New! View global litigation for patent families

CN100459934C - Identity identifying method and system - Google Patents

Identity identifying method and system Download PDF

Info

Publication number
CN100459934C
CN100459934C CN 200610113677 CN200610113677A CN100459934C CN 100459934 C CN100459934 C CN 100459934C CN 200610113677 CN200610113677 CN 200610113677 CN 200610113677 A CN200610113677 A CN 200610113677A CN 100459934 C CN100459934 C CN 100459934C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
identity
identifying
method
system
identity identifying
Prior art date
Application number
CN 200610113677
Other languages
Chinese (zh)
Other versions
CN1931091A (en )
Inventor
于华章
舟 陆
Original Assignee
北京飞天诚信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开了一种身份鉴定方法,包括:获取被鉴定者的生物电信号;将所述生物电信号处理成生物电特征向量;将所述生物电特征向量与预存的相应特征向量模板进行匹配比较;如匹配比较结果达到预设条件,则确认该被鉴定者。 The present invention discloses a method for identifying an identity, comprising: acquire the bioelectrical signal evaluator; the bioelectrical signal processing bioelectrical feature vector; wherein said bioelectrical respective feature vectors stored in vector templates compare; the matching comparison result reaches a predetermined condition, it is confirmed that the evaluator. 本发明还公开一种身份鉴定系统。 The present invention also discloses an identity authentication system. 本发明可提高身份鉴定的可靠性和安全性。 The present invention can improve the reliability and security of the identity authentication.

Description

一种身份鉴定方法及系统 An identity authentication method and system

技术领域 FIELD

本发明涉及身份鉴定领域,特别是涉及一种身份f、定方法及系统。 The present invention relates to identity verification, and in particular relates to an identity is F, Determination Method and System. 背景技术 Background technique

身份鉴定是用于确认身份的唯一性和合法性.在银行、CA中心、公安系统等信息及安全领域有相当广泛的应用。 Is the only identification is used to confirm the identity and legitimacy of. There are a wide range of applications in the field of information security and banking, CA center, public security systems. 为增强安全性,提高办事效率,要求身份鉴定必须快速、准确地识别被鉴定者的特征信息,验证被鉴定者真实身份。 To enhance safety, improve efficiency, identification is required to be quickly and accurately identifying feature information evaluators to verify the true identity of the authenticator.

现有技术中,身份鉴定技术主要有密码鉴定技术和生物特征鉴定技术。 Art, identity verification technologies include password identification technology and biometric identification technology. 密码鉴定技术需要被鉴定者输入在鉴定系统内输入标识号码及密码,根据标识号码和密码是否匹配确定 Cryptographic identification techniques need to be identified within the system evaluators enter input identification number and password is determined based on the identification number and password match

:帔鉴定者身份是否合法,鉴定时,只需被鉴定者输入正确的标识号码及密码即可得到身份确认,具有快速、方便的优点。 : Cape appraiser identity is legitimate, when identified, evaluators need only be input the correct identification number and password to get identification, fast, convenient advantages. 但是,密码鉴定技术缺陷非常明显。 However, the password identification technology flaws are obvious. 主要是安全性不高, 标识号码与密码只是为被鉴定者编辑的一组数据,非法人员可以采用偷盗、窺视、及网上石皮译软件等手段获取到这些数据,这样,非法人员使用不正常手段获取的标识号码和密码时,就会被误确认为身份合法,便可随心所欲侵害当事人利益。 Mainly security is not high, identification number and password just for a set of data to be edited evaluators, illegal workers can use to steal, spy, leather and stone online translation software and other means of access to these data, so do not use illegal workers when normal means of obtaining the identification number and password will be mistakenly recognized as a legitimate identity, against the interests of the parties can be arbitrary. 现实中,此类事件也经常发生。 In reality, such events often occur.

将人体生物学特征或行为特性应用于身份鉴定,则可在一定程度上克服密码鉴定技术的不足。 The human biological characteristics or behavioral characteristics used in identity verification, it can overcome the lack of password identification technology to some extent. 经科学论证,每个人的生物学特征是唯一的,其重复的概率可以忽略不计。 Scientific proof, the biological characteristics of each person is unique, and repeated the probability is negligible. 目前利用人体生物学特征进行身份鉴定主要是利用人体脸像、虹膜、指紋、掌紋、声音、笔迹、 步态等特征。 Currently the use of human biological characteristics identification is mainly the use of the body like the face, iris, fingerprints, palm prints, voice, handwriting, gait and other features.

参阅图),为现有技术中利用指紋进行身份鉴定的方法流程图,具体步骤如下: 步骤101、将需验证的人群的指纹编号记录在系统内指纹库中; 步骤102、获取被鉴定者指纹,并输入系统; Referring to FIG.), Fingerprint identification is to use the prior art flowchart of a method, the following steps: Step 101, the need to verify the fingerprint of the population number is recorded in the system fingerprint database; step 102, acquires a fingerprint iden and enter the system;

步骤103、输入该被鉴定者编号,调出预存的该标号对应的指紋,与获得的指紋相比 Step 103, the input number is an evaluator, the reference numerals corresponding to recall pre-stored fingerprint, the fingerprint is obtained as compared with the

较; The more;

步骤104、如两指紋可重叠的比例达到要求,则确定该被鉴定者身份为合法身份。 Step 104, as the ratio of two overlapping fingerprint may meet the requirements, it is determined that the legal status as a status evaluator. 但是,利用指紋技术进行身份识別也有其不足,如高科技的生物技术可能对指紋进行仿制,或在乳胶中隐去指紋,这会给指紋识别技术带来一定的隐患。 However, the use of fingerprint identification technology also has its shortcomings, such as high-tech biotechnology imitation may be the fingerprint, fingerprints or faded in the latex, this fingerprint recognition technology will bring some risks. 其它如利用人脸、声音、步态等识别技术都在一定程度上存在被仿冒的隐患,比如人脸可以通过照片作假,声 Others, such as the use of a human face, voice, gait recognition counterfeiting risks are present to some extent, such as a human face can be false by photos, sound

音和笔记可以被模仿。 Tone and notes can be imitated. 因此,上述身份鉴定技术都存一定安全隐患,其可靠性和安全性尚存缺陷。 Thus the identity verification techniques exist some security risks, reliability and safety of the remaining defects.

发明内容 SUMMARY

有鉴于此,本发明提供一种身份鉴定方法及系统,用于提高身份鉴定的可靠性和安全性。 Accordingly, the present invention provides a method and system for identifying the identity, the identification is for improving reliability and safety.

