CN100539481C - Subchannel access lead generating method for quadrature frequency division multiplexing communication system - Google Patents

Subchannel access lead generating method for quadrature frequency division multiplexing communication system Download PDF

Info

Publication number
CN100539481C
CN100539481C CN 03127858 CN03127858A CN100539481C CN 100539481 C CN100539481 C CN 100539481C CN 03127858 CN03127858 CN 03127858 CN 03127858 A CN03127858 A CN 03127858A CN 100539481 C CN100539481 C CN 100539481C
Authority
CN
China
Prior art keywords
subcarriers
subchannel
gt
lt
formula
Prior art date
Application number
CN 03127858
Other languages
Chinese (zh)
Other versions
CN1581739A (en
Inventor
曹锋铭
海 王
王家城
Original Assignee
北京三星通信技术研究有限公司;三星电子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三星通信技术研究有限公司;三星电子株式会社 filed Critical 北京三星通信技术研究有限公司;三星电子株式会社
Priority to CN 03127858 priority Critical patent/CN100539481C/en
Publication of CN1581739A publication Critical patent/CN1581739A/en
Application granted granted Critical
Publication of CN100539481C publication Critical patent/CN100539481C/en

Links

Abstract

一种用于正交频分复用通信系统子信道接入前导的产生方法,包括步骤:使用有用子载波传输信号,其他子载波不使用,即放置零;将可使用的有用子载波划分为子信道;在使用的子信道中的子载波中放置频域训练序列,其它子信道的子载波上放置零,并对其进行反傅立叶变换形成正交频分复用子信道接入前导。 The use of useful subcarriers are divided into; useful subcarriers to use transmission signals, do not use the other subcarriers, i.e., a zero is placed: an orthogonal frequency division multiplexing communication system, the method generating an access preamble subchannel, comprising a step for subchannel; training sequence is placed in the frequency domain subcarriers used in the subchannel, a zero is placed on subcarriers other subchannels, and form an orthogonal subjected to inverse Fourier transform frequency division multiplexed access preamble subchannel. 本发明的新的序列的PAPR值较低,可以减少对非线性功率要求,降低成本,同时减少非线性失真,提高估计性能。 Lower PAPR value of the new sequence of the invention, it is possible to reduce the power requirements for non-linear, lower costs, and reduce non-linear distortion and improve estimation performance. 另一方面,能以更高的平均功率来调制序列,这样也可以提高估计性能。 On the other hand, at higher average power can be modulated sequence, which can also improve the estimation performance. 只需要使用一条序列,对应任一种子信道使用的频域训练序列,都可以从该条序列抽取而得,从而大大减少存储内存。 Only need to use a sequence corresponding to any one of the frequency domain training sequence of one of the subchannels, the sequence can be obtained by extraction from the strip, thereby greatly reducing the storage memory. 采用新的序列不需要任何多余的控制信号,也就是说,不会给系统的MAC层带来任何冗余。 Using the new sequence does not require any extra control signal, i.e., does not bring any redundant system to the MAC layer.

Description

正交频分复用通信系统子信道接入前导的产生方法 Orthogonal frequency division multiplex access method for generating preamble subchannel communication system

技术领域 FIELD

本发明涉及正交频分复用通信接入(OFDMA)技术领域,具体地说,本发明主要涉及OF函A通信系统物理层中一种新的OFDMA的接入前导(以下称preamble)。 The present invention relates to an Orthogonal Frequency Division Multiplexing BACKGROUND communication access (OFDMA), in particular, the present invention relates Functional OF A communication system, a new physical layer of the OFDMA access preamble (hereinafter referred to as preamble).

背景技术 Background technique

正交频分复用(OFDM)技术作为一种无线通信系统的高速传输技术早在60年代就提出来了。 Orthogonal frequency-division multiplexing (OFDM) technology as a radio communication system, high speed transmission technology as early as in the 1960s raised. 近些年来,由于数字信号处理技术和ASIC技术的飞速发展,OFDM系统的实现已经成为现实,OFDM技术再度受到关注和研究。 In recent years, the rapid development of digital signal processing technology and ASIC technology to achieve OFDM system has become a reality, renewed attention OFDM technology and research. OFDM作为下一代移动无线通信系统技术已经得到国内外公认。 OFDM as the next generation mobile radio communication system has been widely recognized as technology.

