CN100482824C - Single crystal high temperature nickel base alloy containing rhenium and its preparing process - Google Patents

Single crystal high temperature nickel base alloy containing rhenium and its preparing process Download PDF

Info

Publication number
CN100482824C
CN100482824C CNB2005100463610A CN200510046361A CN100482824C CN 100482824 C CN100482824 C CN 100482824C CN B2005100463610 A CNB2005100463610 A CN B2005100463610A CN 200510046361 A CN200510046361 A CN 200510046361A CN 100482824 C CN100482824 C CN 100482824C
Authority
CN
China
Prior art keywords
single crystal
alloy
treatment
range
rhenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2005100463610A
Other languages
Chinese (zh)
Other versions
CN1858281A (en
Inventor
于金江
金涛
赵乃仁
侯桂臣
孙晓峰
王志辉
于洋
管恒荣
胡壮麒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Hongyin Metal Co ltd
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CNB2005100463610A priority Critical patent/CN100482824C/en
Publication of CN1858281A publication Critical patent/CN1858281A/en
Application granted granted Critical
Publication of CN100482824C publication Critical patent/CN100482824C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及含铼单晶高温合金及热处理等制备技术,具体为一种含铼镍基单晶高温合金及其制备工艺。按重量百分比计,合金成分包括:C 0.12~0.18,Cr 4.3~5.6,Al 5.6~6.3,Co 8.0~10.0,Mo 0.8~1.4,W 7.7~9.3,Nb 1.4~1.8,Ta 3.5~4.5,Re 3.5~4.5,Y 0.001~0.005,RE 0.005~0.025,Ni 余。采用真空感应炉熔炼母合金,在单晶生长炉温度梯度范围60K/cm~100K/cm,单晶生长速率为2~10mm/min范围内制备单晶叶片或试棒;然后进行固熔均匀化处理、高温时效处理、低温时效处理。采用本发明具有如下优点:材料具有高的持久强度极限和蠕变极限;高温抗氧化及抗热腐蚀性能好,热稳定性高;拉伸和持久塑性好;好的抗热疲劳及机械疲劳性能;热处理窗口宽,固熔处理易于控制;本发明制备工艺合理,生产效率高。The invention relates to the preparation technology of a rhenium-containing single-crystal superalloy and heat treatment, in particular to a rhenium-containing nickel-based single-crystal superalloy and a preparation process thereof. In terms of weight percentage, the alloy composition includes: C 0.12~0.18, Cr 4.3~5.6, Al 5.6~6.3, Co 8.0~10.0, Mo 0.8~1.4, W 7.7~9.3, Nb 1.4~1.8, Ta 3.5~4.5, Re 3.5 to 4.5, Y 0.001 to 0.005, RE 0.005 to 0.025, more than Ni. Use a vacuum induction furnace to melt the master alloy, prepare single crystal blades or test rods in the temperature gradient range of the single crystal growth furnace 60K/cm~100K/cm, and the single crystal growth rate within the range of 2~10mm/min; then carry out solid melting and homogenization treatment, high temperature aging treatment, low temperature aging treatment. Adopting the present invention has the following advantages: the material has high enduring strength limit and creep limit; good high temperature oxidation resistance and thermal corrosion resistance, high thermal stability; good tensile and long-lasting plasticity; good thermal fatigue and mechanical fatigue resistance ; The heat treatment window is wide, and the solid solution treatment is easy to control; the preparation process of the invention is reasonable, and the production efficiency is high.

Description

一种含铼镍基单晶高温合金及其制备工艺 A rhenium-containing nickel-based single crystal superalloy and its preparation process

技术领域 technical field

本发明涉及含铼单晶高温合金及热处理等制备技术,特别提供了一种抗蠕变强度高、高温持久寿命长含铼(Re)镍基单晶高温涡轮工作叶片材料及制备该材料的工艺制度。The invention relates to the preparation technology of rhenium-containing single crystal superalloy and heat treatment, etc., and particularly provides a rhenium (Re) nickel-based single crystal high-temperature turbine working blade material with high creep resistance and long high-temperature durability and a process for preparing the material system.

背景技术 Background technique

随着发动机涡轮前温度的提高,对涡轮叶片,特别是高压涡轮叶片的耐高温和强度性能水平,提出了越来越高的要求。20世纪80年代以来,单晶高温合金涡轮叶片的研制已成为现代航空发动机设计与制造的重大关键技术之一。目前,推重比为10的航空发动机F119(美)、F120(美)、GE90(美)、EJ200(英、德、意、西)、M88-2(法)、P2000(俄)等都选用了单晶合金作为叶片材料。相继研究和应用的第二代、第三代单晶合金,分别比第一代单晶高温合金的承温能力提高约30℃和60℃。近年来出现的第四代单晶合金RR3010的承温能力达到1180℃,用在英国RR公司最新研制的Trent发动机上。With the increase of the temperature before the turbine of the engine, higher and higher requirements are put forward for the high temperature resistance and strength performance level of the turbine blades, especially the high pressure turbine blades. Since the 1980s, the development of single crystal superalloy turbine blades has become one of the key technologies in the design and manufacture of modern aero-engines. At present, the aeroengines F119 (US), F120 (US), GE90 (US), EJ200 (British, German, Italian, Spanish), M88-2 (French), P2000 (Russian) with a thrust-to-weight ratio of 10 have all selected A single crystal alloy is used as the blade material. The second-generation and third-generation single-crystal alloys that have been researched and applied successively have a temperature-bearing capacity that is about 30°C and 60°C higher than that of the first-generation single-crystal superalloy. The fourth-generation single-crystal alloy RR3010, which has appeared in recent years, has a temperature-bearing capacity of 1180°C and is used in the latest Trent engine developed by the British RR company.

