CN100457266C - Manufacturing method of faujasite coated phosphorus heteropoly tungstic acid catalyzer - Google Patents

Manufacturing method of faujasite coated phosphorus heteropoly tungstic acid catalyzer Download PDF

Info

Publication number
CN100457266C
CN100457266C CNB2007100698600A CN200710069860A CN100457266C CN 100457266 C CN100457266 C CN 100457266C CN B2007100698600 A CNB2007100698600 A CN B2007100698600A CN 200710069860 A CN200710069860 A CN 200710069860A CN 100457266 C CN100457266 C CN 100457266C
Authority
CN
China
Prior art keywords
faujasite
acid
phosphate
tungstates
tungstic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100698600A
Other languages
Chinese (zh)
Other versions
CN101108361A (en
Inventor
侯昭胤
金顶峰
吕秀阳
张立伟
郑小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNB2007100698600A priority Critical patent/CN100457266C/en
Publication of CN101108361A publication Critical patent/CN101108361A/en
Application granted granted Critical
Publication of CN100457266C publication Critical patent/CN100457266C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

An octa zeolite covering PTA heteropoly acid catalyst preparation method, which makes tungstate and phosphate as material, the octa zeolite is the matrix of covering PTA heteropoly acid, with adopting ''bottle shipbuilding'' method, react in a microwave reactor in situ synthesis. The invention has short synthesis time, high synthesis efficiency and the crystal structure of the octa zeolite keep complete in the acidification synthesis.

Description

The preparation method of faujasite coated phosphorus heteropoly tungstic acid catalyzer
Technical field
The present invention relates to a kind of novelty, novel solid acid---the preparation method of faujasite coated phosphorus heteropoly tungstic acid efficiently.
Background technology
Solid acid (for example: molecular sieve, oxide, mixed oxide and phosphate etc.) is the crucial catalyst of a class in the production process of petrochemical industry and many chemicals.Up to the present, nearly more than 180 industrial process have used above-mentioned solid acid catalyst.But, still have many acid catalyzed reactions (for example: esterification, hydrolysis and hydration reaction etc.) need be at a large amount of inorganic acids (sulfuric acid, hydrochloric acid etc.) or AlCl 3Carry out under the effect, these courses of reaction are accompanied by a series of problems such as serious toxicity, corrosivity, product separation and liquid waste processing difficulty.Thereby adopt safety, the solid acid that do not have corrosion and an easily separated recovery substitutes liquid acid and has great importance for environmental protection as catalyst.
Many organic reactions (for example: hydrolysis, hydration reaction, esterification and Prins reaction etc. always have water to exist in) raw material or the product, because the water electrode in the reaction system easily makes the activated centre of solid acid catalyst (as molecular sieve etc.) poison and inactivation, have only only a few solid acid (as heteropoly acid) to have to a certain degree active and stable.
Heteropoly acid has the characteristic of many excellences, as: component is simple, and structure determines to have the architectural feature of general complex and metal oxide; It is the polyelectron oxidant, is again strong protonic acid, and its oxidisability and acidity can be carried out modulation by changing its composition mode; Its soluble in water and polar organic solvent, its solution is generally more stable; The heteropoly acid that wherein has a Keggin structure has strong and homogeneous
Figure C20071006986000031
The characteristic of acid etc.These character can make heteropoly acid be used as homogeneous phase and heterogeneous oxidation type catalyst and acid catalyst.Heteropoly acid is widely used in ester decomposition reaction, alkylated reaction, epoxides ring-opening reaction, condensation reaction and etherification reaction etc. as a kind of novel acid catalyst.
But it is little (less than 10m that heteropoly acid also exists specific area 2/ g), heat endurance is low, be difficult for defectives such as recoverys, water-soluble easy loss, thereby therefore usually the employing infusion process loaded by heteropoly acid is improved its specific area, heat endurance, catalytic activity and repeat performance on carrier.People are with various carriers in recent years, as: active carbon, amorphous silica, molecular sieve wait the carried heteropoly acid compound.But because heteropolyanion shifts to carrier generation electronics easily, the acidity of heteropoly acid reduces after the load; Simultaneously in the application of reality, problem such as still exist easy solution-off of heteropoly acid and loss, target product selectivity is low in complex reaction.
