CN100516808C - Air heating system - Google Patents

Air heating system Download PDF

Info

Publication number
CN100516808C
CN100516808C CNB2005100660479A CN200510066047A CN100516808C CN 100516808 C CN100516808 C CN 100516808C CN B2005100660479 A CNB2005100660479 A CN B2005100660479A CN 200510066047 A CN200510066047 A CN 200510066047A CN 100516808 C CN100516808 C CN 100516808C
Authority
CN
China
Prior art keywords
valve
far away
pressure
control
heating system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100660479A
Other languages
Chinese (zh)
Other versions
CN1664533A (en
Inventor
俞刚
刘卫国
张金城
周桂初
纪乐健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mechanics of CAS
Original Assignee
Institute of Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mechanics of CAS filed Critical Institute of Mechanics of CAS
Priority to CNB2005100660479A priority Critical patent/CN100516808C/en
Publication of CN1664533A publication Critical patent/CN1664533A/en
Application granted granted Critical
Publication of CN100516808C publication Critical patent/CN100516808C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses an air heater system, which comprises a heater body and a control valve set on the inlet channel of the heater body which connected with the computer, the data collect systems are set on them and connected with the computer through the analog quantity input interface clip. The far-controlling switch valve controlled by magnetic valve and large flow stabilivolt valve are set on the inlet channel and the magnetic valve is controlled by computer, so the heater system can control automatically and safer, the air measurement will be more precise.