美国的Howmet公司、GE公司、PCC公司、Allison公司以及英国RR公司,法国的CNECMA公司,俄罗斯的SALUT发动机制造厂等厂商均大量生产单晶零件,品种包括涡轮工作叶片、导向叶片、叶片内外环、喷嘴扇形段、封严块、燃油喷嘴等,用于军用和商用飞机、坦克、舰船、工业燃气轮机、导弹、火箭、航天飞机等。单晶高温合金的应用范围越来越广泛,特别是采用单晶合金制备涡轮工作叶片已经成为先进航空发动机发展的主要趋势。American Howmet Company, GE Company, PCC Company, Allison Company, British RR Company, French CNECMA Company, Russian SALUT Engine Factory and other manufacturers all produce large quantities of single crystal parts, including turbine working blades, guide vanes, inner and outer rings of blades , nozzle segments, sealing blocks, fuel nozzles, etc., for military and commercial aircraft, tanks, ships, industrial gas turbines, missiles, rockets, space shuttles, etc. The application range of single crystal superalloys is becoming more and more extensive, especially the use of single crystal alloys to prepare turbine rotor blades has become the main trend in the development of advanced aero-engines.

热处理对单晶合金的持久强度有明显的影响,例如在MC2单晶合金中,固溶处理只要在1300℃保温3小时即可,第一代单晶高温合金除了PWA1480外,都较容易均匀化处理。而第三代单晶高温合金中由于含有大量的合金元素,特别是Ta和W都促进(γ+γ′)共晶相的形成,因此未经热处理的凝固组织中含有相当多的(γ+γ′)共晶。实验表明:采用简单的等温固溶热处理不可能消除这些共晶相,必须采用复杂的热处理工艺,才能基本消除共晶相。例如:CMSX-10M单晶高温合金为了完全消除这些(γ+γ′)共晶,先进行预处理1337℃/3h,然后以3℃/h升温速率升到1367℃,保温3小时空冷。Erikson在CMSX-10固溶热处理时采用1366℃保温时间达30~35h。因此,必须仔细研究单晶合金的热处理制度,以充分发挥合金的潜力。正确的热处理制度要使立方γ′相能获得理想的蠕变强度,原因是要促进一个均匀的变形结构,以保证低的蠕变速率。Heat treatment has a significant impact on the durable strength of single crystal alloys. For example, in MC2 single crystal alloys, solution treatment only needs to be kept at 1300°C for 3 hours. The first generation of single crystal superalloys, except PWA1480, are easier to homogenize deal with. The third generation single crystal superalloy contains a large amount of alloying elements, especially Ta and W, which promote the formation of (γ+γ′) eutectic phase, so the solidified structure without heat treatment contains quite a lot of (γ+ γ') eutectic. Experiments show that it is impossible to eliminate these eutectic phases by simple isothermal solution heat treatment, and complex heat treatment processes must be used to basically eliminate eutectic phases. For example: In order to completely eliminate these (γ+γ′) eutectics in CMSX-10M single crystal superalloy, it is first pretreated at 1337°C/3h, then raised to 1367°C at a rate of 3°C/h, and kept for 3 hours in air cooling. Erikson used 1366°C holding time for 30-35h during CMSX-10 solution heat treatment. Therefore, the heat treatment regime of single crystal alloys must be carefully studied in order to fully develop the potential of the alloy. The correct heat treatment system will enable the cubic γ′ phase to obtain the ideal creep strength, because it is necessary to promote a uniform deformation structure to ensure a low creep rate.

发明内容 Contents of the invention

本发明的目的在于提供一种含Re单晶高温合金及其制备工艺,用于要求抗蠕变强度高、高温持久寿命长的高温涡轮工作叶片材料及制备该材料的工艺制度。The object of the present invention is to provide a Re-containing single crystal superalloy and its preparation process, which are used for high-temperature turbine working blade materials that require high creep resistance and long high-temperature durability and a process system for preparing the material.

本发明的技术方案是:Technical scheme of the present invention is:

本发明含Re镍基单晶高温合金(以下简称为DD32)包含以下合金成分(重量百分比):The present invention contains Re-containing nickel-based single crystal superalloy (hereinafter referred to as DD32) comprising the following alloy components (weight percent):

C 0.12~0.18,Cr 4.3~5.6,Al 5.6~6.3,Co 8.0~10.0,Mo 0.8~1.4,W 7.7~9.3,Nb 1.4~1.8,Ta 3.5~4.5,Re 3.5~4.5,Y 0.001~0.005,Ni余。C 0.12~0.18, Cr 4.3~5.6, Al 5.6~6.3, Co 8.0~10.0, Mo 0.8~1.4, W 7.7~9.3, Nb 1.4~1.8, Ta 3.5~4.5, Re 3.5~4.5, Y 0.001~0.005, Ni Yu.

还包括加入0.005~0.025%RE(混合稀土)。本发明合金允许存在的杂质及气体含量范围,如表1所示。It also includes adding 0.005-0.025% RE (mixed rare earth). The allowable impurity and gas content ranges of the alloy of the present invention are shown in Table 1.

