CN100493442C - 基于声透镜与偏振检测的实时光声成像方法 - Google Patents

基于声透镜与偏振检测的实时光声成像方法 Download PDF

Info

Publication number
CN100493442C
CN100493442C CNB2006101323763A CN200610132376A CN100493442C CN 100493442 C CN100493442 C CN 100493442C CN B2006101323763 A CNB2006101323763 A CN B2006101323763A CN 200610132376 A CN200610132376 A CN 200610132376A CN 100493442 C CN100493442 C CN 100493442C
Authority
CN
China
Prior art keywords
acoustic lens
acoustic
biological tissue
ccd
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101323763A
Other languages
English (en)
Other versions
CN101028184A (zh
Inventor
唐志列
何永恒
付晓娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CNB2006101323763A priority Critical patent/CN100493442C/zh
Publication of CN101028184A publication Critical patent/CN101028184A/zh
Application granted granted Critical
Publication of CN100493442C publication Critical patent/CN100493442C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种基于声透镜与偏振检测的实时光声成像方法,是利用声透镜把生物组织由于光声效应产生的声压分布经耦合介质直接成像于像面上,使用偏振检测的方法把像面上的声压分布变成相应的光强分布,并用CCD记录该光强分布,即可实时获得清晰的某一层面的组织影像;并且可以利用时间分辨技术获得待测物体不同层面的层析图像。该装置由透明柔性橡胶层、光纤、声透镜、反射薄膜、1/4波片、检偏器、CCD、计算机构成。其中透明柔性橡胶层、光纤、声透镜与反射薄膜相对安装在一个圆柱型铝制腔内;光纤通过一个连接器与激光器连接组成光源;反射薄膜、1/4波片、检偏器、CCD组成偏振检测系统,最后与计算机电气连接。

