CN100544158C - 低功耗的不间断供电系统 - Google Patents

低功耗的不间断供电系统 Download PDF

Info

Publication number
CN100544158C
CN100544158C CNB2006100847672A CN200610084767A CN100544158C CN 100544158 C CN100544158 C CN 100544158C CN B2006100847672 A CNB2006100847672 A CN B2006100847672A CN 200610084767 A CN200610084767 A CN 200610084767A CN 100544158 C CN100544158 C CN 100544158C
Authority
CN
China
Prior art keywords
wound coil
coiled wire
voltage
transformer
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100847672A
Other languages
English (en)
Other versions
CN101075746A (zh
Inventor
李嘉祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Delta Optoelectronics Inc
Original Assignee
Delta Optoelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Optoelectronics Inc filed Critical Delta Optoelectronics Inc
Priority to CNB2006100847672A priority Critical patent/CN100544158C/zh
Publication of CN101075746A publication Critical patent/CN101075746A/zh
Application granted granted Critical
Publication of CN100544158C publication Critical patent/CN100544158C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Abstract

一种不间断供电系统,其包含:控制器;第一切换开关组;第二切换开关组;变压器的第一绕线线圈与负载及第一切换开关组电连接,第二绕线线圈与该第二切换开关组电连接;储能装置;能量反馈电路;直流-直流转换器将储能装置所输出的直流电压升压;变流器将升压的直流电压转换成第一交流电压,并传送至第一绕线线圈;在储能装置供电模式下,第二绕线线圈将响应第一交流电压而感应输出第二交流电压,使第二交流电压响应第二切换开关组与第二绕线线圈之间的连接状态来调整传送至负载的第一交流电压的数值,以符合负载运行所需的电压。因此,本发明降低了变流器的能量损耗,减少了散热装置的使用,提高了变流器的效率以及整体缩小了变压器的体积。

