态标识信息和粒度信息,所述上行状态标识配置为减少传输时间间隔上行状态标识模式,所述粒度信息用于表示上行减少传输时间间隔无线块的粒度及分配间隔,所述分配间隔,用于表示1个粒度内每个上行减少传输时间间隔无线块的发送时间间隔,其中所述减少传输时间间隔无线块的传输时间间隔为10ms; 向用户终端下发所述上行资源指派消息。 1. A method for uplink resource scheduling implemented, characterized in that it comprises the steps of: generating uplink resource assignment message, the message includes uplink resource assignment information and uplink state flag information of granularity, the uplink state flag configured to reduce transmission interval uplink state flag mode, the information indicating the uplink to reduce the particle size and particle size distribution interval of the radio block transmission time interval, the assignment interval, and represents a transmission time interval of uplink radio block transmissions to reduce the particle size within a time interval, wherein said time interval to reduce the transmission time interval of 10ms radio block; the user terminal to send the uplink resource assignment message.
2、 根据权利要求l所述的方法,其特征在于:还包括如下步骤:用户终端接收所述上行资源指派消息后,监视所指派的上行信道对应的下行信道上的每一个下行减少传输时间间隔无线块中的上行状态标识。 2. The method as claimed in claim l, characterized in that: further comprising the step of: the user terminal after receiving the uplink resource assignment message, a downlink channel of each channel corresponding to the assigned uplink channel monitoring a downlink transmission time interval to reduce state in the uplink radio block identification.
3、 根据权利要求2所述的方法,其特征在于,还包括如下步骤: 用户终端检测到下行块中指派的上行状态标识后,在下一个减少无线块周期开始的一个粒度的上^f亍减少传输时间间隔无线块上间隔发送用户数据。 3. The method of claim 2, characterized in that, further comprising the step of: after detecting a user terminal uplink state flag in a downlink block assignment, a reduction in the lower right foot ^ f a particle size reduction starting radio block period TTI interval to transmit user data on a radio block.
4、 根据权利要求3所述的方法,其特征在于,所述一个粒度的上行减少传输时间间隔无线块中,第一个上行减少传输时间间隔无线块对应的上行状态标识为指派给所述用户终端的上行状态标识,其他上行减少传输时间伺隔无线块对应的上行状态标识为保留的上行状态标识。 4. The method of claim 3, wherein said reducing a size of an uplink radio block transmission time interval in a first transmission time interval to reduce uplink radio block corresponding to the uplink state is assigned to the user identifier terminal uplink state flag, to reduce the transmission time of other uplink wait state interval uplink radio block is identified as corresponding to the uplink reserved state identification.
5、 根据权利要求l所述的方法,其特征在于,所述粒度为整数,所述分配间隔为减少传输时间间隔无线块传输时间间隔的整数倍。 5. The method as claimed in claim l, wherein the particle size is an integer, the assignment interval is an integral multiple of a transmission time interval to reduce the radio block transmission time interval.
6、 根据权利要求l所述的方法,其特征在于,所述上行状态标识信息包括上行状态标识、减少传输时间间隔上行状态标识才莫式或基本传输时间间隔上行状态标识模式Wt。 6. A method as claimed in claim l, characterized in that said uplink state flag information includes an uplink state flag, to reduce the transmission time interval of uplink state flag, or substantially only a Mohs TTI uplink state flag pattern Wt.
7、 根据权利要求1至5任何一项所述的方法,其特征在于,所述粒度信息为至少lbit的USF—GRANULARITY字符,用于表示减少传输时间间隔无线块的粒度及分配间隔。 7. The method according to any one of claims 1 to 5 claims, wherein the particle size of the information is at least lbit USF-GRANULARITY character, and the particle size distribution indicates a decrease for the interval of the radio block transmission time interval.
8、 根据权利要求7所述的方法,其特征在于,当USF一GRANULARITY 长度为lbit时,USF一GRANULARITY为1,表示减少传输时间间隔无线块的粒度为4时,所述分配间隔为10ms或30ms;当USF—GRANULARITY长度为2bit 时,USF—GRANULARITY为IO,表示减少传输时间间隔无线块的粒度为4时, 所述分配间隔为10ms; USF—GRANULARITY为11时,表示减少传输时间间隔无线块的粒度为4时,所述分配间隔为30ms。 8. The method of claim 7, wherein, when a USF GRANULARITY lbit length, a USF GRANULARITY 1, showing the particle size to reduce the transmission time interval of a radio block is 4, the dispensing interval is 10ms or 30ms; when the length of USF-gRANULARITY 2bit, USF-gRANULARITY of the IO indicating radio block transmission time interval to reduce particle size of 4, the dispensing interval of 10ms; USF-gRANULARITY to 11, represents the transmission time interval to reduce radio block size is 4, the dispensing interval is 30ms.