表1  DD32单晶杂质含量(wt%)Table 1 DD32 single crystal impurity content (wt%)

Figure C200510046361D00041
Figure C200510046361D00041

本发明设计原理如下:Design principle of the present invention is as follows:

本发明主要是加入较多的铝形成高体积分数的γ′相来提高其强度;Re的加入无论对单晶合金还是对定向合金的耐温能力的提高都有很大作用。Re主要进入γ基体中,形成尺寸为~1nm的短程有序的Re原子团,可有效地阻碍位错运动,它降低合金元素扩散速率,阻止γ′相粗化,并提高γ/γ′错配度。另外,约有20%的Re进入γ′相,直接强化γ′相。Re的加入有助于降低单晶铸件的晶粒缺陷和表面再结晶,而且对合金的抗环境性能也有好处。Re加入到高温合金中可以有效地阻碍γ′相的粗化,提高γ′相的粗化激活能,从而可以改善单晶高温合金的高温力学性能。通过加入铌进一步增加γ′相数量,提高了γ-γ′的晶格错配度,增强了γ′相的强化作用,同时还形成γ″相增强其室温和中温力学性能;加入一定量的碳,一方面来强化晶界,另一方面与钽、铌、铬等形成较多的碳化物来强化合金;钨、钼等合金元素主要起固溶强化合金的重要作用,W+Mo含量是增加蠕变寿命的重要参数,随着它们含量的增加蠕变寿命随之而增加。Co对合金的热强性影响不大,但能显著提高合金的塑性,而且Co能提高高应力下的蠕变寿命。Y的加入(200ppm)可以明显改善单晶合金的抗氧化性能,而且对热疲劳性能也有好处。合金中加入RE进行微合金化,有利于枝晶组织的细化强化晶界,控制合金中硫含量,提高持久寿命。本发明合金试样采用国际上通行的定向凝固技术制备,消除了横向和纵向晶界,提高了合金的初熔温度。The invention mainly adds more aluminum to form a high volume fraction of γ' phase to increase its strength; the addition of Re has a great effect on the improvement of the temperature resistance of the single crystal alloy and the oriented alloy. Re mainly enters the γ matrix to form a short-range ordered Re atomic group with a size of ~1nm, which can effectively hinder the movement of dislocations, reduce the diffusion rate of alloying elements, prevent the coarsening of the γ′ phase, and increase the γ/γ′ mismatch Spend. In addition, about 20% of Re enters the γ′ phase, directly strengthening the γ′ phase. The addition of Re helps to reduce the grain defects and surface recrystallization of single crystal castings, and is also beneficial to the environmental resistance of the alloy. The addition of Re to the superalloy can effectively hinder the coarsening of the γ′ phase and increase the activation energy of the coarsening of the γ′ phase, thereby improving the high-temperature mechanical properties of the single crystal superalloy. By adding niobium to further increase the number of γ′ phases, improve the lattice mismatch of γ-γ′, enhance the strengthening effect of γ′ phase, and form γ″ phase to enhance its mechanical properties at room temperature and medium temperature; adding a certain amount of Carbon, on the one hand, strengthens the grain boundary, and on the other hand forms more carbides with tantalum, niobium, chromium, etc. to strengthen the alloy; alloying elements such as tungsten and molybdenum mainly play an important role in solid solution strengthening alloys, and the W+Mo content is An important parameter to increase the creep life, and the creep life increases with the increase of their content. Co has little effect on the thermal strength of the alloy, but it can significantly improve the plasticity of the alloy, and Co can improve the creep under high stress. Variable life. The addition of Y (200ppm) can significantly improve the oxidation resistance of single crystal alloys, and is also good for thermal fatigue performance. Adding RE to the alloy for microalloying is conducive to the refinement of dendrite structure and strengthening of grain boundaries, control The sulfur content in the alloy improves the durable life. The alloy sample of the invention is prepared by the internationally accepted directional solidification technology, which eliminates the transverse and longitudinal grain boundaries and improves the initial melting temperature of the alloy.

本发明含Re镍基单晶高温合金的制备工艺,采用真空感应炉熔炼母合金,单晶生长炉温度梯度在60K/cm~100K/cm范围,单晶生长速率在2~10mm/min范围内制备单晶叶片或试棒;然后在1270~1300℃范围内2~6小时固溶处理,随后进行空冷,接着在1260~1290℃范围内2~6小时进行均匀化处理,随后进行空冷;然后在1100~1150℃范围内3~6小时进行高温时效处理,接着在850~890℃范围内进行16~36小时低温时效处理,随后进行空冷。The preparation process of the Re-containing nickel-based single crystal superalloy of the present invention adopts a vacuum induction furnace to melt the master alloy, the temperature gradient of the single crystal growth furnace is in the range of 60K/cm-100K/cm, and the single crystal growth rate is in the range of 2-10mm/min Preparation of single crystal blades or test rods; then solution treatment at 1270-1300°C for 2-6 hours, followed by air cooling, followed by homogenization treatment at 1260-1290°C for 2-6 hours, followed by air cooling; then High temperature aging treatment is carried out in the range of 1100-1150°C for 3-6 hours, followed by low-temperature aging treatment in the range of 850-890°C for 16-36 hours, followed by air cooling.

本发明具有如下优点:The present invention has the following advantages:

1、采用本发明获得的材料具有高的持久强度极限和蠕变极限。1. The material obtained by the present invention has high endurance strength limit and creep limit.

