CN100511918C - 确定充电线是否损坏的系统和方法及电池充电系统 - Google Patents

确定充电线是否损坏的系统和方法及电池充电系统 Download PDF

Info

Publication number
CN100511918C
CN100511918C CNB2005101380776A CN200510138077A CN100511918C CN 100511918 C CN100511918 C CN 100511918C CN B2005101380776 A CNB2005101380776 A CN B2005101380776A CN 200510138077 A CN200510138077 A CN 200510138077A CN 100511918 C CN100511918 C CN 100511918C
Authority
CN
China
Prior art keywords
generator
voltage
battery
command value
charging wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101380776A
Other languages
English (en)
Other versions
CN1797897A (zh
Inventor
青山彻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of CN1797897A publication Critical patent/CN1797897A/zh
Application granted granted Critical
Publication of CN100511918C publication Critical patent/CN100511918C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

本发明涉及充电线检测,用于确定充电线是否损坏。在本发明的系统中,发电机被配置成通过连接在发电机和电池之间的充电线对电池充电。第一单元测量电池电压,以及第二单元检测发电机的运转率。当测量电池电压低于预定阈值电压并且发电机的测量运转率低于预定阈值时,第三单元确定充电线损坏。

Description

确定充电线是否损坏的系统和方法及电池充电系统
相关申请的交叉引用
本申请是以分别在2004年11月25日和2005年5月25日提交的日本专利申请2004-340900和2005-152967为基础的。本申请要求由此产生的优先权权益,所以上述申请的全部内容在此结合作为参考。
技术领域
本发明涉及用于确定充电线是否损坏(broken)的系统和方法。
背景技术
安装在例如用于对电池充电的车辆和发电机中的电池通过一条充电电缆相连。由于传统电池充电器能够检测在充电电缆中的损坏,所以其中的多种类型已经是众所周知的。
作为传统电池充电器的一个实例,在美国专利公开No.4,618,811中已公开一种用于充电发电机的稳压设备,该专利对应未审查的日本专利公开No.S59-148538。作为传统电池充电器的另一实例,在美国专利公开No.5,151,646中已公开一种用于机动车辆的电池再充电系统,该专利对应未审查的日本专利公开No.H4-222426。
在较早的公开专利中公开的稳压设备被配备一个充电发电机和一个稳压器。充电发电机包括一个AC(交流)发电机和一个整流电路。整流电路的输出端通过一条充电电缆连接到一个电池。稳压器具有L和S端子,其中L端子连接到整流电路的输出端,而其S端子连接到电池的正极端子。
稳压器根据在L端子和S端子上的电压来调节充电发电机的输出电压。当在L端子和在S端子上的电压之间的差值超过一个预定值时,稳压器还能确定充电电缆存在损坏,由此停止充电发电机的操作以及发生一个警报信号。
另外,在稍后的公开专利中公开的用于车辆的电池再充电系统包括一个电流发生器、一个开关、一个指示灯和一个稳压器。电流发生器包括一个交流发电机和一个相关的整流器,该整流器的输出端通过一条连接电缆连接到电池的正极端子。
稳压器被配备了第一和第二输入端A和L,其第一输入端A连接到电流发生器的输出端,其第二输入端通过开关和指示灯连接到电池的正极端子。
稳压器根据在第一输入端A和在第二输入端L上的电位来调节电流发生器的输出电压。当在第一输入端A和在第二输入端L上的电位之间的电位差大于一个预先设立的参考值时,稳压器还能确定连接电缆具有损坏,由此引起指示灯点亮,以指示电池和电流发生器之间的连接中断。
为了减少由车辆和能耗带来的环境污染,因此车辆控制已被整合。例如,当整合的车辆控制应用到电池充电系统时,该整合车辆控制在发动机运行在空转状态时将交流发电机的输出最优化以调节发射。整合车辆控制还在加速和减速期间调节交流发电机输出,以控制车辆电负载的能耗。该整合车辆控制使用了作为外部控制单元的多个ECU(电子控制单元),连接于其上的多个传感器以及由ECU控制操作的致动器。
为了获得效率高的整合车辆控制,已经在多个ECU(外部控制单元)和交流发电机之间预备了多种数据通信控制方法。
在未审查的日本专利公开2002-325085中已公开了一个在多个ECU和交流发电机之间的数据通信控制方法的传统实例。在该公开专利中公开的通信方法在多个ECU和交流发电机之间建立了总线连接,并允许多个ECU通过该总线与交流发电机进行多个信息码通讯。
当在稳压设备的充电发电机和稳压器之间的通信上应用数据通信控制方法时,必须将交流发电机的输出转换成信息码(数字值)。类似地,当在用于汽车的电池再充电系统的电流发生器和稳压器之间的通信上应用各种数据通信控制方法时,也必须将电流发生器的输出转换成信息码(数字值)。
出于这些原因,为了使用数据通信控制方法,交流发电机或者电流发生器不得不提供一个A/D(模拟数字转换)转换电路,用于将交流发电机或者电流发生器的输出转换成信息码。但是,将A/D转换器安装到交流发电机或者电流发生器中会致使交流发电机或者电流发生器的电路尺寸的增加,这会导致稳压设备和电池再充电系统在尺寸和成本上的增加。
发明内容
本发明是在上述背景技术的基础上提出的,所以至少一个本发明的优选实施例以简单结构提供一个电池充电系统,该电池充电系统能够检测连接在发电机和稳压器之间的充电电缆中的损坏,而不使用A/D转换器。
本发明提供了一种确定连接在电池和发电机之间的充电线是否损坏的方法,其中该发电机被配置成通过该充电线对该电池充电,该方法包括:
测量该电池的电压;
检测该发电机的运转率;以及
当测量的电池电压低于预定阈值电压且检测的发电机的运转率低于预定阈值时,确定充电线损坏,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
本发明还提供了一种确定连接在电池和发电机之间的充电线是否损坏的方法,其中,该发电机被配置成通过该充电线对该电池充电,该方法包括:
确定该电池是否处于放电状态中;
检测发电机的运转率;以及
当确定该电池处于放电状态中并且检测的运转率在预定范围内时,就确定该充电线损坏,其中该预定范围由一个第一上限阈值和一个下限阈值来确定,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
本发明还提供了一种确定连接在电池和发电机之间的充电线是否损坏的系统,其中该发电机被配置成通过该充电线对该电池充电,该系统包括:
第一单元,被配置成测量该电池的电压;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当测量的电池电压低于预定阈值电压并且检测的发电机的运转率低于预定阈值时,确定充电线损坏,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
本发明还提供了一种确定连接在电池和发电机之间的充电线是否损坏的系统,在其中该发电机被配置成通过充电线对该电池充电,该系统包括:
第一单元,被配置成确定电池是否处于放电状态中;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当确定电池处于放电状态中并且检测的运转率在预定范围内时,确定充电线损坏,该预定范围是由一个上限阈值和一个下限阈值来确定的,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
本发明还提供了一种电池充电系统,包括:
电池;
发电机;
连接在电池和发电机之间的充电线,该发电机被配置成通过该充电线对电池充电;
第一单元,被配置成测量该电池的电压;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当测量的电池电压低于预定阈值电压并且检测的发电机的运转率低于预定阈值时,确定充电线损坏,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
本发明还提供了一种电池充电系统,其包括:
电池;
发电机;
连接在电池和发电机之间的充电线,该发电机被配置成通过该充电线对电池充电;
第一单元,被配置成确定电池是否处于放电状态中;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当确定电池处于放电状态中并且检测的运转率在预定范围内时,确定充电线损坏,该预定范围是由一个上限阈值和一个下限阈值来确定的,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
附图说明
本发明的其他目的和方面将会从以下参照所附附图对实施例的描述中变得更清楚,在其中:
图1是用示意图图示了根据本发明的第一实施例的电池充电系统的电路结构的实例的电路图;
图2是用示意图图示了图1所示电池充电系统的操作实例的流程图;
图3是用示意图图示了根据本发明的第二实施例的电池充电系统的操作实例的流程图;
图4是用示意图图示了根据本发明的第三实施例的电池充电系统的电路结构的实例的电路图;
图5是用示意图图示了图4所示电池充电系统的操作实例的流程图;
图6是用示意图图示了根据本发明的第四实施例的电池充电系统的电路结构的实例的电路图;
图7是用示意图图示了图6所示电池充电系统的操作实例的流程图;
图8是用示意图图示了根据本发明的第五实施例的电池充电系统的操作实例的流程图;以及
图9是用示意图图示了根据本发明的第六实施例的电池充电系统的操作实例的流程图。
具体实施方式
本发明的实施例将在下文中参照所附附图进行描述。在每个实施例中,本发明被应用到一个电池充电系统用于对安装在车辆内的电池进行充电。
第一实施例
根据第一实施例的电池充电系统1的电路结构的实例在图1中示出,并且电池充电系统1检测在充电线4中的损坏的操作实例在图2中示出。
参照图1至图2,电池充电系统1安装在车辆内,例如汽车,在其中安装了至少一个电负载6和一个电池5。
电池充电系统1包括用于车辆的控制单元2和作为发电机3的交流发电机3。控制单元2位于交流发电机3的外部。交流发电机3具有通过充电电缆4连接到电池5的正极端子的输出端。电负载6连接到了电池5的正极端子。其它至少一个电负载7直接连接到交流发电机3的输出端上。
外部控制单元2可操作来确定需要用来控制交流发电机3的多个目标指令值。外部控制单元2还可操作来检测在充电线4中的损坏以及检测交流发电机的故障,由此保护交流发电机并产生警报信号。
具体地,以目标指令值设定模块20、通信接口(COM.IF)21、运转率设定模块22、充电线损坏确定模块23、警报设定模块24、警报控制电路25以及发动机控制电路26来装备外部控制单元2。
外部控制单元2可以被设计成微型计算机和与之通信的外围电路。在此设计中,外部控制单元2的每个模块和电路都可以被设计成功能模块,这些功能模块由根据安装在微型计算机中存储器内的程序而进行的微型计算机操作以及受该微型计算机控制的外围电路和/或硬件模块来提供。而且,外部控制单元2都可以被设计成对应于其模块和电路的数字/模拟集成电路。