Meanwhile, the solid acid catalyst----molecular sieve that an other class is commonly used because its back bone network defective is few, acidity a little less than, for the reaction of need strong acid catalysis, catalytic activity is low.But have uniform duct in the molecular sieve structure, when the molecular size of reactant, product and intracrystalline aperture were close, the selectivity of reaction often depended on the relative size in molecule and aperture, often has very high target product selectivity when mating mutually.Therefore, if with the highly acid of heteropoly acid combine with the duct characteristic of molecular sieve may produce not only have stronger acidity, but also new solid acid catalyst with higher selectivity of product.Because the duct of Y zeolite is generally 0.74 * 0.78 nanometer, and therefore the diameter of the phosphorus heteropoly tungstic acid of Keggin structure is difficult to by traditional impregnation technology heteropoly acid is introduced directly in the duct of molecular sieve greatly about about the 1.0-1.2 nanometer.But, Y zeolite has the supercage structure, and the size in its inner spherical hole is 1.3 nanometers, is incorporated in the molecular sieve supercage if will synthesize the raw material of phosphorus heteropoly tungstic acid in advance, adopt " shipbuilding in the bottle " method original position synthetic then, the heteropoly acid that finally obtains will be fixed on Y zeolite inside.Zhi Bei faujasite coated phosphorus heteropoly tungstic acid catalyzer by this method, the acidity that can regulate catalyst by the load capacity of regulating heteropoly acid remedies the more weak shortcoming of acidic zeolite on the one hand, improves its catalytic performance; Also can increase the shape selectivity energy of product on the other hand by the duct characteristic of molecular sieve.Because limit in the duct of molecular sieve, can effectively overcome the problems such as loss of heteropoly acid in the use simultaneously.
People such as B.Sulikowski are synthetic phosphorus heteropoly tungstic acid in the supercage that proposed first at Y zeolite in 1996, and they will be in advance through H 4The Y zeolite of EDTA dealuminzation is as fertile material, the catalyst that makes through infrared and 31The P-nuclear magnetic resonance characterizes phosphorus heteropoly tungstic acid and forms in the supercage of Y zeolite, and is applied to the disproportionated reaction of meta-xylene.(CatalysisLetters 1996,39,27)
People such as B.Sulikowski are synthetic phosphorus heteropoly tungstic acid in the supercage that proposed first at Y zeolite in 1996, and they will be in advance through H 4The Y zeolite of EDTA dealuminzation is as fertile material, the catalyst that makes through infrared and 31The P-nuclear magnetic resonance characterizes phosphorus heteropoly tungstic acid and forms in the supercage of Y zeolite, but combined coefficient is very low.(Catalysis Letters 1996,39,27)
In the work afterwards, they carry out the cesium ion exchange to the synthetic phosphato-molybdic heteropolyacid of original position in the Y zeolite supercage again, to increase the stability of phosphato-molybdic heteropolyacid.The reservation amount of phosphato-molybdic heteropolyacid in supercage through the part exchange that found that increases, but because the reduction of exchange back heteropoly acid acid amount, its catalytic effect descends on the contrary in esterification.(Reaction Kineticsand Catalysis Letters 2000,69,253)
In addition, they have also studied in the molecular sieve parent silica alumina ratio to the influence of combined coefficient, find medium aluminium content to synthetic be favourable.The raw material of synthetic phosphato-molybdic heteropolyacid can at first be exchanged with the aluminium atom by the aluminium inducing atom, thereby promotes synthetic.But too much aluminium content has influenced the acid amount of phosphato-molybdic heteropolyacid on the contrary.(Chemical Engineering Science 2001,56,799)
What above bibliographical information adopted all is high-temperature water hot acid metallization processes, synthetic medium acidity higher (pH=1.5-2), solution temperature height (95 degrees centigrade), generated time long (0.5-3 hour), very easily cause caving in of parent molecule sieve structure, be difficult to obtain the intact catalyst of faujasite crystal formation.