2、采用本发明获得的材料具有高温抗氧化及抗热腐蚀性能好,热稳定性高。2. The material obtained by the present invention has good high temperature oxidation resistance and thermal corrosion resistance, and high thermal stability.

3、采用本发明获得的材料具有拉伸和持久塑性好。3. The material obtained by adopting the present invention has good stretchability and long-lasting plasticity.

4、采用本发明获得的材料具有好的抗热疲劳及机械疲劳性能。4. The material obtained by adopting the present invention has good thermal fatigue resistance and mechanical fatigue resistance.

5、本发明热处理窗口宽,固溶处理易于控制。5. The heat treatment window of the present invention is wide, and the solution treatment is easy to control.

6、本发明制备工艺合理,生产效率高。6. The preparation process of the present invention is reasonable and the production efficiency is high.

7、采用本发明热处理制度可以使99%以上的铸态γ′溶解,析出均匀分布和规则排列的细小(0.4~0.5μm)的立方体γ′相,并在γ基体上析出更细(~0.3μm)的γ′相,并使该单晶组织稳定,易于控制加强阻碍位错运动的效果,提高蠕变强度。7. Adopting the heat treatment system of the present invention can dissolve more than 99% of the as-cast γ′, and precipitate evenly distributed and regularly arranged fine (0.4-0.5 μm) cubic γ′ phases, and precipitate finer (~0.3 μm) phases on the γ matrix. μm) of the γ′ phase, and stabilize the single crystal structure, which is easy to control and enhances the effect of hindering dislocation movement, and improves the creep strength.

附图说明 Description of drawings

图1为Larson-Miller(拉森-米勒)曲线。图中参数P为一个关系式,无具体含义,T为温度(K),t为时间(小时)。Fig. 1 is a Larson-Miller (Larson-Miller) curve. The parameter P in the figure is a relational expression without specific meaning, T is temperature (K), and t is time (hour).

具体实施方式 Detailed ways

下面通过实施例详述本发明。The present invention is described in detail below by way of examples.

本发明实验用母合金经ZG-0.025B型真空感应炉熔炼,将烧结好的Ni-Re预制块放到坩埚底部,再依次放入其他元素。升温前抽真空直到最大真空度,升温至1300℃左右关掉真空泵充氩气,继续升温,直至完全熔化再抽真空、精炼、出炉。浇铸成尺寸为φ80×500mm的母合金锭,然后打磨去除氧化皮切成合适的块料用于制备单晶试样。The experimental master alloy of the present invention is smelted in a ZG-0.025B vacuum induction furnace, and the sintered Ni-Re prefabricated block is placed at the bottom of the crucible, and then other elements are put in order. Vacuum up to the maximum vacuum before heating up, turn off the vacuum pump and fill with argon when the temperature rises to about 1300°C, continue to heat up until it is completely melted, then vacuumize, refine, and come out of the furnace. Cast into a master alloy ingot with a size of φ80×500mm, and then grind to remove scale and cut into suitable blocks for preparing single crystal samples.

本发明单晶试样用螺旋选晶法在ZGG-0.02型真空感应炉上进行制备。定向凝固炉的加热系统的功率为30KW,采用低电压大电流、高纯石墨感应发热体加热。采用可控硅控制抽拉速率,结晶器抽拉速率在0.1-1000mm/min范围内无级可调。真空系统由扩散泵和前置机械泵组成,抽气速率为30mm/min,工作真空度为10-5Torr。定向凝固试样的制备在定向凝固炉上进行,实验用模壳为刚玉型壳,模壳放在铜水结晶器上,将制备好的母合金装入CaO坩埚内,定向凝固炉抽成真空状态,送电加热,待合金熔化后,用W-Re电偶测量合金熔体温度,在1600℃时进行浇铸,保温10分钟后,用预定速率进行抽拉,制备出定向试样。The single crystal sample of the present invention is prepared on a ZGG-0.02 vacuum induction furnace by a spiral crystal selection method. The power of the heating system of the directional solidification furnace is 30KW, and it is heated by a low-voltage, high-current, high-purity graphite induction heating element. SCR is used to control the drawing rate, and the drawing rate of the crystallizer is steplessly adjustable within the range of 0.1-1000mm/min. The vacuum system consists of a diffusion pump and a front mechanical pump, the pumping rate is 30mm/min, and the working vacuum is 10 -5 Torr. The preparation of the directional solidification sample is carried out on the directional solidification furnace. The mold shell for the experiment is a corundum shell. The mold shell is placed on the copper water crystallizer, and the prepared master alloy is put into the CaO crucible, and the directional solidification furnace is evacuated. State, heating by power transmission, after the alloy is melted, measure the temperature of the alloy melt with a W-Re galvanic couple, cast at 1600°C, keep warm for 10 minutes, and pull at a predetermined speed to prepare an oriented sample.

实施例1Example 1

本实施例成分见表2,单晶生长炉温度梯度范围80K/cm,单晶生长速率为4mm/min,试样经1295℃/4h AC.(AC.为空冷)+1285℃/4h AC.+1150℃/4h AC.+850℃/24h AC.热处理,单晶合金的性能如表3和图1所示。本发明引用其中DZ4、DZ22、Rene N4、DD3、SRR99和DD6等合金的力学性能数据都是公开发表的。The composition of this example is shown in Table 2. The temperature gradient range of the single crystal growth furnace is 80K/cm, the single crystal growth rate is 4mm/min, and the sample is subjected to 1295°C/4h AC. +1150°C/4h AC.+850°C/24h AC. heat treatment, the properties of single crystal alloy are shown in Table 3 and Figure 1. The present invention cites that the mechanical property data of alloys such as DZ4, DZ22, Rene N4, DD3, SRR99 and DD6 are published publicly.