目标指令设定模块20可操作来将车辆和各个电负载6、7的特性与预定参考值进行比较,并根据其比较结果和指示充电线4是否损坏的数据来确定需要用来控制交流发电机3的多个目标指令值。该车辆的特性包括电池5的电压、发动机速度和驱动状态(加速/减速),而上述每个电负载6、7的特性都包括每个负载6、7的状态。这些车辆以及每个电负载的特性通过对应的传感器SE检测和/或测量。将传感器SE安装在车辆内,以使其检测和/或测量对应的特性。由传感器SE测量的特性从其中传送到外部控制单元2(目标指令设定模块20)。
目标指令值包括:需要用来确定交流发电机3的输出(输出直流电压)的已调整电压指令值,以及需要用来引导励磁电流(场电流)流过至少一个场绕组(励磁绕组)30的励磁电流指令值。目标指令值也包括:需要来限制流过场绕组30的场电流的电流限制占空度(duty)指令值,以及需要来确定用于逐渐改变场电流的周期的渐变控制时间指令值。
目标指令值设定模块20还可操作来将多个目标指令值转换成信息码(多个数字数据块),这些信息码满足在交流发电机3和外部控制单元2之间的预定通信过程,由此将已转换的目标指令值传送到通信接口21。目标指令值设定模块20还可操作来传送已调整的电压指令值和电流限制占空度指令值到充电线损坏确定模块23,并将这些多个目标指令值传送到发动机控制电路26。
通信接口21可操作来根据通信过程接收由目标指令值设定模块20传送来的信息码,并将其发送到交流发电机3。通信接口21还可操作来响应于由控制单元2产生的一个请求而接收从交流发电机3发送的信息码,由此将其传送到运转率设定模块22与警报设定模块24。
运转率设定模块22可操作来从通信接口21接收到的信息码中提取交流发电机3的运转率;这个已提取的交流发电机3的运转率通过在下文中描述的运转率检测电路338来检测。运转率设定模块22还可操作来将所提取的交流发电机3的运转率传送到充电线损坏确定模块23以及发动机控制电路26。
基于已调整电压指令值和已确定电流限制占空度指令值、电池5的电压、已提取的交流发电机3的运转率、预定的可接受电压降以及可容许的占空度,充电线损坏确定模块23可操作来确定充电线4是否损坏。
警报设定模块24可操作来从由通信接口21所接收的信息码中提取表明交流发电机3是否有故障的信息。基于已提取的信息,警报设定模块24还可操作来确定在交流发电机3中是否检测到故障。警报设定模块24还可操作来把它的确定结果传送到警报控制电路25。
警报控制电路25被配置成,当从警报设定模块24传送来的确定结果表示发现了交流发电机故障时,执行预定操作来保护电池充电系统1并输出一个警报信号给一个报警装置(未示出)。
发动机控制电路26被配置成基于车辆与每个电负载6和7的特性、由目标指令值设定模块20设定的多个目标指令值以及由运转率设定模块22确定的运转率来控制发动机。上述特性包括发动机速度、驱动状态以及每个负载6和7的状态。
交流发电机3工作以输出稳定的DC电压来为电池5充电,由此提供电力给电负载6,并且根据由控制单元2提供的多个目标指令值来馈送该输出DC电压给直接与其连接的电负载7。
具体地,交流发电机3包括励磁绕组30、三相绕组(定子绕组)31、整流器32以及控制器33。
场绕组(励磁绕组)30缠绕在转子(rotor)(未示出)周围。转子通过带子耦合到发动机的曲轴以便与之一起旋转。当在处于旋转中的转子的场绕组30上施加场电流时,旋转的场绕组30产生磁通量。场绕组30的一端通过充电线4连接到电池5和控制器33,而且场绕组30的另一端连接到控制器33。三相绕组(定子绕组)31缠绕在定子(未示出)周围,而该定子环绕着转子。由场绕组30产生的磁通量在定子绕组31中感应出三相交流(AC)电压。
整流器32可操作来对在定子绕组31中感应出的三相AC电压进行全波整流而得到DC电压。
具体地,整流器21由例如第一二极管32a至第六二极管32f以桥式连接组成。三相桥的每个高压侧二极管32a至32c的阴极通过充电线4连接到电池5,并且每个低压侧二极管32d至32f的阳极连接到车体以接地。
根据多个目标指令值,控制器33可操作来控制场电流(励磁电流)以控制交流发电机3的DC电压输出。
具体地,控制器33包括:通信接口330、目标指令值设定单元331、电压控制电路332、电流控制电路333、AND电路334以及一个例如NPN双极性晶体管335的晶体管。控制器33也包括:用于励磁电流的检测的电阻器336、续流二极管(flywheel diode)337、运转率检测电路338、运转率设定单元339、故障自诊断电路340、交流发电机故障诊断电路341以及警报设定单元342。
控制器33可以被设计成一个微型计算机和与之进行通信的外围电路,所以控制器33的每个单元和电路可以被设计成由根据安装在微型计算机中存储器内的程序而进行的微型计算机操作以及受该微型计算机控制的外围电路和/或硬件模块来提供的功能模块。而且,控制器33可以被设计成对应于其模块和电路的数字/模拟集成电路。
通信接口330可操作来接收由控制单元2发送的信息码并将其传送到目标指令值设定单元331。通信接口330还可操作来在通信过程中发送信息码到控制单元2,该信息码对应于由运转率设定单元339设定的交流发电机3的运转率,并对应于由警报设定单元342设定的表明交流发电机3是否有故障的信息。
目标指令值设定单元331具有从所接收的信息码中提取多个目标指令值的功能。具体地,目标指令值设定单元331包括:已调整电压指令值设定模块331a、励磁电流指令值设定模块331b、电流限制占空度指令值设定模块331c以及渐变控制时间指令值设定模块331d。
已调整电压指令值设定模块331a可操作来从所接收的信息码中提取已调整电压指令值,以将其转换成目标电压。励磁电流指令值设定模块331b可操作来从所接收的信息码中提取励磁电流(场电流)指令值,并将其传送到电流控制电路333。
电流限制占空度指令值设定模块331c可操作来从所接收的信息码中提取电流限制占空度指令值,以将其传送到电流控制电路333。渐变控制时间指令值设定模块331d可操作来从所接收的信息码中提取渐变控制时间指令值,以将其传送到电流控制电路333。
电路332的输入端连接到连接在充电线4和整流器32之间的连接点P1,且其输出端连接到AND电路334。
电压控制电路332被设计成基于由模块331a和来自交流发电机3的DC电压输出所确定的目标电压而产生电压控制信号,例如PWM(脉冲宽度调制)信号,其被要求来控制励磁电流。PWM信号由一系列处于预定时间间隔(周期)的高压和低压电平脉冲组成,在每个周期里具有预定的参考占空度。根据已调整电压指令值与交流发电机输出的比较来确定参考占空度,以使交流发电机的输出接近已调整电压指令值(目标电压)。
电压控制电路332也被设计成将电压控制信号输出到AND电路334。
电流控制电路333被设计成基于励磁电流指令值产生电流限制占空度指令值、渐变控制时间指令值、励磁电流和晶体管335的开关状态、用于控制流过励磁绕组30的励磁电流的电流控制信号。
电流控制电路333也被设计成将电流控制信号输出到AND电路334。具体地,电流控制电路333由励磁电流限制电路333a、渐变控制电路333b以及OR电路333c构成。
励磁电流限制电路333a的输入端连接到位于晶体管335的发射极端子与电阻器336之间的连接点P2,且其输出端连接到OR电路333c。
励磁电流限制电路333a可操作来基于励磁电流指令值产生励磁电流限制信号、电流限制占空度指令值和流过励磁绕组30的励磁电流。
具体地,例如,励磁电流限制信号由一系列处于预定时间间隔的高压和低压脉冲组成,用于减少电压控制信号的参考占空度,以致于导致励磁电流低于一个预定值,其中该预定时间间隔具有预定的占空度。
渐变控制电路333b的输入端连接到位于励磁绕组30的另一端和晶体管335的集电极端子之间的连接点P3,且其输出端连接到OR电路333c。
基于晶体管335的开关状态和渐变控制时间,渐变控制电路333b可操作来产生渐变控制信号,以用来逐渐改变励磁电流。
具体地,例如,渐变控制信号由一系列处于预定时间间隔的高压和低压脉冲构成,用于增加(逐渐增加)电压控制信号的参考占空度,其中该预定时间间隔具有预定的占空度。
OR电路333c的输入端连接到励磁电流限制电路333a与渐变控制电路333b的输出端,并且OR电路333c的输出端连接到AND电路334。
OR电路333c可操作来执行励磁电流限制信号与渐变控制信号的逻辑OR运算,以产生电流控制信号用于控制励磁电流。
具体地,例如,当交流发电机扭矩突然减小时,OR电路333c将等效于励磁电流限制信号的电流控制信号输出到AND电路334。当电负载6和7的功率要求增长(例如,发动机速度下降或应用电负载6、7)时,OR电路333c将等效于渐变控制信号的电流控制信号输出到AND电路334。
AND电路334的输入端连接到电压控制电路332和电流控制电路333的输出端,并且AND电路334的输出端连接到晶体管335的基极。
AND电路334可操作来执行从电路332输出的电压控制信号与从电路333输出的电流控制信号的逻辑AND运算,以产生用于晶体管335开断的开关信号,从而控制励磁电流。
当交流发电机扭矩突然减小时,AND电路334的操作允许励磁电流减小,并且当电负载6和7的功率要求增长(例如,发动机速度下降或应用电负载6、7)时,允许励磁电流逐渐地增长。这使得根据电负载和/或发动机速度的功率要求的变化而将交流发电机的输出最优化成为可能。
晶体管335工作以基于从AND电路334输出的开关信号来导通或关断,以便控制励磁电流。具体地,晶体管335的基极连接到AND电路334的输出端,并且其集电极连接到励磁绕组30的输出端。晶体管335的发射极通过电阻器336连接到车体以接地。在晶体管335的集电极和励磁绕组30的输出端之间的连接点P3连接到渐变控制电路333b和运转率检测电路338。在晶体管335的发射极和电阻器336之间的连接点P2连接到励磁电流限制电路333a。
续流二极管337可操作来允许续流电流从其中流过;该续流电流是在晶体管335被关断时产生的。续流二极管337的阴极连接到励磁绕组30的一端,并且续流二极管337的阳极连接到其另一端。
运转率检测电路338的输入端连接到位于励磁绕组30的输出端和晶体管335的集电极之间的连接点P3。
运转率检测电路338被设计成检测晶体管335的占空度,其对应于交流发电机3的运转率。交流发电机3的运转率表示交流发电机的输出(输出功率)对于交流发电机3能够输出的最大交流发电机输出(输出功率)的比率。交流发电机3的运转率也表示励磁电流对于被允许流过励磁绕组30的最大励磁电流的比率。
晶体管335的占空度表示晶体管335的导通时间对于每个开断(导通和断开)周期的比率。例如,当晶体管335总是导通状态时,晶体管的占空度被设定为100%,其允许晶体管335提供最大励磁电流给励磁绕组30。相反,当晶体管335总是断开状态时,晶体管的占空度被设定为0%,其导致晶体管335中断流入励磁绕组30的电流。
总而言之,晶体管335的占空度显示了励磁电流对于最大励磁电流的比率,即,晶体管335的传导率,其等效于交流发电机3的运转率。
在第一实施例中,运转率检测电路338被设计成简单结构的数字电路,例如计数器338a,而不使用A/D转换器。
例如,计数器338a测量晶体管335的每个开关周期以及在每个周期中晶体管335的导通时间,以根据该测量值来计算该导通时间与每个开关周期的比率,将其作为晶体管335的占空度并以百分比形式来表示。又例如,当每个开关周期都恒定时,计数器338a计数在每个开关周期中晶体管335的导通时间,以基于该计数值来计算该导通时间与每个开关周期时间的比率,将其作为晶体管335的占空度并以百分比形式来表示。
运转率设定单元339可操作来将对应于交流发电机3运转率的晶体管335的占空度转换成信息码,由此将该信息码传送到通信接口330,其中,该交流发电机3的运转率由运转率检测电路338检测。该信息码满足在交流发电机3和控制单元2之间的预定通信过程。
