CN100557873C - 具有高催化活性的钌核铂壳纳米薄膜的制备方法 - Google Patents

具有高催化活性的钌核铂壳纳米薄膜的制备方法 Download PDF

Info

Publication number
CN100557873C
CN100557873C CNB2007100396475A CN200710039647A CN100557873C CN 100557873 C CN100557873 C CN 100557873C CN B2007100396475 A CNB2007100396475 A CN B2007100396475A CN 200710039647 A CN200710039647 A CN 200710039647A CN 100557873 C CN100557873 C CN 100557873C
Authority
CN
China
Prior art keywords
film
deposition
electrode
catalytic activity
adopt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100396475A
Other languages
English (en)
Other versions
CN101038969A (zh
Inventor
蔡文斌
李巧霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CNB2007100396475A priority Critical patent/CN100557873C/zh
Publication of CN101038969A publication Critical patent/CN101038969A/zh
Application granted granted Critical
Publication of CN100557873C publication Critical patent/CN100557873C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)

Abstract

本发明属薄膜电极制备技术领域,具体为一种具有超低Pt含量,且对CO和CH3OH有较高催化活性的钌核铂壳纳米薄膜的制备方法。其步骤是先在半圆硅柱反射底面化学镀金,采用两步湿法在金上电沉积5-6纳米厚的Ru膜,再在Ru膜上采用自发沉积法覆盖Pt层,重复上述还原/沉积步骤1-4次,即得所需Ru@Pt纳米薄膜电极。该薄膜电极兼有Pt-Ru合金催化剂的优点,而且可以直接用于现场ATR-SEIRAS研究电催化吸附与效应。