Description

低功耗的不间断供电系统
技术领域
本发明涉及一种供电系统,尤其涉及一种具有低功耗的不间断供电系统。
背景技术
不间断供电系统(Uninterruptible Power Supply,UPS)是一种连接在供电电源与负载之间的装置,该供电电源可以直接是市电电源(commercial ACpower supply)或是经过转换处理过的交流电(AC),而不间断供电系统的主要目的在于当供电电源发生异常时,用来紧急提供负载运行所需的能量,以确保负载的正常运行。
请参阅图1(a),其为公知不间断供电系统的电路结构示意图,如图所示,不间断供电系统主要包含电池充电器10、电池模块11、直流-直流转换器12、变流器(inverter)13以及切换开关组16,用以将市电电源15的电压传送至负载14或是当市电电源15异常时将电池模块11内部所储存的电压经转换后传送至负载14,其中,电池充电器10包含变压器101、整流器102、滤波装置103、电压调节器104、切换开关105、CPU以及限流装置106。
当市电电源15正常供电时,CPU将控制切换开关组16与市电电源15电连接,使交流电压Vin传送至负载14,以提供负载14运行所需的电压。而交流电压Vin也会传送至电池充电器10的变压器101进行降压动作以转换成具有较低电压的交流电压,并经由整流器102将交流电压转换成直流电压,而该直流电压则需再经由滤波装置103将整流器102转换后的直流电压的高频成分滤除,以取得稳定的直流电压V1。
电压调节器104与受CPU控制的切换开关105电性连接,用以调节输入电池模块11的电压,限流装置106电性连接于电压调节器104的输出端及电池模块11的输入端,用以限制充电电流的最大值。
反之,当市电电源15无法正常供电时,CPU将控制切换开关组16关闭,而改由电池模块11提供电能,通过直流-直流转换器12将电池模块11所输出的直流电压V2升压,并传送至变流器13,而变流器13主要用以将直流电压转换为交流电压,然后再传送至负载14。
一般而言,不间断供电系统的变流器13在电池供电模式下所输出的交流电压波形通常为方波或正弦波。请参阅图1(b),其为图1(a)所示的变流器的内部电路结构示意图,如图所示,变流器13的一端耦接于直流-直流转换器12,而另一端则耦接至负载14,其中负载14包括负载电阻141以及负载电容142,一般而言,负载14均具有电容元件,这是因为负载14为整流性负载的缘故。
变流器13包括四个切换开关S1、S2、S3以及S4,且每一个切换开关主要是由金属氧化物半导体场效应晶体管(MOSFET)元件所构成。图1(c)提供切换开关S1、S2、S3以及S4的切换时序图,主要通过控制切换开关S1、S2、S3以及S4的切换方式以产生跨于负载14的负载电阻141与负载电容142的交流电压Vout的输出波形。
切换开关S1、S2、S3以及S4的切换方式采用正半周周期及负半周周期切换的方式,如在t0至t1的正半周周期控制S1及S4导通而S2及S3关闭,而t2至t3的负半周周期控制S1及S4关闭而S2及S3导通,进而产生跨于负载14的负载电阻141与负载电容142的交流电压Vout,由于变流器13通过正半周周期及负半周周期交互切换的方式来产生交流电压Vout,因此在正半周周期转负半周周期或是负半周周期转正半周周期时跨于负载电阻141与负载电容142的电压必须要为零,才能使变流器13的切换损耗(switchingloss)减到最小,但是变流器13的切换开关S1、S2、S3以及S4的切换方式会使负载电容142在每一交流电压半周波周期期间充电与放电,因此在正半周周期转负半周周期或是负半周周期转正半周周期时,若负载电阻141的电阻值太大则负载电容142进行放电而使得交流电压Vout无法归零,而公知的解决方式为在正半周周期及负半周周期之间,如t1至t2、t3至t4,将切换开关S1及S3或是S2及S4导通,而图1(c)将切换开关S2及S4导通,进而使负载电容142与切换开关S2及S4之间形成回路,用以将负载电容142所储存的电能经由切换开关S2及S4消耗掉。
但是,如此将损耗大量的功率,且将使切换开关S1、S2、S3以及S4的温度升高,因此需要大面积的散热装置附着于切换开关上,此外消耗的能量将造成变流器13的效率降低,因而降低了电池模块11的使用时间。
请参阅图2,其为公知另一不间断供电系统的电路结构示意图,如图所示,不间断供电系统主要包含第一切换开关组21、变压器22、整流器23、滤波装置24、电压调节器25、切换开关26、CPU、限流装置27、电池模块28、变流器29、第二切换开关组30和RC电路31,用以将市电电源32的电压传送至负载33或是当市电电源32异常时将电池模块28内部所储存的电压经转换后传送至负载33,其中,变压器22由第一绕线线圈N1、第二绕线线圈N2、第三绕线线圈N3以及第四绕线线圈N4构成,且负载33包含负载电阻331与负载电容332。
当市电电源32正常供电时,CPU将控制切换开关组21与市电电源32电连接,使交流电压Vin传送至负载33以及变压器22的第一绕线线圈N1,此时第一绕线线圈N1为主线圈,而第二绕线线圈N2、第三绕线线圈N3以及第四绕线线圈N4为副线圈组,且第一绕线线圈N1所接收的交流电压Vin将经由电磁交换作用转移到副线圈组,即使得第二绕线线圈N2输出电压V2以及第三绕线线圈N3输出电压V3。
第二绕线线圈N2具有自动电压调整的功效,主要通过与第二切换开关组30连接的方式来调整传送至负载33的电压,以符合负载33运行所需的预定电压,可避免因传送至负载33的交流电压过低或过高而影响负载33的运行。
第三绕线线圈N3所输出的电压V3经由整流器23、电感L、滤波装置24、电压调节器25、切换开关26、以及限流装置27所构成的电池充电电路来对电池模块28进行充电,其中电感L为可选择性的元件。上述整流器23、滤波装置24、电压调节器25、切换开关26、以及限流装置27的电路设计原理及所能达成的目的及有益效果已详述于上述图1(a)的说明中,因此不再赘述。