表2  合金成分,wt%Table 2 Alloy composition, wt%

  C Cr Al Co Mo Nb W Ta Re Y RE Ni 0.16 4.4 5.65 9.4 1.3 1.4 8.8 4.0 3.8 0.003 0.008 平衡余量 C Cr al co Mo Nb W Ta Re Y RE Ni 0.16 4.4 5.65 9.4 1.3 1.4 8.8 4.0 3.8 0.003 0.008 balance margin

表3  100小时持久强度/MPaTable 3 100 hours lasting strength/MPa

  合金 760℃ 980℃ 1100℃ DD6 807 303 148 DD32 785 315 160 alloy 760°C 980°C 1100°C DD6 807 303 148 DD32 785 315 160

根据图1所示,本发明的DD32单晶合金高温抗力比第一代单晶合金SRR99在低应力条件下具有30℃的优势,高应力下具有60℃优势。在980℃~1100℃内比目前国内典型第二代单晶合金DD6持久强度高出约10MPa。As shown in Fig. 1, the high temperature resistance of the DD32 single crystal alloy of the present invention has an advantage of 30°C under low stress conditions and 60°C under high stress conditions compared with the first generation single crystal alloy SRR99. At 980℃~1100℃, the durability strength is about 10MPa higher than that of the current domestic typical second-generation single crystal alloy DD6.

实施例2Example 2

与实施例1不同之处在于,本实施例的合金成分(表4所示)。单晶生长炉温度梯度范围70K/cm,单晶生长速率为6mm/min。经1285℃/4hAC.+1275℃/4hAC.+1100℃/4hAC.+870℃/24h AC.热处理。与DZ4、DZ22、Rene N4和DD3合金做持久强度对比,结果见表5。The difference from Example 1 lies in the alloy composition of this example (shown in Table 4). The temperature gradient range of the single crystal growth furnace is 70K/cm, and the single crystal growth rate is 6mm/min. Heat treatment at 1285℃/4hAC.+1275℃/4hAC.+1100℃/4hAC.+870℃/24hAC. Compared with DZ4, DZ22, Rene N4 and DD3 alloys for durable strength, the results are shown in Table 5.

表4  合金成分,wt%Table 4 Alloy composition, wt%

  C Cr Al Co Mo Nb W Ta Re Y RE Ni 0.18 4.8 5.6 9.5 1.2 1.6 8.0 3.6 4.0 0.005 0.005 余量 C Cr al co Mo Nb W Ta Re Y RE Ni 0.18 4.8 5.6 9.5 1.2 1.6 8.0 3.6 4.0 0.005 0.005 margin

表5  一些合金100小时持久强度/MPaTable 5 100-hour endurance strength of some alloys/MPa

  合金 760℃ 800℃ 900℃ 980℃ 1000℃ 1040℃ DZ4 804 677 353 206 181 142 DZ22 804 653 375 213 181 137 ReneN4 853 709 415 247 215 161 DD3 814 706 368 226 201 177 DD32 785 620 420 310 280 200 alloy 760°C 800℃ 900°C 980°C 1000℃ 1040°C DZ4 804 677 353 206 181 142 DZ22 804 653 375 213 181 137 Rene N4 853 709 415 247 215 161 DD3 814 706 368 226 201 177 DD32 785 620 420 310 280 200

由表5可知,本发明的DD32单晶合金900℃以上的持久强度比典型的定向高温合金(DZ4、DZ22)及第一代单晶合金(DD3、ReneN4)具有非常明显的优势。It can be seen from Table 5 that the durability strength of the DD32 single crystal alloy of the present invention above 900°C has a very obvious advantage over typical directional superalloys (DZ4, DZ22) and first-generation single crystal alloys (DD3, ReneN4).

实施例3Example 3

与实施例1不同之处在于,本实施例的合金成分见表6所示,单晶生长炉温度梯度范围70K/cm,单晶生长速率为6mm/min,经1290℃/4h AC.+1280℃/4hAC.+1100℃/4hAC.+870℃/24h AC.热处理后,DD32单晶与SRR99各典型温度的拉伸性能对比结果如表7所示。DD32单晶在900℃以下各典型温度拉伸性能与SRR99相差不大,但在1000℃和1100℃拉伸强度具有明显的优势。The difference from Example 1 is that the alloy composition of this example is shown in Table 6. The temperature gradient range of the single crystal growth furnace is 70K/cm, and the single crystal growth rate is 6mm/min. After 1290°C/4h AC.+1280 ℃/4hAC.+1100℃/4hAC.+870℃/24h AC. After heat treatment, the comparison results of tensile properties of DD32 single crystal and SRR99 at various typical temperatures are shown in Table 7. The tensile properties of DD32 single crystal at various typical temperatures below 900°C are not much different from those of SRR99, but the tensile strength at 1000°C and 1100°C has obvious advantages.