本发明一种身份鉴定方法,获取被鉴定者的生物电信号,所述生物电信号包括心肌生物电信号和脑电波信号;通过放大处理、滤波处理与模拟/数字转换,将所述生物电信号处理成生物电特征参数;依据生物电信号的特征参数计算生物电特征向量;将所述生物电特征向量与预存的相应特征向量模板进行匹配比较;如匹配比较结果达到预设条件,确认该被鉴定者身份合法; An identity authentication method according to the present invention, the assessor acquires a bioelectrical signal, said bioelectrical signal including myocardial and brain wave signal bioelectrical signal; processing by amplifying, filtering and analog / digital conversion, the bioelectrical signal processing bioelectrical feature parameter; calculating a bioelectrical feature vector according to the characteristic parameters of the bioelectrical signal; wherein said bioelectrical respective feature vector and the vector templates stored comparison; such as matching comparison result reaches a preset condition, which is confirmed appraiser legal status;

其中,所述在处理后的生物电信号中提取生物电特征参数包括: Wherein said electrical characteristic parameter comprises extracting biological organisms in the electrical signal processing:

计算生物电信号一个波形周期中的斜率; Calculating the slope a bioelectrical signal waveform cycle;

计算生物电信号一个波形周期中峰值时间; Calculating a bioelectrical signal waveform peak time period;

计算生物电信号周期波形内采样点值的方差; Calculating the variance bioelectrical signal sample values ​​within the period of the waveform;

计算生物电信号周期波形的高阶矩; Calculate higher moments of the bioelectric signal cycle waveform;

计算生物电信号周期波形的协方差。 Bioelectrical signal covariance calculation cycle of the waveform.

优选的,所述计算生物电信号一个波形周期中的斜率包括:计算生物电信号中每一个周期内生物电信号的波形从起始点到第一个波峰的上升斜率;从第一个波谷到第二个波峰的上升斜率;从波峰到最低点的下降斜率;最后一个波峰的上升斜率。 Preferably, the slope is calculated bioelectric signal in a waveform period comprises: calculating the bioelectrical signal waveform in each cycle from the starting point to the bioelectrical signal of the rising slope of the first peak; from the first trough to the first two peaks rising slope; from the peak to the lowest point of the descending slope; a rising slope of the last peak.

优选的,所述计算生物电信号一个波形周期中峰值时间包括:计算每一个周期内生物电信号的波形从起点到第一个波峰所用的时间;从第一个波峰到最后一个波峰所用的时间。 Preferably, the calculating a bioelectrical signal waveform peak cycle time comprises: calculating a waveform in each period from the start of the bioelectrical signal to a first peak time used; the time from the first peak to the last peak used .

优选的,所述计算生物电信号周期波形内采样点值的方差包括:计算前n个周期波形信号内采样点值的方差,并计算出n个方差的平均值。 Preferably, the variance of values ​​of sampling points within a period of the waveform of the calculated bioelectrical signal comprising: a variance of values ​​of sampling points within n cycles before the signal waveform is calculated, and the calculated average of n variance.

优选的,所述计算生物电信号周期波形的高阶矩包括:计算前n个周期波形信号中每个周期的4阶矩,并计算出前n个波形信号周期4阶矩的平均值。 Preferably, the calculated bioelectrical signal higher moments periodic waveform comprising: before calculating the waveform signal in n periods fourth moment of each cycle, and calculates the fourth moment of the average of the first waveform signal cycle n.

优选的,所述计算生物电信号周期波形的协方差包括:计算前n个周期波形信号相邻两周期的协方差。 Preferably, the covariance is calculated bioelectrical signal comprising a periodic waveform: n cycles before calculating the waveform signals of adjacent two covariance cycle.

优选的,所述根据特征参数生成特征向量的方法是将特征参数按一定的顺序排列。 A preferred method, according to the characteristic parameters of the feature vector is generated characteristic parameters arranged in a certain order. 优选的,采用矢量量化法、隐马尔可夫模型法、遗传算法、动态时间规整法或神经网络法进行匹配比较。 Preferably, the method using vector quantization, comparing hidden Markov model matching method, genetic algorithm, a dynamic time warping method or a neural network method.

优选的,所述生物电信号的通过测量人体两手之间的电位差获取。 Preferably, the bioelectrical signal obtained by measuring the potential difference between the human hands.

优选的,所述获取被鉴定者生物电信号,包括:获取被鉴定者的生物电信号,同时获 Preferably, the assessor acquires a bioelectrical signal, comprising: acquiring a bioelectrical signal is evaluator, while eligible

取被鉴定者电阻、体温与/或湿度信号;将电阻、体温与/或湿度信号与上述生物电信号叠 Take the evaluator resistance, temperature and / or humidity signal; resistance, temperature and / or humidity signal and the bio-electrical signal bundle

加后,作为被鉴定者的生物电信号。 After the addition, as the bioelectric signal of the evaluator.

与现有技术相比,本发明具有以下优点: Compared with the prior art, the present invention has the following advantages:

本发明将生物电信号用于身份鉴定,生物电信号是每个人独有的生物学特征,其可重复的概率完全可以忽略不计,并且无可仿冒,充分保证身份鉴定的可靠性与安全性。 The invention will bioelectrical signals used for identity identification, biological signals is unique to each person's biological characteristics, it can be repeated chance to completely negligible, and no counterfeit, fully guarantee the reliability and security of identity authentication.

优选的,本发明采用心肌生物电信号和脑电波信号,心肌生物电信号和脑电波信号特征明显,易于获取和处理。 Preferably, the present invention employs biological cardiac electrical and radio signals, the bioelectric signal myocardium and brain wave signal characteristics significantly brain, easy acquisition and processing.