反之,当市电电源32无法正常供电时,CPU将控制切换开关组21关闭,而改由电池模块28提供电能,电池模块28所输出的直流电压将传送至变流器29以转换为交流电压,并传送至变压器22的第四绕线线圈N4,而第四绕线线圈N4所接收的交流电压将经由电磁交换作用转移到第一绕线线圈N1及第二绕线线圈N2并进行升压,而第一绕线线圈N1所感应的电压主要作为提供负载33运行所需的电压,第二绕线线圈N2所感应的电压则是通过第二绕线线圈N2与第二切换开关组30连接的方式来调整传送至负载33的电压,可避免因传送电压过低或过高而影响负载33的运行。
虽然图2所示的电路能够解决图1(a)因变流器的切换开关S1、S2、S3和S4的温度升高,而需要大面积的散热装置附着于切换开关上,以及无法自行动态调整传送至负载的电压的问题,但是,图2所示的不间断供电系统的电路结构在市电无法正常供电时通过变压器22作为输出变流装置,再加上变压器22的线圈绕制时多少有激磁漏感的现象,因此当变流器29内部所包含的切换开关(未图标)由导通转换至关闭的瞬间时,变压器22将释放激磁漏感能量,即使得第一绕线线圈N1的输出电压会产生瞬间突波(spike),公知的解决方式为在第一绕线线圈N1的两端设置RC电路31,用以消除输出电压产生的瞬间突波,但是其运行的效果并不理想。
另外,由于在市电电源32无法正常供电时,公知技术使用变压器22作为升压输出电流装置,第四绕线线圈N4必须能够承受较大的电流变化,因此必须使用较粗的铜线来绕制第四绕线线圈N4,如此一来,整个变压器22的体积将很庞大,而且在运行过程中铜线将会损耗大量的功率而使得整个不间断供电系统的运行效率较差等缺点。
因此,如何发展一种可改善上述公知技术不足的不间断供电系统,实为目前迫切需要解决的问题。
发明内容
本发明的主要目的在于提供一种具有低功耗的不间断供电系统,在储能装置供电模式下,通过直流-直流转换器对储能装置所输出的直流电压升压,并经变流器转换成交流电压后直接传送至负载与变压器的第一绕线线圈,变压器的第二绕线线圈将响应传送至第一绕线圈的第一交流电压而感应输出第二交流电压,使第二交流电压响应第二切换开关组与第二绕线线圈之间的连接状态来调整传送至该负载的第一交流电压的数值,以及通过能量反馈电路来释放负载的电容元件所储存的电能或是将负载的电容元件所释放的电能回收至储能装置充电,从而解决公知变流器的切换开关切换所造成的能量损耗,且需要大面积的散热装置附着于切换开关上、变压器体积庞大,而且在运行过程中铜线将会损耗大量的功率而使得整个不间断供电系统的运行效率较差等缺点。
为达上述目的,本发明的较概略的实施方式为提供一种不间断供电系统,其与市电电源以及负载电连接,且该负载具有电容元件,该不间断供电系统包含:控制器;第一切换开关组,其与该市电电源及该控制器电连接;第二切换开关组,其与该控制器及该负载的一端电连接,响应该控制器的触发而开关切换;变压器,其具有第一绕线线圈、第二绕线线圈及第三绕线线圈,该第一绕线线圈与该负载的另一端及所述切换开关组电连接,该第二绕线线圈与该第二切换开关组电连接;充电电路,其与该第三绕线线圈电连接;储能装置,其与该充电电路电连接;直流-直流转换器,其与该储能装置电连接,用以将该储能装置所输出的直流电压升压;变流器,其与该直流-直流转换器及该变压器的第一绕线线圈电连接,用以将升压后的该直流电压转换成第一交流电压,并传送至该负载;其中,在该储能装置供电模式下,该控制器将控制该第一切换开关组关闭,且该第二绕线线圈将响应传送至该第一绕线线圈的该第一交流电压而感应输出第二交流电压,使该第二交流电压响应该第二切换开关组与该第二绕线线圈之间的连接状态来调整传送至该负载的第一交流电压的数值,以符合该负载运行所需的电压。
根据所述的不间断供电系统,其中该储能装置为电瓶。
根据所述的不间断供电系统,其中该控制器为中央处理器。
根据所述的不间断供电系统,其中该充电电路包含整流器、能量反馈电路、接地端、电感、该控制器以及滤波稳压电路,其以该变压器的第三绕线线圈所输出的第三交流电压对该储能装置进行充电。
根据所述的不间断供电系统,其中该整流器与该第三绕线线圈电连接,用以将该第三交流电压转换成直流电压,其包含:第一二极管,该第一二极管的正端电连接该变压器的第三绕线线圈的一端;以及第二二极管,该第二二极管的正端电连接该变压器的第三绕线线圈的另一端,且该第一二极管的负端电连接该第二二极管的负端。
根据所述的不间断供电系统,其中该滤波稳压电路包含滤波装置,用以滤除该电感或者该整流器所输出的直流电压的高频成分。
根据所述的不间断供电系统,其中该滤波稳压电路还包含电压调节器及切换开关,该电压调节器与该滤波装置及该切换开关电连接,该电压调节器响应该切换开关的开关状态来调节输入该储能装置的电压,该切换开关响应该控制器的控制而运行。
根据所述的不间断供电系统,其中该滤波稳压电路还包含限流装置,其与该电压调节器及该储能装置电连接,用以限制对该储能装置充电的电流。
根据所述的不间断供电系统,其中该变流器以正半周周期及负半周周期交互切换的方式将该直流-直流转换器所输出的经过升压的该直流电压转换成第一交流电压,并传送至该第一绕线线圈。
根据所述的不间断供电系统,其中该能量反馈电路为切换开关,其与该整流器及该滤波稳压电路电连接,用以在该储能装置供电模式下,受该控制器的控制信号的触发而进行切换。
根据所述的不间断供电系统,其中在该储能装置供电模式下,该负载的电容元件所输出的残留电压将传送至该变压器的第一绕线线圈,以使该变压器的第三绕线线圈产生该第三交流电压。
根据所述的不间断供电系统,其中该切换开关的运行方式包括:在该变流器的正半周周期及负半周周期交互切换之间,该控制器的控制信号触发该切换开关与该接地端导通,使该变压器的第三绕线线圈所输出的该第三交流电压经由该整流器及该切换开关至该接地端释放。
根据所述的不间断供电系统,其中该切换开关的运行方式包括:在该变流器的正半周周期及负半周周期交互切换之间,该控制器的控制信号触发该切换开关与该接地端间进行导通及关闭的切换动作,使该变压器的第三绕线线圈所输出的该第三交流电压经由该整流器及该滤波稳压电路转换处理后对该储能装置充电,用以将该负载的电容元件的放电电压反馈至该储能装置。