表6  合金成分,wt%Table 6 Alloy composition, wt%

  C Cr Al Co Mo Nb W Ta Re Y RE Ni 0.14 5.0 5.65 9.4 0.98 1.8 7.8 4.4 3.6 0.006 0.02 平衡余量 C Cr Al co Mo Nb W Ta Re Y RE Ni 0.14 5.0 5.65 9.4 0.98 1.8 7.8 4.4 3.6 0.006 0.02 balance margin

表7  DD32单晶与SRR99各典型温度的拉伸性能对比Table 7 Comparison of tensile properties of DD32 single crystal and SRR99 at various typical temperatures

Figure C200510046361D00081
Figure C200510046361D00081

实施例4Example 4

与实施例1不同之处在于,本实施例的合金成分见表8所示,单晶生长炉温度梯度范围约80K/cm,经1290℃/4h AC.+1280℃/4h AC.+1100℃/4hAC.+890℃/16h AC.热处理后,DD32单晶的1000℃时蠕变结果如表9所示;表10为某些第一代单晶1000℃的蠕变强度。The difference from Example 1 is that the alloy composition of this example is shown in Table 8. The temperature gradient range of the single crystal growth furnace is about 80K/cm, after 1290°C/4h AC.+1280°C/4h AC.+1100°C /4hAC.+890°C/16h AC. After heat treatment, the creep results of DD32 single crystal at 1000°C are shown in Table 9; Table 10 shows the creep strength of some first-generation single crystals at 1000°C.

表8  合金成分,wt%Table 8 Alloy composition, wt%

  C Cr Al Co Mo Nb W Ta Re Y RE Ni 0.12 5.2 5.6 9.6 1.4 1.6 9.2 3.6 4.2 0.001 0.01 平衡余量 C Cr al co Mo Nb W Ta Re Y RE Ni 0.12 5.2 5.6 9.6 1.4 1.6 9.2 3.6 4.2 0.001 0.01 balance margin

采用真空感应炉冶炼实验母合金,冶炼坩埚选用CaO坩埚,测温系统为W—Re电偶和JH-5型红外光导温度/真空度测试仪,测温保护套管为外层涂覆ZrO2(CeO稳定)和BN的Mo-Al2O3金属陶瓷管。操作过程为:将碳、镍硼中间合金、铬、钨、钼、铌合金元素以及镍板装入坩埚中;抽真空,给小电流烘埚排除附着气体,当真空度达10-3Pa时,增加功率熔化合金;熔化完毕后,在1600℃精炼5~7min,停电、结膜、破膜加入Al及Al-Y中间合金及混合稀土RE,然后大功率搅拌,搅拌后停电降温,大电流冲击破膜,在1450℃浇铸成母合金锭。The experimental master alloy is smelted in a vacuum induction furnace. The smelting crucible is a CaO crucible. The temperature measurement system is a W-Re galvanic couple and a JH-5 infrared photoconductive temperature/vacuum tester. The temperature measurement protection sleeve is coated with ZrO 2 on the outside. (CeO stabilized) and BN Mo-Al 2 O 3 cermet tubes. The operation process is as follows: put carbon, nickel-boron intermediate alloy, chromium, tungsten, molybdenum, niobium alloy elements and nickel plate into the crucible; vacuumize the small current oven to remove the attached gas, when the vacuum reaches 10 -3 Pa , increase the power to melt the alloy; after the melting is completed, refine at 1600°C for 5-7 minutes, add Al and Al-Y intermediate alloys and mixed rare earth RE after power failure, conjunctiva, and membrane rupture, and then stir with high power. After stirring, power off to cool down, and high current impact The membrane is broken and cast into a master alloy ingot at 1450°C.

表9  DD32单晶在1000℃时不同应力条件下的蠕变Table 9 Creep of DD32 single crystal under different stress conditions at 1000℃

  t(h) 152.1MPa t(h) 186.4MPa t(h) 215.8MPa t(h) 245.3MPa t(h) 343.4MPa 10 0.70 20 0.25 10 0.25 6 0.90 2 1.00 20 0.85 50 0.40 20 0.50 10 1.2 3 2.00 50 1.00 100 0.55 50 1.8 20 1.65 4 3.00 100 1.20 150 0.80 70 2.00 30 2.15 6 4.00 200 1.50 200 1.20 100 3.60 40 3.10 7 5.00 300 1.85 250 1.70 110 5.00 50 5.00 8 6.00 400 2.20 300 2.40 124 7.50 55 7.00 10 8.75 t(h) 152.1MPa t(h) 186.4 MPa t(h) 215.8 MPa t(h) 245.3 MPa t(h) 343.4 MPa 10 0.70 20 0.25 10 0.25 6 0.90 2 1.00 20 0.85 50 0.40 20 0.50 10 1.2 3 2.00 50 1.00 100 0.55 50 1.8 20 1.65 4 3.00 100 1.20 150 0.80 70 2.00 30 2.15 6 4.00 200 1.50 200 1.20 100 3.60 40 3.10 7 5.00 300 1.85 250 1.70 110 5.00 50 5.00 8 6.00 400 2.20 300 2.40 124 7.50 55 7.00 10 8.75

表10  一些单晶合金在1000℃时蠕变强度Table 10 Creep strength of some single crystal alloys at 1000℃

  合金 σ<sub>0.1/100</sub>/MPa σ<sub>0.2/100</sub>/MPa σ<sub>1.0/100</sub>/MPa DD402 88 115 208 合金   σ<sub>0.2/100</sub>/MPa - σ<sub>1.0/100</sub>/MPa DD3 78.5 - 196 alloy σ<sub>0.1/100</sub>/MPa σ<sub>0.2/100</sub>/MPa σ<sub>1.0/100</sub>/MPa DD402 88 115 208 alloy σ<sub>0.2/100</sub>/MPa - σ<sub>1.0/100</sub>/MPa DD3 78.5 - 196

由表9和表10可知,DD32单晶合金比第一代单晶合金具有非常明显的优势,抗蠕变性能优异。It can be seen from Table 9 and Table 10 that the DD32 single crystal alloy has very obvious advantages over the first generation single crystal alloy, and has excellent creep resistance.

