CN100458317C - Refrigerating circulator of straight-cooled refrigerator - Google Patents
Refrigerating circulator of straight-cooled refrigerator Download PDFInfo
- Publication number
- CN100458317C CN100458317C CNB2004100718494A CN200410071849A CN100458317C CN 100458317 C CN100458317 C CN 100458317C CN B2004100718494 A CNB2004100718494 A CN B2004100718494A CN 200410071849 A CN200410071849 A CN 200410071849A CN 100458317 C CN100458317 C CN 100458317C
- Authority
- CN
- China
- Prior art keywords
- refrigerant
- refrigerating chamber
- expansion valve
- refrigerating
- straight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 138
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 8
- 230000005494 condensation Effects 0.000 claims 2
- 238000009833 condensation Methods 0.000 claims 2
- 230000004907 flux Effects 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- 238000007710 freezing Methods 0.000 abstract description 11
- 230000008014 freezing Effects 0.000 abstract description 11
- 230000001105 regulatory effect Effects 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 description 36
- 238000005057 refrigeration Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
技术领域 technical field
本发明涉及直冷式电冰箱的制冷循环装置,尤其是在压缩机以相对低的冷力运转时,也可以使制冷循环装置运转状态最佳的制冷循环装置。The invention relates to a refrigerating cycle device of a direct-cooling refrigerator, especially a refrigerating cycle device that can make the operating state of the refrigerating cycle device optimal when the compressor operates at a relatively low cooling force.
背景技术 Background technique
一般,电冰箱是通过冷媒的压缩-冷凝-膨胀-蒸发的制冷循环,降低柜内温度而长时间新鲜储藏食物的装置,是一种生活必需品。其中,直冷式电冰箱在冷冻室和冷藏室各自配备蒸发器,下面参照图1具体说明直冷式电冰箱的制冷循环装置。Generally, a refrigerator is a device for freshly storing food for a long time by lowering the temperature inside the cabinet through a refrigeration cycle of compression-condensation-expansion-evaporation of the refrigerant, and is a daily necessity. Wherein, the direct-cooling refrigerator is equipped with evaporators in the freezing chamber and the refrigerating chamber respectively, and the refrigerating cycle device of the direct-cooling refrigerator will be described in detail below with reference to FIG. 1 .
直冷式电冰箱的制冷循环装置包括压缩机11、冷凝器12、膨胀阀13、冷冻室用蒸发器14、冷藏室用蒸发器15。制冷循环装置的各个部件通过冷媒管16相互连接。压缩机11把冷媒升温/升压为高温/高压冷媒;冷凝器12利用外部空气冷凝从压缩机11流出的冷媒;膨胀阀13因直径比别的部件直径狭小,降低从冷凝器12流入的冷媒压力;冷冻室用蒸发器14和冷藏室用蒸发器15根据冷媒在经过膨胀阀13时蒸发为低压状态,起到吸收柜内热量的热交换作用。因此,在压缩机11压缩成高温/高压体态状态的冷媒经过冷凝器12时降温,之后经过膨胀阀13时降压。低温/低压状态的冷媒依次经过冷冻室用蒸发器14和冷藏室用蒸发器15时进行热交换,转换为高温/低压状态,然后流入压缩机11,这样反复循环上述过程。空气与经过冷冻室用蒸发器14和冷藏室用蒸发器15的冷媒进行热交换而被冷却后供给到冷冻室和冷藏室里。The refrigeration cycle device of the direct cooling refrigerator includes a
但是,以往的直冷式电冰箱制冷循环装置存在以下缺点:没有考虑到压缩机11排出规定的冷媒量,在冬天,周围温度低时,只关闭冷藏室用蒸发器15,则膨胀阀13过负荷。尤其,当冷藏室用蒸发器15关闭时,为了防止膨胀阀13过负荷,需要调节流入冷冻室用蒸发器14里的冷媒流量,但以往的制冷循环装置并不配备调节冷媒流量的结构。However, the conventional direct-cooling refrigerator refrigerating cycle device has the following disadvantages: the
发明内容 Contents of the invention
本发明所要解决的技术问题是,提供一种改善整个制冷循环的制冷循环装置,即使只用相对小的冷力运转,也可以使制冷循环装置运转最佳,达到热交换效率最大。The technical problem to be solved by the present invention is to provide a refrigerating cycle device that improves the entire refrigerating cycle, so that the refrigerating cycle device can operate optimally and achieve the maximum heat exchange efficiency even with a relatively small cooling force.