OFDMA系统是基于OFDM技术的多址接入通信系统,在OFDMA系统中,所有的可用子载波被划分为子信道,根据划分方法不同,子信道可以含有一个或多个子载波。 Multiple access OFDMA system is based on OFDM technology access communication system, in an OFDMA system, all available subcarriers are divided into subchannels, depending on the dividing method, a subchannel may contain one or more subcarriers. 不同的子信道可以在同一时间内分配给不同的用户。 Different sub-channels can be assigned to different users at the same time. 这样更有效利用频带,提高系统容量。 Thus more efficient use of the frequency band, system capacity. 同时由于子信道的使用,降低了功率峰平比,有利于用户终端的移动化和提高小区的覆盖范围。 At the same time the use of subchannels, reducing the power PAPR, benefits the mobile terminal of the user and improve the cell coverage.

当某一用户使用某一子信道时,该用户只需要在该指定的子信道上传输数据。 When a user uses a sub-channel, the user only needs to transmit data on the designated subchannels. 在很多OFDMA系统中,为了同歩和信道估计的目的,用户在传输数据之前或在传输过程中传输一些训练符号,我们称为接入前导(Preamble) In many OFDMA system, and for purposes of channel estimation with the ho, the user or some training symbols transmitted during transmission before transmitting data, which we call an access preamble (a Preamble)

实际OFDMA系统中的Prea油le都是在频域上对已知的序列在特定的子信道上做IFFT得到,我们称该种序列为频域训练序列。 Prea oil le practical OFDMA systems are known sequences do IFFT get on a particular subchannel in the frequency domain, we call this type of sequence to the frequency domain training sequence.

在高性能城域网规范Hiperman和IEEE802. 16e的256FFT OFDM物理层中,共有256个子载波,标号为-128到127,但实际只用了标号为-IOO到IOO的200个子载波,其中零子载波不用。 MAN specification and high performance Hiperman IEEE802. 16e of 256FFT OFDM physical layer, a total of 256 subcarriers, numbered from -128 to 127, but is currently only using labeled -IOO IOO to 200 sub-carriers, wherein the sub-zero carriers do not.

除了256FFT OFDM模式以外,Hiperman还采用256FFT OFDMA模式,目前802. 16e也采用256FFT OFDMA模式。 Apart 256FFT OFDM mode, HiperMAN also uses 256FFT OFDMA mode, the current 802. 16e also be employed 256FFT OFDMA mode. 256 OFDMA模式是将整个可用的子载波划分为多个子信道,在同一时间不同的用户在使用不同的子信道。 256 OFDMA mode is the entire available subcarriers are divided into a plurality of subchannels, different users at the same time using different subchannels. 对应每一子信道,都应有一种频域训练序列。 Corresponding to each subchannel, should there is a frequency-domain training sequence.

根据子信道Preamble设计原则,同时结合该Preamble实际使用环境。 The subchannel Preamble design principles, combined with the actual use environment Preamble. 我们分析得出:目前的不同子信道Preamble还需要优化。 We analyzed: the current different subchannels Preamble also require optimization.

发明内容 SUMMARY

本发明的目的是提供一种正交频分复用接入通信系统中新的子信道接入前导产生方法。 Object of the present invention to provide an orthogonal frequency division multiplexing access preamble generating method using a new access communication system subchannel.

为实现上述目的, 一种用于正交频分复用通信系统子信道接入前导的产生方法,包括步骤: To achieve the above object, a method for orthogonal frequency-division multiplexing communication system subchannel access preamble generating method, comprising the steps of:

使用有用子载波传输信号,其他子载波不使用,即放置零; Using transmission signals useful subcarriers, other subcarriers are not used, i.e., a zero is placed;

将可使用的有用子载波划分为子信道; Useful subcarriers will be divided into sub-channels may be used;