Description

Air heating system
Technical field
The present invention relates to a kind of air heating system of M=7 aeromotor wind tunnel simulation test usefulness.
Background technology
The air heater that utilizes gaseous combustion that test gas is heated, the amount of input gas is according to temperature, pressure and the composition decision of the required air-flow of test, existing manual control method can't satisfy the requirement of simulation test parameter accuracy and repetition, therefore need be realized the automatic control of whole heating process by the computer control well heater.
Summary of the invention
At above-mentioned present situation, the object of the present invention is to provide a kind of accurately air heating system of pilot-gas flow that can realize controlling automatically also.
For achieving the above object, technical solution of the present invention is: a kind of air heating system, comprise heater body and be arranged at operation valve on the inlet channel of heater body, this operation valve connects computing machine, be provided with data acquisition system (DAS) on this heater body and the inlet channel, this data acquisition system (DAS) is connected with this computing machine by analog quantity input interface card, wherein said operation valve comprises solenoid valve, control switch valve far away and the big flow pressure maintaining valve of control far away, this solenoid valve connects control switch valve far away and the big flow pressure maintaining valve of control far away successively, described solenoid valve is used to control described control switch valve far away, described control switch valve far away is connected with high-pressure air source, and the big flow pressure maintaining valve of described control far away also is connected with control switch valve far away.
Further, described data acquisition system (DAS) comprises and is arranged at the pressure transducer on the described inlet channel and is arranged at thermopair and pressure transducer on the described heater body.
Further, the operation valve downstream is provided with flowmeter on the described inlet channel.
Further, described operation valve is the aviation electromagnetic valve.
Further, described operation valve comprises solenoid valve, far controls switch valve and the big flow pressure maintaining valve of control far away, and this solenoid valve connects control switch valve far away and the big flow pressure maintaining valve of control far away successively.
Further, described flow is counted critical nozzle flowmeter or velocity of sound flowmeter.
After adopting said structure, because inlet channel is provided with by the control switch valve far away of solenoid control and the big flow pressure maintaining valve of control far away, solenoid valve is by computer control, and computing machine be arranged at inlet channel on pressure transducer and thermopair and the pressure transducer that is arranged on the heater body be connected, therefore in time collecting temperature and pressure and other parameters, and according to parameter by the automatic control of computer realization to this heating system, and the use of far controlling switch valve and the big flow pressure maintaining valve of control far away also makes system safer, and gas dosing more accurately, reliably.
Description of drawings
Fig. 1 is a structural representation of the present invention;
Fig. 2 is the structural representation of heater body of the present invention;
Fig. 3 is the structural representation of the big flow pressure maintaining valve of control far away;
Fig. 4 is the structural representation of control switch valve far away;
Fig. 5 is the structural representation of big another embodiment of flow pressure maintaining valve of control far away.
Embodiment:
As shown in Figure 1, air heating system of the present invention comprises heater body 1 and is arranged at flowmeter 3, operation valve 4 on the inlet channel 2 of heater body 1 that flowmeter 3 is arranged at operation valve 4 downstreams, and this operation valve is by computing machine 5 controls; Be provided with data acquisition system (DAS) on inlet channel 2 and the heater body 1, this data acquisition system (DAS) connects computing machine 5; Wherein inlet channel 2 is provided with pressure transducer 6, and heater body 1 is provided with thermopair 7 and pressure transducer 8, and this pressure transducer 6, thermopair 7 and pressure transducer 8 connect computing machine 5 by 9011 analog quantity input interface cards 9.
As shown in Figure 2, this heater body 1 comprises straight tube 11, air inlet disk 12 and conically shaped 13, and straight tube 11 two ends are respectively by sending out blue this air inlet disk 12 and the conically shaped 13 of connecting; The barrel of straight tube 11 is the jacket type barrel, the end of this jacket type barrel is provided with air intake opening, front end is provided with the gas outlet, and this jacket type barrel is made of inside and outside two stainless steel cylinders that are nested with together, is provided with the spirality gas passage that is connected with air inlet/outlet between these two stainless steel cylinders.Air at room temperature enters spirality channel from the air intake opening of jacket type barrel end, absorbed the heat of barrel after high temperature air inject in the well heater from the gas outlet of front end; This air inlet disk 12 is provided with spark plug 121 and igniting hydrogen inlet 122, igniting air intake 123 and main flow hydrogen inlet 124 and purity oxygen inlet 125;
The igniting hydrogen inlet 122 of above-mentioned heater body, igniting air intake 123 and main flow hydrogen inlet 124 and purity oxygen 125 places that enter the mouth are provided with flowmeter 3, operation valve 4 and pressure transducer 6, this pressure transducer 6 can adopt CY-20B explosion-proof type ion beam sputtered thin-film pressure transducer, this sensor converts the pressure signal that records to voltage signal and converts digital signal input computing machine 5 to through 9011 analog quantity input interface cards 9, by the break-make of this computing machine according to the big or small control electromagnetic valve of pressure; This flowmeter 3 adopts critical nozzle flowmeter or velocity of sound flowmeter, this operation valve can be selected the aviation electromagnetic valve, by computing machine 5 control electromagnetic valve, and then control enters the gas flow of well heater, still, because of the flow of test gas big, and easily cause danger with the solenoid control inflammable gas, therefore operation valve 4 is selected the big flow pressure maintaining valve 41 of control far away, and this is far controlled big flow pressure maintaining valve and also is connected with the control switch valve of controlling by solenoid valve 42 43 far away, and this is far controlled switch valve 43 and connects high-pressure air source.
Heater body 1 is provided with thermopair 7 and pressure transducer 8, this pressure transducer 8 can adopt MPX2201 type pressure transducer, thermopair 7 converts the temperature signal in the well heater to induced voltage signal and amplifies through amplifier, connect computing machine 5 by 9011 analog quantity input interface cards 9, pressure transducer 8 converts pressure signal to voltage signal and connects computing machine 5 by 9011 analog quantity input interface cards 9.
The structure of big flow pressure maintaining valve 41 of control far away and control switch valve 43 far away is respectively as Fig. 3, shown in 4, high pressurized gas input interface 431 on the control switch valve 43 far away connects high-pressure air source, the Long-distance Control source of the gas connects pilot-gas inlet 432, according to the required working pressure of equipment, by computing machine 5 control electromagnetic valve 42, by the gas in the solenoid valve 42 control input control chambers 433, when the pressure of the Long-distance Control gas of input in the control chamber 433 during greater than the pressure in the gases at high pressure input cavity 434, valve body 435 is backed down, and gases at high pressure arrive working gas output interface 437 by through hole 436; This working gas output interface 437 connects the gases at high pressure input cavity 411 on the big flow pressure maintaining valve 41 of control far away, and the Long-distance Control source of the gas connects control chamber 412, during work, at first according to the required working pressure of equipment, by setting the controlled pressure in the control chamber 412 on the remote console, open control switch valve 43 far away then, enter input cavity 411 from the gases at high pressure of working gas output interface 437 outputs, at this moment be in low-pressure state because of no working gas in the pressure stabilizing cavity 413, under the effect of the pressure of piston 414 in control chamber 412 to pressure stabilizing cavity 413 1 lateral movements, and promotion spool 415 moves upward, controllable valve is in full open position, and the gases at high pressure in the input cavity 411 enter pressure stabilizing cavity 413 from through hole 416.After gases at high pressure enter pressure stabilizing cavity 413, piston 414 is produced downward pressure, when the pressure in the pressure stabilizing cavity 413 during less than the pressure in the control chamber 412, piston 414 keeps motionless, and the controllable valve that is made of through hole 416 and spool 415 continues to keep maximum diameter.Along with gases at high pressure constantly enter pressure stabilizing cavity, pressure in the pressure stabilizing cavity constantly raises, when the pressure in the pressure stabilizing cavity during greater than the pressure in the control chamber, piston moves downward, and it is descending to drive spool, the effective drift diameter of controllable valve diminishes thereupon, the gases at high pressure that enter pressure stabilizing cavity reduce gradually, pressure in the pressure stabilizing cavity also decreases, the power that acts on the piston until pressure stabilizing cavity and control chamber reaches balance, make the piston stop motion, controllable valve keeps this latus rectum constant, and at this moment the voltage stabilizing gas of specified pressure is exported by interface from pressure stabilizing cavity.
Far the structure of the big flow pressure maintaining valve 41 of control also can be as shown in Figure 5, working gas output interface 437 on the control switch valve 43 far away connects the gases at high pressure input cavity 411 ' on the big flow pressure maintaining valve 41 of control far away, and the Long-distance Control source of the gas connects control chamber 412 ', during work, open control switch valve 43 far away, enter input cavity 411 ' from the gases at high pressure of working gas output interface 437 outputs, by setting the controlled pressure in the control chamber 412 ' on the remote console, when the controlled pressure in the control chamber 412 ' during greater than the gaseous tension in the gases at high pressure input cavity 411 ', valve body 413 ' is backed down, gases at high pressure enter output interface 415 ' by through hole 414 ', because output interface communicates by connecting hole 417 ' with pressure stabilizing cavity 416 ', therefore when the gas flow that enters output interface 415 ' increases, pressure in the pressure stabilizing cavity 416 ' raises, 418 ' generation upwards pressure to piston, when this pressure is enough big, it is static that piston keeps, regime flow, the gas of voltage stabilizing arrives output interface by through hole, in output interface flows into the heater body chamber.