为了解决技术问题,本发明采用的技术方案是:一种直冷式电冰箱用制冷循环装置,包括压缩冷媒的压缩机、冷凝压缩机压缩的冷媒的冷凝器、调节在冷凝器冷凝的冷媒流量而选择性分配冷凝冷媒的流量调节器、流入从冷凝器冷凝的冷媒并膨胀的冷冻室用膨胀阀、流入从膨胀阀膨胀的冷媒并进行热交换的冷冻室用蒸发器、与冷冻室用膨胀阀分开设置在不同冷媒管上并膨胀冷凝器冷凝的冷媒的两个以上冷藏室用膨胀阀、流入从冷藏室用膨胀阀膨胀的冷媒并进行热交换的冷藏室用蒸发器,所述流量调节器包括第1调节体、第2调节体、旋转板和驱动部,第1调节体与冷凝器冷媒流出侧管道连通;第2调节体上分别形成有连通冷冻室用膨胀阀冷媒流入侧管道的具有相互不同直径的一对冷冻室侧冷媒流出流路,和连通冷藏室用膨胀阀冷媒流入侧管道的具有相互不同直径的一对冷藏室侧冷媒流出流路;旋转板旋转地配备在第1调节体和第2调节体之间,且为了使第2调节体的各流出流路中只有两个流出流路与第1调节体连通而形成有连通孔;驱动部旋转旋转板。In order to solve the technical problem, the technical solution adopted in the present invention is: a refrigeration cycle device for a direct-cooling refrigerator, including a compressor for compressing the refrigerant, a condenser for condensing the refrigerant compressed by the compressor, and a refrigerant flow rate for adjusting the condensed refrigerant in the condenser. The flow regulator for selectively distributing the condensed refrigerant, the expansion valve for the freezer that flows into the refrigerant condensed from the condenser and expands, the evaporator for the freezer that flows into the refrigerant expanded from the expansion valve and performs heat exchange, and the expansion valve for the freezer. Two or more expansion valves for the refrigerator room that are separately installed on different refrigerant pipes to expand the refrigerant condensed by the condenser, and evaporators for the refrigerator room that flow into the refrigerant expanded from the expansion valve for the refrigerator room and perform heat exchange. The device includes a first regulating body, a second regulating body, a rotating plate and a driving part. The first regulating body communicates with the refrigerant outflow side pipe of the condenser; the second regulating body is respectively formed with pipes connected to the refrigerant inflow side pipe of the expansion valve for the freezer. A pair of refrigerant outflow passages on the freezing chamber side having mutually different diameters and a pair of refrigerant outflow passages on the refrigerating chamber side having mutually different diameters communicating with the refrigerant inflow side pipe of the expansion valve for the refrigerating chamber; A communication hole is formed between the regulator and the second regulator so that only two outflow channels of the second regulator communicate with the first regulator; the drive unit rotates the rotary plate.
所述冷藏室用膨胀阀由第1冷藏室用膨胀阀和冷媒流动距离相对比第1冷藏室用膨胀阀短的第2冷藏室用膨胀阀构成。The expansion valve for the refrigerator compartment is composed of a first expansion valve for the refrigerator compartment and a second expansion valve for the refrigerator compartment whose refrigerant flow distance is relatively shorter than that of the first expansion valve for the refrigerator compartment.
所述第1冷藏室用膨胀阀的冷媒流动距离相对比冷冻室用膨胀阀短。The refrigerant flow distance of the first expansion valve for the refrigerator compartment is relatively shorter than that of the expansion valve for the freezer compartment.