故障自诊断电路340可操作来诊断在控制器33自身中的故障,并将表示该诊断结果的信息传送到警报设定单元342。交流发电机故障诊断电路341的输入端是在连接到定子绕组31的一相的成对高压侧二极管32c和低压侧二极管32f之间的连接点P4。
交流发电机故障诊断电路341可操作来,根据来自定子绕组31的AC输出电压来诊断在励磁绕组30和/或定子绕组31中的故障,并将表示该诊断结果的信息传送给警报设定单元342。
警报设定单元342可操作来将从故障自诊断电路340和交流发电机故障诊断电路341传送来的多块信息,转换成满足交流发电机3和控制单元2之间的预定通信过程的信息码,由此将其传送到通信接口330。
接下来,控制器33和控制单元2的操作将在下文中参照图1和图2进行描述。打开一个点火开关(未示出)以允许发动机起动并允许控制单元2起动对交流发电机3的控制。
在上述电池充电系统1的结构中,当交流发电机输出高于电池电压时,电流将从交流发电机3流向电负载7和电池5。根据电池电压和其他参数,控制器33和控制单元2控制交流发电机的输出。
具体地,如图1中所示,控制单元2的目标指令值设定单元20比较车辆和各个电负载6、7的特性与预定参考值。接下来,模块20根据所比较的结果确定已调整电压指令值、励磁电流指令值、电流限制占空度指令值和渐变控制时间指令值。将这些已确定的指令值转换成信息码并传送到通信接口21。
通信接口21将这些信息码发送到交流发电机3的控制器33,该信息码对应于已调整电压指令值、励磁电流指令值、电流限制占空度指令值和渐变控制时间指令值。
控制器3的通信接口330接收从控制单元2发送的信息码,并将其分别传送到已调整电压指令值设定模块331a、励磁电流指令值设定模块331b、电流限制占空度指令值设定模块331c以及渐变控制时间指令值设定模块331d。
已调整电压指令值设定模块331a从所接收的信息码中提取已调整电压指令值,并将其转换成目标电压。励磁电流指令值设定模块331b从所接收的信息码中提取励磁电流指令值,并将其传送到电流控制电路333。此外,设定模块331c从所接收的信息码中提取电流限制占空度指令值,并将其传送到电流控制电路333;而渐变控制时间指令值设定模块331d从所接收的信息码中提取渐变控制时间指令值,并将其传送到电流控制电路333。
根据由模块331a确定的目标电压和来自交流发电机3的DC电压输出,电压控制电路332产生控制励磁电流所需的电压控制信号,由此输出所产生的电压控制信号到AND电路334。
根据励磁电流指令值、电流限制占空度指令值、渐变控制时间指令值、励磁电流和晶体管335的开关状态,电流控制电路333产生电流控制信号用于控制流过励磁绕组30的励磁电流。此后,电流控制电路333输出所产生的电流控制信号到AND电路334。
AND电路334对从电路332输出的电压控制信号和从电路333输出的电流控制信号执行逻辑AND运算,以产生开关信号用于晶体管335的开关,从而控制励磁电流。AND电路334输出所产生的开关信号给晶体管335的基极。
根据从AND电路334输出的开关信号,在每个开关周期中操作晶体管335以使其导通或关闭。在每个开关周期中的晶体管335的占空度控制了励磁电流。这就允许交流发电机3稳定地输出对应于目标电压(已调整电压指令值)的DC电压。
另一方面,交流发电机3发出与其状态相关联的信息。具体地,运转率检测电路338检测对应于交流发电机3的运转率的晶体管335的占空度。运转率设定单元339将相当于交流发电机3的运转率的晶体管335的占空度转成信息码,该信息码满足在交流发电机3和控制单元2之间的预定通信过程,并将其传送到通信接口330。
另外,故障自诊断电路340诊断在控制器33中自身的故障,并将表示该诊断结果的信息传送到警报设定单元342。类似的,根据来自定子绕组31的AC输出电压,交流发电机故障诊断电路341诊断在励磁绕组30和/或定子绕组31中的故障,并将表示该诊断结果的信息传送给警报设定单元342。通过警报设定单元342将从故障自诊断电路340和交流发电机故障诊断电路341传送来的多块信息转换成满足在交流发电机3和控制单元2之间的预定通信过程的信息码,由此将其传送到通信接口330。
通信接口330将信息码发送到处于通信过程中的控制单元2,这些信息码是从运转率设定单元339和警报设定单元342传送来的。
通信接口21接收从交流发电机3的通信接口330发送的信息码,以将所接收的信息码传送到运转率设定模块22和警报设定模块24。
运转率设定模块22从来自通信接口21的信息码中提取交流发电机3的占空度;交流发电机3的所提取的占空度对应于其运转率。运转率设定模块22将交流发电机3的所提取的占空度传送到充电线损坏确定模块23和发动机控制电路26。
警报设定模块24从来自通信接口21的信息码中提取表明交流发电机3是否有故障的信息,并根据所提取的信息确定是否在交流发电机3中检测到故障。警报设定模块24将其中的确定结果传送到警报控制电路25。
根据由目标指令设定模块20确定的已调整电压指令值和电流限制占空度指令值、电池5的电压、对应于由运转率设定模块22提取的其运转率的交流发电机3占空度、预定的可接受的电压降ΔV以及可允许的占空度ΔD,充电线损坏确定模块23确定充电线4是否损坏。
当从警报设定模块24传送来的确定结果表示已经找到交流发电机的故障时,警报控制电路25执行预定的操作以保护电池充电系统1,并输出警报信号给报警装置(未示出)。
根据车辆和各个电负载6、7的特性、由目标指令值设定模块20设定的多个目标指令值以及由运转率设定模块22确定的运转率,发动机控制电路26控制发动机的运行。
接下来,控制单元2的充电线损坏确定模块23的损坏查找操作将参照图2进行具体地描述。具体地,控制单元2(其模块)执行一个其结构(过程)示于图2中的程序(算法)。
在步骤S101中,充电线损坏确定模块23把由目标指令设定模块20确定的已调整电压指令值设定为已调整电压指令变量VREG,并且将由目标指令设定模块20确定的电流限制占空度指令值设定为电流限制占空度指令变量D。
接下来,在步骤S102中,确定模块23将由相应的传感器检测(测量)的电池5的电压设定为电池电压变量VS,并将对应于交流发电机3运转率的晶体管335占空度设定为控制占空度变量Fduty。
随后,在步骤S103中,确定模块23比较在步骤S102中设定的电池电压变量VS与通过从已调整电压指令值VREG中减去预定的可接受的电压降ΔV所获得的电压阈值。注意,该可接受的电压降ΔV指示了当电流从交流发电机3向电池5通过充电线4时,跨越充电线4的电压降的可接受的值。该可接受的电压降ΔV已被预先确定为例如1.5V。
另外,在步骤S103中,确定模块23比较在步骤S102中设定的控制占空度变量Fduty与通过从在步骤S101中设定的电流限制占空度指令变量D中减去预定的可允许的可接受占空度ΔD所获得的占空度阈值。注意,可接受的占空度ΔD表示当在步骤S103中执行该比较时占空度的可接受的改变。占空度阈值确定了对应于晶体管335的占空度(交流发电机3的运转率)的控制占空度变量Fduty的上限。
作为在步骤S103中比较的结果,当电池电压变量VS低于电压阈值并且控制占空度变量Fduty低于占空度阈值时,换而言之,当由VS<VREG-ΔV与Fduty<D-ΔD所给定的方程式成立时(在步骤S103中所确定的为YES)时,确定模块23变换到步骤S104。
在步骤S104中,确定模块23确定虽然电池5的电压已经降低,但是交流发电机3的运转率已经降低,由此决定充电线4有损坏。换而言之,确定模块23确定即使电池5的电压已经降低,电负载6、7的功率要求还是已经减小,由此决定充电线4有损坏。
当确定充电线4已经损坏时,目标指令值设定模块20将已调整电压指令值设定为预定值,该预定值允许交流发电机3和电负载7受到保护。例如,设定模块20将已调整电压指令值设定为14.5V的预定值。在步骤S104中,14.5V的预定值高于例如12.8V的电池5的开路电压,并且等于或低于交流发电机3和电负载6、7中每一个的最大可容许电压。在步骤S104中,警报控制电路25引起报警装置可听见地或者可看见地放出报警信号给车辆的驾驶者。
相反地,例如,在步骤S104中的操作之后,作为在步骤S103中的比较结果,当电池电压变量VS低于电压阈值且控制占空度变量Fduty等于或高于占空度阈值时,换而言之,当由VS<VREG-ΔV与Fduty≥D-ΔD所给定的方程式成立时(在步骤S103中所确定的为NO)时,确定模块23变换到步骤S105。
在步骤S105中,确定模块23确定随着电池5的电压降低,交流发电机3的运转率已经增长,由此决定充电线4没有损坏。换而言之,确定模块23确定随着电池5的电压降低,电负载6、7的功率要求已经增长。
相似地,作为在步骤S103中比较的结果,当电池电压变量VS等于或高于电压阈值时,即使控制占空度变量Fduty低于占空度阈值(在步骤S103中所确定的为NO),确定模块23变换到步骤S105。在步骤S105中,确定模块23确定随着交流发电机3的运转率降低,电池电压已经增长,由此决定充电线4没有损坏。
在步骤S105中,当确定了充电线4没有损坏时,目标指令值设定模块20将已调整电压指令值重置以消除对交流发电机3的保护,由此正常地确定已调整电压值。警报控制电路25放弃将报警信号从报警装置放出。
更具体地,以下将描述当控制单元2控制交流发电机3以使已调整电压指令变量VREG被设定为14.5V以及电流限制占空度指令变量D被设定为100%时,控制单元2的充电线损坏确定模块23的损坏查找操作。
当充电线4损坏时,交流发电机3不能对电池5进行充电,以致于电池5的电压下降到接近例如12V。该充电线断开导致交流发电机电负载被减少,交流发电机3的运转率降低。随着交流发电机运转率下降,晶体管335的占空度下降到接近例如7%。
在步骤S103中,其中,因为由VS<VREG-ΔV(12V<14.5V-1.5V)与Fduty<D-ΔD(7%<100%-5%)所给定的方程式成立,所以确定模块23确定充电线4损坏。
注意,在该具体实例中,当充电线损坏时,晶体管335的占空度下降到接近7%。在此情况中,当交流发电机转子以高速驱动时,晶体管335的占空度进一步下降。即使提供直接地连接到交流发电机3的电负载7,由于该占空度仅仅增长不超过几十个百分点,所以在图2中所示的确定模块23的操作可以精确确定充电线4是否损坏。
相反地,在该具体实例中,当充电线没有损坏时,电负载6、7的功率要求的增长把电池5的电压降低到接近12V。在此情况中,电池电压的降低使得交流发电机电负载增长,导致交流发电机3的运转率上升。晶体管335的占空度随着交流发电机3的运转率的上升而增长,以致达到100%。
因此,在步骤S103中,因为由VS<VREG-ΔV(12V<14.5V-1.5V)与Fduty>D-ΔD(100%>100%-5%)所给定的方程式成立,所以确定模块23确定充电线4没有损坏。
在该详细实例中,电池电压随着电负载6和7的功耗增长而降低到接近12V。当电负载6和7的功率要求维持在交流发电机3的可得到的电能内时,电池电压的降低是有限的,使得防止电池电压从电压阈值开始下降成为可能;该电压阈值通过从已调整电压指令变量(VREG)中减去可接受的电压降(ΔV)来获取。
如上所述,在第一实施例中,配置电池充电系统1以使交流发电机3根据在交流发电机3和控制单元2之间传送的多个目标指令值而受到控制。在上述系统1的结构中,当电池电压变量VS低于通过从已调整电压指令变量VREG中减去可接受的电压降ΔV所获得的电压阈值,并且控制占空度变量Fduty低于通过从电流限制占空度指令变量D中减去预定的可接受的占空度ΔD所获得的占空度阈值时,确定充电线4损坏是可能的。这就允许在不使用A/D转换器时能确定充电线4是否损坏,该A/D转换器对于常规的使用在交流发电机输出和电池电压之间的电压差来确定的方法是必需的。这就允许结构简单的充电系统1能检测充电线4是否损坏。