Claims (2)

1、一种含铼镍基单晶高温合金,其特征在于按重量百分比计,合金成分包括:C 0.12~0.18,Cr 4.3~5.6,Al 5.6~6.3,Co 8.0~10.0,Mo 0.8~1.4,W 7.7~9.3,Nb 1.4~1.8,Ta 3.5~4.5,Re 3.5~4.5,Y 0.001~0.003,RE 0.005~0.020%,Ni余。1. A rhenium-containing nickel-based single crystal superalloy, characterized in that the alloy composition includes: C 0.12-0.18, Cr 4.3-5.6, Al 5.6-6.3, Co 8.0-10.0, Mo 0.8-1.4, by weight percentage, W 7.7~9.3, Nb 1.4~1.8, Ta 3.5~4.5, Re 3.5~4.5, Y 0.001~0.003, RE 0.005~0.020%, Ni surplus. 2、按照权利要求1含铼镍基单晶高温合金的制备工艺,采用真空感应炉熔炼母合金,其特征在于:在单晶生长炉温度梯度范围60K/cm~100K/cm,单晶生长速率为2~10mm/min范围内制备单晶叶片或试棒;然后在1270~1300℃范围内2~6小时固溶处理,随后进行空冷,接着在1260~1290℃范围内2~6小时进行均匀化处理,随后进行空冷;然后在1100~1150℃范围内3~6小时进行高温时效处理,接着在850~890℃范围内进行16~36小时低温时效处理,随后进行空冷。2. According to the preparation process of rhenium-containing nickel-based single crystal superalloy according to claim 1, the master alloy is smelted in a vacuum induction furnace, which is characterized in that: the temperature gradient range of the single crystal growth furnace is 60K/cm~100K/cm, and the single crystal growth rate Prepare single crystal blades or test rods in the range of 2-10mm/min; then solid solution treatment in the range of 1270-1300°C for 2-6 hours, followed by air cooling, and then homogenization in the range of 1260-1290°C for 2-6 hours Chemical treatment followed by air cooling; then high temperature aging treatment at 1100-1150°C for 3-6 hours, followed by low-temperature aging treatment at 850-890°C for 16-36 hours, followed by air cooling.
CNB2005100463610A 2005-04-30 2005-04-30 Single crystal high temperature nickel base alloy containing rhenium and its preparing process Expired - Lifetime CN100482824C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100463610A CN100482824C (en) 2005-04-30 2005-04-30 Single crystal high temperature nickel base alloy containing rhenium and its preparing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100463610A CN100482824C (en) 2005-04-30 2005-04-30 Single crystal high temperature nickel base alloy containing rhenium and its preparing process

Publications (2)

Publication Number Publication Date
CN1858281A CN1858281A (en) 2006-11-08
CN100482824C true CN100482824C (en) 2009-04-29

Family

ID=37297238

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100463610A Expired - Lifetime CN100482824C (en) 2005-04-30 2005-04-30 Single crystal high temperature nickel base alloy containing rhenium and its preparing process

Country Status (1)

Country Link
CN (1) CN100482824C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418147A (en) * 2010-09-27 2012-04-18 中国科学院金属研究所 High strength and completely antioxidative third generation monocrystalline high temperature alloy and preparation method thereof
CN102560212B (en) * 2010-12-10 2013-09-11 中国科学院金属研究所 High plasticity superhigh temperature niobium-based directionally solidified alloy and preparation method thereof
CN104372188B (en) * 2013-08-16 2016-08-24 中国科学院金属研究所 A kind of preparation method of high tantnickel copper-alloy casting
CN104928604B (en) * 2015-06-30 2016-10-05 西北工业大学 Solution Treatment Method of Nickel-based Single Crystal Superalloy
CN107034387A (en) * 2016-02-04 2017-08-11 中国科学院金属研究所 A kind of low segregation nickel-base high-temperature single crystal alloy of high-strength corrosion and heat resistant
CN106011996B (en) * 2016-08-04 2019-06-18 中国科学院金属研究所 A kind of shell and method for preparing large-sized nickel-based single crystal superalloy bar
CN108588498B (en) * 2018-05-30 2020-04-07 哈尔滨理工大学 Nickel-based gradient material and method for preparing nickel-based gradient material by selective laser melting method
CN109014215B (en) * 2018-07-18 2019-12-03 西安交通大学 A kind of heat treatment method of increasing material manufacturing monocrystal nickel-base high-temperature alloy
CN110777284B (en) * 2019-11-26 2021-08-03 中国科学院金属研究所 A single crystal superalloy component with high defect tolerance and preparation method thereof
CN113512669A (en) * 2020-04-09 2021-10-19 辽宁红银金属有限公司 Hydrogen embrittlement resistant high-temperature alloy and preparation method thereof
CN114250518B (en) * 2021-12-30 2023-01-31 苏州高晶新材料科技有限公司 Nickel-based single crystal superalloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2016119C1 (en) * 1992-06-15 1994-07-15 Научно-производственное предприятие "Завод им.В.Я.Климова" Dispersive reinforced nickel based alloy
RU2081931C1 (en) * 1994-06-15 1997-06-20 Акционерное общество "Пермские моторы" Nickel-based casting heat resistant alloy
CN1222199A (en) * 1996-06-17 1999-07-07 Abb研究有限公司 Nickel-base superalloy
WO2004053177A1 (en) * 2002-12-06 2004-06-24 Independent Administrative Institution National Institute For Materials Science Ni-BASE SINGLE CRYSTAL SUPERALLOY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2016119C1 (en) * 1992-06-15 1994-07-15 Научно-производственное предприятие "Завод им.В.Я.Климова" Dispersive reinforced nickel based alloy
RU2081931C1 (en) * 1994-06-15 1997-06-20 Акционерное общество "Пермские моторы" Nickel-based casting heat resistant alloy
CN1222199A (en) * 1996-06-17 1999-07-07 Abb研究有限公司 Nickel-base superalloy
WO2004053177A1 (en) * 2002-12-06 2004-06-24 Independent Administrative Institution National Institute For Materials Science Ni-BASE SINGLE CRYSTAL SUPERALLOY