优选的,本发明可同时获取被鉴定者电阻、体温与/或湿度信号。 Preferably, the present invention can be acquired evaluator resistance, temperature and / or humidity signal simultaneously. 将电阻、体温与/或湿度信号与生物电信号叠加后,作为被鉴定者的生物电信号,结合被鉴定者多种生物特征 After resistance, temperature and / or humidity signal with a bioelectric signal is superimposed, as the bioelectric signal evaluator of binding is more biometric iden

进行鉴定,进一步增强身份鉴定的可靠性和安全性。 Identification, to further enhance the reliability and security of identity authentication. 附图说明 BRIEF DESCRIPTION

图】为现有技术中利用指紋进行身份鉴定的方法流程图; 图2为本发明身份鉴定方法实施例的流程图; FIG] is a prior art fingerprint identification is a flowchart of a method; method of identification is a flowchart of FIG. 2 according to an embodiment of the present invention;

图3为人体心肌生物电信号在一个周期电位差随时间的变化示意图; 3 is a schematic diagram of human cardiac bioelectrical signal difference changes with time in a periodic potential;

图4为被鉴定者的心肌生物电信号的波形图; 4 is a waveform diagram of the myocardium bioelectric signal evaluator of FIG;

图5为被鉴定者的心肌生物电信号的波形图; FIG 5 is a waveform diagram of the evaluator of myocardial bioelectric signal;

图6为人体心肌生物电信号的主要特征参数检测示意图; FIG 6 is a schematic view of main parameters of the detection of human cardiac bioelectric signal;

图7为本发明身份鉴定系统实施例的示意图; FIG 7 is a schematic diagram of the identity verification system of the present embodiment of the invention;

图8为本发明信号放大单元实施例的电路图。 8 a circuit diagram of the signal amplification unit embodiment of the present invention.

具体实施方式 detailed description

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。 For the above objects, features and advantages of the invention more comprehensible, the present invention is further the following detailed description in conjunction with the accompanying drawings and specific embodiments.

本发明的核心思想是将生物电信号用于身份鉴定,生物电信号是每个人独有的生物学特征,其可重复的概率完全可以忽略不计,并且无可仿冒,充分保证身份鉴定的可靠性与安全性。 The core idea of ​​the invention is the biological signals used for identity identification, biological signals is unique to each person's biological characteristics, it can be repeated chance to completely negligible, and no counterfeiting, and fully guarantee the reliability of identification is and security.

生物电是生物体所呈现的电现象。 Bioelectricity is an electrical phenomenon organisms presented. 产生生物电的基础来自细胞膜内外的电位差。 Basis for generating bioelectric potential difference from inside and outside the cell membrane. 安静时,细胞内处于负电位,细胞外处于负电位,称"静息电位";兴奋时,瞬间细胞内的电位升高并超过了细胞外而相对地变成了正电位,暂时可变为内正外负,称"动作电位",这种电位的变化只持续几毫秒,兴奋过后又恢复原来的状态。 Quiet, at a negative potential intracellular, extracellular potential in the negative, saying "resting potential"; when excited, the potential within the cell rises over the moment the foreign cells into a relatively positive potential, can become temporarily It is outside the negative, saying "action potential", this potential change only lasts a few milliseconds after the excitement has returned to its original state. 脑和心脏等器官所表现的复杂电变化,是它们的组成细胞电变化的总和,单个个体的生物电信号基本一致,不同个体的生物电信号存在较大的差异。 Complex electrical changes in brain heart and other organs and have shown, is the sum of their composition varying electric cell, a single individual bioelectric signal substantially uniform, there is a large difference in different individuals of the bioelectric signal.

基于生物电的生物特征身份鉴定是采用每个人独一无二的生物特征来验证其身份的合法性。 Biometric identification is based on the use of bio-electricity is each person's unique biological characteristics to verify the legitimacy of their identity. 从理论上说,生物特征认证是最可靠的身份认证方式,因为它直接使用人体内的生物特征信号来表示每一个人的身份,不同的人具有相同生物特征的可能性可以忽略不计, 并且不可能被仿冒,因此,具有极高的可靠性和安全性。 In theory, biometric authentication is the most secure authentication methods, because it directly using biometric signals in the human body to represent each individual's identity, different people have the same biological characteristics possibility is negligible and does not may be counterfeit, therefore, it has a very high reliability and security.

本发明通过专用的仪器获取被鉴定者生物电信号,生物电信号可以为人体心肌生物电 The present invention is obtained by a dedicated instrument evaluator bioelectrical signal, the bioelectrical signal may be a human myocardial bioelectrical

信号、脑电波信号等有较强特征的信号量。 Semaphore strong characteristic signals, electroencephalogram signals. 再将获取被鉴定者的生物电信号进行放大、滤波处理后,在处理后的图形进行特殊点A/D (模/数)转换,提取被鉴定者生物电信号的特^i参数,然后根据生物电特征参数计算生成被鉴定者的生物电特征向量。 Then amplifies assessor acquires a bioelectrical signal, after filtering, special point A / D (analog / digital) conversion on the processed graphics, extracting parameter evaluator Laid ^ i bioelectric signal, then in accordance with bioelectric characteristic parameter calculation generates a bioelectrical feature vector evaluator.

本发明将被鉴定者的生物电特征向量与预先存储在数据库中的该被鉴定者的生物电特征模板信号进行匹配。 The present invention is characterized in template matching bioelectrical signal evaluator of the evaluator is bioelectrical feature vector previously stored in the database. 当匹配达到或超过预设的门限值时,确认被鉴定者身份合法:当匹配没有达到或超过预设的门限值时,确认被鉴定者身份非法。 When a match reaches or exceeds a preset threshold, confirming the identity of legitimate appraisers: When a match does not meet or exceed a preset threshold, confirming the identity authenticator is illegal.

参阅图2,为本发明身份鉴定方法实施例的流程图,具体步骤如下: 2, the method of identification is a flowchart of an embodiment of the present invention, the following steps:

步骤201 、被鉴定者输入自己的标识号码; Step 201, the evaluators enter their identification number;

被鉴定者输入自己的姓名、身份证号码或编号等标识号码,以便于在数据库中查找出与其相应生物电模板信号。 And other assessor is to enter your name, ID number or serial number identification number in order to find out its corresponding bioelectric signals template in the database.

步骤202、获取被鉴定者的心肌生物电信号; ' 获取时需要用指夹式生物电信号检测器固定在被鉴定者的指端进行心肌生物电信号的采集。 Step 202, the bioelectrical signal assessor acquires the myocardium; 'need finger clip bioelectric signal detector holding myocardial acquisition of biological signals being acquired when the finger evaluator. 可通过测量人体两手之间的电位差获取心肌生物电信号。 Difference acquiring cardiac electrical signals may be a biological body by measuring the potential difference between both hands.