在使用的子信道中的子载波上放置频域训练序列,其它子信道的子载波上放置零,并对其进行反傅立叶变换形成正交频分复用子信道接入前 On subcarriers used in place of the subchannel frequency domain training sequence, a zero is placed on subcarriers other subchannels, and subjected to inverse Fourier transform prior to orthogonal frequency-division multiplexing access subchannel formed

guide

本发明的新的序列的PAPR值较低,由于较低的PAPR,减少对非线性功率要求,降低成本,同时减少非线性失真,提高估计性能。 Lower PAPR value of the new sequences according to the present invention, since the PAPR is low, to reduce the nonlinear power requirements, cost, while reducing non-linear distortion and improve estimation performance. 另一方面,低的PAPR时,能以更高的平均功率来调制序列,这样也可以提高估计性能;只需要使用一条序列。 On the other hand, when a PAPR low, at higher average power can be modulated sequence, which can also improve the estimation performance; only need to use a sequence. 对应任一种子信道使用的频域训练序列,都可以从该条序列抽取而得,从而大大减少存储内存。 Corresponds to any one of subchannels in the frequency domain training sequence, it can be obtained by extracting from a sequence piece, thus greatly reducing the memory storage. 采用新的序列不需要任何多余的控制信号,也就是说,不会给系统的MAC层带来任何冗余。 Using the new sequence does not require any extra control signal, i.e., does not bring any redundant system to the MAC layer.

附图说明 BRIEF DESCRIPTION

图1是OFDMA发射机的系统图;图2是0FDM发射机的系统图; FIG. 1 is a system diagram of OFDMA transmitter; FIG. 2 is a system diagram of a transmitter 0FDM;

图3是循环前缀操作后的时域信号,其中,CP表示循环前缀;图4是子信道的接入前导,其中Tg表示循环前缀的长度,Th表示一个OFDM数据符号的长度。 FIG 3 is a time domain signal after cyclic prefix operation, wherein, the CP denotes a cyclic prefix; FIG. 4 is a sub-channel access preamble, wherein the length of the cyclic prefix represents Tg, Th represents the length of one OFDM data symbol.

具体实施方式OFDMA系统基本原理是将整个OFDM子载波划为很多子载波组,我们称之为子信道。 DETAILED DESCRIPTION The basic principles of the whole OFDMA system is classified into many OFDM subcarriers of subcarrier groups, which we call subchannel. 不同的用户在同一时间可以使用不同的子信道。 Different users can use different sub-channels at the same time. 0FDMA系统不仅继承了OFDM的优点,同时还具有更灵活的数据传输率,更大的系统容 0FDMA OFDM system not only inherits the advantages, but also has a more flexible data rate, greater system capacity

量和更大的覆盖范围。 And a greater amount of coverage.

OFDMA系统将整个频带从低到高划分为N个子载波,标号为 An OFDMA system entire frequency band from low to high is divided into N sub-carriers, numbered

[-N/2:N/2-1],--般情况下,为了防止邻道干扰,位于频带边沿的子载波不被使用。 [-N / 2: N / 2-1], - the general case, to prevent adjacent channel interference, a subcarrier located at the band edges are not used. 同时为了实现上的方便,标号为零的子载波也不被使用。 Meanwhile, in order to achieve convenience, reference numeral zero subcarriers not to be used. 不使用的子载波置零,即不放置任何信号。 Subcarriers are not used set to zero, i.e. does not place any signal.

实际OFDMA系统中子信道的Preamble都是在频域上对已知的序列在特定的子信道上做IFFT得到,我们称该种序列为频域训练序列。 The actual OFDMA system subchannel Preamble sequences are known to do IFFT get on a particular subchannel in the frequency domain, we call this type of sequence to the frequency domain training sequence.

本发明针对的OFDMA系统基本参数为: Basic parameters for an OFDMA system according to the present invention is:

1) 总的子载波数目为256,标号为[-128:127]; 1) The total number of subcarriers is 256, labeled [-128: 127];

2) 使用的子载波数目为200,标号[-100-l, 1:则; 2) the number of subcarriers used is 200, reference numeral [-100-l, 1: is;

3) 用于传输导频的子载波数目为8,标号为[-88, -63, -38' -13' 13, 38, 63, 88]; 3) the number of subcarriers used for pilot transmission 8, reference numeral to [-88, -63, -38 '-13' 13, 38, 63, 88];

4) 位于保护带的子载波为55,标号为[-128:-101, 101:127]。 4) the protective tape 55 subcarriers, numbered [-128: -101, 101: 127]. 该系统将200个可使用的子载波划为多个子信道,划分如下: The system 200 may use a plurality of subcarriers designated subchannels, divided as follows:

(1)当划分为十六个子信道时,子信道包含的子载波如下 (1) when divided into sixteen subchannels, subcarriers as subchannels contain

Sl [-100:-98, -37:-35, 1:3, 64:66]; S2 [-97 -95,- -34 -32,4:6, 67:69]; Sl [-100: -98, -37: -35, 1: 3, 64:66]; S2 [-97 -95, - -34 -32,4: 6, 67:69];