为达上述目的,本发明的另一较概略的实施方式为提供一种不间断供电系统,其与输入电源以及负载电连接,且该负载具有电容元件,该不间断供电系统包含:接地端;储能装置;直流-直流转换器,其与该储能装置电连接;控制器,用以产生控制信号;滤波稳压电路,其与该储能装置电连接;变压器,其具有第一绕线线圈、第二绕线线圈及第三绕线线圈,该第一绕线线圈与该负载电连接;整流器,其与该变压器的第三绕线线圈电连接;变流器,其与该直流-直流转换器及该变压器的第一绕线线圈电连接;能量反馈电路,其与该整流器、该控制器、该接地端及该滤波稳压电路电连接,在该储能装置供电模式下,响应该控制信号的触发而开关切换,使该负载的电容元件所储存的电能传送至该变压器的第一绕线线圈,以使该变压器的第三绕线线圈产生第一电压;是以该第一电压经由该整流器及该能量反馈电路至接地端进行释放,用以释放该变压器的能量,或经由该整流器及该滤波稳压电路转换处理后对该储能装置进行充电。
因此,本发明的不间断供电系统,通过变压器的第一绕线线圈将负载的电容元件所输出的放电电压感应至变压器的第三绕线线圈,并通过能量反馈电路来释放第三绕线线圈所感应的电压或是将第三绕线线圈所感应的电压回收至储能装置充电,可改善传统变流器的切换开关切换所造成的能量损耗,减少附着于切换开关的散热装置的使用以及提高变流器的效率,另外,在储能装置供电模式下通过直流-直流转换器对储能装置所输出的电压升压,可减少变压器所需的绕线线圈数,以节省成本并缩小变压器的体积,且可提高整体的运行效率。
附图说明
图1(a)为公知不间断供电系统的电路结构示意图。
图1(b)为图1(a)所示的变流器的内部电路结构示意图。
图1(c)为图1(b)所示的切换开关S1、S2、S3以及S4的切换时序图。
图2为公知另一不间断供电系统的电路结构示意图。
图3(a)为本发明较佳实施例的不间断供电系统的电路结构示意图。
图3(b)为图3(a)所示的变流器的内部电路结构示意图。
图3(c)为变流器的切换开关S1、S2、S3以及S4与能量反馈电路的切换时序图。
图3(d)为变流器的切换开关S1、S2、S3以及S4与能量反馈电路的另一切换时序图。
其中,附图标记说明如下:
101、22、43 变压器         102、23 整流器
103、24、461 滤波装置          104、25、462 电压调节器
105、26、463、16 切换开关      106、27、464 限流装置
11、28、47 电池模块            10 电池充电器
12、48 直流-直流转换器         13、29、44、49 变流器
15、32、50 市电电源            14、33、51 负载
141 负载电阻                   142 负载电容
21、41 第一切换开关组          30、42 第二切换开关组
31RC 电路                      331、511 电阻
332、512 电容元件              N1 第一绕线线圈
N2 第二绕线线圈                N3 第三绕线线圈
N4 第四绕线线圈                40 不间断供电系统
451 能量反馈电路               452 接地端
D1、D2 二极管                  46 滤波稳压电路
47 储能装置                    L 电感
Vin、Vout 交流电压             CPU 中央处理器
S1、S2、S3、S4 切换开关
V1、V2、V3、V4、V5、V6 电压
具体实施方式
体现本发明特征与优点的一些典型实施例将在后续的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及附图标记在本质上当作说明之用,而非用以限制本发明。
请参阅图3(a),其为本发明较佳实施例的不间断供电系统的电路结构示意图,如图所示,不间断供电系统40与负载51电连接,且可接收市电电源50所提供的电压,不间断供电系统40包含第一切换开关组41、第二切换开关组42、变压器43、储能装置47、直流-直流转换器48、变流器49以及由整流器44、电感L、能量反馈电路451、接地端452、CPU以及稳压滤波电路46所组成的充电电路,用以将市电电源50的电压传送至负载51或是当市电电源50异常时将储能装置47内部所储存的电压经转换后传送至负载51,其中,负载51的内部具有电阻511及电容元件512或整流性元件,且当市电电源50异常而改由储能装置47提供负载51运行所需的电压时,负载51内部的电容元件512会输出放电电压。
变压器43由第一绕线线圈N1、第二绕线线圈N2以及第三绕线线圈N3所构成,其中,第一绕线线圈N1为主线圈,而第二绕线线圈N2及第三绕线线圈N3为副线圈组,且当第一绕线线圈N1接收到交流电压时将经由电磁交换作用转移到副线圈组,即使得第二绕线线圈N2以及第三绕线线圈N3分别感应输出电压,而第一绕线线圈N1与第一切换开关组41、第二切换开关组42以及变流器49电性连接,第二绕线线圈N2具有自动电压调整的功效,主要通过与第二切换开关组42之间连接的状态来调整传送至负载51的电压,以符合负载51运行所需的预定电压,可避免因传送至负载51的交流电压过低或过高而影响负载51的运行,第三绕线线圈N3则与整流器44连接。
在本实施例中,整流器44以半桥或全桥整流器为佳,主要用以将变压器43的第三绕线线圈N3所输出的交流电压转换成为直流电压,且其由两个二极管所组成,第一二极管D1其正端电性连接于变压器43的第三绕线线圈N3的一端,而第二二极管D2其正端则电性连接变压器43的第三绕线线圈N3的另一端,且第一二极管D1的负端与第二二极管D2的负端电性连接,且为整流器44的输出端。CPU主要用以控制能量反馈电路451、切换开关463、变流器49、第一切换开关组41以及第二切换开关组42的运行。
在本实施例中,滤波稳压电路46内部包含滤波装置461、电压调节器462、切换开关463以及限流装置464。能量反馈电路451为晶体管所构成的切换开关,其第一端与滤波装置461及电感L电性连接,第二端则与CPU电性连接,第三端则与接地端452连接,其设定受CPU的操控而开关切换,以便将电感L所储存的能量释放至滤波装置461,由滤波装置461将经由电感L放电所产生的直流电压的高频成分滤除,以取得稳定的直流电压V4。或者,CPU可设定为不控制能量反馈电路451的开关切换,使得整流器44所输出的直流电压直接传送至滤波装置461以便将其将高频成分滤除,以取得稳定的直流电压V4。电感L则用以增加能量反馈的功效。