人体心肌生物电是由心脏的窦房结发出的一次兴奋,按一定的途径和进程,依次传向心房和心室,引起整个心脏的兴奋;因此,每一个心动周期中,心脏各部分兴奋过程中出i见的电变化传播方向、途径、次序和时间等都有一定的规律。 Human cardiac bioelectricity is an exciting emanating from the heart of the sinus node, according to certain approaches and processes, in order to pass the atria and ventricles, causing the whole heart of the excitement; therefore, each cardiac cycle, the heart of each part of the process of excitation i see the change in the electrical propagation direction, route, time and order have a certain regularity. 这种生物电变化通过心脏周围的导电组织和体液,反映到身体表面,使身体各部位在每一心动周期中也都发生有规律的电变化。 Such varied by electrically conductive biological fluids and tissues surrounding the heart, to the body surface to reflect the change in the electrical parts of the body are also regularly occurs in each cardiac cycle. 将测量电极放置在人体表面的一定部位记录出来的心脏电变化曲线能够反映心月庄兴奋的产生、传导和恢复过程中的生物电变化系。 The measurement electrode is placed in certain parts of the recording surface of the body out of the curve reflect the heart's electrical heart Yuezhuang exciting generation, conduction and coefficient of variation of bioelectric recovery process. 而该变化曲线反映的人体生物电信号在经过生物电放大器的放大后,能够被检测出来。 The curve reflects the human body bioelectrical signal after amplified bioelectric amplifier, can be detected.

请参阅图3,图3为人体心肌生物电信号在一个周期电位差(y轴)随时间(t轴)的变化示意图,该图所示波形是一个典型的生物电信号的波形图。 Refer to FIG. 3, FIG. 3 is a schematic diagram of human cardiac bioelectrical signal changes in a period potential difference (y-axis) over time (t-axis) waveforms shown in the figure is a typical waveform chart of bioelectric signals. 图4、图5为两个不同被鉴定者的心肌生物电信号的波形图,经对比可以看出,虽然每个个体的心肌生物电信号的4寺征会随着检测部位和检测时刻的变化而有所差异,但是,同一个人的心肌生物电信号基本保持稳定,不同个体的心肌生物电信号却存在比较大的差异。 FIG 4, FIG 5 is a waveform diagram of two different cardiac bioelectric signal evaluator, and can be seen by comparison, although changes in cardiac bioelectric signal for each individual will be characterized as the temple 4 and the detection timing of the detection site vary, however, the same person myocardial bioelectrical signals remained stable cardiac bioelectric signals of different individuals but there are relatively large differences. 因此,通过心肌生物电信 Therefore, cardiac biological telecommunications

步骤203、对心肌生物电信号进行放大、滤波处理、模拟量/数字量的转换; 将采集到的心肌生物电信号通过心肌电信号放大器进行放大,并将放大后的心肌生物电信号进行滤波处理。 Step 203, myocardial bioelectrical signal amplification, filtering, analog / digital conversion; the collected cardiac bioelectrical signal is amplified by an amplifier cardiac electrical signal, and the filtering process myocardial bioelectrical signal amplified . 步骤204、对处理后的心肌生物电信号进行特殊点检测,并计算其特征参数; Step 204, after myocardial bioelectrical signal detection special treatment, and calculate the characteristic parameters;

心肌生物电特征参数的提取是指提取生物电信号信号中表征人的基本特征,选取的特征必须能够有效地区分不同的被鉴定者,且对同一被鉴定者的变化保持相对稳定,同时要求特征参数计算简便,最好有高效快速算法,以保证识别的实时性。 Cardiac electrical characteristic parameter extracting means extracting biological organisms electrical signal characterizing the basic feature of a person, the selected feature must be able to distinguish the different evaluators and evaluator for the same Change remained relatively stable, while the features parameter calculation is simple, fast and efficient algorithms have the best in order to ensure real-time recognition.

图6为对人体心肌生物电信号的主要特征参数检测示意图,心肌生物电信号的特征参数包括生物电信号的顶点和谷点,与之相对的特征参数包括:上升及下降斜率kl、 k2、 k3、 1〈4,时间间隔t】、t2,具体表现为: FIG 6 is a main feature of the human cardiac parameters detected bioelectric signal schematic, characteristic parameters of cardiac electrical signals of biological signals comprising the biological vertices and valley points, as opposed to the characteristic parameters comprises: rising and falling slope kl, k2, k3 , 1 <4, the time interval t], t2, specifically as follows:

计算生物电信号一个波形周期中的斜率; Calculating the slope a bioelectrical signal waveform cycle;

计算生物电信号一个波形周期中峰值时间; Calculating a bioelectrical signal waveform peak time period;

计算生物电信号周期波形内采样点值的方差; Calculating the variance bioelectrical signal sample values ​​within the period of the waveform;

计算生物电信号周期波形的高阶矩; Calculate higher moments of the bioelectric signal cycle waveform;

计算生物电信号周期波形的协方差。 Bioelectrical signal covariance calculation cycle of the waveform.

所述计算生物电信号一个波形周期中的斜率包括:计算生物电信号中每一个周期内生物电信号的波形从起始点到第一个波峰的上升斜率;从第一个波谷到第二个波峰的上升斜率;从波峰到最4氐点的下降斜率;最后一个波峰的上升斜率; Calculating a bioelectric signal slope of the waveform period comprises: calculating the bioelectrical signal waveform in each cycle of bioelectric signals from a starting point to the rising slope of the first peak; from the first trough to the second peak the rising slope; descending slope from the peak to the most 4 Di point; a rising slope of the last peak;

所述计算生物电信号一个波形周期中峰值时间包括:计算每一个周期内生物电信号的波形从起点到第一个波峰所用的时间;从第一个波峰到最后一个波峰所用的时间; Calculating a bioelectrical signal waveform of the peak period of time comprises: calculating a waveform in each period from the start of the bioelectrical signal to a first peak time used; from the first peak to the last peak time used;

所述计算生物电信号周期波形内采样点值的方差包括:计算前n个周期波形信号内采样点值的方差,并计算出n个方差的平均值; The variance of values ​​of sampling points within a period of a waveform of the calculated bioelectrical signal comprising: a variance of values ​​of sampling points within n cycles before calculating the waveform signals, calculates the average of n and variance;

所述计算生物电信号周期波形的高阶矩包括:计算前n个周期波形信号中每个周期的4阶矩,并计算出前n个波形信号周期4阶矩的平均值。 Calculate higher moments of the cycle of the waveform bioelectrical signal comprising: before calculating the waveform signal in n periods fourth moment of each cycle, and calculates the fourth moment of the average of the first waveform signal cycle n.

所述计算生物电信号周期波形的协方差包括:计算前n个周期波形信号相邻两周期的协方差。 The calculated bioelectric signal covariance periodic waveform comprising: before calculating the waveform signals of adjacent n periods covariance two cycles.