第2冷藏室用膨胀阀的冷媒流入侧和冷媒流出侧各自与第1冷藏室用膨胀阀的冷媒流入侧和冷媒流出侧连接,第2冷藏室用膨胀阀的冷媒流入侧和第1冷藏室用膨胀阀的冷媒流入侧之间连接部位上还配备有为引导冷媒流向的冷媒流动导向阀。The refrigerant inflow side and the refrigerant outflow side of the expansion valve for the second refrigerating room are respectively connected to the refrigerant inflow side and the refrigerant outflow side of the expansion valve for the first refrigerating room, and the refrigerant inflow side of the expansion valve for the second refrigerating room is connected to the first refrigerating room. A refrigerant flow guide valve for guiding the direction of the refrigerant flow is also provided at the connecting portion between the refrigerant inflow side of the expansion valve.
在第2冷藏室用膨胀阀和冷藏室用蒸发器之间的冷媒管上还配备有辅助蒸发器,且辅助蒸发器流入从在第2冷藏室用膨胀阀膨胀的冷媒,进行热交换后向冷藏室用蒸发器提供冷媒。An auxiliary evaporator is also installed on the refrigerant pipe between the expansion valve for the second refrigerating room and the evaporator for the refrigerating room, and the auxiliary evaporator flows into the refrigerant expanded from the expansion valve for the second refrigerating room, exchanges heat, and then The evaporator is used to provide refrigerant in the refrigerator.
所述辅助蒸发器的冷媒流动距离较冷藏室用蒸发器的冷媒流动距离短。The refrigerant flow distance of the auxiliary evaporator is shorter than the refrigerant flow distance of the refrigerating room evaporator.
还包括有从冷冻室用蒸发器和冷藏室用蒸发器流入冷媒,使其达到压力均衡后流入压缩机的阻尼部。It also includes a damper that flows into the compressor from the evaporator for the freezer and the evaporator for the refrigerator to equalize the pressure.
本发明的有益效果是:在最常使用的相对小冷力的节能模式运转过程中,使整个系统运行最佳化,所以能降低总耗电量;使制冷循环装置效率最大。The beneficial effects of the present invention are: in the most commonly used energy-saving mode of relatively small cooling power, the operation of the whole system is optimized, so the total power consumption can be reduced; and the efficiency of the refrigeration cycle device is maximized.
附图说明 Description of drawings
图1为以往的一般直冷式电冰箱制冷循环装置的结构图。FIG. 1 is a structural diagram of a conventional general direct-cooling refrigerator refrigeration cycle device.
图2为本发明第1实施例的直冷式电冰箱制冷循环装置中冷力可变型压缩机以极限模式[power mode]运转时冷媒流动状态的结构图。Fig. 2 is a structural diagram of the flow state of the refrigerant when the cooling power variable compressor in the refrigerating cycle device of the direct cooling refrigerator in the first embodiment of the present invention operates in the limit mode [power mode].
图3为本发明第1实施例的直冷式电冰箱制冷循环装置中流量调节器结构的重要部位分解立体图。Fig. 3 is an exploded perspective view of important parts of the structure of the flow regulator in the refrigerating cycle device of the direct cooling refrigerator according to the first embodiment of the present invention.
图4为本发明第1实施例的直冷式电冰箱制冷循环装置中流量调节器结构剖面图。Fig. 4 is a cross-sectional view of the structure of the flow regulator in the refrigerating cycle device of the direct-cooling refrigerator according to the first embodiment of the present invention.
图5a至图5c为本发明第1实施例的直冷式电冰箱制冷循环装置中流量调节器运转状态的工作图。5a to 5c are working diagrams of the operating state of the flow regulator in the refrigerating cycle device of the direct cooling refrigerator according to the first embodiment of the present invention.
图6为本发明第1实施例的直冷式电冰箱制冷循环装置中冷力可变型压缩机以极限模式运转时不同的冷媒流动状态的结构图。FIG. 6 is a structural diagram of different refrigerant flow states when the cooling force variable compressor operates in limit mode in the refrigeration cycle device of the direct cooling refrigerator according to the first embodiment of the present invention.
图7为本发明第1实施例的直冷式电冰箱制冷循环装置中冷力可变型压缩机以节能模式运转时冷媒流动状态的结构图。7 is a structural view of the refrigerant flow state when the variable cooling capacity compressor in the refrigeration cycle device of the direct-cooling refrigerator according to the first embodiment of the present invention operates in an energy-saving mode.