S3 [-94 -92,- -31 —29, 7:9, 70:72]; S3 [-94 -92, - -31 -29, 7: 9, 70:72];

S4 [-91 -89, - -28 -26, 10:12, 73:75]; S4 [-91 -89, - -28 -26, 10:12, 73:75];

S5 [-87 -85, - -50 -48, 14:16, 51:53]; S5 [-87 -85, - -50 -48, 14:16, 51:53];

S6 [-84 -82,- -47 -45, 17:19, 54:56]; S6 [-84 -82, - -47 -45, 17:19, 54:56];

S7 [-81 -79'- -44 -42' 20:22, 57:59]; S7 [-81 -79'- -44 -42 '20:22, 57:59];

S8 [-78 -76, - -41 -39,23:25, 60:62]; S8 [-78 -76, - -41 -39,23: 25, 60:62];

S9 [-75 -73,- -12 -10, 26:28, 89:91]; S9 [-75 -73, - -12 -10, 26:28, 89:91];

S10:[-72 -70,- -9:- -7, 29:31,92:94] S10: [- 72 -70, - -9: - -7, 29: 31,92: 94]

Sll:[ -69:-67, -6 -4, 32:34' 95:97]; Sll: [-69: -67, -6 -4, 32:34 '95:97];

S12:[-66 一64'- -3:- -1, 35:37, 98:100];S13. [-62:- -60,- -25:- -23, 39:41, 76:78]; S12: [- 66 a 64'- -3: - -1, 35:37, 98: 100]; S13 [-62: - -60, - -25: - -23, 39:41, 76:78. ];

S14 [-59:- -57,- -22:- -20, 42:44, 79:81]; S14 [-59: - -57, - -22: - -20, 42:44, 79:81];

S15 [-56:- -54,- -19:- -17, 45:47, 82:84]; S15 [-56: - -54, - -19: - -17, 45:47, 82:84];

S16 [-53:- -51,- -16:- -14, 48:50, 85:87]; S16 [-53: - -51, - -16: - -14, 48:50, 85:87];

(2)当 划分为 八个 子信 道时,子信道包含的 (2) when divided into eight subchannels, the subchannels comprising

S17 [-100 -95, -38 -32, 1:6, 64:69]; S17 [-100 -95, -38 -32, 1: 6, 64:69];

S18 [-94 -89, -31 -26, 7:13, 70:75]; S18 [-94 -89, -31 -26, 7:13, 70:75];

S19 [-88 -82' -50 -45, 14:19, 51:56]; S19 [-88 -82 '-50 -45, 14:19, 51:56];

S20 [-81 -76, -44 -39, 20:25, 57:63]; S20 [-81 -76, -44 -39, 20:25, 57:63];

S21 [-75 -70, -13 -7, 26:31, 89:94]; S21 [-75 -70, -13 -7, 26:31, 89:94];

S22 [-69 -64, -6:- -l, 32:38, 95:100]; S22 [-69 -64, -6: - -l, 32:38, 95: 100];

S23 [-63:- -57,- -25:- -20, 39:44, 76:81]; S23 [-63: - -57, - -25: - -20, 39:44, 76:81];

S24 [-56 —51, —19 —14, 45:50, 82:88]; S24 [-56 -51, -19 -14, 45:50, 82:88];

(3)当划分为四个子信道时,子信道包含的子载波如下 (3) when divided into four subchannels, subcarriers as subchannels contain

S25: -100: -89, -38: -26, 1:13, 64:75]; S25: -100: -89, -38: -26, 1:13, 64:75];

S26: -88: -76, -50: -39, 14:25, 51:63] S26: -88: -76, -50: -39, 14:25, 51:63]

S27: [ -75: -64, -13: -l, 26:38, 89:100] S27: [-75: -64, -13: -l, 26:38, 89: 100]

S28: -63: 一51, -25: -14, 39:50, 76:88] S28: -63: a 51, -25: -14, 39:50, 76:88]

(4)当划分为两子信道时,子信道包含的子载波如下S29: [ -100:-76,-50:-26, 1:25, 51:75]; S30: [-75:-51,-25:-1, 26:50, 76:100]; (4) when divided into two subchannels, subcarriers included in a subchannel following S29: [-100: -76, -50: -26, 1:25, 51:75]; S30: [-75: -51 , -25: -1, 26:50, 76: 100];