9、 根据权利要求1至5任何一项所述的方法,其特征在于,所述粒度信息包括USF—GRANULARITY字符和扩展位信息,所述USF—GRANULARITY 字符表示上行块的粒度,所述扩展位信息表示分配间隔。 9, 1 to 5, the method according to any one of the preceding claims, wherein said information includes size and USF-GRANULARITY extension bit character information, the character represented USF-GRANULARITY uplink block size of the extension bit information indicates allocation interval.
10、 根据权利要求9所述的方法,其特征在于,当扩展位信息为O时,表示分配间隔为10ms;当扩展位信息为l时,表示分配间隔为30ms。 10. A method as claimed in claim 9, wherein, when the extension bit information is O, showing assignment interval 10ms; when the extension bit information is L, expressed assignment interval 30ms.
11、 一种基站,其特征在于,包括:指派单元,用于生成上行资源指派消息,所述上行资源指派消息中包括上行状态标识信息和粒度信息,所述上行状态标识配置为减少传输时间间隔上行状态标识模式,所述粒度信息用于表示上行减少传输时间间隔无线块的粒度及分配间隔,所述分配间隔用于表示l个粒度内每个上行减少传输时间间隔无线块的发送时间间隔,其中所述减少传输时间间隔无线块的传输时间间隔为10ms;发送单元,与所述指派单元的输出相连接,用于下发所述上行资源指派消息。 11. A base station, comprising: assigning means for generating an uplink resource assignment message, the message includes uplink resource assignment information and uplink state flag information of granularity, the uplink state flag configured to reduce transmission time interval an uplink state flag pattern, size information indicating the uplink transmission time interval to reduce the size and allocation of radio block interval, the assignment interval and represents a transmission time of uplink reduce the particle size of the l-th transmission time interval of the radio block interval, wherein the transmission time interval to reduce the radio block transmission time interval is 10ms; transmitting unit, and the assignment unit is connected to the output, delivers assignment message for the uplink resource.
12、 一种用户终端,其特征在于,包括:接收单元,用于接收上行资源指派消息,所述上行资源指派消息中包括上行状态标识信息和粒度信息,所述上行状态标识配置为减少传输时间间隔上行^R态标i4莫式,'所述粒度信息用于表示上行减少传输时间间隔无线块的粒度及分配间隔;其中所述减少传输时间间隔无线块的传输时间间隔为10ms;检测单元,与所述接收单元的输出相连接,用于根据所述上行资源指派消息,检测下行块中是否携带指派的上行状态标识,并生成检测结果;发送单元,与所述^r测单元的输出相连接,用于根据所述片企测结果,在下一个块周期开始的一个粒度的减少传输时间间隔无线块上间隔发送用户数据。 12. A user terminal, characterized by comprising: a receiving unit configured to receive uplink resource assignment message, the message includes uplink resource assignment information and uplink state flag information of granularity, the uplink state flag configured to reduce the transmission time ^ R interval uplink state i4 Mohs scale, 'information indicating the size of uplink transmission time interval to reduce the size and allocation of radio block interval; wherein said time interval to reduce the transmission time interval of 10ms radio block; detection means, connected to the output of the receiving unit, according to the uplink resource assignment message, detecting whether the block carries an uplink downlink state flag assignment, and generating a detection result; transmitting unit, an output of the phase measuring unit ^ r connection, for the measurement result according to the half sheet, reduce the transmission time of a start of a next granularity block period interval transmitting user data radio block interval.
CN 200710111964 2007-06-19 2007-06-19 Method, base station and subscriber terminal for implementing ascending resource scheduling CN100579078C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710111964 CN100579078C (en) 2007-06-19 2007-06-19 Method, base station and subscriber terminal for implementing ascending resource scheduling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN 200710111964 CN100579078C (en) 2007-06-19 2007-06-19 Method, base station and subscriber terminal for implementing ascending resource scheduling
PCT/CN2008/071355 WO2008154870A1 (en) 2007-06-19 2008-06-19 Method, base station and user terminal for realizing the uplink resource scheduling
CN200880020563XA CN102017769B (en) 2007-06-19 2008-06-19 Method, base station and user terminal for realizing the uplink resource scheduling