图8为本发明第2实施例的直冷式电冰箱制冷循环装置中冷力可变型压缩机以节能模式运转时冷媒流动状态的结构图。Fig. 8 is a structural diagram of the flow state of the refrigerant when the cooling force variable compressor in the refrigeration cycle device of the direct-cooling refrigerator according to the second embodiment of the present invention operates in an energy-saving mode.
图中,100:压缩机;200:冷凝器;310:冷冻室用膨胀阀;321:第1冷藏室用膨胀阀;322:第2冷藏室用膨胀阀;323:冷媒流动导向阀;400:冷冻室用蒸发器;500:冷藏室用蒸发器;510:辅助蒸发器;600:流量调节器;610:第1调节体;620:第2调节体;621:第1流出流路;622:第2流出流路;623:第3流出流路;624:第4流出流路;630:旋转板;631:连通孔;640:驱动电机;700:阻尼部。In the figure, 100: compressor; 200: condenser; 310: expansion valve for freezing room; 321: expansion valve for first cold room; 322: expansion valve for second cold room; 323: refrigerant flow guide valve; 400: Evaporator for freezer; 500: evaporator for refrigerator; 510: auxiliary evaporator; 600: flow regulator; 610: first regulator; 620: second regulator; 621: first outflow path; 622: 2nd outflow channel; 623: third outflow channel; 624: fourth outflow channel; 630: rotating plate; 631: communicating hole; 640: drive motor; 700: damper.
具体实施方式 Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
如图2所示,本发明第1实施例的直冷式电冰箱制冷循环装置包括压缩机100、冷凝器200、冷冻室用膨胀阀310、两个以上冷藏室用膨胀阀321,322、冷冻室用蒸发器400、冷藏室用蒸发器500、流量调节器600。As shown in Figure 2, the direct-cooling refrigerator refrigeration cycle device of the first embodiment of the present invention includes a
制冷循环装置的各个部件用冷媒管16相互连接。The components of the refrigeration cycle device are connected to each other by
压缩机100起到压缩冷媒的作用;虽然没有图示,压缩机100可以选用压缩量根据旋转方向变化的双重容量压缩机。韩国专利申请号10-2001-0064083中介绍了双重容量压缩机一例,但是在本发明中并没有限定是双重容量压缩机。The
压缩机100可以总是生成相同冷力的压缩机,而且也可以是由变压器等改变启动电压控制的压缩机。The
冷凝器200冷凝从冷力可变型压缩机100流入的压缩冷媒,冷凝器200的构成与以往的一般冷凝器12结构相同。The
冷冻室用膨胀阀310降低在冷凝器200冷凝的冷媒压力后,将冷媒提供给冷冻室用蒸发器400。The
冷藏室用膨胀阀321,322降低在冷凝器200冷凝的冷媒压力后,将冷媒提供给第1冷藏室用蒸发器500里。The
冷藏室用蒸发器500的冷媒流动距离相对比冷冻室用蒸发器400的冷媒流动距离短。The refrigerant flow distance of the refrigerating
冷藏室用膨胀阀321,322由冷媒流动距离相对比冷冻室用膨胀阀310短的第1冷藏室用膨胀阀321和冷媒流动距离相对比第1冷藏室用膨胀阀321短的第2冷藏室用膨胀阀322构成。The
第2冷藏室用膨胀阀322的冷媒流入侧和冷媒流出侧各自与第1冷藏室用膨胀阀321的冷媒流入侧和冷媒流出侧连接。The refrigerant inflow side and the refrigerant outflow side of the second refrigerating
第2冷藏室用膨胀阀322的冷媒流入侧和第1冷藏室用膨胀阀321的冷媒流入侧之间连接部位上还配备有为引导冷媒流向具有三通功能的冷媒流动导向阀323。A refrigerant
当然,冷媒流动导向阀323也可以配备在第1冷藏室用膨胀阀321的冷媒流出侧,并由使冷媒向第2冷藏室用膨胀阀322流动的旁通阀来构成。Of course, the refrigerant
流量调节器600起到调节在冷凝器200冷凝的冷媒流量的作用。The
如图3至图5c所示,流量调节器600包括由与冷凝器200冷媒流出侧管道连通的第1调节体610,连接在各膨胀阀310,321,322冷媒流入侧管道上的第2调节体620,可旋转地配备在各调节体610,620之间的旋转板630,旋转旋转板630的驱动部构成。As shown in Figures 3 to 5c, the
第2调节体620上各自形成有连通冷冻室用膨胀阀310冷媒流入侧管道的一对冷冻室侧冷媒流出流路621,622和连通冷藏室用膨胀阀321,322冷媒流入侧管道的一对冷藏室侧冷媒流出流路623,624。A pair of freezer-side
一对冷冻室侧冷媒流出流路621,622的直径相互不同,而且一对冷藏室侧冷媒流出流路623,624的直径也相互不同,但冷藏室侧冷媒流出流路623,624的直径较冷冻室侧冷媒流出流路621,622的直径小。The diameters of the pair of