Description

基于声透镜与偏振检测的实时光声成像方法
技术领域
本发明涉及光声成像技术,具体是基于声透镜与偏振检测的实时光声成像方法。
本发明还涉及所述方法使用的装置。
背景技术
用光学成像技术结合现代先进的光电探测技术,对生物组织进行非侵入性层析成像的研究,一直是光学、生物医学及其交叉学科的研究热点,如光学相干层析成像技术(OCT),光学超快时间分辩层析成像技术以及光子密度波成像技术等。而光声层析成像技术(OACT)则是一种潜力很大而且应用前景非常诱人的光学层析成像技术,因为OACT是采用“光吸收—激发光声信号—光声成像”的方法进行成像,它具有许多潜在的优势,第一,OACT是利用生物组织产生的光声信号进行成像,由于光声信号与生物组织的光学性质(如光谱吸收系数、非辐射弛豫量子效率等)和力学、热学性质(如弹性系数、粘-弹性系数、粘滞系数、热传导率、比热和密度等)等特性有关,而超声波成像仅仅是依赖局部声阻抗的差异来成像,因此,光声信号所携带的信息量远远多于超声波所携带的信息量,可以获得更多有科学价值和医疗诊断价值的信息,实现生物功能差异的成像;第二,由于不同生物组织之间(如血管与周围的组织)所产生的光声信号的差异远远大于声阻抗的差异,因此,光声图像的分辨率和对比度可望有较大的提高。近年来,光声成像技术用于生物组织的成像研究已取得很大进展。目前已经有相控聚焦探测的光声断层成像、基于逆拉普拉斯变换的层析方法、Radon变换的光声成像方法等,这些探测方法都需要使用重建算法重建原物光声图样,由于算法本身要求进行扫描或数据平均,耗时较长,这不能实时的监测组织变化。所以实时的获得生物组织层析图像是该技术走向使用的关键问题。
发明内容
本发明的目的在于针对现有技术存在的缺陷,提供一种对生物组织高分辨率、非侵入性和操作比较方便的基于声透镜与偏振检测的实时光声成像方法。
本发明的另一目的在于提供一种实现基于声透镜与偏振检测的实时光声成像装置。
本发明的方法和装置可用于生物组织的生长规律研究、生物组织的生理变化研究、生物组织的病变研究等方面。
本发明用声透镜把由于光声效应产生的声压分布直接成像于像面上,然后在像面上用偏振检测的方法把声压分布变成相应的光强分布,然后用CCD记录该光强分布,即可实时地获取待测生物组织的平面图像。
本发明的基于声透镜与偏振检测的实时光声成像方法包括如下步骤:
(1)脉宽为5~20纳秒(ns)的激光器发出的脉冲激光照射生物组织,在生物组织中产生频率为兆赫兹(MHz)的超声,即光声信号;
(2)用声透镜将步骤(1)得到的生物组织中不同层面的超声波声压分布分别成像在像面上;
例如肿瘤的光声信号就比组织周围的光声信号强;声透镜焦深较大,对一定厚度物体有纵向成像能力;声透镜把生物组织的不同层面声压分布成像在对应的像面上;
(3)在某一像面上用偏振检测的方法把声压分布变成相应的光强分布;本实验所用氦氖激光器发出的线偏振光经1/4波片变为圆偏振光,以一定的入射角入射到镀有薄膜的玻璃表面上,反射的椭圆偏振光通过1/4波片变成线偏振光,再经偏振方向与它垂直的检偏器可以进行消光;当有生物组织产生的光声信号入射到薄膜时,就会引起薄膜折射率和厚度的变化,继而引起椭圆偏振态的变化,通过系统后则不能满足消光条件,即可透出光信号,从而实现了声场到光场的转变;
(4)用CCD记录该光强分布,即可实时获得清晰的某一层面的组织影像。
本发明还可以包括步骤(5),即重复操作步骤(3)、(4),获得生物组织不同层面的组织影像。
所述步骤(1)中,脉冲激光优选波长为450nm~2000nm。
本发明利用声透镜与偏振检测方法对生物组织的实时光声成像装置由透明柔性橡胶层、光纤、声透镜、反射薄膜、1/4波片、检偏器、CCD、计算机构成。其中透明柔性橡胶层、光纤、声透镜与反射薄膜相对安装在一个圆柱型铝制腔内;光纤通过一个连接器与激光器连接组成光源;反射薄膜、1/4波片、检偏器、CCD组成偏振检测系统,最后与计算机电气连接。
其中CCD具有分辨率大、清晰度高、动态范围广等特点,适合于医学影像技术。
计算机内装有数据处理软件,用于生物体或组织图像重建及处理。例如用Microsoft公司的Visual C++ 6.0平台开发的自动化图像采集处理软件。
所述声透镜由铝材制成。该声透镜的位置可调,可调范围满足几何光学成像性质,即 1 u + 1 v = 1 f .
本基于声透镜与偏振检测的实时光声成像装置的工作原理是:脉冲激光器发出的脉冲激光照射在样品上,样品产生光声信号;产生的光声信号经耦合介质由声透镜变换到像面上;在某一像面上用偏振检测的方法把声压分布变成相应的光强分布;用CCD记录该光强分布,即可实时获得清晰的某一层面的组织影像。
本发明与现有技术相比具有如下优点及效果:
(1)本发明装置是利用光声信号进行二维成像和层析成像,光声信号比传统的超声波携带有更多的信息,可以实现生物功能成像。本发明装置结合了超声在生物组织中具有强的穿透能力及光学成像的强对比度的优点,不会对生物体产生放射性损伤,与传统的医学影像诊断方法相比具有非侵入性、无损伤和灵敏度高等优点。
(2)本发明装置使用声透镜把生物组织某个层面由于光声效应激发的声压分布成像于像面上,并把声压分布变换成光强分布,用CCD进行实时成像;并且声透镜的成像焦深较大,可以利用时间上的延时实现层析成像。
(3)本发明装置使用的反射膜为像元阵列薄膜,它可与CCD互相匹配,并由CCD记录该光强分布。
(4)本发明可以获得声阻抗相同和相近而光学参数不同的待测样品的层析图像;本发明采用声透镜直接对生物组织层析成像,无需复杂的图像重建算法,可以实现对生物组织的实时成像。
(5)本发明利用了偏振检测的方法,可以提高检测的灵敏度,从而有效实现声压分布变换成光强分布。
(6)本发明可以获得生物组织某一横向层面的信息,与B超等获得某一纵向层面信息的成像方式不同,这与生物组织许多结构的横向分布是一致的,例如活体内血管分布、肿瘤形状等等,可以为医疗诊断提供更丰富的信息。
(7)本发明利用已经很成熟的CCD传感技术实现了光声成像,图像重建完全由计算机控制,装置的操作较为方便,自动化程度高,应用前景广阔。
附图说明
图1是本发明装置的结构框图;
图中:1.氦氖激光器;2.脉冲激光器;3.样品;4.声透镜;5.反射薄膜;7.1/4波片;8.检偏器;9.CCD;10.计算机;
图2是本发明方法的声透镜部分的层析成像原理图;
图3是本发明方法的声透镜部分的层析成像光学等效图;
图4是本发明的偏振检测方法示意图;
图5是本发明方法使用的反射薄膜的结构图;
图6、7是本发明方法的声透镜单一层面成像的实验结果图;
其中图6是埋藏于强散射溶液中的四个黑胶带点状样品图;图7是图6中样品的光声图像;
图8、9、10是本发明方法的声透镜层析成像的实验结果图;
其中图8是埋藏于强散射溶液中的两层黑胶带样品,分别贴在有机玻璃板前后表面;图9是图8中圆圈层对应的光声图像;图10是图8中三点对应的光声图像。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的叙述,但本发明的实施方式不限于此。
图1为本发明装置的结构框图,由图1可见,本发明装置主要包括氦氖激光器1、脉冲激光器2、样品3、声透镜4、反射薄膜5、1/4波片7、检偏器8、CCD9、计算机10。选用各构件连接组成本装置,其中:激光器1选用氦氖激光器;激光器2选用美国光谱物理公司生产的MOPO(Model:PRO2230),可发出波长为500nm-2000nm的脉冲激光,本实施例选用波长为532nm的绿色激光,它的重复周期为30HZ;声透镜4自行设计加工;CCD9选用具有分辨率大、清晰度高、动态范围广的传感器;计算机10选用Pentium 3微机。
如图2、3所示,本发明方法的声透镜层析成像原理如下:光声信号的强弱正比于样品的光吸收系数,而且光声信号具有波动的所有特征(如干涉和衍射),根据傅里叶成像理论,一个具有空间傅里叶变换性质的声透镜,可以直接对光声信号进行二维成像,物与像之间一一对应,如图2所示,物面移动ΔZ1,像面也相应移动ΔZ2,所以检测出不同像面的光声信号,就可以重构出对应物面的声压分布(光吸收分布)。与光学透镜成像类似,同一物面的光声信号到达像面所需的时间相等,其中图3为光学等效图。因此,通过控制相同的延时来采集像面光声信号,就能获得对应物面的信息。
如图4所示,本发明的偏振检测法原理如下:激光器1产生的激光为线偏振光,经1/4波片7变为圆偏振光,以一定的入射角入射到反射薄膜5表面上。该反射薄膜的结构图如图5所示,其为像元阵列薄膜。此时反射的椭圆偏振光通过1/4波片7变成线偏振光,再经偏振方向与它垂直的检偏器8可以进行消光;当有生物组织产生的光声信号入射到薄膜时,就会引起薄膜折射率和厚度的变化,继而引起椭圆偏振态的变化,通过系统后则不能满足消光条件,即可透出光信号,从而实现了声场到光场的转变;此时用CCD9记录该光强分布,即可实时获得清晰的某一层面的组织影像。
使用强散射溶液模拟生物组织环境,对声透镜单一层面的成像功能进行具体实施。如图6所示,四个黑胶带点状样品(贴在透明的有机玻璃上)埋藏于强散射溶液中,当透明柔性橡胶层接触溶液,并与样品所在的层面平行相对,调节声透镜至适当位置,即可方便快速地在计算机重现如图7所示的光声成像图。
使用强散射溶液模拟生物组织环境,对声透镜层析成像功能进行具体实施。如图8所示,埋藏于强散射溶液中有两层黑胶带样品,一层为圆圈形样品,另一层为三个黑胶带点状样品,它们分别贴在有机玻璃板前后表面。类似于上述声透镜单一层面成像的具体实施,即得到如图9所示的圆圈层的光声成像图,在此基础上只需调节控制延时——信号转换电路,即方便快速得到如图10所示的三点层的光声成像图。