而电压调节器462则与受CPU控制的切换开关463电性连接,用以调节输入储能装置47的电压,而切换开关463的另一端则与接地端电连接,当储能装置47已经充电完成后,CPU将控制切换开关463导通且将电压调节器462关闭,而不对储能装置47充电,反之,CPU将控制切换开关463不导通,而直流电压V4将经由电压调节器462及限流电路464对储能装置47进行充电,直到储能装置47已经充电完成。
限流装置464电性连接于电压调节器462的输出端及储能装置47的输入端,用以限制充电电流的最大值。
当市电电源50异常而改由储能装置47提供负载51运行所需的电压时,直流-直流转换器48用以将储能装置47所输出的直流电压V5升压,由变流器49接收直流-直流转换器48所输出的直流电压,并将直流电压转换为交流电压V6,然后将转换后的交流电压传送至变压器43的第一绕线线圈N1,即第一绕线线圈N1两端的电压V1=V6,以对负载51供电。
储能装置47可为蓄电池,且变流器49包括四个切换开关S1、S2、S3以及S4,每一个切换开关主要是由金属氧化物半导体场效应晶体管(MOSFET)元件或类似的晶体管元件所构成(如图3(b)所示),在市电电源50异常而改由不间断供电系统内部的储能装置47供电的模式下,变流器49通过在正半周周期及负半周周期时控制切换开关S1、S2、S3以及S4交互切换的方式来产生交流电压V6。
当市电电源50正常供电时,CPU将控制第一切换开关组41与市电电源50电连接,使交流电压Vin传送至负载33以及变压器22的第一绕线线圈N1,即第一绕线线圈N1两端的电压V1=Vin,第一绕线线圈N1为主线圈,而第二绕线线圈N2、第三绕线线圈N3则为副线圈组,且第一绕线线圈N1所接收的交流电压Vin将经由电磁交换作用转移到副线圈组,即使得第二绕线线圈N2输出电压V2以及第三绕线线圈N3输出电压V3。
第二绕线线圈N2具有自动电压调整的功效,主要通过与第二切换开关组30连接的状态来调整传送至负载51的电压Vout,以符合负载51运行所需的预定电压,可避免因传送至负载51的交流电压Vout过低或过高而影响负载33的运行,举例而言,当交流电压Vin与负载51运行所需的预定电压相较过高时,CPU将控制第二切换开关组42与第二绕线线圈N2之间的连接关系具有减级性的功效,使传送至负载51的电压Vout为交流电压Vin减去第二绕线线圈N2输出的电压V2,即Vout=Vin-V2,如此一来,传送至负载51的电压就不会超过负载33运行所需的预定电压。需注意的是N2为选择性的元件。
当交流电压Vin与负载51运行所需的预定电压相较过低时,CPU将控制第二切换开关组42与第二绕线线圈N2之间的连接关系为具有加级性的功效,使传送至负载51的电压Vout为交流电压Vin加上第二绕线线圈N2输出的电压V2,即Vout=Vin+V2,如此一来,传送至负载51的电压就不会低于负载51运行所需的预定电压,若交流电压Vin已经可以符合与负载51运行所需的预定电压时,CPU将控制第二切换开关组42与第二绕线线圈N2之间的连接关系为不具有任何功效,使传送至负载33的电压Vout仅为交流电压Vin,即Vout=Vin。
一种对储能装置47充电的运行模式说明如下。第三绕线线圈N3所输出的电压V3将由整流器44转换为直流电压,并经由电感L传送至滤波装置461而该直流电压则需再通过滤波装置461将其高频成分滤除,以取得稳定的直流电压V4,当然为了使整流器44所转换的直流电压能够传送至储能装置47充电,CPU将控制能量反馈电路451关闭,以使直流电压能够传送至滤波装置461。
当CPU侦测出储能装置47已经充电完成后,CPU将控制切换开关463导通,直流电压V4将经由电压调节器462及切换开关463传送至接地端,而不对储能装置47充电,反之,CPU将控制切换开关463不导通,而直流电压V4将经由电压调节器462及限流电路464对储能装置47充电,直到储能装置47已经充电完成。
反之,当市电电源50无法正常供电时,CPU将控制第一切换开关组41关闭,而改由储能装置47提供电能,并通过直流-直流转换器48将储能装置47所输出的直流电压V5升压,而变流器49则接收直流-直流转换器48所提供的直流电压并将直流电压转换为交流电压V6,然后将转换后的交流电压传送至变压器43的第一绕线线圈N1,即第一绕线线圈N1两端的电压V1=V6,以对负载51供电。举例而言,当交流电压V6与负载51运行所需的预定电压相较过高时,CPU将控制第二切换开关组42与第二绕线线圈N2之间的连接关系为具有减级性的功效,使传送至负载51的电压Vout为交流电压V6减去第二绕线线圈N2输出的电压V2,即Vout=V6-V2,如此一来,传送至负载51的电压就不会超过负载33运行所需的预定电压。
当交流电压Vin与负载51运行所需的预定电压相较过低时,CPU将控制第二切换开关组42与第二绕线线圈N2之间的连接关系为具有加级性的功效,使传送至负载51的电压Vout为交流电压Vin加上第二绕线线圈N2输出的电压V2,即Vout=V6+V2,如此一来,传送至负载51的电压就不会低于负载51运行所需的预定电压,若交流电压V6已经可以符合与负载51运行所需的预定电压时,CPU将控制第二切换开关组42与第二绕线线圈N2之间的连接关系为不具有任何功效,使传送至负载33的电压Vout仅为交流电压Vin,即Vout=V6。