一冷冻室侧冷媒流出流路(以下简称第1流出流路)621的直径D1较另一冷冻室侧冷媒流出流路(以下简称第2流出流路)622的直径D2大,一冷藏室侧冷媒流出流路(以下简称第3流出流路)623的直径D3较第2流出流路622的直径D2小,另一冷藏室侧冷媒流出流路(以下简称第4流出流路)624的直径D4较第3流出流路623的直径D3小。The diameter D1 of a refrigerant outflow path (hereinafter referred to as the first outflow path) 621 on the side of the freezing chamber is larger than the diameter D2 of the other refrigerant outflow path (hereinafter referred to as the second outflow path) 622 on the side of the freezing chamber. The diameter D3 of the refrigerant outflow channel (hereinafter referred to as the third outflow channel) 623 is smaller than the diameter D2 of the
第1流出流路621和第2流出流路622及第3流出流路623和第4流出流路624不仅可以相互垂直地配置,而且还可以相互成水平地配置。The
在本发明第1实施例中,第1流出流路621和第2流出流路622及第3流出流路623和第4流出流路624如图5所示相互垂直。这时,第1流出流路621和第4流出流路624及第2流出流路622和第3流出流路成水平方向。In the first embodiment of the present invention, the
流量调节器600的旋转板630形成整体平板形状,而且为了使只有两个流出流路维持相互联通状态,在其板面形成有连通孔631。The
流量调节器600的驱动部可以使旋转板630按90°旋转,通过与旋转板630中心轴结合并产生驱动力的驱动电机640驱动。The driving part of the
当然驱动部不仅可以直接通过轴结合在旋转板630上,还可以利用传送带向旋转板630传送动力,也可以通过齿轮式啮合在旋转板630外周面上。Of course, the driving part can not only be directly coupled to the
本发明第1实施例的制冷循环装置,冷冻室用蒸发器400和冷藏室用蒸发器500并没有串联连接,而是构成并联连接的结构。In the refrigeration cycle apparatus according to the first embodiment of the present invention, the
经过各蒸发器400,500的冷媒,由于彼此之间的膨胀程度以及热交换程度不同,它们之间可能存在压力差。因此,在本发明第1实施例中,为了使各管道里的冷媒汇合达到压力均衡,在各蒸发器400,500的冷媒流出侧管道上还配备有起到缓冲作用的阻尼部700。The refrigerants passing through the
下面具体说明本发明第1实施例的直冷式电冰箱用制冷循环装置的运转控制过程:The operation control process of the refrigerating cycle device for the direct cooling type refrigerator of the first embodiment of the present invention is described in detail below:
如果直冷式电冰箱开始运转,冷力可变型压缩机100以极限模式运转。极限模式是使冷力可变型压缩机100生成最大冷力的运转模式。If the direct cooling type refrigerator starts to operate, the variable
如图5a所示,当冷力可变型压缩机100以极限模式运转的时候,流量调节器600使冷冻室用膨胀阀310的冷媒流量最大,同时使各冷藏室用膨胀阀321,322的冷媒流量最小。As shown in Figure 5a, when the cooling force
当然,在极限模式运转的时候,为了使启动转矩最小化,可以通过流量调节器600的控制只向冷冻室用膨胀阀310供给冷媒。Of course, in order to minimize the start-up torque during operation in the limit mode, the refrigerant may be supplied only to the
这时旋转板630如图5b所示旋转,只让流量调节器600的第1流出流路621和第2流出流路622与第1调节体610连通就可以,这时冷媒的流动状态如图6所示。At this time, the
而且,以极限模式运转一定时间后,当整个制冷循环装置达到稳定状态时冷力可变型压缩机100以节能模式运转。Moreover, after operating in the extreme mode for a certain period of time, when the entire refrigeration cycle device reaches a steady state, the variable
节能模式虽然比冷力可变型压缩机100能生成的最高冷力低,但也可以生成整个制冷循环装置的运转效率并没降低的冷力的运转模式。Although the energy-saving mode is lower than the maximum cooling power that can be generated by the variable
当冷力可变型压缩机100以节能模式运转的时候,流量调节器如图5c所示顺时针方向或逆时针方向旋转,使冷冻室用膨胀阀310的冷媒流量最小,同时使各冷藏室用膨胀阀321,322的冷媒流量最大。如果冷藏室侧的冷媒流量像极限模式运转时一样减少,则电冰箱整体运转率上升,所以为了防止运转率上升,冷藏室侧的冷媒流量最好要比极限模式运转时大。When the cooling force
尤其在以节能模式运转的时候,如图7所示,通过冷媒流动导向阀323的控制,使冷媒向第2冷藏室用膨胀阀322流动。引导过程阻力的减少,防止压缩机100的运转率上升。In particular, when operating in the energy-saving mode, as shown in FIG. 7 , the refrigerant flows to the second refrigerating