0FDM系统中,如图2所示,串行数据符号被分成块= -W/2,…,W/2-1}(其中N为IFFT长度,y对应OFDM调制子载波 0FDM system, as shown, the serial data symbols are divided into 2 = -W / 2, ..., W / 2-1} (where N is the IFFT length, y corresponding to the OFDM modulated subcarriers

(subcarrier)标号),并行放置在相应的子载波上进行快速反傅立叶变换(IFFT)得到OFDM符号: (Subcarrier) reference), are placed in parallel on respective sub-carriers inverse fast Fourier transform (IFFT) to obtain OFDM symbols:

{^ =+2^ *,师= -W/2,...,A^/2-1,A = 0,1,...,W-1}IFFT后,对该OFDM数据信号进行循环前缀操作之后,经过数模变换和上变频通过天线发射出去。 {^ = ^ + 2 * Normal = -W / 2, ..., A ^ / 2-1, A = 0,1, ..., W-1} after the IFFT, the cyclic OFDM data signal after prefix operator, after digital to analog conversion and the frequency conversion is radiated through the antenna.

^可以含有导频信号,另外,如果^是为频域训练序列的话,那么得到的OFDM符号为接入前导。 ^ May contain a pilot signal, while if ^ is a frequency-domain training sequence, then the resulting OFDM symbol for the access preamble.

循环前缀操作之后的时域信号如图3所示。 Time domain signal after the operation of the cyclic prefix as shown in FIG.

对应于本发明的系统参数,^只在使用的子载波即标号为[-100:1, 1:100]上放置有用符号(数据符号,导频或频域训练序列),在其他的子载波上为零。 Corresponding to the system parameters of the invention, ^ subcarriers used only as reference i.e. [-100: 1, 1: 100] is placed on a useful symbol (data symbol, a pilot or training sequence in frequency domain), the other subcarriers on zero.

对应于OFDMA系统,如图l,如果某一用户使某一子信道时,当生成数据符号时,调制映射器出来的数据调制符号经过串并转换器生成与使用的子信道对应的符号块,通过子信道生成器选择相应的子信道,通过子信道装载映射器把对应的符号块相应的放置在子信道的子载波上,同时在相对应的子载波上放置导频信号。 Corresponds to the OFDMA system, as L, if a user makes a sub-channel, when generating the data symbol, modulation mapper out data modulation symbol through serial to parallel converter generates a corresponding subchannel using a symbol block, selected by the subchannel generator corresponding subchannel through a subchannel mapper loading the block of symbols corresponding to a respective subchannel is placed on subcarriers, while a pilot signal placed on the corresponding subcarriers. 当要生成子信道的接入前导时,通过子信道频域序列生成器生成与该子信道相对应的频域序列后,通过子信道生成器选择相应的子信道,然后通过子信道装载映射器把对应的频域序列相应的放置在子信道的子载波上。 When generating an access preamble to a subchannel by subchannel frequency domain sequence generator generates the frequency domain sequence of the corresponding subchannel, subchannel by subchannel select generator, and then loaded by a subchannel mapper the frequency-domain sequence corresponding to the respective sub-carriers is placed on the subchannel. 子信道装载映射器出来的^,只在该用户使用的子信道上的子载波上含有用信号,在其他的子载波上为零。 Loading subchannel mapper out ^, containing only signals on subcarriers of a subchannel used by the user, on the other zero subcarriers. 然后对^进行IFFT操作。 ^ Then perform IFFT operation.

当生成以上某一子信道的接入前导时,对应于该子信道的频域训练序列可以从下面的序列抽取而得: When generating the access preamble over a subchannel, the subchannel corresponding to frequency domain training sequence can be obtained by extraction from the following sequences:

Seq (-100:100) =[-l+i ,l+i , ,-H , 1-i ,-l+i l+i Seq (-100: 100) = [- l + i, l + i,, -H, 1-i, -l + i l + i