在本实施例中,变流器49内部的切换开关S1、S2、S3以及S4同样采用正半周周期及负半周周期交互切换的方式,如在t0至t1的正半周周期控制S1及S4导通而S2及S3关闭,而t2至t3的负半周周期控制S1及S4关闭而S2及S3导通(如图3(c)及(d)所示),进而产生交流电压Vout,由于变流器49通过正半周周期及负半周周期交互切换的方式来产生交流电压Vout,因此在正半周周期转负半周周期或是负半周周期转正半周周期之间的输出交流电压Vout必须要为零,才能使变流器49的开关损耗减少,但是由于变流器49的切换开关S1、S2、S3以及S4的切换方式会使负载51的电容元件512在每一交流电压半周波周期期间被进行充电与放电,因此在正半周周期转负半周周期之间的具有零电压的过渡期间或是负半周周期转正半周周期之间具有零电压的过渡期间时,电容元件512会有残留的储存电能,而使得交流电压Vout无法归零,因此在储能装置47供电的模式下,可负载电容512所残留的电能搭接至第一绕线线圈N1,通过控制能量反馈电路451的开关状态而使第三绕线线圈N3经电磁感应释放电容512的电能至接地端,即可将负载51的电容元件512所产生的放电电压释放至接地端452或是将能量传送至储能装置47充电,能量反馈电路451的开关控制方式具有两种方式,以下将以图3(c)及图3(d)所示的切换时序图提出说明。
请再参阅图3(c),其为变流器的切换开关S1、S2、S3以及S4与能量反馈电路的切换时序图,如图所示,在变流器49的正半周周期转负半周周期或是负半周周期转正半周周期之间,即t1至t2、t3至t4以及t5至t6,CPU将产生控制信号来控制变流器49的切换开关S1、S2、S3以及S4全部关闭,且将能量反馈电路451导通,由于在这期间变流器49的切换开关S1、S2、S3以及S4全部关闭,因此就可解决公知切换开关S1、S2、S3以及S4因需要将负载51的电容元件512所输出的放电电压消耗掉,造成切换开关S1、S2、S3以及S4温度升高而需要大面积的散热装置,以及将降低变流器的工作效率等缺点,而且也可以减少变压器因变流器内部的切换开关由导通转换至关闭的瞬间时,变压器的第一绕线线圈N1的输出电压会产生瞬间突波(spike)。
另外,由于CPU将能量反馈电路451导通,将使得负载51与变压器43的第一绕线线圈N1之间建立一回路,使得负载51的电容元件512的残留电能传至变压器43的第一绕线线圈N1,并使变压器43的第三绕线线圈N3将该放电电压转换成具有较低电压的交流电压,并经由整流器44将交流电压转换成直流电压,而整流器44所输出的直流电压将经由能量反馈电路451传至接地端452进而释放,因此变流器49在正半周周期转负半周周期或是负半周周期转正半周周期之间的输出交流电压Vout将归零,进而使得变流器49的开关损耗减少。
请再参阅图3(d),其为变流器的切换开关S1、S2、S3以及S4与能量反馈电路的另一切换时序图,如图所示,在变流器49的正半周周期转负半周周期或是负半周周期转正半周周期之间,即t1至t2、t3至t4以及t5至t6,CPU将同样控制变流器49的切换开关S1、S2、S3以及S4全部关闭,能量反馈电路451则是导通及关闭相互切换,由于在这期间变流器49的切换开关S1、S2、S3以及S4全部关闭,因此就可解决公知切换开关S1、S2、S3以及S4因需要将负载51的电容元件512所输出的放电电压消耗掉,造成切换开关S1、S2、S3以及S4温度升高而需要大面积的散热装置,以及将降低变流器的工作效率等缺点,而且也可以减少变压器因变流器内部的切换开关由导通转换至关闭的瞬间时,变压器的第一绕线线圈N1的输出电压会产生瞬间突波(spike)。
另外,由于在变流器49的正半周周期转负半周周期或是负半周周期转正半周周期之间,CPU控制能量反馈电路451导通及关闭交互切换,当能量反馈电路451导通时将使得负载51与变压器43的第一绕线线圈N1之间建立一回路,使得负载51的电容元件512所输出的放电电压传至变压器43的第一绕线线圈N1,并使变压器43的第三绕线线圈N3将该残留电压转换成具较低电压的直流电压,并经由整流器44将直流电压转换成一正电压,电感L用以储存部分的能量,可用来增加能量反馈的功效,而整流器44所输出的直流电压将因为能量反馈电路451关闭而可传送至滤波装置461滤波,接着经由电压调节器462以及限流装置464处理后对储能装置47充电,用以将负载51的电容元件512所输出的放电电压反馈至储能装置47,因此变流器49在正半周周期转负半周周期之间的具有零电压的过渡期间或是负半周周期转正半周周期之间的具有零电压的过渡期间的输出交流电压Vout将为零,进而使得变流器49能够正常运行。
由于市电电源50无法正常供电时本发明的不间断供电系统40改由储能装置47提供能量时,储能装置47所输出的直流电压V5需先经由直流-直流转换器48升压后,才传送至变流器49转换成为交流电压V6,且变流器49直接连接于变压器43的第一绕线线圈N1的电压输入端因此并不需要通过变压器43来升压,可解决公知技术因使用变压器作为升压输出电流装置,因此必须使用较粗的铜线来绕制第四绕线线圈N4,而使得整个变压器的体积将很庞大,而且在运行过程中铜线将会损耗大量的功率而使得整个不间断供电系统的运行效率较差等缺点。
值得注意的是,电压调节器462与限流装置464可为非必要的电路元件。当然,变压器43中用来作为调整传送至负载51的电压Vout的第二绕线线圈N2除了图3(a)所示的单一绕线匝比数外,也可组合多组不同匝数的绕线线圈,并通过与第二切换开关组30连接的状态来控制输出电压V2的大小,以加宽可调整传送至负载51电压的范围,举例而言,可将第二绕线线圈N2上缠绕匝数为3圈及6圈的绕线线圈,当第二切换开关组N2的切换开关切换至匝数为3圈的绕线线圈的两端时,第二绕线线圈N2将输出数值为A的电压,当第二切换开关组N2的切换开关切换至匝数为6圈的绕线线圈的两端时,第二绕线线圈N2将输出2A的电压,且当第二切换开关组N2的切换开关切换至匝数为3+6圈的绕线线圈的两端时,第二绕线线圈N2将输出A+2A=3A的电压,因此可通过不同的连接方式来提供各种电压的需求。须注意的是在本实施例中N2也为选择性的元件。
综上所述,本发明的不间断供电系统,通过变压器的第一绕线线圈将负载的电容元件所输出的放电电压感应至变压器的第三绕线线圈,并通过能量反馈电路来释放第三绕线线圈所感应的电压或是将第三绕线线圈所感应的电压回收至储能装置充电,可改善传统变流器的切换开关切换所造成的能量损耗,减少附着于切换开关的散热装置的使用以及提高变流器的效率,另外,在储能装置供电模式下通过直流-直流转换器对储能装置所输出的电压升压,可减少变压器所需的绕线线圈数,以节省成本并缩小变压器的体积,且可提高整体的运行效率。
本发明得由本领域技术人员任施匠思而为诸般修饰,然皆不脱离所附权利要求所欲保护的范围。