而且,在第一实施例中,能够比较控制占空度变量Fduty与通过从电流限制占空度指令变量D中减去预定的可接受的占空度ΔD所获得的占空度阈值。这就允许可靠地确定充电线4是否损坏,而避免错误的确定。
在根据第一实施例的系统1的结构中,提供晶体管335的占空度给控制单元2,以允许控制单元2轻易地支配交流发电机3的运转率。
进而,当充电线4被确定损坏时,已调整电压指令值被设定为预定电压,该预定电压允许对交流发电机3和直接连接到其上的电负载7进行保护,并且允许连续不断的供电给电负载7,而且将充电线4的断开连接报警给驾驶者。
在第一实施例中,当充电线4被确定损坏时,可以将已调整电压指令值设定为高于电池5的开路电压,并且等于或低于例如直接连接到交流发电机3的电负载7的最大可容许电压。这就能在充电线4中的损坏确定之后,继续确定充电线4的损坏,以保护交流发电机3和电负载7,并警告驾驶者断开充电线4的连接。
第二实施例
根据要检测在充电线4中的损坏的第二实施例的电池充电系统的操作的实例在图3中示出。在第二实施例中,将主要描述一些不同于根据第一实施例的充电系统1的操作的根据第二实施例的充电系统的操作。除非必要,与那些根据第一实施例的充电系统1相同的根据第二实施例的充电系统的操作的描述在此被省略或简化。注意,基本上与示于图1中的那些根据第一实施例的充电系统1的元件相同的根据第二实施例的充电系统的那些元件,使用与图1中所示相同的附图标记来表示。因此根据第二实施例的充电系统的这些元件的描述被省略或简化。
控制单元2的充电线损坏确定模块23的损坏查找操作将参照图3进行具体地描述。控制单元2(其模块)执行一个其结构(过程)示于图3中的程序(算法)。
参照图3,在步骤S201中,在完成预定程序中的预定步骤中的操作之后,控制单元2的充电线损坏确定模块23把由目标指令设定模块20确定的已调整电压指令值设定为已调整电压指令变量VREG,并在步骤S202中把由相应的传感器检测(测量)的电池5的电压设定为电池电压变量VS。
接下来,在步骤S203中,确定模块23比较在步骤S202中设定的电池电压变量VS与通过从在步骤S201中设定的已调整电压指令值VREG中减去预定的可接受的电压降ΔV所获得的电压阈值。
作为在步骤S203中比较的结果,当电池电压变量VS等于或高于电压阈值(VS≥VREG-ΔV)(在步骤S203中所确定的为NO)时,确定模块23变换到步骤S204。
在步骤S204中,由于在电池电压中的压降较小,确定模块23确定充电线4没有损坏。响应于模块23的该确定,目标指令值设定模块20消除对交流发电机3的保护,以正常地确定已调整电压指令值,并放弃从报警装置中放出的报警信号,如果在步骤S211中的前述操作已经被执行的话。此后,控制单元2变换到在预定程序中预定步骤的下一个步骤。
相反地,在步骤S205中,作为步骤S203中的比较结果,当电池电压变量VS低于电压阈值(VS<VREG-ΔV)(在步骤S203中所确定的为YES)时,确定模块23确定电流占空度指令值是否是由目标指令设定模块20设定的。
在步骤S205中,确定没有电流占空度指令值是由目标指令设定模块20设定的(在步骤S205中的确定结果为NO),在步骤S206中目标指令设定模块20设定100%的电流占空度指令值作为电流占空度指令变量D。
相反地,在步骤S205中,确定电流占空度指令值已被目标指令设定模块20设定(在步骤S205中的确定结果为YES),在步骤S207中目标指令设定模块20根据电流占空度指令值确定是否执行对于在充电线4中的损坏的确定。
作为在步骤S207中的确定结果,当为了例如减少发动机载荷而没有临时设定电流占空度指令值从而确定要执行充电线4中的损坏确定操作(在步骤S207中的确定结果为YES)时,目标指令设定模块20变换到步骤S208。在步骤S208中,目标指令设定模块20将由此确定的电流占空度指令值设定为电流占空度指令变量D。
相反地,当为了例如减少发动机载荷而已临时设定电流占空度指令值从而由于要避免错误的确定而确定不执行充电线4中的损坏确定操作(在步骤S207中的确定结果为NO)时,目标指令设定模块20返回到步骤S201。
在步骤S209中,当在步骤S206或S208中设定电流指令变量D时,确定模块23将与由模块22提取的交流发电机3的运转率对应的晶体管335的占空度设定为控制占空度变量Fduty。
接下来,在步骤S210中,确定模块23比较控制占空度变量Fduty与通过从在步骤S206或者S208中设定的电流限制占空度指令变量D中减去预定的可接受的占空度ΔD所获得的占空度阈值进行比较。
当控制占空度变量Fduty低于占空度阈值时,换而言之,当由Fduty<D-ΔD给定的方程式成立(在步骤S210中的确定结果为YES)时,确定模块23确定充电线4损坏。
当确定了充电线4具有损坏时,设定模块20将已调整电压指令值设定为预定值,该预定值允许交流发电机3和电负载7受到保护。例如,设定模块20将已调整电压指令值设定为14.5V的预定值。该14.5V的预定值高于例如12.8V的电池5的开路电压,并且等于或低于在步骤S211中的交流发电机3和电负载6、7中每一个的最大可容许电压。在步骤S211中,警报控制电路25引起报警装置可听见地或者可看见地放出报警信号给车辆的驾驶者。此后模块23返回到步骤S201。
相反地,当控制占空度变量Fduty等于或高于占空度阈值时,换而言之,当由Fduty≥D-ΔD所给定的方程式成立(在步骤S210中所确定的为NO)时,确定模块23确定充电线4没有损坏。
在步骤S212中,当确定充电线4没有损坏时,目标指令值设定模块20消除对交流发电机3的保护,以正常地确定已调整电压指令值,并放弃从报警装置中放出的报警信号,如果步骤S211中的步骤已经被执行的话。此后,模块23返回到步骤S201。
更具体地,将描述当控制单元2控制交流发电机3以使已调整电压指令变量VREG被设定为14.5V时,控制单元2的充电线损坏确定模块23的损坏查找操作。
当充电线没有损坏时,电池电压保持在例如约14V。在此状态中,在步骤S203中,因为由VS>VREG-ΔV(14V>14.5V-1.5V)给定的方程式成立,所以确定模块23确定充电线4没有损坏。
相反地,当充电线损坏和/或电负载6、7的功率要求增长时,电池5的电压降低到例如接近12V。在此状态中,在步骤S203中,因为由VS<VREG-ΔV(12V<14.5V-1.5V)给定的方程式成立,所以确定模块23确定充电线4损坏,由此在步骤S205中确定电流占空度指令值是否由目标指令设定模块20设定。
在步骤S205中,确定没有电流占空度指令值被目标指令设定模块20设定,类似于第一实施例,目标指令设定模块20设定100%的电流占空度指令值作为电流占空度指令变量D,由此在步骤S209和S210中执行充电线损坏确定操作。
相反地,当确定电流占空度指令值已被目标指令设定模块20设定时,在步骤S207中目标指令设定模块20根据电流占空度指令值确定是否执行对于在充电线4中的损坏的确定。
作为在步骤S207中的确定结果,当为了例如减少发动机载荷而临时设定电流占空度指令值从而确定不执行充电线4中的损坏确定操作时,确定模块23不执行充电线4中的损坏确定操作,由此避免错误确定。另外,在此情况中,可以避免交流发电机保护操作和警报操作的故障。具体地,当电流占空度指令值为了例如减少发动机载荷而已被临时设定时,确定模块23可以确定充电线4损坏,尽管充电线4没有损坏。
相反地,当电流占空度指令值为了例如减少发动机载荷而没有被临时设定,并且为了恒定地限制交流发电机输出3而已被设定时,确定模块23执行充电线4中的损坏确定操作。
例如,当电流占空度指令值被设定为例如70%时,如果充电线4损坏,在步骤S210中,因为由Fduty<D-ΔD(7%<70%-5%)给定的方程式成立,所以确定模块23确定充电线4损坏。
相反地,当电负载6、7的功率要求增长时,在步骤S210中,因为由Fduty>D-ΔD(70%>70%-5%)给定的方程式成立,所以确定模块23确定充电线4没有损坏。
如上所述,在第二实施例中,在比较了电池电压变量VS与通过从已调整电压指令值VREG中减去预定的可接受电压降ΔV所获得的电压阈值之后,可以将控制占空度变量Fduty与通过从电流限制占空度指令值D中减去预定的可接受占空度ΔD所获得的占空度阈值进行比较。当电池电压变量VS等于或高于通过从已调整电压指令值VREG中减去预定的可接受电压降ΔV所获得的电压阈值时,这就能消除将控制占空度变量Fduty与占空度阈值作比较的需要。这就使得减少确定充电线4是否损坏的操作时间成为可能。
另外,当控制单元2为了例如减少发动机载荷而临时设定电流占空度指令值时,第二实施例允许充电线4是否损坏的确定操作被中断。这就能够避免由为了控制励磁电流而限制晶体管335的占空度而引起的错误确定操作。
第三实施例
根据第三实施例的电池充电系统1A的电路结构的实例在图4中示出。在第三实施例中,将主要描述一些不同于根据第一和第二实施例的充电系统1的元件和操作的充电系统1A的元件和操作。除非必要,与充电系统1那些相同的充电系统1A的元件和操作的描述在此被省略或简化。注意,基本上与示于图1中的充电系统1的元件相同的充电系统1A的那些元件,使用与图1中所示相同的附图标记来表示。因此充电系统1A的这些元件的描述被省略或简化。
电池充电系统1A包括控制器33A,且控制器33A配备了电压控制电路332A和运转率检测电路343。
如图4中所示,电压控制电路332A被配置成,基于由模块331a确定的目标电压和从交流发电机3输出的DC电压来产生控制励磁电流所需的电压控制信号(PWM信号),由此输出该电压控制信号给AND电路334。
具体地,电压控制电路332A被配备了第一电阻器332a、第二电阻器332b和比较器332c。第一和第二电阻器332a和332b串联连接。第一电阻器332a的一端连接到连接在充电线4和整流器32之间的连接点P1。第二电阻器332b的一端连接到车体以接地。比较器332c具有反相输入端、非反相输入端以及输出端。反相输入端连接到在第一和第二电阻器332a和332b之间的连接点。非反相输入端连接到已调整电压指令值设定模块331a。输出端连接到AND电路334。
运转率检测电路343被配置成检测晶体管335的占空度,该占空度对应于在根据电流控制信号而受到限制之前的交流发电机3的运转率。
用于产生开关信号的AND电路334可操作来执行从电路332A输出的电压控制信号与从电路333输出的电流控制信号的逻辑AND操作。因此,用于晶体管335的开关信号被确定,以使电压控制信号根据电流控制信号来限制。这就导致电压控制信号的占空度等效于在根据电流控制信号而受到限制之前的交流发电机的运转率。
具体地,运转率检测电路343连接到在比较器332c的输出端和AND电路334之间的连接点R。运转率检测电路343被设计成一个结构简单的数字电路,例如计数器,而不必使用A/D转换器,这与第一实施例相似。
具体地,比较器332c被设计成,基于由模块331a确定的目标电压和从交流发电机3输出的DC电压而产生一个控制励磁电流所需的电压控制信号,例如PWM信号。该PWM信号由一系列处于预定时间间隔(周期)的高压和低压脉冲组成,该预定时间间隔具有预定的参考占空度。
例如,计数器测量电压控制信号的每个周期和高电平周期,在该高电平周期期间在电压控制信号的每个周期中电压控制信号处于高压电平。该计数器也根据所测量的值计算高电平周期与每个电压控制信号周期的比率,将其作为以百分比形式表示的晶体管335的参考占空度。
运转率设定模块339可操作来将由运转率检测电路343所检测到的晶体管335的参考占空度转换成信息码,由此将其传送到通信接口330,该参考占空度对应于在根据电流控制信号而受到限制之前的交流发电机3的运转率。该信息码满足在交流发电机3和控制单元2之间的预定通信过程。该信息码通过通信接口330发送到控制单元2。
控制单元2的充电线损坏确定模块23的损坏查找操作将参照图5进行具体地描述。控制单元2执行如图5中所示结构的程序。
参照图5,在步骤S201至S204中目标指令设定模块20或者确定模块23的操作已经在第二实施例中进行了描述,所以该描述被省略。