In order to eliminate these top adverse effects, people such as S.R.Mukai attempted to adopt the ion-exchange membrane technology to realize effective coating to heteropoly acid in 2003.Yet they studies show that, though adopt electrode reaction to help the synthetic of phosphato-molybdic heteropolyacid, be fixed in the molecular sieve supercage amount but seldom.Therefore, they have still adopted traditional hydro-thermal method to synthesize, and stablize phosphomolybdic acid by adopting interpolation four butanols, have obtained coating the catalyst of heteropoly acid under 60-150 degree centigrade of different temperatures.(Applied Catalysis A:General 2003,256,107)。
Skeleton according to molecular sieve under the method condition of above-mentioned bibliographical information subsides in building-up process, and obtaining is the heteropoly tungstic acid of unbodied coated with silica phosphorus.Therefore, traditional hydration becomes technology to be difficult to successfully synthetic this new solid acid catalyst material, needs to explore and develop new synthesis technique.
Summary of the invention
The purpose of this invention is to provide a kind of problem that both can overcome aspects such as the synthetic medium acidity that exists in the technology of bibliographical information is higher, temperature is high, generated time is long, need not add stabilizing agent again; Can obtain simultaneously the synthesis technique of the intact phosphorus heteropoly tungstic acid catalyzer of faujasite crystal formation.
The preparation method who the invention provides the faujasite coated phosphorus heteropoly tungstic acid catalyzer mainly contains: with tungstates and phosphate is raw material, faujasite is the parent of coated phosphorus heteropoly tungstic acid, adopt " shipbuilding in the bottle " method, the reaction original position is synthetic in microwave reactor, and preparation process is as follows in detail:
1, be 5-15 by tungstates and phosphate weight ratio: 1, two kinds of salt are dissolved in the deionized water fully, make tungstates and phosphatic mixed solution, wherein the w/v of tungstates and deionized water is 1: 5-10;
2, the faujasite parent is placed vacuum reactor, by outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage;
3, by faujasite parent and tungstates weight ratio be: 1: 1-2, in the faujasite parent, drip tungstates and the phosphatic mixed solution that step 1 obtains, make it to soak into fully, tungstate ion and phosphate anion are entered in the supercage of molecular sieve, after solution dropwises, suspension is transferred to beaker stirred 12-24 hour;
4, in the suspension of step 3 gained, drip acidulant to pH=1, be transferred to rapidly in the round-bottomed flask then, put into microwave reactor and react, 3-10 minute microwave reaction time, 650 watts of power.After question response finished, cooling was filtered, and with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with the catalyst oven dry, 250 degrees centigrade of roastings 2 hours can obtain catalyst of the present invention with hot water.
The synthesis technique of novel faujasite coated phosphorus heteropoly tungstic acid catalyzer provided by the invention is with the parent of faujasite as coated phosphorus heteropoly tungstic acid.
The phosphatic raw materials of preparation phosphotungstic acid is sodium hydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate and potassium phosphate in the faujasite coated phosphorus heteropoly tungstic acid catalyzer of the present invention, and the tungstates raw material is sodium tungstate, potassium tungstate and ammonium tungstate.The raw material of preferred synthetic phosphotungstic acid is sodium tungstate and sodium hydrogen phosphate.Acidulant is selected concentrated hydrochloric acid or phosphoric acid for use, is preferably concentrated hydrochloric acid.
The heating using microwave that the present invention adopts is to utilize microwave to quicken to be heated the internal motion of material and to generate heat, owing to do not need the process heat transfer process, material inside promptly can reach heating-up temperature in moment.Compare with conventional heating means, heating using microwave have reaction system be heated evenly, can promote between reaction molecular collision probability, shorten the reaction time, improve characteristics such as reaction yield.Therefore in the process that adopts " shipbuilding in the bottle " method synthetic faujasites coated phosphorus heteropoly tungstic acid new catalyst, the auxiliary original position of heating using microwave is synthesized, and can shorten the ruined possibility of time, minimizing faujasite self structure in building-up process of synthetic reaction.