Publications (2)

Publication Number Publication Date
CN101197769A CN101197769A (en) 2008-06-11
CN100579078C true CN100579078C (en) 2010-01-06

Family

ID=39547925

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 200710111964 CN100579078C (en) 2007-06-19 2007-06-19 Method, base station and subscriber terminal for implementing ascending resource scheduling
CN200880020563XA CN102017769B (en) 2007-06-19 2008-06-19 Method, base station and user terminal for realizing the uplink resource scheduling

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200880020563XA CN102017769B (en) 2007-06-19 2008-06-19 Method, base station and user terminal for realizing the uplink resource scheduling

Country Status (2)

Country Link
CN (2) CN100579078C (en)
WO (1) WO2008154870A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017769A (en) * 2007-06-19 2011-04-13 华为技术有限公司 Method, base station and user terminal for realizing the uplink resource scheduling

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8374133B2 (en) * 2009-02-06 2013-02-12 Telefonaktiebolaget L M Ericsson (Publ) Shared Uplink Notification Bursts (SUNB)
CN102123399B (en) 2010-01-08 2014-01-01 华为技术有限公司 Scheduling request method and device
CN102238746B (en) * 2010-04-21 2015-04-08 华为技术有限公司 Resource scheduling method, device and system
CN102457977B (en) * 2010-10-14 2016-08-10 华为技术有限公司 A kind of data dispatching method and system and relevant device
CN103178925A (en) * 2011-12-21 2013-06-26 华为技术有限公司 Transmission control method for uplink data, terminal and network side device
CN104883219B (en) * 2015-05-18 2018-09-25 熊猫电子集团有限公司 A kind of more USF processing methods applied to satellite communication system
CN107211293A (en) * 2015-07-29 2017-09-26 华为技术有限公司 Ascending transmission method and relevant device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470137A (en) 2000-10-10 2004-01-21 诺基亚有限公司 Method and apparatus for sharing uplink state flag (USF) with multiple uplink temporary block flows (TBFS)
EP1489869B1 (en) 2003-06-18 2006-01-25 Matsushita Electric Industrial Co., Ltd. Extended dynamic resource allocation for packet data transfer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198199A1 (en) * 2002-04-17 2003-10-23 Budka Kenneth C. Method of throttling uplink traffic in a wireless communication system
EP1734775A1 (en) * 2005-06-15 2006-12-20 Matsushita Electric Industrial Co., Ltd. Back to back dynamic allocation
CN100579078C (en) * 2007-06-19 2010-01-06 华为技术有限公司 Method, base station and subscriber terminal for implementing ascending resource scheduling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470137A (en) 2000-10-10 2004-01-21 诺基亚有限公司 Method and apparatus for sharing uplink state flag (USF) with multiple uplink temporary block flows (TBFS)
EP1489869B1 (en) 2003-06-18 2006-01-25 Matsushita Electric Industrial Co., Ltd. Extended dynamic resource allocation for packet data transfer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Extended Dynamic Allocation for TBF in RTTIconfiguration,3GPP TSG-GERAN Meeting #34,GP-070689. 3GPP. 2007
USF scheduling for DTM in RTTI mode,3GPP TSGGERAN2#33bis,TDoc G2-070017. 3GPP. 2007
USF Scheduling on DTM with RTTI,3GPP TSG GERAN#31,Tdoc GP-061620. 3GPP. 2006

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017769A (en) * 2007-06-19 2011-04-13 华为技术有限公司 Method, base station and user terminal for realizing the uplink resource scheduling

Also Published As

Publication number Publication date
CN101197769A (en) 2008-06-11
CN102017769A (en) 2011-04-13
CN102017769B (en) 2013-12-04
WO2008154870A1 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
CN1227944C (en) System for uplink scheduling of packet data traffic in wireless system
RU2551135C2 (en) Communication method, base station and mobile terminal
RU2432716C2 (en) Communication method, base station, communication system and mobile terminal
EP1718010A2 (en) Method of requesting allocation of uplink resources for extended real-time polling service in a wireless communication system
JP4704470B2 (en) Method and apparatus for assigning transmission period in wireless communication system, and system thereof
TWI502944B (en) Method of wireless communication, apparatus utilizing reverse direction grant in wireless communication systems, wireless communication apparatus and computer-readable medium
CN1951038B (en) Method and system for transmitting and receiving broadcast service data in a wireless communication system
CN100471097C (en) Single-carrier/DS-CDMA packet transmitting method and system
EP1917764B1 (en) Resource assignment in an enhanced uplink mobile communication system
CN1301020C (en) Method for coordinating paging occasions on a common paging channel
US20070030828A1 (en) Coordinating uplink control channel gating with channel quality indicator reporting
US8265682B2 (en) Scheduling request usage in DRX mode in wireless networks
EP2375640B1 (en) Method of scheduling an uplink packet transmission channel in a mobile communication system
ES2360574T3 (en) Use of ascending physical channel of control link in a third generation association project communication system.
CN106576027B (en) Time division duplex sends and receives the carrier wave interband pairing of switching and its applied to the device and method for being multiplexed different Transmission Time Intervals
JP2009535982A (en) Method for controlling wireless communication during idle periods in a wireless system
DE10046656B4 (en) Scheduling procedure for a master-slave system and master-slave system
US20080228878A1 (en) Signaling Support for Grouping Data and Voice Users to Share the Radio Resources in Wireless Systems
US8737365B2 (en) Method of allocating uplink radio resources
CN101472342B (en) At main control system from the media access
KR100975699B1 (en) Method for uplink bandwidth request and allocation in a wire-less communication system of serving real-time service
KR101421429B1 (en) A method and apparatus for a coordinated scheduling method to avoid multiplexing of control and data for power limited users in the lte reverse link
CN101754268B (en) User uplink data scheduling method and user equipment
CN101238743B (en) Channel allocating method, wireless communication system, and channel structure of wireless sections
US20100260132A1 (en) Method For Transmitting Fast Scheduling Request Messages in Scheduled Packet Data Systems

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model