采用本发明第1实施例的结构及其运转控制方法,电冰箱在运转时通过追加的节能模式可以达到最佳效率,所以压缩机100的运转率增幅下降以及耗电量下降。With the structure of the first embodiment of the present invention and its operation control method, the refrigerator can achieve optimal efficiency through the additional energy-saving mode during operation, so the operating rate increase and power consumption of the
另外,本发明的第2实施例如图8所示,在本发明第1实施例的制冷循环装置的结构上追加相对来说具有较高蒸发温度的辅助蒸发器510。In addition, in the second embodiment of the present invention, as shown in FIG. 8 , an
辅助蒸发器510配备在第2冷藏室用膨胀阀322和冷藏室用蒸发器500之间的冷媒管上,而且该冷媒流动距离较冷藏室用蒸发器500冷媒流动距离短,所以具有更高的蒸发温度。尤其是辅助蒸发器510的冷媒流出侧连接在第1冷藏室用膨胀阀321的冷媒流出侧或冷藏室用蒸发器500的冷媒流入侧。The
辅助蒸发器510配备在像保存蔬菜等食物所需储藏温度相对高的部位。The
本发明第2实施例的制冷循环装置运转过程大致与第1实施例中的运转过程相同,只是在节能模式运转时经过第2冷藏室用膨胀阀322膨胀的冷媒通过辅助蒸发器510后供给到冷藏室用蒸发器500的方面与第1实施例不同。The operation process of the refrigeration cycle device in the second embodiment of the present invention is roughly the same as that in the first embodiment, except that the refrigerant expanded through the
如上所述,如果利用辅助蒸发器510增加冷媒的流动距离,在相对小的冷力状态下也能得到充足的热交换效率。As mentioned above, if the
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2004100718494A CN100458317C (en) | 2004-09-07 | 2004-09-07 | Refrigerating circulator of straight-cooled refrigerator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2004100718494A CN100458317C (en) | 2004-09-07 | 2004-09-07 | Refrigerating circulator of straight-cooled refrigerator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1746595A CN1746595A (en) | 2006-03-15 |
| CN100458317C true CN100458317C (en) | 2009-02-04 |
Family
ID=36166235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2004100718494A Expired - Fee Related CN100458317C (en) | 2004-09-07 | 2004-09-07 | Refrigerating circulator of straight-cooled refrigerator |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100458317C (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104613697B (en) * | 2013-11-04 | 2017-04-12 | Lg电子株式会社 | Refrigerator |
| CN112856851A (en) * | 2021-02-23 | 2021-05-28 | 广州中臣碧阳科技集团有限公司 | Condensing device of marine ammonia refrigerating system suitable for polar region sea area |
| CN116518551B (en) * | 2023-05-05 | 2023-10-27 | 广州名能节能科技有限公司 | Integral heat pump water heater |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4534710A (en) * | 1983-03-02 | 1985-08-13 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Swash-plate-type compressor having suction and discharge damping chambers |
| CN1282409A (en) * | 1997-12-19 | 2001-01-31 | Bsh博施及西门子家用器具有限公司 | Refrigerating device |
| JP2001091130A (en) * | 1999-09-21 | 2001-04-06 | Toshiba Corp | refrigerator |
| EP1106943A2 (en) * | 1999-11-30 | 2001-06-13 | Kabushiki Kaisha Toshiba | Refrigerator |
| JP2001263902A (en) * | 2000-03-21 | 2001-09-26 | Toshiba Corp | refrigerator |
| CN1402825A (en) * | 1999-11-30 | 2003-03-12 | Bsh博施及西门子家用器具有限公司 | Refrigeration device |