Description

具有高催化活性的钌核铂壳纳米薄膜的制备方法
技术领域
本发明属薄膜电极制备技术领域,具体涉及一种具有超低Pt含量且对CO和CH3OH有较高的催化活性的钌核铂壳纳米薄膜的制备方法。该薄膜可用于衰减全反射表面增强红外光谱(ATR-SEIRAS)现场研究电催化过程。
背景技术
面向燃料电池催化剂的表面电化学一直是电催化研究的主要内容,其相关研究也从较早的单晶电极为主,逐步向纳米结构的薄膜电极过渡,其驱动力是最终设计研制高活性、低Pt载量的阳极和阴极催化剂[1,2]。近来,新型高效的电催化表面体系已从传统的双金属合金(阳极如Pt-Ru和阴极如Pt-Cr等)逐步发展到了表面(亚)单层修饰的双元金属:一类是亚单层Ru修饰的Pt电极(Pt@Ru),它对CO和甲醇电催化氧化具有很好的催化活性;另一类是亚单层Pt修饰的Ru电极(Ru@Pt),它对含CO的H2氧化,以及(亚)单层Pt修饰的Pd电极(Pd@Pt或Pd@Pt-Ru)对O2还原有超高的活性[3]。因此探索上述纳米结构薄膜表面的制备、表面增强红外效应及其在电催化研究中的应用,对指导新型高效催化材料的研发具有十分现实意义。
金属的自沉积是制备Ru@Pt或Pt@Ru超薄外层结构一种新型的方法[4]。采用此方法,可以在不加外界电压的情况下,使一种贵金属在另一种贵金属表面沉积下来。此方法的优点在于可以控制价格昂贵的金属的含量,使Pt的含量降低,同时又利用了Pt-Ru的协同催化效应。尤其是Pt自沉积在Ru基上可以提高Pt的抗CO中毒性,大大降低了催化剂中Pt的使用量。下列用简单的公式表明自沉积发生的原理
ΔU = ΔE Pt / Pt Cl 6 2 - - ΔE Ru 0 / Ru ( oxidized ) > 0
[PtCl6]2-+4e-=Pt0+6Cl-
Ru0+x(H2O)=RuOxHx+(2x-y)H++(2x-y)e-
文献报道的自沉积发生的过程都是在单晶电极上发生。例如在Ru单晶上自沉积Pt,需要在高温下H2气还原、退火,再迅速转入除去氧气的H2PtCl6溶液中。所用设备比较昂贵,操作麻烦,并且研究体系与实际的催化剂相距甚远;Tong[5]小组在水溶液中在本体Au电极电镀Ru膜,在此基础上进行自沉积Pt,电化学测量表明所制的Ru@Pt膜对CO及CH3OH具有电催化氧化活性。
另一方面,表面增强红外光谱(SEIRAS)[6]是一种研究电极界面分子结构信息的重要分析工具。配以衰减全反射(ATR)模式的表面增强红外吸收光谱(ATR-SEIRAS)具有表面信号强、表面选律简单,可避免传统外反射红外吸收光谱(IRAS)面临的问题,如表面信号不够强、电场分布不均匀、传质补充滞后、溶液背景的干扰等。电化学ATR-SEIRAS可方便检测所制备的PtRu膜电极对CO及CH3OH电催化氧化特性。值得一提是,前述制备的Ru@Pt结构都无法用于现场ATR-SEIRAS研究,本发明将解决这个问题。
参考文献:
1.(a)K.Sasaki,Y.Mo,J.X.Wang,M.Balasubramanian,F.Uribe,J.McBreen,R.R.Adzic,Electrochim.Acta 48(2003)3841.(b)J.X.Wang,S.R.Brankovic,Y.Zhu,J.C.Hanson,R.R.Adzic,J.Electrochem.Soc.,150(2003)A1108.(c)J.Zhang,M.B.Vukmirovic,Y.Xu,M.Mavrikakis,R.R.Adzic,Angew.Chem.Int.Ed.44(2005)2132.(d)J.Zhang,M.B.Vukmirovic,K.Sasaki A.U.Nilekar M.Mavrikakis,R.R.Adzic,J.Am.Chem.Soc.127(2005)12480
2.F.Maillard,G.-Q.Lu,A.Wieckowski,U.Stimming,J.Phys.Chem.B.109(2005)16230(feature article)
3.F.Maillard,E.R.Savinova,P.A.Simonov,V.I.Zaikovskii,U.Stimming J.Phys.Chem.B,108(2004)17893.
4.Brankovic,S.R.;McBreen,J.;Adzic,R.R.J.Electroanal.Chem.2001,503,99
5.Bingchen,Du.,Yuye,Tong,J.Phys.Chem.B 2005,109,17775
6.M.Osawa,In Handbook of Vibrational Spectroscopy;Chalmers J.M.,Griffiths,P.R.,Eds.;John Wiley&Sons:Chichester,UK,2002;Vol.1,p.785.
发明内容
针对现有Pt-Ru二元催化材料Pt含量高以及无法直接应用于现场ATR-SEIRAS测量的问题,本发明提供一种新方法在ATR红外窗口Si基底制备超低Pt含量且具有SEIRA效应的Ru@Pt纳米薄膜,根据Pt能够在Ru上自发沉积这一特点,可以在Ru纳米颗粒上覆盖亚单层到数单层的Pt外壳,从而降低催化剂中二元催化剂中Pt的含量,同时兼具Pt-Ru合金催化剂的优点,可以直接应用于现场ATR-SEIRAS研究电催化吸附与反应。
本发明解决其技术问题所采用的技术方案是:
首先,在半圆硅柱反射底面化学镀金,采用两步湿法在金基底上电沉积5-6纳米厚的Ru膜;然后在Ru电极上采用自发沉积法覆盖Pt层,重复还原/沉积步骤n次,可得到具有抗CO中毒、高催化活性、超低Pt含量的Ru@Pt纳米薄膜电极;这里n为1-4,Pt层的厚度为亚单层到数个单层。将制备的工作电极组装到光谱电解池上,进行电化学及红外光谱实验。
本发明的有益效果:代替文献上使用的高温,H2氛还原的苛刻条件,而且还可以在除单晶之外的纳米薄膜上自沉积出具有催化活性Ru@Pt纳米薄膜,可应用于现场ATR-SEIRAS研究,获得了明显的吸附物种的比表面红外光谱信号,显示了Pt-Ru催化剂的协同效应。
附图说明
下面结合附图和具体实例对本发明Ru@Pt催化剂进一步说明。
图1是Ru膜电极及经过1次(2次)还原/自沉积循环的Ru@Pt1(Ru@Pt2)膜在0.1M HClO4溶液中的循环伏安(CV)曲线。图中表明随着Pt含量的增加,CV曲线逐渐表现出Pt上H的吸脱附电流峰,明显不同于纯Ru的CV曲线。
图2是Ru膜、Pt膜与Ru@Pt膜在饱和CO的HClO4中的循环伏安曲线(50mV/s)。图中表明CO在Ru@Pt膜的起始电位介于纯的Pt,Ru之间,说明所制的Ru@Pt膜具有类似Pt-Ru合金的催化活性。
图3是经过还原/沉积二个循环后的Ru@Pt膜在含饱和CO的HClO4溶液中的红外光谱图。参比谱采于-0.2V的0.1M HClO4溶液中。图中可看到有两个红外吸收峰,分别位于2029,2028cm-1左右。根据文献分别对应于Pt-CO和Ru-CO的线性振动。用拟合的方法分出这两个峰,计算出Stark效应分别是33和28cm-1V-1
图4是Ru@Pt膜在0.1M HCLO4中加入甲醇前后的循环伏安曲线(50mV/s)。从图上可以看到,加入甲醇后,有明显的甲醇氧化峰的出现,表明所制的PtRu膜对甲醇有催化作用,此结论与溅射的PtRu合金性质相似,但此种制备方法大大降低了贵金属Pt的含量。
具体实施方式
Ru基/Pt外壳工作电极制备:首先,在半圆硅柱反射底面化学镀金,采用两步湿法可在金基底上电沉积5-6纳米厚的Ru膜;在Ru电极上采用自发沉积法覆盖Pt层,即在0.01-0.2M HClO4中于-0.5V至0V(SCE)电还原Ru电极表面上的氧化物,然后断开电位控制注入0.01-5mL 0.1-2g/10mL H2PtCl6溶液(计算出最终的H2PtCl6的浓度为0.1-10mM)中,浸泡1-2小时。重复上述还原/沉积步骤1-4次,可得到具有抗CO中毒、高催化活性、超低Pt含量的Ru@Pt纳米薄膜电极。
电化学及红外实验准备:在0.1M HCLO4中,控-0.2V电位,通CO 30min(或注入0.5M CH3OH),扫循环伏安图;采用多步(或动)电位模式实时测量ATR-SEIRAS光谱。检测结果见图1-图4。