作为在步骤S203中比较的结果,当电池电压变量VS低于电压阈值(VS<VREG-ΔV)(在步骤S203中的确定结果为YES)时,确定模块23变换到步骤S301。在步骤S301中,确定模块23将电压控制信号的参考占空度设定为电压控制占空度变量Rduty,该参考占空度对应于根据由运转率设定模块22提取的电流控制信号的受到限制之前的交流发电机3的运转率。
接下来,在步骤S302中,确定模块23确定电压控制占空度变量Rduty是否等于100%(运转率阈值),其对应于最大励磁电流流过励磁绕组30的场合。
当确定电压控制占空度变量Rduty不等于100%(在步骤S302中的确定结果为NO)时,控制器33不会导致最大励磁电流流过励磁绕组30,即使电池电压降低。所以确定模块23确定充电线4损坏。
当确定充电线4损坏时,设定模块20将已调整电压指令值设定为预定值,该预定值允许交流发电机3和电负载7受到保护。例如,设定模块20将已调整电压指令值设定为14.5V的预定值。在步骤S303中,该14.5V的预定值高于电池5的例如12.8V的开路电压,并且等于或低于交流发电机3和电负载6、7中每一个的最大可容许电压。在步骤S303中,警报控制电路25引起报警装置可听见地或者可看见地放出报警信号给车辆的驾驶者。此后,模块23变换到步骤S201。
相反地,当确定电压控制占空度变量Rduty等于100%(在步骤S302中的确定结果为YES)时,由于控制器33试图导致最大励磁电流流过励磁绕组30,所以确定模块23确定充电线4没有损坏。在步骤S304中,当确定充电线4没有损坏时,目标指令值设定模块20消除对交流发电机3的保护以正常地确定已调整电压值,并放弃将报警信号从报警装置放出,如果步骤S303中的步骤已经被执行的话。此后,模块23返回到步骤S201。
更具体地,将描述当控制单元2控制交流发电机3以使已调整电压指令变量VREG被设定为14.5V时,控制单元2的充电线损坏确定模块23的损坏查找操作。
当充电线没有损坏时,电池电压保持在例如接近14V。在此状态中,在步骤S203中,因为由VS>VREG-ΔV(14V>14.5V-1.5V)所给定的方程式成立,所以确定模块23确定充电线4没有损坏。
相反地,当充电线损坏和/或电负载6、7的功率要求增长时,电池5的电压降低到例如接近12V。在此状态中,在步骤S203中,因为由VS<VREG-ΔV(12V<14.5V-1.5V)所给定的方程式成立,所以确定模块23设定电压控制信号的参考占空度作为电压控制占空度变量Rduty。
充电线断开导致交流发电机电负载被减少。这就消除了对引起最大励磁电流流过励磁绕组30、将电压控制信号的参考占空度降低到例如接近7%的需要。在步骤S303中,电压控制信号的参考占空度的降低由此导致由Rduty<100%(7%<100%)所给定的方程式成立,所以确定模块23确定充电线4损坏。
相反地,当电负载6和7的功率要求增长时,交流发电机的电负载增长,从而控制器33试图导致最大励磁电流流过励磁绕组30。这就将电压控制信号的参考占空度增加到100%。在步骤S303中,电压控制信号的参考占空度的增长由此导致由Rduty=100%(100%=100%)所给定的等式成立,所以确定模块23确定充电线4没有损坏。
如上所陈述,在第三实施例中,电压控制信号的参考占空度允许轻易地得知交流发电机3的运转率。
另外,在第三实施例中,当电池电压低于电压阈值并且根据电压控制信号的参考占空度所获得的交流发电机3的运转率低于预定运转率阈值时,可以确定充电线4损坏。这就消除了为控制交流发电机3的运转率而利用电流限制占空度指令值的确定操作的需要,该电流限制占空度指令值由控制器3发送。这就允许由控制单元2执行的程序的简化。
具体地,当电池电压VS低于电压阈值并且电压控制信号的参考占空度Rduty低于100%时,可以确定充电线4损坏,该参考占空度Rduty对应于在根据电流控制信号的受到限制之前的交流发电机3的运转率。
这就允许在程序中的过程(指令)被忽略;这些过程与限制励磁电流所需的指令值相关联,例如励磁电流指令值、电流限制占空度指令值、渐变控制时间指令值等等。这就能简化该程序。
在第一至第三实施例中间的每一个中,充电线损坏确定模块23能根据预定的可接受的电压降以及预定的可接受的励磁电流,使用励磁电流指令值代替电流限制占空度指令值,来确定充电线4是否损坏。
第四实施例
根据本发明的第四实施例的电池充电系统被设计成根据车辆的驱动状态来控制交流发电机的输出。具体地,该电池充电系统被设计成在加速情况下将交流发电机的输出降低,并且在减速期间使该输出增长。这就允许交流发电机的发动机载荷降低,以低耗油率增强发动机。
另外,根据第四实施例的电池充电系统被设计成,当发动机运行在空转或恒定速度时,调整交流发电机的输出,以使随时间变化的电池输入和输出电流的计算接近预定目标值。
根据第四实施例的电池充电系统1B的电路结构实例示于图6中,并且检测充电线4中的损坏的电池充电系统1B的操作实例示于图7中。与根据第一实施例的电池充电系统1作比较,电池充电系统1B被配置成除了在第一实施例中所描述的指令值之外还根据充电/放电电池电流来控制交流发电机3。
在第四实施例中,主要描述一些不同于根据第一实施例的充电系统1的元件和操作的充电系统1B的元件和操作。除非必要,与充电系统1的那些元件和操作相同的充电系统1B的元件和操作的描述在此被省略或简化。注意,基本上与示于图1中的充电系统1的元件相同的充电系统1B的那些元件,使用与图1中所示相同的附图标记来表示。因此充电系统1B的这些元件的描述被省略或简化。
电池系统1B包括外部控制单元2A,而外部控制单元2A包括:目标指令值设定模块27、通信接口21、运转率设定模块22、充电线损坏确定模块28、警报设定模块24、警报控制电路25以及发动机控制电路29。
目标指令值设定模块27可操作来将车辆和各个电负载6、7的特性与预定参考值作比较,并根据其比较结果和表示充电线4是否损坏的数据来确定控制交流发电机3所需的多个目标指令值。
除了在第一实施例中描述的目标指令值之外,目标指令值包括引起交流发电机的输出低于电池电压所需的电池充电中断指令值,由此中断电池充电。
目标指令值设定模块27还可操作来将多个目标指令值转换成信息码,这些信息码满足在交流发电机3和外部控制单元2A之间的预定通信过程,由此将已转换的目标指令值传送到通信接口21。目标指令值设定模块27还可操作来传送已调整的电压指令值和电流限制占空度指令值到充电线损坏确定模块28,并将这些多个目标指令值传送到发动机控制电路29。
运转率设定模块22可操作来从由通信接口21接收的信息码中提取交流发电机3的运转率;该提取的交流发电机3的运转率通过在下文中描述的运转率检测电路338来检测。运转率设定模块22还可操作来将所提取的交流发电机3的运转率传送到充电线损坏确定模块28和发动机控制电路29。
根据充电/放电电池电流、预定参考电流值、由模块22设定的运转率、预定占空度和可接受的占空度以及由模块27确定的已调整电压指令值,充电线损坏确定模块28可操作来确定充电线4是否损坏。
发动机控制电路29被配置成根据车辆和各个电负载6、7的特性、由目标指令值设定模块20设定的多个目标指令值以及由运转率设定模块22确定的运转率来控制发动机。该特性包括发动机速度、驱动状态以及各个负载6和7的状态。
接下来,将参考图7具体描述控制单元2A的充电线损坏确定模块28的损坏查找操作。具体地,控制单元2A(其模块)执行其结构在图7中示出的程序。
如图7中所示,在步骤S401中,确定模块28确定电池5是否处于放电中。具体地,确定模块28将充电/放电电池电流值与预定参考电流值进行比较,预定参考电流值例如0A,也被称作电流阈值。
当电池5从充电状态变换到放电状态时,流入电池5的充电电池电流降低,以使放电电池电流从其中流出。充电/放电电池电流值与参考电流值进行的比较结果允许确定电池5的放电状态。更具体地,当充电/放电电池电流低于参考电流值时,确定模块28确定电池5处于放电状态。
注意,由交流发电机的输出电流延迟引起的瞬态充电和放电电池电流可以通过例如一个滤波器来消除,以使确定模块28能够将恒定充电/放电电池电流值与参考电流值进行比较,该交流发电机的输出电流延迟响应于各个电负载6和7导通和关断的时候。
当电池5处于满充状态时,流入电池5的电池电流是微小的充电电流。在此情况中,参考电流值可以被设定为小于0A的值,例如对应于5A的放电电流的-5A电流。注意,用于测量电池充电/放电电流的电流传感器具有在响应中的瞬态延迟。出于这个理由,当电池5从充电状态变换到放电状态时,即使充电/放电电池电流降低到0V,电流传感器也不输出0A,而是输出一个高于0A的值。该参考电流值可以被设定为一个考虑到在响应中的电流传感器的延迟的高于0A的值。
在步骤S402中,当电池5处于放电状态(在步骤S401中的确定结果为YES)时,确定模块28把由目标指令值设定模块27设定的电流限制占空度指令值设定为限制占空度变量D。接下来,在步骤S403中,确定模块28把对应于交流发电机3运转率的晶体管335占空度设定为控制占空度变量Fduty,该交流发电机3的运转率由模块22提取。
随后,在步骤S404中,确定模块28将在步骤S403中设定的控制占空度变量Fduty与预定占空度变量(运转率下限阈值)D0作比较,并与通过从在步骤S402中设定的限制占空度变量D减去预定的可接受占空度ΔD而获得的占空度阈值(运转率上限阈值)作比较。注意,占空度D0被设定为高于交流发电机3的运转率,其对应于电池充电中断指令值。具体地,占空度D0可以被设定为高于晶体管335的占空度,其对应于电池充电中断指令值。
当电池充电中断指令值导致交流发电机的输出变成0V时,换而言之,晶体管335的占空度变为0%时,占空度D0被设定为例如1%。电池充电中断指令值指示交流发电机的输出低于电池电压,由此中断电池充电。电池充电中断指令不必使得交流发电机的输出变成0V。
当电池充电中断指令值导致交流发电机的输出高于0V时,晶体管335的占空度也高于0%。在此情况中,占空度D0被设定为例如高于1%。总之,占空度D0被设定为高于晶体管335的占空度。另外,可接受的占空度ΔD意味着当在步骤S404中执行上述比较时可接受的占空度转移。
作为在步骤S404中的比较结果,当控制占空度变量Fduty高于占空度D0并且低于通过从限制占空度变量D中减去预定的可接受占空度ΔD而获得的占空度阈值时,换而言之,当由D0<Fduty<D-ΔD所给定的方程式成立(在步骤S404中所确定的为YES)时,由于即使电池5处于放电状态中,交流发电机3的运转率也不能在正常运行状态下的预定范围内取值,所以确定模块28确定充电线4损坏。
当确定充电线4损坏时,目标指令值设定模块27将已调整电压指令值设定为允许交流发电机3和电负载7受到保护的的预定值。例如,设定模块27将已调整电压指令值设定为14.5V的预定值。在步骤S405中,该14.5V的预定值高于电池5的例如12.8V的开路电压,并且等于或低于交流发电机3和电负载6、7中间每一个的最大可容许电压。在步骤S405中,警报控制电路25引起报警装置可听见地或者可看见地放出报警信号给车辆的驾驶者。
相反地,当电池5不处于放电状态中(在步骤S401中所确定结果为NO)时,由于电池5处于充电状态中,所以确定模块28确定充电线4没有损坏。
而且,作为在步骤S404中的比较结果,当控制占空度变量Fduty等于或低于占空度D0,或者等于或高于通过从限制占空度变量D中减去预定的可接受占空度ΔD而获得的占空度阈值时,换而言之,当由Fduty≤D0并且Fduty≥D-ΔD所给定的方程式成立(在步骤S404中所确定的为NO)时,由于电池5处于放电状态并且交流发电机3的运转率在正常运行状态下的预定范围内取值,所以确定模块28确定充电线4没有损坏。