Claims (5)

1, a kind of air heating system, it is characterized in that: comprise heater body and be arranged at operation valve on the inlet channel of heater body, this operation valve connects computing machine, be provided with data acquisition system (DAS) on this heater body and the inlet channel, this data acquisition system (DAS) is connected with this computing machine by analog quantity input interface card, wherein said operation valve comprises solenoid valve, control switch valve far away and the big flow pressure maintaining valve of control far away, this solenoid valve connects control switch valve far away and the big flow pressure maintaining valve of control far away successively, described solenoid valve is used to control described control switch valve far away, described control switch valve far away is connected with high-pressure air source, and the big flow pressure maintaining valve of described control far away also is connected with control switch valve far away.
2, air heating system as claimed in claim 1 is characterized in that: described data acquisition system (DAS) comprises and is arranged at the pressure transducer on the described inlet channel and is arranged at thermopair and pressure transducer on the described heater body.
3, air heating system as claimed in claim 1 is characterized in that: the operation valve downstream is provided with flowmeter on the described inlet channel.
4, air heating system as claimed in claim 1 is characterized in that: described operation valve is the aviation electromagnetic valve.
5, air heating system as claimed in claim 3 is characterized in that: described flow is counted critical nozzle flowmeter or velocity of sound flowmeter.
CNB2005100660479A 2005-04-22 2005-04-22 Air heating system Expired - Fee Related CN100516808C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100660479A CN100516808C (en) 2005-04-22 2005-04-22 Air heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100660479A CN100516808C (en) 2005-04-22 2005-04-22 Air heating system