将计算后的结果作为心肌生物电信号的特征参数。 The calculated results as the characteristic parameters of myocardial bioelectric signals. 步骤205、依据生物电信号的特征参数计算生物电特征向量; 将生物电信号的特征参数按一定顺序进行排列即可组成生物电的特征向量。 Step 205 calculates the bioelectrical feature vector according to the characteristic parameters of biological signals; the characteristic parameters of biological signals arranged in a certain order can be composed of bioelectrical feature vector. 步骤206、根据被鉴定者标识号码查找相对应的心肌生物电模板信息; 将所有可能被鉴定的人群按标识号码预置其心肌生物电模板信息到数据库,心肌生物电模板信息记录所对应人员的心肌生物电信号的特征向量。 Step 206, according to the sought cardiac bioelectric template information corresponding to the identification number of evaluators; all the groups could be identified bioelectric myocardial preset template information database according to the identification number, the information recording bioelectric myocardial templates correspond persons myocardial eigenvectors of biological signals. 需要匹配时,根据被鉴定者输 When the need to match, according to the input iden

入的标识号码调出对应的心肌生物电的模板信息t Identification number to call into the template information myocardial t corresponding to the bioelectrical

步骤207、将被鉴定者心肌生物电信号的特征向量与模板信息相比较,依据比较后的结果确定是否匹配。 Step 207, the feature vector is compared with the bioelectrical signal evaluator myocardial template information, determine if a match based on the comparison result.

是否匹配是指比较的结果是否超过预设的条件,预设条件可为固定的门限值,若超过, 则表示该被鉴定者通过身份鉴定。 Refers to whether the match result of the comparison exceeds a preset condition, the preset condition may be a fixed threshold, if exceeded, it indicates that the identity is identified by the evaluator. 若没有超过,则表示该用户没有通过身份鉴定。 If it does not, it means that the user does not pass the identity identification.

本实施例中,匹配比较方法可采用矢量量化法、隐马尔可夫模型法、动态时间规整法或人工神经网络法进行匹配比较,上述方法已在音频领域有成熟的应用,其可靠性很高。 In this embodiment, the matching method may employ vector quantization method comparison, for comparing hidden Markov model matching method, dynamic time warping or artificial neural network method, the above method has been applied in the mature field of audio, high reliability .

本实施例在步骤201中,获取被鉴定者心肌生物电信号的同时,还可同时获取被鉴定者一些生理特征信号,如电阻、体温及湿度等等: In this embodiment, step 201, it acquires a bioelectrical signal evaluator myocardium while also acquires the evaluator physiological characteristic signals, such as resistors, temperature and humidity and so on at the same time:

将上述信号与被鉴定者的生物电信号进行叠加后,再按实施例所述方法处理成生物电特征向量,与生物电模板信息进行匹配比较,进一步提高身份识别的可靠性和安全性。 After said signal to be superimposed with the bioelectrical signal evaluator, the embodiments of the method and press processing bioelectrical feature vector with the bioelectrical template matching information, to further improve the reliability and security of identification.

本发明所提出的基于人体生物电的身份鉴定方法还能够结合其他一些生物特征技术, 实现多生物特征信息的身份鉴定。 The present invention proposes a method for identifying the identity of the human body based on bioelectricity is also capable of binding other biometric technology, multiple identification is biometric information.

参阅图7,为本发明一种身份鉴定系统实施例的示意图,该系统包括获取单元701、 4言号处理单元7Q2、匹配计算单元703、确认单元704。 Referring to FIG. 7, an identity authentication system schematic of an embodiment of the present invention, the system includes an acquisition unit 701, the processing unit 4 made No. 7Q2, matching calculation unit 703, confirmation unit 704.

获取单元701通过专用的仪器获取被鉴定者生物电信号,生物电信号可以为人体心肌生物电信号、脑电波信号等有较强特征的信号量。 Acquiring semaphore is acquired through a dedicated instrument evaluator bioelectrical signal, the bioelectrical signal may be a human cardiac bioelectric signals, brain waves, which are strong signal feature unit 701. 获取单元701通过测量人体两手之间的电位差获取生物电信号。 The potential difference between the acquisition unit 701 acquires the human hands by measuring bioelectric signals. 获取单元701将获取的生物电信号传送至信号处理单元702。 The acquisition unit 701 acquires biological electrical signals to the signal processing unit 702.

信号处理单元702包括信号放大单元70211 、滤波单元7022、模拟/数字转换单元7023、 特征向量生成单元7024。 The signal processing unit 702 includes a signal amplifying unit 70211, a filtering unit 7022, an analog / digital converting unit 7023, feature vector generating unit 7024.

信号放大单元70211将采集到的生物电信号进行放大,并将放大后的生物电信号传送至滤波单元7022。 Signal amplifying unit 70211 to the collected amplified bioelectric signal, and transmits the amplified electric signal to the bio-filter unit 7022.

滤波单元7022对接收到的信号进行滤波处理,并将滤波后的信号传送至模拟/数字转:换单元7023。 Received signal filtering unit 7022 performs a filtering process, the signal transmitted to the analog / digital and filtered after transfer: conversion unit 7023.

模拟/数字转换单元7023依据特种电检测方法将生物电波形信号转换为特征参数,如: 计算生物电信号一个波形周期中的斜率; 计算生物电信号一个波形周期中峰值时间; 计算生物电信号周期波形内采样点值的方差; 计算生物电信号周期波形的高阶矩; Analog / digital converting unit 7023 according to a special method for electrically detecting bioelectric signals into the waveform feature parameters, such as: computing a slope of the bioelectric signal waveform cycle; calculating a bioelectric signal waveform peak period of time; calculating a bioelectrical signal cycles the variance of the waveform sample values; calculating a bioelectrical signal higher moments periodic waveform;

计算生物电信号周期波形的协方差。 Bioelectrical signal covariance calculation cycle of the waveform.

所述计算生物电信号一个波形周期中的斜率包括:计算生物电信号中每一个周期内生物电信号的波形从起始点到第一个波峰的上升斜率:从第一个波谷到第二个波峰的上升斜率;从波峰到最低点的下降斜率;最后一个波峰的上升斜率。 Calculating a bioelectric signal slope of the waveform period comprises: calculating the bioelectrical signal waveform in each cycle from the starting point to the bioelectrical signal first rising slope of a peak: trough from the first to the second peak the rising slope; from the peak to the lowest point of the descending slope; a rising slope of the last peak.