具体地,当控制占空度变量Fduty等于或低于占空度D0(Fduty≤D0)时,确定模块28确定充电线4具有正常状态,其中,电池充电被电池充电中断指令值中断,以使电池5处于放电状态。另外,当控制占空度变量Fduty等于或高于通过从限制占空度变量D中减去预定的可接受的占空度ΔD而获得的占空度阈值(Fduty≥D-ΔD)时,确定模块28确定充电线4具有正常状态,其中,尽管电负载6、7的功率要求增长到超过交流发电机3的发电容量,电池5仍处于充电状态,交流发电机3的运转率达到其峰值。
当确定充电线4具有正常状态(没有损坏)时,目标指令值设定模块27消除了交流发电机3的保护,由此正常地确定已调整电压指令值。在步骤S406中警报控制电路25放弃将报警信号从报警装置放出。
更具体地,将描述当控制单元2A控制交流发电机3以使已调整电压指令值被设定为14.5V且电流限制占空度指令值D被设定为100%时,控制单元2A的充电线损坏确定模块28的损坏查找操作。
当充电线4损坏时,电池5不由交流发电机3充电。电池5提供电能给电负载6,所以电池处于放电状态中。充电线的断开导致交流发电机电负载降低,减小了交流发电机3的运转率。随着交流发电机运转率的降低,晶体管335的占空度降低到接近例如7%。
因此,在步骤S404中,由于D0<Fduty<D-ΔD(0%<7%<100%-5%)成立,所有确定模块28确定充电线4损坏。
注意,在此特定实例中,当充电线损坏时,晶体管335的占空度降低到接近7%。在此情况中,当以高速驱动交流发电机转子时,晶体管335的占空度进一步降低。即使提供有直接连接到交流发电机3的电负载7,由于占空度仅仅增长不超过几十个百分点,所以在图6中所示的确定模块28的操作可以精确确定充电线4是否损坏。
相反地,当充电线没有损坏时,当电负载6和7的功率要求增长到超过交流发电机3的发电容量,电池5从充电状态变换到放电状态,用于放电到每个电负载6和7。这就导致交流发电机3的运转率达到其峰值水平,这也导致晶体管335的占空度达到100%。
因此,在步骤S404中,由于Fduty>D-ΔD(100%>100%-5%)成立,确定模块28确定充电线4没有损坏。
另外,在车辆加速期间,电池充电中断指令值允许交流发电机3中断电池充电。电池5变换到放电状态,以提供电能给电负载6和7。在此状态中,交流发电机3停止发电,以使晶体管335的占空度变成0%。因此,在步骤S404中,由于D0=Fduty(0%=0%)成立,确定模块28确定充电线4没有损坏。
如上所述,在第四实施例中,电池充电系统1B被配置成使得交流发电机3根据在交流发电机3和控制单元2A之间传送的多个目标指令值来受到控制。在上述系统1B的结构中,当电池5处于放电状态、并且控制占空度变量Fduty高于占空度D0且低于通过从电流限制占空度变量D中减去预定的可接受的占空度ΔD而获得的占空度阈值时,可以确定充电线4损坏。这就允许充电线是否损坏的确定操作不需要使用A/D转换器,该A/D转换器对于传统的利用在交流发电机输出和电池电压之间的电压差来确定的确定操作是所必需的。这就允许结构简单的充电系统1B能检测充电线4是否损坏。
而且,在第四实施例中,通过比较充电/放电电池电流与参考电流值,就可以安全可靠地确定电池5是否处于充电状态中。
在第四实施例中,可以将控制占空度变量Fduty与占空度D0作比较,并且与通过从电流限制占空度变量D中减去预定的可接受占空度ΔD而获得的占空度阈值作比较。这就允许交流发电机3的运转率能被安全可靠地确定,该运转率在电池5处于放电状态时不能在正常运行状态下的预定范围内取值。即使交流发电机3的运转率被限制在运转率限制范围内或者电池充电被中断,也能可靠地确定充电线4是否损坏,同时避免错误确定。
在第四实施例中,在将充电/放电电池电流与参考电流值进行了比较之后,可以将控制占空度变量Fduty与通过从电流限制占空度变量D中减去预定的可接受占空度ΔD而获得的占空度阈值作比较。这能消除当电池5处于充电状态时对控制占空度变量Fduty与占空度阈值进行比较的需要。这使得确定充电线4是否损坏的操作时间的减小成为可能。
在第四实施例中,与在晶体管335中的导电性对应的晶体管335的占空度允许交流发电机3的运转率能被轻易地获知。
在第四实施例中,当确定充电线4损坏时,将已调整电压指令值设定为预定电压,该预定电压允许对交流发电机3和直接与其连接的电负载7的保护,允许连续地供电给电负载7,并且允许将充电线4断开报警给驾驶者。
在第四实施例中,当充电线4被确定损坏时,可以将已调整电压指令值设定为高于电池5的开路电压,并且等于或低于例如直接连接到交流发电机3的电负载7的最大可容许电压。这就在充电线4中的损坏确定操作之后,继续确定充电线4损坏,以保护交流发电机3和电负载7,并将充电线4断开报警给驾驶者。
第五实施例
根据第五实施例检测充电线4中的损坏的电池充电系统的操作实例示于图8中。在第五实施例中,主要描述一些不同于根据第四实施例的充电系统1B的操作的根据第五实施例的充电系统的操作。除非必要,与那些充电系统1B的操作相同的根据第五实施例的充电系统的操作的描述在此被省略或简化。注意,基本上与示于图6中的根据第四实施例的充电系统1B的元件相同的根据第五实施例的充电系统的那些元件,使用与图6中所示相同的附图标记来表示。因此根据第五实施例的充电系统的这些元件的描述被省略或简化。
将参考图8具体描述控制单元2A的充电线损坏确定模块23的损坏查找操作。控制单元2A执行其结构在图8中示出的程序。
根据第五实施例的确定操作被设计成,在根据第二实施例的确定操作中,在步骤S201至S203中的操作被代替为根据第四实施例的步骤S401中的操作。相似的,在步骤S210中的操作被代替为根据第四实施例中的步骤S404中的操作。
在第五实施例中,除非必要时,将主要描述充电系统的步骤S401和S404中的操作,以使在步骤S204至S209、S211和S212中的其他操作的描述因而得以省略或简化,而这些操作已在第二实施例中描述过了。
如图8中所示,在步骤S401中,确定模块28确定电池5是否处于放电状态。当电池5处于放电状态中(在步骤S401中所确定的结果为YES)时,确定模块28执行在步骤S205中及其之后的操作。当在步骤S209中的操作被执行时,在步骤S404中,确定模块28将在步骤S209中设定的控制占空度变量Fduty与预定占空度D0作比较,并且与通过从在步骤S206或S208中设定的限制占空度变量D中减去预定的可接受占空度ΔD而获得的占空度阈值作比较。
在步骤S404中,当控制占空度变量Fduty高于占空度D0且低于通过从限制占空度变量D中减去预定的可接受占空度ΔD而获得的占空度阈值时,换而言之,当由D0<Fduty<D-ΔD所给定的方程式成立(在步骤S404中所确定的为YES)时,由于即使电池5处于放电状态,交流发电机3的运转率也不能在正常运行状态下的预定范围内取值,所以确定模块28确定充电线4损坏,由此执行在步骤S211中的操作。
相反地,在步骤S404中,当控制占空度变量Fduty等于或低于占空度D0,或者等于或高于通过从限制占空度变量D中减去预定的可接受占空度ΔD而获得的占空度阈值时,换而言之,当由Fduty≤D0并且Fduty≥D-ΔD所给定的方程式成立(在步骤S404中所确定的为NO)时,由于电池5处于放电状态并且交流发电机3的运转率在正常运行状态下的预定范围内取值,所以确定模块28确定充电线4没有损坏,由此执行在步骤S212中的操作。
另一方面,在步骤S401中,电池5不处于放电状态(在步骤S401中所确定的为NO),由于电池5由交流发电机3充电,确定模块28确定充电线4没有损坏,由此转移到步骤S204中的操作来执行。
如上所述,在第五实施例中,当根据充电/放电电池电流和控制占空度变量Fduty而确定了充电线损坏时,并且当控制单元2临时地设定限制占空度指令值以减小发动机载荷时,可以中断对充电线4是否损坏的确定操作。这就避免了由于为了控制励磁电流而限制晶体管335的占空度所导致的错误确定。
第六实施例
根据第六实施例检测充电线4中的损坏的电池充电系统的操作实例示于图9中。在第六实施例中,主要描述一些不同于根据第四和第五实施例的充电系统1B的操作的根据第四和第五实施例的充电系统的操作。除非必要,与那些充电系统1B的操作相同的根据第六实施例的充电系统的操作的描述在此被省略或简化。注意,基本上与根据第四实施例的充电系统1B的元件相同的根据第六实施例的充电系统的那些元件,使用与图6中所示相同的附图标记来表示。因此根据第六实施例的充电系统的这些元件的描述被省略或简化。
将参考图9具体描述控制单元2A的充电线损坏确定模块23的损坏查找操作。具体地,控制单元2A执行其结构在图9中示出的程序。
根据第六实施例的确定操作被设计成,在根据第三实施例的确定操作中,在步骤S201至S203中的操作被代替为根据第四实施例的步骤S401中的操作。相似的,在步骤S302中的操作被代替为在下文中所描述的步骤S501中的操作。
在第六实施例中,除非必要,将主要描述充电系统的步骤S401和S501中的操作,以使在步骤S204、S301、S303和S304中的其他操作的描述因而得以省略或简化,而这些操作已在第三实施例中描述过了。
如图9中所示,在步骤S401中,确定模块28确定电池5是否处于放电状态。当电池5处于放电状态中(在步骤S401中所确定的结果为YES)时,确定模块28执行在步骤S301中的操作。
当在步骤S301中的操作被执行时,在步骤S501中,确定模块28将在步骤S301中设定的电压控制占空度变量Rduty与下列值作比较:
与中断通过励磁绕组30的励磁电流的情形相对应的0%值(运转率的下限);以及
与导致最大励磁电流流过励磁绕组30的情形对应的100%值(运转率的上限)。
在步骤S501中,当电压控制占空度变量Rduty高于0%值且低于100%值时,换而言之,当由0%<Fduty<100%所给定的方程式成立(在步骤S501中所确定的为YES)时,由于即使电池5处于放电状态,交流发电机3的运转率也不能在正常运行状态下的预定范围内取值,所以确定模块28确定充电线4损坏。此后,确定模块28执行在步骤S303中的操作。
相反地,在步骤S501值,当电压控制占空度变量Rduty等于0%值或100%值时,由于即使电池5处于放电状态,交流发电机3的运转率也能在正常运行状态下的预定范围内取值,所以确定模块28确定充电线4没有损坏。此后,确定模块28执行在步骤S304中的操作。
在步骤S401中,电池5不处于放电状态(在步骤S401中所确定的为NO),由于电池5由交流发电机3充电,确定模块28确定充电线4没有损坏,由此转移到步骤S204中的操作来执行。
如上所述,在第六实施例中,当电池5处于充电状态并且交流发电机3的运转率Rduty在从0%值到100%值的预定范围内(0%<Rduty<100%)时,可以确定充电线4损坏。这就消除了对在该程序中使用该过程(指令)来确定的需要;这些过程与需要来限制励磁电流的指令值相关联,例如励磁电流指令值、电流限制占空度指令值、渐变控制时间指令值等等。这就允许该程序被简化。
在根据从第一至第六实施例的每一个电池充电系统中,在控制单元2已经起动操作之后,控制单元2确定充电电缆4是否损坏。如果在各个电池充电系统起动操作之前充电线4损坏,就可以利用已知的确定方法来确定充电电缆4是否损坏。例如,可以检查要检测的从交流发电机发送来的响应信号存在与否。
而且,可以从控制单元外部提供充电线损坏检测模块。
在每个实施例及其变形中,每个电池充电系统都被安装在车辆上,但是每个充电系统都能应用到其他机构上。
在每个实施例及其变形中,作为一个发电机的实例使用了交流发电机来对电池充电,但其他类型的发电机也可以用来对电池充电。
在每个实施例及其变形中,使用了NPN双极性晶体管335来控制励磁电流,但其他类型的晶体管也可以使用,例如NMOSFET,其中每一个都被配置成控制其对于励磁电流的导电性。
在每个实施例及其变形中,作为一个发电机的实例使用了交流发电机来对电池充电,但其他类型的发电机也可以用来对电池充电。
虽然已经描述了现在考虑的作为本发明的这些实施例和变形,但可以理解,各种各样的还没有描述的变形也可以在此使用,并且本发明想要在所附权利要求中覆盖所有的变形,而所有这些变形都落在本发明的真实精神和范围内。