Publications (2)

Publication Number Publication Date
CN1664533A CN1664533A (en) 2005-09-07
CN100516808C true CN100516808C (en) 2009-07-22

Family

ID=35035725

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100660479A Expired - Fee Related CN100516808C (en) 2005-04-22 2005-04-22 Air heating system

Country Status (1)

Country Link
CN (1) CN100516808C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360702B (en) * 2014-10-30 2016-07-06 北京航空航天大学 Dynamic aviation Thermodynamic test system and dynamic temperature, pressure environment control method
CN104460790B (en) * 2014-12-30 2016-09-28 北京航空航天大学 A kind of dynamically aviation Thermodynamic test system and temperature, pressure fast control method
CN107462390A (en) * 2016-06-06 2017-12-12 苏州中尧节能环保设备有限公司 A kind of dual flow path Multifunctional mobile and heat exchange test device
CN112636047B (en) * 2020-11-30 2022-07-01 中国空气动力研究与发展中心超高速空气动力研究所 Electric leading-out hole structure of continuous high-temperature air heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1118759A (en) * 1994-06-15 1996-03-20 运载器有限公司 Controlled atmosphere system for a refrigerated container
JP2792881B2 (en) * 1988-01-29 1998-09-03 ガーズ、ド、フランス Method and apparatus for measuring calorific value of fluid fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792881B2 (en) * 1988-01-29 1998-09-03 ガーズ、ド、フランス Method and apparatus for measuring calorific value of fluid fuel
CN1118759A (en) * 1994-06-15 1996-03-20 运载器有限公司 Controlled atmosphere system for a refrigerated container

Also Published As

Publication number Publication date
CN1664533A (en) 2005-09-07

Similar Documents

Publication Publication Date Title
GB2386704A (en) Pressure-based mass flow controller system
CN103674463B (en) Air cannon launch control system
CN101644627B (en) Automatic calibration system and automatic calibration method for sonic nozzle
CN100516808C (en) Air heating system
CN101280887B (en) Pipe gas pressure stabilizing regulation system
CN204461970U (en) A kind of measurement mechanism controlling the standard instruments calibrating of air flow source
CN108693897A (en) The closed loop reflux of injection driving temporarily rushes formula Asia transonic wind tunnel flow field control method
CN102052143B (en) Single cylinder diesel pressurization system simulator
CN209198422U (en) A kind of calibration system of mono-/bis-detection of gas warning device
JPS5726253A (en) Exhaust gas recycling controller of diesel engine
CN110455547B (en) High-temperature and high-pressure test system for power machinery combustion chamber test
CN201434861Y (en) Calibration gas control device of smoke online monitoring system
CN110686902A (en) Staged air intake device and method for inducing strong shock waves
CN105486511A (en) Debug method of state parameters of test bed
CN112179664A (en) Adjustable low-pressure ignition experimental system for researching sub-super mixed flow
CN109357885A (en) A kind of discharge coefficient Intelligent Calibration system of multichannel nozzle
CN105484901B (en) A kind of metal dust high pressure supply system controlled based on pressure difference
CN103398287A (en) Gas supply device capable of setting amount of gas freely
CN107339159B (en) Internal combustion engine with fuel gas property measurement system
CN202893297U (en) High-pressure heat treatment device
CN205618772U (en) Can realize pressure control's butterfly valve
CN114321714A (en) Operating gas supply device of 100 kg/s-level gas pressure reducer and control method thereof
CN208254786U (en) Fuel distribution pipe assembly environment durability test apparatus
CN201593045U (en) Simple gas gene gun
CN214277386U (en) Valve performance test's test system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

Termination date: 20160422

CF01 Termination of patent right due to non-payment of annual fee