-l+i , -l+i, l+i ,- -l+i , -1-i , -1-i , -l+i , +i , l+i , 1-i , -l + i, -l + i, l + i, - -l + i, -1-i, -1-i, -l + i, + i, l + i, 1-i,

l+i , - -l+i ,- -1-i , +i , -l+i , -H , l+i , l+i , -1-i , l + i, - -l + i, - -1-i, + i, -l + i, -H, l + i, l + i, -1-i,

l+i , l+i , l+i , l+i , -1-i , +i , 1-i , -H , -1-i , l + i, l + i, l + i, l + i, -1-i, + i, 1-i, -H, -1-i,

l+i , 1-i, l+i , l+i , -1-i , -1-i , l+i , 1-i , l+i , -1-i , l + i, 1-i, l + i, l + i, -1-i, -1-i, l + i, 1-i, l + i, -1-i,

l+i , l+i, +i , -H , l+i , l+i , l+i , -1-i , _H , +i , l + i, l + i, + i, -H, l + i, l + i, l + i, -1-i, _H, + i,

l+i , -1-i' -1-i , l+i , -l+i , -l+i , -l+i , 1-i , H , 1-i , l + i, -1-i '-1-i, l + i, -l + i, -l + i, -l + i, 1-i, H, 1-i,

-l+i , _l+i, -l+i , H , -l+i , -l+i , 1-i , l+i , l+i , -1-i , -l + i, _l + i, -l + i, H, -l + i, -l + i, 1-i, l + i, l + i, -1-i,

l+i , -l+i, l+i , l+i , l+i , 一1—i , -l一i , 1—i , —1—i ,<table>table see original document page 12</column></row> <table> l + i, -l + i, l + i, l + i, l + i, a 1-i, -l a i, 1-i, -1-i, <table> table see original document page 12 < / column> </ row> <table>

这里只给出标号为从-100到100子载波上训练符号的值,其他位置为零, 即标号为-128到-101和101到127的子载波上为零,其中W为一确定的系数, Here are only the coefficient values ​​from the reference subcarrier -100 to 100 training symbols, the other position is zero, i.e. the reference numeral -128 to -101 and 101 to 127 sub-carriers to zero, wherein W is a determined ,

可以是任意实数或复数。 It may be any real or complex. 该序列为一复数序列,序列的元素为复数,代表QPSK调制。 The sequence is a complex sequence, a sequence of a plurality of elements, representing the QPSK modulation.

根据上述的频域训练序列,当使用某一子信道的用户要生成对应于该子信道的接入前导时,在序列Seq上对应于该子信道中的子载波标号的位置上抽取元素对应放在该子信道的子载波上。 According to the frequency domain training sequence, when a user generates a subchannel to subchannel corresponding to the access preamble when the sequence Seq subchannel corresponding to the position of the reference subcarrier extracting the corresponding discharge element on subcarriers of the subchannel. 如果该子信道使用导频,那么同时在序列Seq上对应于该子信道使用的导频标号的位置上抽取元素对应放在相应导频的子载波上。 If the pilot subchannels, then while a position corresponding to the pilot reference subchannels corresponding to the extraction elements on the respective pilot subcarriers in sequence Seq. 其他的子载波不使用,即放置零。 Other subcarriers are not used, i.e., a zero is placed. 然后进行IFFT操作。 Then IFFT operation. 生成的接入前导如图4所示。 Generating an access preamble as shown in FIG.

Claims (6)