Claims (14)

1、一种不间断供电系统,其与市电电源以及负载电连接,且该负载具有电容元件,该不间断供电系统包含:
控制器;
第一切换开关组,其与该市电电源及该控制器电连接;
第二切换开关组,其与该控制器及该负载的一端电连接,响应该控制器的触发而进行开关切换;
变压器,其具有第一绕线线圈、第二绕线线圈及第三绕线线圈,该第一绕线线圈与该负载的另一端及所述第一、第二切换开关组电连接,该第二绕线线圈与该第二切换开关组电连接;
充电电路,其与该第三绕线线圈电连接;
储能装置,其与该充电电路电连接;
直流-直流转换器,其与该储能装置电连接,用以将该储能装置所输出的直流电压进行升压;以及
变流器,其与该直流-直流转换器及该变压器的第一绕线线圈电连接,用以将升压后的该直流电压转换成第一交流电压,并传送至该负载;
其中,在该储能装置供电模式下,该控制器将控制该第一切换开关组关闭,且该第二绕线线圈将响应传送至该第一绕线线圈的该第一交流电压而感应输出第二交流电压,使该第二交流电压响应该第二切换开关组与该第二绕线线圈之间的连接状态来调整传送至该负载的第一交流电压的数值,以符合该负载运行所需的电压。
2、根据权利要求1所述的不间断供电系统,其中该储能装置为电瓶。
3、根据权利要求1所述的不间断供电系统,其中该控制器为中央处理器。
4、根据权利要求1所述的不间断供电系统,其中该充电电路包含整流器、能量反馈电路、接地端、电感、该控制器以及滤波稳压电路,其以该变压器的第三绕线线圈所输出的第三交流电压对该储能装置进行充电。
5、根据权利要求4所述的不间断供电系统,其中该整流器与该第三绕线线圈电连接,用以将该第三交流电压转换成直流电压,其包含:
第一二极管,该第一二极管的正端电连接该变压器的第三绕线线圈的一端;以及
第二二极管,该第二二极管的正端电连接该变压器的第三绕线线圈的另一端,且该第一二极管的负端电连接该第二二极管的负端。
6、根据权利要求4所述的不间断供电系统,其中该滤波稳压电路包含滤波装置,用以滤除该电感或者该整流器所输出的直流电压的高频成分。
7、根据权利要求6所述的不间断供电系统,其中该滤波稳压电路还包含电压调节器及切换开关,该电压调节器与该滤波装置及该切换开关电连接,该电压调节器响应该切换开关的开关状态来调节输入该储能装置的电压,该切换开关响应该控制器的控制而运行。
8、根据权利要求7所述的不间断供电系统,其中该滤波稳压电路还包含限流装置,其与该电压调节器及该储能装置电连接,用以限制对该储能装置充电的电流。
9、根据权利要求4所述的不间断供电系统,其中该变流器以正半周周期及负半周周期交互切换的方式将该直流-直流转换器所输出的经过升压的该直流电压转换成第一交流电压,并传送至该第一绕线线圈。
10、根据权利要求4所述的不间断供电系统,其中该能量反馈电路为切换开关,其与该整流器及该滤波稳压电路电连接,用以在该储能装置供电模式下,受该控制器的控制信号的触发而切换。
11、根据权利要求10所述的不间断供电系统,其中在该储能装置供电模式下,该负载的电容元件所输出的残留电压将传送至该变压器的第一绕线线圈,以使该变压器的第三绕线线圈产生该第三交流电压。
12、根据权利要求11所述的不间断供电系统,其中该切换开关的运行方式包括:在该变流器的正半周周期及负半周周期交互切换之间,该控制器的控制信号触发该切换开关与该接地端导通,使该变压器的第三绕线线圈所输出的该第三交流电压经由该整流器及该切换开关至该接地端释放。
13、根据权利要求10所述的不间断供电系统,其中该切换开关的运行方式包括:在该变流器的正半周周期及负半周周期交互切换之间,该控制器的控制信号触发该切换开关与该接地端间进行导通及关闭的切换动作,使该变压器的第三绕线线圈所输出的该第三交流电压经由该整流器及该滤波稳压电路转换处理后对该储能装置进行充电,用以将该负载的电容元件的放电电压反馈至该储能装置。
14、一种不间断供电系统,其与输入电源以及负载电连接,且该负载具有电容元件,该不间断供电系统包含:
接地端;
储能装置;
直流-直流转换器,其与该储能装置电连接;
控制器,用以产生控制信号;
滤波稳压电路,其与该储能装置电连接;
变压器,其具有第一绕线线圈、第二绕线线圈及第三绕线线圈,该第一绕线线圈与该负载电连接;
整流器,其与该变压器的第三绕线线圈电连接;
变流器,其与该直流-直流转换器及该变压器的第一绕线线圈电连接;以及
能量反馈电路,其与该整流器、该控制器、该接地端及该滤波稳压电路电连接,在该储能装置供电模式下,响应该控制信号的触发而进行开关切换,使该负载的电容元件所输出的放电电压传送至该变压器的第一绕线线圈,以使该变压器的第三绕线线圈产生第一电压;
其中该第一电压经由该整流器及该能量反馈电路至该接地端进行释放,用以释放该变压器的能量,或是经由该整流器及该滤波稳压电路转换处理后对该储能装置进行充电。
CNB2006100847672A 2006-05-17 2006-05-17 低功耗的不间断供电系统 Expired - Fee Related CN100544158C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100847672A CN100544158C (zh) 2006-05-17 2006-05-17 低功耗的不间断供电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100847672A CN100544158C (zh) 2006-05-17 2006-05-17 低功耗的不间断供电系统