Claims (7)

1、一种基于声透镜与偏振检测的实时光声成像方法,其特征在于包括如下步骤:
(1)用脉宽为5~20纳秒的脉冲激光照射生物组织,在生物组织中产生频率为兆赫兹的超声波,即光声信号;
(2)用声透镜将步骤(1)得到的生物组织中不同层面的超声波声压分布分别成像在像面上;
(3)在像面上用偏振检测的方法把某一层面的声压分布变成相应的光强分布;
(4)用CCD记录该光强分布,即可实时获得清晰的某一层面的组织影像。
2、根据权利要求1所述的方法,其特征在于还包括以下步骤:
(5)重复操作步骤(3)、(4),获得生物组织不同层面的组织影像。
3、根据权利要求1或2所述的方法,其特征在于所述步骤(1)中,脉冲激光波长为450nm~2000nm。
4、根据权利要求3所述的方法,其特征在于所述步骤(3)中,通过控制采集信号的延时来选定生物组织的不同层面的信号。
5、实现权利要求1所述方法的装置,其特征在于由透明柔性橡胶层、光纤、声透镜、反射薄膜、1/4波片、检偏器、CCD、计算机构成,其中透明柔性橡胶层、光纤、声透镜与反射薄膜相对安装在一个圆柱型铝制腔内;光纤通过一个连接器与激光器连接组成光源;反射薄膜、1/4波片、检偏器、CCD组成偏振检测系统,最后与计算机电气连接。
6、根据权利要求5所述装置,其特征在于所述声透镜由铝材制成,声透镜的位置可调,可调范围满足几何光学成像性质,即 1 u + 1 v = 1 f
7、根据权利要求5或6所述装置,其特征在于所述偏振检测与CCD进行结合,实现实时光声成像。
CNB2006101323763A 2006-12-29 2006-12-29 基于声透镜与偏振检测的实时光声成像方法 Expired - Fee Related CN100493442C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101323763A CN100493442C (zh) 2006-12-29 2006-12-29 基于声透镜与偏振检测的实时光声成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101323763A CN100493442C (zh) 2006-12-29 2006-12-29 基于声透镜与偏振检测的实时光声成像方法

Publications (2)

Publication Number Publication Date
CN101028184A CN101028184A (zh) 2007-09-05
CN100493442C true CN100493442C (zh) 2009-06-03

Family

ID=38713858

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101323763A Expired - Fee Related CN100493442C (zh) 2006-12-29 2006-12-29 基于声透镜与偏振检测的实时光声成像方法

Country Status (1)