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
含铼单晶高温合金铝化物涂层的高温氧化行为. 刘春廷,孙晓峰,管恒荣.航空材料学报,第23卷第S1期. 2003 *
铼(Re)在单晶高温合金中的作用. 李嘉荣,唐定中,陈荣章.材料工程,第8期. 1997 *
铼对单晶高温合金DD32组织的影响. 于金江,李金国,赵乃仁等.钢铁研究学报,第15卷第7期. 2003 *

Also Published As

Publication number Publication date
CN1858281A (en) 2006-11-08

Similar Documents

Publication Publication Date Title
CN107760926B (en) A kind of superalloy casting and preparation method thereof
CN100460542C (en) A rhenium-free second-generation nickel-based single crystal superalloy
CN108315600B (en) Gamma&#39; phase reinforced cobalt-based high-temperature alloy and preparation method thereof
US20160201167A1 (en) Nickel-Based Superalloys and Articles
CN103436739B (en) A kind of rhenium-containing High-strength hot-corrosion-resistnickel-base nickel-base monocrystal high-temperature alloy
CN103173865B (en) A kind of Low-cost nickel-base single crystal high-temperature alloy and preparation method thereof
CN106636759B (en) A kind of high thermal stability high-strength nickel based single-crystal high-temperature alloy that platinum family element is strengthened
CN108441741B (en) High-strength corrosion-resistant nickel-based high-temperature alloy for aerospace and manufacturing method thereof
US20020124915A1 (en) Nickel-based single crystal alloy and a method of manufacturing the same
CN105296809B (en) A kind of high intensity precipitation strength cobalt-based single crystal super alloy and preparation method thereof
CN105714153A (en) Nickle-based superalloys and articles
CN103114225B (en) A kind of High-strength hot-corrosion-resistnickel-base nickel-base monocrystal high-temperature alloy
CN107034387A (en) A kind of low segregation nickel-base high-temperature single crystal alloy of high-strength corrosion and heat resistant
CN109576534B (en) Gamma&#39; phase reinforced cobalt-based high-temperature alloy with low tungsten content and preparation process thereof
CN103045910A (en) High-temperature-stability gamma&#39;-phase-reinforced cobalt-base high-temperature alloy and preparation method thereof
CN100482824C (en) Single crystal high temperature nickel base alloy containing rhenium and its preparing process
CN105506387A (en) High-specific-creep-strength nickel base single crystal high-temperature alloy and preparation method and application thereof
WO2023197976A1 (en) Single crystal superalloy, and preparation method therefor and application thereof
CN109136654A (en) A kind of low rhenium corrosion and heat resistant long-life high intensity second generation nickel-base high-temperature single crystal alloy and its heat treatment process
CN111440967A (en) A kind of high thermal stability and high strength Re-free nickel-based single crystal superalloy and preparation process thereof
CN114164357B (en) A low-cost, low-density nickel-based single crystal superalloy
CN114164356B (en) High-strength nickel-based single crystal superalloy
CN103132148B (en) A kind of low density, low cost, strength nickel-base single crystal super alloy
KR20120105693A (en) Ni base single crystal superalloy with enhanced creep property
CN115011844B (en) Rhenium-containing tungsten-free low-specific gravity nickel-based single crystal superalloy and heat treatment process thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210811

Address after: 110172 block C12, south of Shendong Sixth Road, west of Zhongxing Street, Shenfu new area, Shenyang City, Liaoning Province

Patentee after: Liaoning Hongyin Metal Co.,Ltd.

Address before: 110016 No. 72, Wenhua Road, Shenhe District, Liaoning, Shenyang

Patentee before: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A nickel base single crystal superalloy containing rhenium and its preparation process

Effective date of registration: 20220225

Granted publication date: 20090429

Pledgee: Fushun Bank Co.,Ltd. Development Zone sub branch

Pledgor: Liaoning Hongyin Metal Co.,Ltd.

Registration number: Y2022210000012

PE01 Entry into force of the registration of the contract for pledge of patent right
CX01 Expiry of patent term

Granted publication date: 20090429

CX01 Expiry of patent term