Claims (26)

1.一种确定连接在电池和发电机之间的充电线是否损坏的方法,其中该发电机被配置成通过该充电线对该电池充电,该方法包括:
测量该电池的电压;
检测该发电机的运转率;以及
当测量的电池电压低于预定阈值电压且检测的发电机的运转率低于预定阈值时,确定充电线损坏,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
2.根据权利要求1的方法,其中,该发电机包括一个导电性控制元件并且输出一个由磁通量产生的电压,该磁通量基于励磁电流在发电机中产生,该励磁电流通过所述导电性控制元件提供给发电机,以使所述导电性控制元件根据多个指令值来控制所述导电性控制元件对于励磁电流的导电性,该多个指令值包括确定运转率上限的第一指令值,其中,所述预定阈值低于第一指令值。
3.根据权利要求1的方法,还包括:
比较测量的电池电压与所述预定阈值电压;以及
在电池电压与所述预定阈值电压的比较之后,将检测的发电机的运转率与所述预定阈值作比较,其中,所述确定步骤根据上述比较步骤的比较结果来确定充电线损坏。
4.根据权利要求2的方法,还包括根据第一指令值中断充电线的确定操作。
5.根据权利要求2的方法,其中,所述运转率对应于所述导电性控制元件对于励磁电流的导电性。
6.根据权利要求2的方法,其中,所述多个指令值包括用来确定发电机输出电压的第二指令值,所述导电性控制元件的导电性是根据一个电压控制信号来控制的,该电压控制信号由一系列处于预定周期的高电压和低电压电平脉冲构成,在每一个所述预定周期中具有一个参考占空度,该参考占空度是根据第二指令值与发电机输出电压的比较结果来确定的,并且其中发电机的运转率对应于控制单元的参考占空度。
7.一种确定连接在电池和发电机之间的充电线是否损坏的方法,其中,该发电机被配置成通过该充电线对该电池充电,该方法包括:
确定该电池是否处于放电状态中;
检测发电机的运转率;以及
当确定该电池处于放电状态中并且检测的运转率在预定范围内时,就确定该充电线损坏,其中该预定范围由一个第一上限阈值和一个下限阈值来确定,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
8.根据权利要求7的方法,其中,该发电机包括一个导电性控制元件并且输出一个由磁通量产生的电压,该磁通量基于励磁电流在发电机中产生,该励磁电流通过所述导电性控制元件提供给发电机,以使所述导电性控制元件根据多个指令值来控制所述导电性控制元件对于励磁电流的导电性。
9.根据权利要求7的方法,其中,确定电池是否处于放电状态的步骤包括将电池电流与预定阈值电流值作比较,并且当确定所述电池电流低于所述预定阈值电流值时确定电池处于放电状态。
10.根据权利要求8的方法,其中,所述多个指令值包括允许发电机改变其输出电压到低于电池电压的第一指令值,以及用于确定所述第一上限阈值的第二指令值,该第一上限阈值低于第二指令值,并且所述下限阈值高于对应第一指令值的运转率。
11.根据权利要求9的方法,其中,所述确定充电线损坏的步骤包括:
在将电池电流和预定阈值电流值比较之后,将所检测的运转率与所述第一上限阈值和所述下限阈值作比较;以及
根据所比较的结果确定所检测的运转率是否在预定范围内。
12.根据权利要求10的方法,还包括根据第二指令值中断充电线的确定。
13.根据权利要求8的方法,其中,所述运转率对应于所述导电性控制元件对于励磁电流的导电性。
14.根据权利要求8的方法,其中,所述多个指令值包括用来确定发电机输出电压的第三指令值,所述导电性控制元件的导电性是根据一个电压控制信号来控制的,该电压控制信号由一系列处于预定周期的高电压和低电压电平脉冲构成,在每一个所述预定周期中具有一个参考占空度,该参考占空度是根据第三指令值与发电机输出电压的比较结果来确定的,并且其中发电机的运转率对应于控制单元的参考占空度。
15.一种确定连接在电池和发电机之间的充电线是否损坏的系统,其中该发电机被配置成通过该充电线对该电池充电,该系统包括:
第一单元,被配置成测量该电池的电压;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当测量的电池电压低于预定阈值电压并且检测的发电机的运转率低于预定阈值时,确定充电线损坏,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
16.根据权利要求15的系统,其中,该发电机包括导电性控制元件并且输出一个由磁通量产生的电压,该磁通量基于励磁电流在发电机中产生,该励磁电流通过所述导电性控制元件提供给发电机,以使所述导电性控制元件根据多个指令值来控制所述导电性控制元件对于励磁电流的导电性,该多个指令值包括确定运转率上限的第一指令值,以及其中,所述预定阈值低于第一指令值。
17.根据权利要求16的系统,其中,所述多个指令值包括用来确定发电机输出电压的第二指令值,所述系统包括一个电负载,所述电负载直接连接到发电机而不通过充电线,所述系统还包括:
第四单元,被配置成,当第三单元确定充电线损坏时将第二指令值改变成预定值,用于保护电负载;以及
第五单元,被配置成当第三单元确定充电线损坏时放出一个警报信号。
18.根据权利要求17的系统,其中,所述预定值高于电池的开路电压,并且等于或低于直接连接到发电机的电负载的最大可容许电压。
19.根据权利要求16的系统,其中,所述多个指令值包括用来确定发电机输出电压的第二指令值,所述导电性控制元件的导电性是根据一个电压控制信号来控制的,该电压控制信号由一系列处于预定周期的高电压和低电压电平脉冲构成,在每一个所述预定周期中具有一个参考占空度,该参考占空度是根据第二指令值与发电机输出电压的比较结果来确定的,并且其中发电机的运转率对应于控制单元的参考占空度。
20.一种确定连接在电池和发电机之间的充电线是否损坏的系统,在其中该发电机被配置成通过充电线对该电池充电,该系统包括:
第一单元,被配置成确定电池是否处于放电状态中;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当确定电池处于放电状态中并且检测的运转率在预定范围内时,确定充电线损坏,该预定范围是由一个上限阈值和一个下限阈值来确定的,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
21.根据权利要求20的系统,其中,该发电机包括一个导电性控制元件并且输出一个由磁通量产生的电压,该磁通量基于励磁电流在发电机中产生,该励磁电流通过所述导电性控制元件提供给发电机,以使所述导电性控制元件根据多个指令值来控制所述导电性控制元件对于励磁电流的导电性。
22.根据权利要求20的系统,其中,第一单元被配置成将电池电流与预定阈值电流值作比较,并且当确定所述电池电流低于所述预定阈值电流值时确定电池处于放电状态。
23.根据权利要求20的系统,其中,所述多个指令值包括用来确定发电机输出电压的第一指令值,并且电负载不通过充电线而直接连接到发电机,该系统还包括:
第四单元,被配置成,当第三单元确定充电线损坏时将第一指令值改变成预定值,用于保护电负载;以及
第五单元,被配置成当第三单元确定充电线损坏时放出一个警报信号。
24.根据权利要求23的系统,其中,所述预定值高于电池的开路电压,并且等于或低于直接连接到发电机的电负载的最大可容许电压。
25.一种电池充电系统,包括:
电池;
发电机;
连接在电池和发电机之间的充电线,该发电机被配置成通过该充电线对电池充电;
第一单元,被配置成测量该电池的电压;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当测量的电池电压低于预定阈值电压并且检测的发电机的运转率低于预定阈值时,确定充电线损坏,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
26.一种电池充电系统,其包括:
电池;
发电机;
连接在电池和发电机之间的充电线,该发电机被配置成通过该充电线对电池充电;
第一单元,被配置成确定电池是否处于放电状态中;
第二单元,被配置成检测发电机的运转率;以及
第三单元,被配置成当确定电池处于放电状态中并且检测的运转率在预定范围内时,确定充电线损坏,该预定范围是由一个上限阈值和一个下限阈值来确定的,
其中所述发电机的运转率是发电机的输出功率与发电机的最大输出功率之比。
CNB2005101380776A 2004-11-25 2005-11-25 确定充电线是否损坏的系统和方法及电池充电系统 Expired - Fee Related CN100511918C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004340900 2004-11-25
JP2004340900 2004-11-25
JP2005152967 2005-05-25