Publications (2)

Publication Number Publication Date
CN101075746A CN101075746A (zh) 2007-11-21
CN100544158C true CN100544158C (zh) 2009-09-23

Family

ID=38976606

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100847672A Expired - Fee Related CN100544158C (zh) 2006-05-17 2006-05-17 低功耗的不间断供电系统

Country Status (1)

Country Link
CN (1) CN100544158C (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333932A4 (en) 2008-09-29 2015-12-30 Murata Manufacturing Co NON-CONTACT ENERGY RECEPTION CIRCUIT AND NON-CONTACT ENERGY TRANSMISSION SYSTEM
US8125231B2 (en) * 2009-01-28 2012-02-28 Freescale Semiconductor, Inc. Capacitance-to-voltage interface circuit, and related operating methods
CN101958561A (zh) * 2009-07-20 2011-01-26 硕天科技股份有限公司 支援主动式负载的不断电系统
CN102163870A (zh) * 2010-02-24 2011-08-24 硕天科技股份有限公司 省电式不断电系统
US8450988B2 (en) * 2010-10-05 2013-05-28 Maxim Integrated Products, Inc. Systems and methods for controlling inductive energy in DC-DC converters
CN103166436A (zh) * 2011-12-16 2013-06-19 洛阳智超机电科技有限公司 提升机电控ups输入型稳压电源装置
WO2014027277A2 (en) * 2012-08-14 2014-02-20 Koninklijke Philips N.V. Dc power distribution system
CN107425599B (zh) * 2017-09-13 2023-06-27 重庆大及电子科技有限公司 用于电源补偿器的浪涌保护电路
CN109298337B (zh) * 2018-08-27 2021-06-08 东莞市北斗星电子科技有限公司 基于ups模块传输储电池零荷及其自动监控大数据终端
CN109066879A (zh) * 2018-08-31 2018-12-21 厦门科华恒盛股份有限公司 一种板载电池的充电电路、充电方法及单片机控制系统
CN109936215B (zh) * 2019-03-27 2020-08-18 沈阳微控新能源技术有限公司 一种磁悬浮飞轮储能装置的不间断供电系统

Also Published As

Publication number Publication date
CN101075746A (zh) 2007-11-21

Similar Documents

Publication Publication Date Title
CN100544158C (zh) 低功耗的不间断供电系统
CN110677060B (zh) 功率变换系统及其中直流母线电容的预充电方法
Ryu et al. Effective test bed of 380-V DC distribution system using isolated power converters
Zhang et al. PWM plus secondary-side phase-shift controlled soft-switching full-bridge three-port converter for renewable power systems
US20170346386A1 (en) System and Method for a Multi Purpose Bidirectional Power Converter
EP2636122B1 (en) System and method for bidirectional dc-ac power conversion
US7141892B2 (en) Power supply method of a line interactive UPS and the line interactive UPS
CN1653670A (zh) 非接触式能量传递的单级电压转换器
CN101304180B (zh) 复合式节能不断电系统及双向转换器模块与电力转换方法
Navinchandran et al. Bidirectional on-board single phase electric vehicle charger with high gain boost converter for v2g application
CN101621257A (zh) 一种电能量双向流动装置及其电能量双向流动方法
CN110829841A (zh) 一种多端口变换器以及多端口变换器的控制系统
CN101123400B (zh) 电源转换器及其控制方法
Kim et al. Integrated single inductor converter for a DC grid system connected with battery and load
US9450453B2 (en) Uninterruptible power supply system with energy feedback to chargers and sinusoidal output
CN103368248A (zh) 低功率消耗的备援电力系统
CN201750199U (zh) 不断电供电装置
CN213007662U (zh) 充放电装置和电动车辆
CN204271688U (zh) 一种存储模块充放电的控制系统
CN100589303C (zh) 不间断电源供应装置
CN112572192B (zh) 车载充电系统及具有其的车辆
CN112572190B (zh) 车载充电系统及具有其的车辆
Tulon et al. Designing a Bidirectional Isolated DC/DC Converter for EV with Power Back Operation for Efficient Battery Charging During Neutral Run
Amudhavalli et al. Quadratic boost converter with integrated energy storage using pi controller for low power photovoltaic applications
Mahafzah et al. A novel step-up/step-down DC-DC converter based on flyback and SEPIC topologies with improved voltage gain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090923

Termination date: 20160517