所述计算生物电信号一个波形周期中峰值时间包括:计算每一个周期内生物电信号的波形从起点到第一个波峰所用的时间:从第一个波峰到最后一个波峰所用的时间。 Calculating the waveform in each cycle from the start of the bioelectrical signal to a first peak time used:: the first peak from the last peak of the bioelectric signal by a time period of a waveform peak time comprises the calculation.

所述计算生物电信号周期波形内采样点值的方差包括:计算前n个周期波形信号内采样点值的方差,并计算出n个方差的平均值。 The bioelectrical signal variance value of the waveform sampling points of the cycle of calculating comprises: variance of values ​​of sampling points within n cycles before the signal waveform is calculated, and the calculated average of n variance.

所述计算生物电信号周期波形的高阶矩包括:计算前n个周期波形信号中每个周期的4阶矩,并计算出前n个波形信号周期4阶矩的平均值。 Calculate higher moments of the cycle of the waveform bioelectrical signal comprising: before calculating the waveform signal in n periods fourth moment of each cycle, and calculates the fourth moment of the average of the first waveform signal cycle n.

所述计算生物电信号周期波形的协方差包括:计算前n个周期波形信号相邻两周期的协方差。 The calculated bioelectric signal covariance periodic waveform comprising: before calculating the waveform signals of adjacent n periods covariance two cycles.

将上述检结果作为生物电信号的特征参数,并将特征参数传送至特征向量生成单元7024。 The above-mentioned detection result of biological signals as the characteristic parameter, and characteristic parameters to the feature vector generating unit 7024.

特征向量生成单元7024将特征参数按一定顺序进行排列即可组成生物电的特征向量, 并将生物电特征向量传送至匹配计算单元703。 Feature vector generating unit 7024 arranges the characteristic parameters of the feature vector can be composed of bioelectrical certain order, and the bioelectrical feature vector calculating unit 703 to the matching transmission.

匹配计算单元703在其数据库内调出该鉴定者的生物电模板信息,并生物电特征参数与模板信息进行匹配比较。 Matching calculation unit 703 to call up the template information of the bioelectrical assessors in its database, and the bioelectric characteristic parameter and comparing the template matching information. 匹配比较方法可选用采用矢量量化法、隐马尔可夫模型法、动态时间规整法或人工神经网络法进行匹配比较。 Matching comparison method can be selected using a vector quantization method, the matching method comparing hidden Markov model, a dynamic time warping process or Artificial Neural Network. 匹配计算单元703内置预设条件,预设条件可为固定的门限,只有当被鉴定者的生物电特征向量与预先存储的模板信息的匹配超过所述门限值时,输出信号高电平到确认单元704,否则输出低电平信号到确认单元704。 Matching calculation unit 703 built preset condition, the preset condition may be a fixed threshold only when the template is matched bioelectrical information with pre-stored feature vector exceeds the threshold value assessor, a high level output signal to confirmation unit 704, and otherwise outputs a low level signal to the acknowledgment unit 704.

确认单元704接收到高电平信号,确认该被鉴定者身份;接受到第电平信号,则认为该被鉴定者非法。 Confirmation unit 704 receives the high level signal, which is to confirm the identity of evaluators; second received signal level is considered to be illegal evaluator.

获取单元701还用于获取被鉴定者电阻、体温和湿度信号,信号处理单元702还用于d夸电阻、体温与/或湿度信号与上述生物电信号叠加后处理。 Obtaining unit 701 is further configured to obtain an evaluator resistance, temperature and humidity signal, a signal processing unit 702 is further configured d boast resistance, temperature and / or humidity signal after the above-described superimposition processing bioelectric signals.

由于生物电信号十分微弱,在检测生物电信号的同时存在强大的干扰,因此,设计高质量的信号放大单元7021有许多技术困难,通常要求必须具备如下特性: Since the bioelectric signal is very weak, while detecting the presence of strong interference bioelectric signal, therefore, design quality signal amplifying unit 7021 has a number of technical difficulties, typically require must have the following characteristics:

1、高输入阻抗,人体心肌的生物电信号是高阻抗的微弱信号源,所以生物电放大器的车命入阻抗必须比较高,从而减小信号源阻抗对生物电放大器的影响。 1, high input impedance, the body is weak bioelectrical signals myocardial high impedance signal source, the bioelectric impedance of the amplifier must drive the relatively high life, thereby reducing the influence of the signal source impedance of the bioelectric amplifier.

2、 高共模抑制比(CMRR),为了抑制人体所携带的工频干扰以及所测量的参数外的其他生理作用的千扰,须选用差分放大形式。 2, a high common mode rejection ratio (the CMRR), in order to suppress one thousand interfere with other physiological role outside the body carried by frequency interference and measured parameters shall be selected in the form of differential amplification.

3、 低噪声、低漂移,为了获得一定信/噪比的输入信号,对放大器的低噪声性能有严格的要求。 3, low noise, low drift, in order to obtain a certain signal / noise ratio of the input signal, there are strict requirements for low noise performance of the amplifier. 理想的生物电放大器,能够抑制外界干扰使其减弱到和放大器的固有噪声为同一数量级。 Ideal bioelectric amplifier, making it possible to suppress external interference and to weaken the inherent noise amplifier of the same order of magnitude.

参阅图8,为本发明信号放大单元实施例的电路图,信号放大单元7021包括前级差分放大单元、直流补偿放大单元和后级放大单元。 Referring to Figure 8, a circuit diagram of the signal amplification unit embodiment of the present invention, the signal amplification unit 7021 includes a front differential amplification unit, and the DC offset post-stage amplification unit amplifying unit.

前级差分放大单元,包括运算放大器Al及连接其输入端的电阻Rl和电阻R2. Front-stage amplification unit including an operational amplifier Al and its input connected to resistor Rl and resistor R2.

直流补偿》t大单元,包括运算放大器A2、电容C1、电容C2,电阻R5、电阻R6,运算放大器A2的负输入端通过R6电阻与运算放大器Al的输出端相连;运算放大器A2的输出端通过并联的电容C1和电阻R5与运算放大器Al相连;运算放大器A2的输出端与负输入端通过电容C2相连. DC offset "t big unit, including operational amplifier A2, the capacitor C1, capacitor C2, resistor R5, the resistor R6, a negative input terminal of the operational amplifier A2 is connected via a resistor R6 to the output terminal of the operational amplifier Al; an output terminal of the operational amplifier A2 by parallel capacitor C1 and the resistor R5 is connected to the operational amplifier Al; A2 output of the operational amplifier and the negative input terminal through a capacitor C2.