Publications (2)

Publication Number Publication Date
CN1797897A CN1797897A (zh) 2006-07-05
CN100511918C true CN100511918C (zh) 2009-07-08

Family

ID=36818743

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101380776A Expired - Fee Related CN100511918C (zh) 2004-11-25 2005-11-25 确定充电线是否损坏的系统和方法及电池充电系统

Country Status (1)

Country Link
CN (1) CN100511918C (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652144B (zh) * 2016-04-13 2019-05-10 深圳市国新动力科技有限公司 电池组线束检测装置和方法
EP3270483B1 (en) * 2016-07-12 2022-06-29 Nxp B.V. Apparatus and associated method for battery charging

Also Published As

Publication number Publication date
CN1797897A (zh) 2006-07-05

Similar Documents

Publication Publication Date Title
JP4395770B2 (ja) バッテリ充電装置の充電線断線検出方法及びバッテリ充電装置
EP1919059B1 (en) Battery management system and driving method thereof
CA2413560C (en) Automotive electric power unit
US9018894B2 (en) Vehicular power supply system
US7973517B2 (en) Control device for vehicle power converter
EP2472702A1 (en) Power supply system for vehicle
US6344734B1 (en) Controller of AC generator for use in vehicles
EP0984543A2 (en) Electrical system for motor vehicles
CN103580589A (zh) 用于机动车辆的电旋转机器
JP5860886B2 (ja) 電池制御装置、蓄電装置および車両
CN101179202A (zh) 向车载计算机传送电压调节器开关信息的系统和方法
EP2383142A2 (en) Power limiting apparatus for electric system, power limiting method for electric system and electric system
US8311691B2 (en) Control device for mobile unit
US9397601B2 (en) Power generation control unit determining maximum excitation current of power generator mounted on vehicle
US7365520B2 (en) Vehicle-generator output voltage control apparatus
EP1209792B1 (en) Voltage controller for automotive alternator
US7839014B2 (en) Pulse-width modulation rectifier having an emergency generator operating mode
CN100511918C (zh) 确定充电线是否损坏的系统和方法及电池充电系统
JP2011078174A (ja) 電池制御装置
EP2871770B1 (en) Control device for vehicle ac generator
CN206149171U (zh) 车用大功率发电机电压调节器系统
KR0184809B1 (ko) 복합 전기자동차의 배터리 충전시스템
RU45872U1 (ru) Система электрооборудования транспортного средства
CN110718897A (zh) 具自动侦测功能的电压控制装置
JP3405029B2 (ja) 車両用発電機の電圧制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20201125

CF01 Termination of patent right due to non-payment of annual fee