| CN1439461A (en) * | 2002-02-19 | 2003-09-03 | 美国西门子医疗解决公司 | multilevel transmitter and method for transmitting |
| CN1474924A (en) * | 2000-12-04 | 2004-02-11 | 扎纳西电机公司 | Refrigeration equipment with multiple storage compartments |
-
2004
- 2004-09-07 CN CNB2004100718494A patent/CN100458317C/en not_active Expired - Fee Related
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4534710A (en) * | 1983-03-02 | 1985-08-13 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Swash-plate-type compressor having suction and discharge damping chambers |
| CN1282409A (en) * | 1997-12-19 | 2001-01-31 | Bsh博施及西门子家用器具有限公司 | Refrigerating device |
| JP2001091130A (en) * | 1999-09-21 | 2001-04-06 | Toshiba Corp | refrigerator |
| EP1106943A2 (en) * | 1999-11-30 | 2001-06-13 | Kabushiki Kaisha Toshiba | Refrigerator |
| CN1402825A (en) * | 1999-11-30 | 2003-03-12 | Bsh博施及西门子家用器具有限公司 | Refrigeration device |
| JP2001263902A (en) * | 2000-03-21 | 2001-09-26 | Toshiba Corp | refrigerator |
| CN1474924A (en) * | 2000-12-04 | 2004-02-11 | 扎纳西电机公司 | Refrigeration equipment with multiple storage compartments |
| CN1439461A (en) * | 2002-02-19 | 2003-09-03 | 美国西门子医疗解决公司 | multilevel transmitter and method for transmitting |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1746595A (en) | 2006-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3816860B2 (en) | Heat pump air conditioner | |
| WO2005061970A1 (en) | Refrigerator | |
| EP2751499B1 (en) | Refrigeration system and refrigeration method providing heat recovery | |
| JP2006071174A (en) | Refrigerating device | |
| JP6791315B1 (en) | Refrigeration equipment | |
| JP4273493B2 (en) | Refrigeration air conditioner | |
| JP7387022B2 (en) | Cold heat source unit and refrigeration cycle equipment | |
| KR20070007771A (en) | Freezer | |
| CN112161324B (en) | Air conditioner | |
| CN100458317C (en) | Refrigerating circulator of straight-cooled refrigerator | |
| KR102237596B1 (en) | A refrigerator and a control method the same | |
| JP5825042B2 (en) | Refrigeration equipment | |
| EP2751500B1 (en) | Refrigeration circuit and refrigeration method providing heat recovery | |
| CN100432551C (en) | Capacity-variable air conditioner | |
| AU2006243095A1 (en) | Refrigerating apparatus | |
| CN216203942U (en) | Heat pump system | |
| KR100577261B1 (en) | Refrigeration Cycle for Direct Cooling Refrigerator | |
| CN209877423U (en) | Three-way flow direction conversion device for refrigerant | |
| JP4108003B2 (en) | Refrigeration system | |
| JP2012137202A (en) | Compression type refrigerating machine | |
| JP2017156050A (en) | Air conditioner | |
| JP2005134080A (en) | Refrigerator | |
| JP2005188784A (en) | refrigerator | |
| KR20210040018A (en) | A refrigerator and a control method the same | |
| KR100332778B1 (en) | Flow control device for heat pump |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090204 |