后级放大单元,包括运算放大器A3、电容C3、 R7电阻、电阻R8,运算放大器A3的负输入端通过R7电阻连接运算放大器Al的输出端;运算放大器A3的负输入端与输出端之间并联电阻R8和第三电容C3。 Post-stage amplification unit including an operational amplifier A3, a C3 capacitor, a resistor R7, a resistor R8, a negative input terminal of the operational amplifier A3 through a resistor R7 connected to the output terminal of the operational amplifier Al; parallel between the negative input terminal of the operational amplifier A3 and the output terminal resistor R8 and third capacitor C3.

该电路的极化电压最大可以达到3OOmV ,所在交流耦合中减少极化电压的影响是必须的。 The maximum polarization voltage of the circuit can be achieved 3OOmV, where AC coupling reduce the influence of the polarization voltage is necessary. 在该电路中,釆用了直流补偿放大器来抵消直流偏移量。 In this circuit, it precludes the use of the DC offset to cancel the DC offset of the amplifier. 集成化仪用放大器作为生物电前置放大器时,由于极化电压的存在,前置放大器的增益只能在几十倍以内,这就使得集成化放大器作为前置^:大器时的共模抑制比不可能达到最高。 When the instrument amplifier as preamplifier bioelectric integration, due to the presence of the polarization voltage, the gain of the preamplifier is only within a few times, which makes as a pre-amplifier integrated ^: when the common mode amplifier rejection is impossible to achieve the highest.

在该电路中,经前级放大信号中的直流成分(包括极化电压以及仪用放大器的输入失调电压)由直流补偿电路消除。 In this circuit, the DC component of the signal pre-amplified by a DC offset cancellation circuit (including the polarization voltage and the instrument with the input offset voltage of the amplifier). 后级放大器承担着主要的放大任务,要求运放有很低的输入失调电压,以免高增益放大后,影响输出信号。 Post-amplifier bear the primary task of amplification, requires the op amp has a very low input offset voltage, high gain amplifier so as not to affect the output signal.

以上对本发明所提供的一种身份鉴定方法及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所迷,本说明书内容不应理解为对本发明的限制。 Above for an identity identifying method and system provided by the invention will be described in detail herein through specific examples of the principles and embodiments of the invention are set forth in the above embodiment will be described only to help understanding of the present invention is a method its core idea; Meanwhile, those of ordinary skill in the art, according to the ideas of the present invention, there are modifications to the specific embodiments and application scope, the fans in summary, the present specification shall not be construed as the present invention limits.

Claims (10)

1、一种身份鉴定方法,其特征在于,包括: 获取被鉴定者的生物电信号,所述生物电信号包括心肌生物电信号和脑电波信号; 通过放大处理、滤波处理与模拟/数字转换,将所述生物电信号处理成生物电特征参数: 依据生物电信号的特征参数计算生物电特征向量; 将所述生物电特征向量与预存的相应特征向量模板进行匹配比较; 如匹配比较结果达到预设条件,确认该被鉴定者身份合法; 其中,将所述生物电信号处理成生物电特征参数,进一步包括: 计算生物电信号一个波形周期中的斜率; 计算生物电信号一个波形周期中峰值时间; 计算生物电信号周期波形内采样点值的方差; 计算生物电信号周期波形的高阶矩; 计算生物电信号周期波形的协方差。 1, an identity identifying method, comprising: obtaining the bioelectrical signal evaluator, said bioelectric signal including myocardial and brain wave signal bioelectrical signal; processing by amplifying, filtering and analog / digital conversion, the bioelectrical signal processing bioelectrical feature parameters of: calculating a bioelectrical feature vector according to the characteristic parameters of the bioelectrical signal; wherein said bioelectrical respective feature vector and the vector templates stored comparison; the pre-match comparison result reaches conditionality, it was confirmed that the evaluator is a valid identity; wherein said bioelectrical signal processing bioelectrical feature parameters, further comprising: calculating a slope of the bioelectric signal waveform cycle; calculating a bioelectric signal waveform peak time period ; bioelectric signal variance is calculated within the period of the waveform sample values; calculating a bioelectrical signal higher moments periodic waveform; bioelectric signal covariance calculation cycle of the waveform.
2、 根据权利要求1所述的方法,其特征在于,所述计算生物电信号一个波形周期中的斜率包括:计算生物电信号中每一个周期内生物电信号的波形从起始点到第一个波峰的上升斜率;从第一个波谷到第二个波峰的上升斜率;从波峰到最低点的下降斜率;最后一个波峰的上升斜率。 2. The method according to claim 1, characterized in that said slope calculating a bioelectric signal waveform period comprises: calculating a bioelectric signal waveform in each period from the starting point bioelectrical signal to the first peak rising slope; from the first trough to the rising slope of the second peak; from the peak to the lowest point of the descending slope; a rising slope of the last peak.
3、 根据权利要求1所述的方法,其特征在于,所述计算生物电信号一个波形周期中峰值时间包括:计算每一个周期内生物电信号的波形从起点到第一个波峰所用的时间;从第一个波峰到最后一个波峰所用的时间。 3. The method according to claim 1, wherein said calculating a bioelectrical signal waveform peak cycle time comprises: calculating a time waveform within each period of the bioelectric signal from the origin to the first peak is used; from a peak to a peak time of the last used.
4、 根据权利要求1所述的方法,其特征在于,所述计算生物电信号周期波形内采样点值的方差包括:计算前n个周期波形信号内采样点值的方差,并计算出n个方差的平均值。 4. The method of claim 1, wherein said calculating the variance values ​​of sampling points within a period bioelectrical signal waveform comprises: variance of values ​​of sampling points within n cycles before calculating the waveform signals, and calculate the n the mean variance.
5、 根据权利要求1所述的方法,其特征在于,所述计算生物电信号周期波形的高阶矩包括:计算前n个周期波形信号中每个周期的4阶矩,并计算出前n个波形信号周期4 阶矩的平均值。 5. The method of claim 1, wherein said higher moments calculated bioelectrical signal comprising a periodic waveform: 4 n-th order moment of each cycle of the waveform signal before the calculation cycle, and calculates the front-n waveform signal period fourth moment average.
6、 根据权利要求1所述的方法,其特征在于,所述计算生物电信号周期波形的协方差包括:计算前n个周期波形信号相邻两周期的协方差。 6. The method of claim 1, wherein said bioelectric signal covariance periodic waveform comprising: before calculating the waveform signals of adjacent n periods covariance two cycles.
7、 根据权利要求1所述的方法,其特征在于,所述根据特征参数生成特征向量的方法是将特征参数按一定的顺序排列。 7. The method of claim 1, wherein the parameters which characterize the feature vector generated according to the characteristic parameter is arranged in a certain order.
8、 根据权利要求1至7中任一项所述的方法,其特征在于,采用矢量量化法、隐马尔可夫模型法、遗传算法、动态时间规整法或神经网络法进行匹配比较。 8. The method according to claim 7, characterized in that, using the vector quantization method, a hidden Markov model matching comparison, genetic algorithm, a dynamic time warping process or a neural network.
9、 根据权利要求1至7中任一项所述的方法,其特征在于,所述心肌生物电信号通过测量人体两手之间的电位差获取。 9. The method according to claim 7, characterized in that said bioelectrical signal obtained by measuring the cardiac potential difference between human hands.
10、 根据权利要求1至7中任一项所述的方法,其特征在于,所述获取被鉴定者生物电信号,包括:获取被鉴定者的生物电信号,同时获取被鉴定者电阻、体温与/或湿度信号; 将电阻、体温与/或湿度信号与上述生物电信号共同作为被鉴定者的生物电信号。 10. The method according to any one of claims 1 to 7, characterized in that the evaluator acquires a bioelectrical signal, comprising: acquiring the bioelectrical signal evaluator, the evaluator simultaneously acquires resistance, temperature and / or humidity signal; resistance, temperature and / or humidity signal and the bioelectric signal is bioelectric signals together as the evaluator.
CN 200610113677 2006-10-12 2006-10-12 Identity identifying method and system CN100459934C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610113677 CN100459934C (en) 2006-10-12 2006-10-12 Identity identifying method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610113677 CN100459934C (en) 2006-10-12 2006-10-12 Identity identifying method and system