1. 一种用于正交频分复用通信系统子信道接入前导的产生方法,包括步骤:使用有用子载波传输信号,其他子载波不使用,即放置零;将可使用的有用子载波划分为子信道;在使用的子信道中的子载波上放置频域训练序列,其它子信道的子载波上放置零,并对其进行反傅立叶变换形成正交频分复用子信道接入前导。 The useful subcarriers may be used; the use of the transmission signals useful subcarriers, other subcarriers are not used, i.e., a zero is placed: An orthogonal frequency-division multiplexing communication system subchannel access preamble generating method, comprising a step for is divided into subchannels; frequency-domain training sequences placed on subcarriers of a subchannel used, a zero is placed on subcarriers other subchannels, and form an orthogonal subjected to inverse Fourier transform frequency division multiplexed access preamble subchannel .
2. 按权利要求l所述的方法,其特征在于所述有用子载波为200个, 标号为[-100 : -1, 1: 100]。 2. The method as recited in claim l, characterized in that the useful subcarriers is 200, numbered [-100: -1, 1: 100].
3. 按权利要求l所述的方法,其特征在于当使用以下十六个子信道中的任何一个时, <table>table see original document page 2</column></row> <table>对应于该子信道的频域训练序列可以从下面的序列抽取而得,在下面序列Seq上对应于子信道的子载波标号位置上抽取元素对应放在该子信道的子载波上,其他的子载波不使用,即放置零,然后进行IFFT操作,<formula>formula see original document page 3</formula> 其中,w为一确定的系数。 3. The method as recited in claim l, characterized in that when using any one of the following sixteen sub-channel, <table> table see original document page 2 </ column> </ row> <table> corresponding to the subchannel frequency domain training sequence can be extracted from the following sequence is obtained, corresponding to a subcarrier extracting element numerals corresponding to the position of subchannels in the subchannel on subcarriers in sequence Seq below, does not use the other subcarriers , i.e. placing zero, then an IFFT operation, <formula> formula see original document page 3 </ formula> wherein, w is a coefficient determined.
4.按权利要求l所述的方法,其特征在于当使用以下八个子信道中的任何一个时,<formula>formula see original document page 3</formula>S21: [ -75 :-70, -13:-7, 26:31, 89:94];S22: [ -69:-64, -6:-1, 32:38, 95:100];S23: [-63: —57, —25: -20, 39:44, 76:81];S24: [ -56:-51, -19:-14, 45:50, 82:88]; 对应于该子信道的频域训练序列可以从下面的序列抽取而得,在下面序列Seq上对应于子信道的子载波标号位置上抽取元素对应放在该子信道的子载波上,其他的子载波不使用,即放置零,然后进行IFFT操作,<formula>formula see original document page 4</formula> 其中,W为一确定的系数。 4. The method as recited in claim l, characterized in that when using any of the following eight subchannels, <formula> formula see original document page 3 </ formula> S21: [-75: -70, -13 : -7, 26:31, 89:94]; S22: [-69: -64, -6: -1, 32:38, 95: 100]; S23: [-63: -57, -25: - 20, 39:44, 76:81]; S24: [-56: -51, -19: -14, 45:50, 82:88]; the subchannel corresponding to frequency domain training sequence from the following sequence obtained by extraction, in the following sequence Seq extraction element corresponding to subcarriers corresponding to the reference position of the subchannels on the subcarriers of the subchannel, the other subcarriers are not used, i.e. a zero is placed, then an IFFT operation, <formula > formula see original document page 4 </ formula> where, W is a determined coefficient.
5.按权利要求l所述的方法,其特征在于当使用以下四个子信道中的任何一个时,<formula>formula see original document page 5</formula>对应于该子信道的频域训练序列可以从下面的序列抽取而得,在下面序列Seq上对应于子信道的子载波标号位置上抽取元素对应放在该子信道的子载波上,其他的子载波不使用,即放置零,然后进行工FFT操作,<formula>formula see original document page 5</formula>-l+i , -1-i , l + i , -1-i,-li]*W,其中,W为一确定的系数。 The method as recited in claim l, characterized in that when using any one of the following four subchannels, <formula> formula see original document page 5 </ formula> corresponding to the subchannel frequency domain training sequence may extracts obtained from the following sequences, corresponding to the elements extracted subcarrier to subchannel corresponding to the reference position on the subchannel subcarriers sequence Seq below, does not use the other subcarriers, i.e. placing zero, then workers FFT operation, <formula> formula see original document page 5 </ formula> -l + i, -1-i, l + i, -1-i, -li] * W, where, W is a determined coefficient.
6.按权利要求l所述的方法,其特征在于当使用以下两个子信道中的任何一个时,S29: [ -100:-76,-50:-26' 1:25,5L'75]; S30:[-75:-51, -25:-1' 26:50, 76:100];对应于该子信道的频域训练序列可以从下面的序列抽取而得,在下面序列Seq上对应于子信道的子载波标号位置上抽取元素对应放在该子信道的子载波上,其他的子载波不使用,即放置雩,,然后进行IFFT操作,<image>image see original document page 0</image> 6. The method as recited in claim l, characterized in that when using either of the following two subchannels, S29: [-100: -76, -50: -26 '1: 25,5L'75]; S30: [- 75: -51, -25: -1 '26:50, 76: 100]; the subchannel corresponding to frequency domain training sequence can be extracted from the following sequence is obtained in the following sequence corresponds to Seq extracting reference element corresponding subcarrier positions of the subchannels on subcarriers of the subchannel, without the use of other subcarriers, i.e. placed yu, and then performs an IFFT operation, <image> image see original document page 0 </ image >
CN 03127858 2003-08-12 2003-08-12 Subchannel access lead generating method for quadrature frequency division multiplexing communication system CN100539481C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03127858 CN100539481C (en) 2003-08-12 2003-08-12 Subchannel access lead generating method for quadrature frequency division multiplexing communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03127858 CN100539481C (en) 2003-08-12 2003-08-12 Subchannel access lead generating method for quadrature frequency division multiplexing communication system