Country Link
CN (1) CN100493442C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949177A (zh) * 2011-08-19 2013-03-06 财团法人工业技术研究院 光声影像装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264304B (zh) * 2008-10-15 2014-07-23 罗切斯特大学 利用多功能声透镜的光声成像
JP5489624B2 (ja) * 2009-10-01 2014-05-14 キヤノン株式会社 測定装置
CN104323762B (zh) * 2014-12-01 2017-09-22 广州佰奥廷电子科技有限公司 一种基于光声显微成像的鲜红斑痣血管定量化检测装置
CN106018283B (zh) * 2016-05-09 2019-04-16 高飞 单激光脉冲诱导双非线性光声信号的方法及装置
CN106525723B (zh) * 2016-10-14 2019-05-28 湖北器长光电股份有限公司 声波与光波同时模式化非直观超分辨成像方法
CN106510635A (zh) * 2016-11-30 2017-03-22 江西科技师范大学 一种皮肤血管光声成像装置
CN106769878B (zh) * 2016-12-12 2023-10-03 福建工程学院 一种基于光声光谱的中药汤剂成分检测方法及装置
CN112057041B (zh) * 2020-08-07 2021-12-28 中国科学院深圳先进技术研究院 偏振光声成像探头及光声成像装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128863A (zh) * 1995-02-07 1996-08-14 电子科技大学 光电式声传感器
US6405069B1 (en) * 1996-01-31 2002-06-11 Board Of Regents, The University Of Texas System Time-resolved optoacoustic method and system for noninvasive monitoring of glucose
CN1417617A (zh) * 2001-11-01 2003-05-14 鸿富锦精密工业(深圳)有限公司 智能型薄膜滤波装置
CN1470218A (zh) * 2003-06-18 2004-01-28 华南师范大学 多元阵列电子扫描生物组织光声层析成像的方法及其装置
CN1480753A (zh) * 2002-09-03 2004-03-10 �踻�����ܹ�ҵ�����ڣ����޹�˾ 压电可调滤波器
CN1649001A (zh) * 2004-12-28 2005-08-03 中国科学院上海光学精密机械研究所 光点扫描式光盘存储材料动态测试系统
CN1792335A (zh) * 2005-12-16 2006-06-28 华南师范大学 基于声透镜的光声成像和层析成像方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128863A (zh) * 1995-02-07 1996-08-14 电子科技大学 光电式声传感器
US6405069B1 (en) * 1996-01-31 2002-06-11 Board Of Regents, The University Of Texas System Time-resolved optoacoustic method and system for noninvasive monitoring of glucose
CN1417617A (zh) * 2001-11-01 2003-05-14 鸿富锦精密工业(深圳)有限公司 智能型薄膜滤波装置
CN1480753A (zh) * 2002-09-03 2004-03-10 �踻�����ܹ�ҵ�����ڣ����޹�˾ 压电可调滤波器
CN1470218A (zh) * 2003-06-18 2004-01-28 华南师范大学 多元阵列电子扫描生物组织光声层析成像的方法及其装置
CN1649001A (zh) * 2004-12-28 2005-08-03 中国科学院上海光学精密机械研究所 光点扫描式光盘存储材料动态测试系统
CN1792335A (zh) * 2005-12-16 2006-06-28 华南师范大学 基于声透镜的光声成像和层析成像方法及其装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949177A (zh) * 2011-08-19 2013-03-06 财团法人工业技术研究院 光声影像装置

Also Published As

Publication number Publication date
CN101028184A (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
CN100493442C (zh) 基于声透镜与偏振检测的实时光声成像方法
CN100446730C (zh) 基于声透镜的光声成像和层析成像方法及其装置
Burgholzer et al. Thermoacoustic tomography with integrating area and line detectors
EP2553425B2 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
Paltauf et al. Iterative reconstruction algorithm for optoacoustic imaging
Wang Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography
KR102144551B1 (ko) 레이저 광음향 초음파 영상 시스템 및 그 사용 방법
Nuster et al. High resolution three-dimensional photoacoustic tomography with CCD-camera based ultrasound detection
CN102944521B (zh) 非接触式光声和光学相干断层双成像装置及其检测方法
JP5441795B2 (ja) イメージング装置及びイメージング方法
US20040127782A1 (en) Method and apparatus for imaging absorbing objects in a scattering medium
Jin et al. Fast and high-resolution three-dimensional hybrid-domain photoacoustic imaging incorporating analytical-focused transducer beam amplitude
Kumavor et al. Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system
JP2000517414A (ja) 短パルス励起を使用する三次元超音波顕微鏡検査の方法と装置およびこれに用いられる三次元超音波顕微鏡
US20160095520A1 (en) Apparatus and method for performing photoacoustic tomography
CN108606777A (zh) 基于可调聚焦型光纤传感器的光声计算层析成像系统
Niederhauser et al. Real-time optoacoustic imaging using a Schlieren transducer
Francis et al. Multiview spatial compounding using lens-based photoacoustic imaging system
CN1230125C (zh) 聚焦超声调制反射式光学层析成像方法及其装置
Zarubin et al. Model-based measurement of internal geometry of solid parts with sub-PSF accuracy using laser-ultrasonic imaging
CN100493443C (zh) 基于声透镜与多层反射膜检测的实时光声成像方法及其装置
Bychkov et al. Toroidally focused sensor array for real-time laser-ultrasonic imaging: The first experimental study
CN2915036Y (zh) 基于声透镜的光声成像和层析成像装置
WO2023047601A1 (ja) 画像生成方法、画像生成プログラムおよび画像生成装置
Tsujita et al. Effect of the illumination method on photo-acoustic image quality with array transducer based system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090603

Termination date: 20101229