Claims (1)

1、一种燃料电池用具有高催化活性的钌核铂壳纳米薄膜电极的制备方法,其特征在于具体步骤如下:首先,在半圆硅柱反射底面化学镀金,采用两步湿法在金基底上电沉积5-6纳米厚的Ru膜;然后在Ru电极上采用自发沉积法覆盖Pt层,其步骤为:在0.01-0.2M HClO4中,于-0.5V至0V电位下电还原Ru电极表面上的氧化物,然后断开电位,注入0.01-5mL的0.1-2g/10mL H2PtCl6溶液,浸泡1-2小时;重复上述还原/沉积步骤1-4次;得到具有抗CO中毒、高催化活性、超低Pt含量的Ru@Pt纳米薄膜电极。
CNB2007100396475A 2007-04-19 2007-04-19 具有高催化活性的钌核铂壳纳米薄膜的制备方法 Expired - Fee Related CN100557873C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100396475A CN100557873C (zh) 2007-04-19 2007-04-19 具有高催化活性的钌核铂壳纳米薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100396475A CN100557873C (zh) 2007-04-19 2007-04-19 具有高催化活性的钌核铂壳纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN101038969A CN101038969A (zh) 2007-09-19
CN100557873C true CN100557873C (zh) 2009-11-04

Family

ID=38889709

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100396475A Expired - Fee Related CN100557873C (zh) 2007-04-19 2007-04-19 具有高催化活性的钌核铂壳纳米薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN100557873C (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841043B (zh) * 2010-01-25 2012-05-23 上海电力学院 一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法
WO2018122569A1 (en) * 2016-12-30 2018-07-05 The Hong Kong University Of Science And Technology Core-shell nanoparticle catalysts

Also Published As

Publication number Publication date
CN101038969A (zh) 2007-09-19

Similar Documents

Publication Publication Date Title
Liu et al. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt (111) through ab initio simulation of electrode/electrolyte kinetics
Green et al. Determination of the platinum and ruthenium surface areas in platinum− ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts
Sasaki et al. Synchrotron-based in situ characterization of carbon-supported platinum and platinum monolayer electrocatalysts
Wang et al. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study
Steimecke et al. In situ characterization of Ni and Ni/Fe thin film electrodes for oxygen evolution in alkaline media by a Raman-coupled scanning electrochemical microscope setup
Velázquez-Palenzuela et al. Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells
Colmenares et al. Ethanol oxidation on novel, carbon supported Pt alloy catalysts—Model studies under defined diffusion conditions
Tao et al. An electrochemical methanol sensor based on a Pd–Ni/SiNWs catalytic electrode
Jafarian et al. Electro-catalytic oxidation of methanol on a Ni–Cu alloy in alkaline medium
Santos et al. d-Band catalysis in electrochemistry
Niu et al. Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: effect of Pt deposition modes
Zhang et al. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces
Green et al. Determination of the platinum and ruthenium surface areas in platinum− ruthenium electrocatalysts by underpotential deposition of copper. 2. Effect of surface composition on activity
Tanaka et al. Preparation and evaluation of a multi-component catalyst by using a co-sputtering system for anodic oxidation of ethanol
Chen et al. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium
Wang et al. DEMS study on methanol oxidation at poly-and monocrystalline platinum electrodes: the effect of anion, temperature, surface structure, Ru adatom, and potential
Wang et al. Well-dispersed palladium nanoparticles on nickel-phosphorus nanosheets as efficient three-dimensional platform for superior catalytic glucose electro-oxidation and non-enzymatic sensing
Liu et al. Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration
Stoerzinger et al. Stabilizing the meniscus for operando characterization of platinum during the electrolyte-consuming alkaline oxygen evolution reaction
Ye et al. Mechanism and kinetic study of pulse electrodeposition process of Pt/C catalysts for fuel cells
Goncalves et al. Nanostructured Pd/Sb2O3: A new and promising fuel cell electrocatalyst and non-enzymatic amperometric sensor for ethanol
Rad et al. Hydrogen peroxide biosensor based on enzymatic modification of electrode using deposited silver nano layer
Huang et al. Designed nanostructured Pt film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques
Furukawa et al. CO2 electroreduction characteristics of Pt-Ru/C powder and Pt-Ru sputtered electrodes under acidic condition
Zhou et al. Electrodeposition of bimetallic NiPt nanosheet arrays on carbon papers for high performance nonenzymatic disposable glucose sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091104

Termination date: 20120419