Publications (2)

Publication Number Publication Date
CN1931091A true CN1931091A (en) 2007-03-21
CN100459934C true CN100459934C (en) 2009-02-11

Family

ID=37877228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610113677 CN100459934C (en) 2006-10-12 2006-10-12 Identity identifying method and system

Country Status (1)

Country Link
CN (1) CN100459934C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773394B (en) 2010-01-06 2011-09-07 中国航天员科研训练中心 Identification method and identification system using identification method
CN102441229A (en) * 2010-09-30 2012-05-09 鼎迈医疗科技(苏州)有限公司 Patient controller with security confidentiality function and implanted medical system
CN103729586A (en) * 2013-12-20 2014-04-16 北京握奇数据系统有限公司 Method and system for authenticating passwords on basis of brain wave signals
CN105389004A (en) * 2015-10-22 2016-03-09 上海斐讯数据通信技术有限公司 Brain wave unlocking terminal screen system and method
CN107411734A (en) * 2017-03-06 2017-12-01 华斌 Device for acquiring user characteristics according to human biologic electromagnetic waves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325862A (en) 1993-03-26 1994-07-05 The United States Of America As Represented By The Secretary Of The Navy Method and/or system for personal identification and impairment assessment from brain activity patterns
US5872834A (en) 1996-09-16 1999-02-16 Dew Engineering And Development Limited Telephone with biometric sensing device
CN1364276A (en) 2000-01-10 2002-08-14 塔里安股份有限公司 Device using histological and polysiological biometric marker for authentication and activation
WO2005004067A1 (en) 2003-07-03 2005-01-13 Daimlerchrysler Ag Person identification system for vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325862A (en) 1993-03-26 1994-07-05 The United States Of America As Represented By The Secretary Of The Navy Method and/or system for personal identification and impairment assessment from brain activity patterns
US5872834A (en) 1996-09-16 1999-02-16 Dew Engineering And Development Limited Telephone with biometric sensing device
CN1364276A (en) 2000-01-10 2002-08-14 塔里安股份有限公司 Device using histological and polysiological biometric marker for authentication and activation
WO2005004067A1 (en) 2003-07-03 2005-01-13 Daimlerchrysler Ag Person identification system for vehicles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Parametric person identification from the EEG usingcomputational geometry. M. Poulos, M.Rangoussi, V.Chrissikopoulos, A.Evangelou.Proceedings of ICECS 1999,Vol.2 . 1999
Person identification based on parametricprocessingoftheEEG. M.Poulos, M.Rangoussi, V.Chrissikopoulos, A.Evangelou.Proceedings of ICECS 1999,Vol.1 . 1999

Also Published As

Publication number Publication date Type
CN1931091A (en) 2007-03-21 application

Similar Documents

Publication Publication Date Title
Parthasaradhi et al. Time-series detection of perspiration as a liveness test in fingerprint devices
Aiken et al. Envelope and spectral frequency-following responses to vowel sounds
Jain et al. Biometric recognition: an overview
US4736445A (en) Measure of distinguishability for signature verification
Baldisserra et al. Fake fingerprint detection by odor analysis
US20100328033A1 (en) Biometric authentication device, biometric authentication method, and storage medium
Geurts et al. Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants
Corbishley et al. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system
US5719950A (en) Biometric, personal authentication system
Lourenço et al. Unveiling the biometric potential of finger-based ECG signals
Chiu et al. A novel personal identity verification approach using a discrete wavelet transform of the ECG signal
Odinaka et al. ECG biometric recognition: A comparative analysis
Chuang et al. I think, therefore i am: Usability and security of authentication using brainwaves
Palaniappan Two-stage biometric authentication method using thought activity brain waves
US20140188770A1 (en) System and method for enabling continuous or instantaneous identity recognition based on physiological biometric signals
US7171680B2 (en) Method and apparatus for electro-biometric identity recognition
US20080294907A1 (en) Methods for using a biometric parameter in the identification of persons
Abhyankar et al. Integrating a wavelet based perspiration liveness check with fingerprint recognition
Dimitrijevic et al. Auditory steady-state responses and word recognition scores in normal-hearing and hearing-impaired adults
Reddy et al. A new antispoofing approach for biometric devices
Phua et al. Heart sound as a biometric
Ashby et al. Low-cost electroencephalogram (EEG) based authentication
WO2003000015A2 (en) Identification by analysis of physiometric variation
Palaniappan et al. Identifying individuals using ECG beats
Shin et al. Automatic detection system for cough sounds as a symptom of abnormal health condition

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C56 Change in the name or address of the patentee

Owner name: FEITIAN TECHNOLOGIES CO., LTD.

Free format text: FORMER NAME: BEIJING FEITIAN CHENGXIN TECHNOLOGY CO., LTD.