Publications (2)

Publication Number Publication Date
CN1581739A CN1581739A (en) 2005-02-16
CN100539481C true CN100539481C (en) 2009-09-09

Family

ID=34578876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03127858 CN100539481C (en) 2003-08-12 2003-08-12 Subchannel access lead generating method for quadrature frequency division multiplexing communication system

Country Status (1)

Country Link
CN (1) CN100539481C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207790A1 (en) 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
CN101087289B (en) * 2006-06-09 2010-10-13 中兴通讯股份有限公司 A frequency hopping communication method based on orthogonal frequency division multiplexing
CN103812816B (en) * 2008-05-15 2017-04-26 马维尔国际贸易有限公司 Effective physical layer preamble format
CN101594329B (en) 2008-05-30 2011-10-26 清华大学 Subcarrier wave modulation method and device therefore
CN103856422B (en) * 2014-03-17 2017-10-17 清华大学 A multi-carrier transmission signal Large-Scale MIMO system configuration and channel estimation method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1272014A (en) 1999-04-23 2000-11-01 索尼国际(欧洲)股份有限公司 Optimized synchronous prestructure
CN1278680A (en) 1999-06-16 2001-01-03 索尼国际(欧洲)股份有限公司 Optimized synchronous head structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1272014A (en) 1999-04-23 2000-11-01 索尼国际(欧洲)股份有限公司 Optimized synchronous prestructure
CN1278680A (en) 1999-06-16 2001-01-03 索尼国际(欧洲)股份有限公司 Optimized synchronous head structure

Also Published As

Publication number Publication date
CN1581739A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP5410481B2 (en) Extended frequency division multiple access for wireless communication
KR100560386B1 (en) An apparatus for OFDMA transmission and reception for the coherent detection in the uplink, and a method thereof
JP4515155B2 (en) The transmitting device
JP5539278B2 (en) Method and apparatus for achieving a flexible bandwidth using variable guard bands
JP4964239B2 (en) Method and apparatus for transmitting a pilot signal
KR101588994B1 (en) Pilot signal in an fdma communication system
KR100957415B1 (en) Apparatus for transmitting/receiving a pilot signal for distinguish a base station in a communication using orthogonal frequency division multiplexing scheme and method thereof
US7453856B2 (en) Method, apparatus, and communications interface for sending and receiving data blocks associated with different multiple access techniques
US7376074B2 (en) Apparatus and method for transmitting and receiving side information of a partial transmit sequence in an OFDM communication system
US7583586B2 (en) Apparatus and method for transmitting/receiving pilot signal in communication system using OFDM scheme
KR101018485B1 (en) Methods and apparatus for backwards compatible communication in a multiple antenna communication system using fdm-based preamble structures
US6510133B1 (en) Multi-carrier transmission method and data transmitter
KR100918730B1 (en) Apparatus for transmitting/receiving pilot pattern set for distinguish base station in communication system using orthogonal frequency division multiplexing scheme and method thereof
US7746938B2 (en) Pilot multiplexing method and OFDM receiving method in OFDM system
CN1826737B (en) Ofdm communication system
US8804478B2 (en) Apparatus and method for transmitting data using a plurality of carriers
US20070211619A1 (en) Method and apparatus for hybrid cdm ofdma wireless transmission
US7508842B2 (en) Method and apparatus for pilot signal transmission
JP3727283B2 (en) Radio transmitting apparatus, radio receiving apparatus and radio transmission method
US8582548B2 (en) Frequency division multiple access schemes for wireless communication
US20070223610A1 (en) Sparse channel estimation for orthogonal frequency division multiplexed signals
KR100827051B1 (en) Radio transmission method, radio reception method, radio transmission apparatus and radio reception apparatus
KR100938095B1 (en) Apparatus and method for generating a preamble sequence in an orthogonal frequency division multiplexing communication system
CN1222143C (en) Reduction of peak to average power ratio in multicarrier modulation system and apparatus thereof
CN101248608B (en) Mimo-ofdm transmission device and mimo-ofdm transmission method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model