Synthesis technique provided by the invention all can obtain complete faujasite crystalline structure when suitable in the microwave assisted reaction time.The acid strength of the catalyst that obtains by this technology is suitable with the catalyst that directly adopts equi-volume impregnating to obtain with the acid amount, and phosphotungstic acid can not run off in reaction.
The specific embodiment
Embodiment 1
Sodium tungstate 15 grams and sodium hydrogen phosphate 1.5 grams are dissolved in 50 ml deionized water simultaneously, add faujasite 10 grams, fully stirred 24 hours.Suspension is put into 95 degrees centigrade of hot water, slowly drips concentrated hydrochloric acid under stirring, and stops when being controlled to pH=1 with acidometer adding, and continues to react half an hour, makes it to generate phosphotungstic acid.Cooling back suction filtration repeatedly washs with 100 milliliters 80 degrees centigrade deionized water at every turn, will be attached to the complete wash-out of the phosphotungstic acid on molecular sieve surface, and collection filtrate is detected filtrate with ultraviolet spectra, to judge whether the complete wash-out of the phosphotungstic acid that will adhere to.After treating the complete wash-out of phosphotungstic acid on molecular sieve surface, with catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng sample mark PW@USY (hydro-thermal method) in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1 and 2.
Embodiment 2
Be dissolved in 50 ml deionized water sodium tungstate 15 grams and sodium hydrogen phosphate 1.5 grams standby fully.Place round-bottomed flask to vacuumize 10 gram faujasites, at outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage.In faujasite, drip the mixed solution of sodium tungstate and sodium hydrogen phosphate then, make it to soak into fully, enter in the supercage of molecular sieve to help tungstate ion and phosphoric acid hydrogen radical ion.After solution dropwises, suspension is transferred to beaker stirred 12 hours, at room temperature drip concentrated hydrochloric acid again, it is transferred to rapidly in the round-bottomed flask, put into microwave reactor and react to pH=1.From 3 to 9 minutes microwave reaction time, power is 650 watts.After question response finished, cooling was filtered, with hot water with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with the catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng sample mark PW@USY (X minute) (X represents the microwave reaction time) in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1 and 2.
Embodiment 3
10 gram faujasites are joined in the aqueous solution that is dissolved with 4 gram phosphorus heteropoly tungstic acids carry out incipient impregnation, room temperature is placed after 24 hours the catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng sample mark PW/USY in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1 and 2.
Embodiment 4
Be dissolved in 50 ml deionized water sodium tungstate 15 grams and sodium phosphate 1.7 grams standby fully.Place round-bottomed flask to vacuumize 10 gram faujasites, at outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage.In faujasite, drip the mixed solution of sodium tungstate and sodium phosphate then, make it to soak into fully, enter in the supercage of molecular sieve to help tungstate ion and phosphate anion.After solution dropwises, suspension is transferred to beaker stirred 12 hours, at room temperature drip concentrated hydrochloric acid again, it is transferred to rapidly in the round-bottomed flask, put into microwave reactor and react to pH=1.The microwave reaction time is 7 minutes, and power is 650 watts.After question response finished, cooling was filtered, with hot water with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with the catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng sample mark PW@USY (sodium phosphate) in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1.
Embodiment 5
Be dissolved in 50 ml deionized water sodium tungstate 15 grams and sodium dihydrogen phosphate 1.2 grams standby fully.Place round-bottomed flask to vacuumize 10 gram faujasites, at outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage.In faujasite, drip the mixed solution of sodium tungstate and sodium dihydrogen phosphate then, make it to soak into fully, enter in the supercage of molecular sieve to help tungstate ion and dihydrogen phosphate ions.After solution dropwises, suspension is transferred to beaker stirred 12 hours, at room temperature drip concentrated hydrochloric acid again, it is transferred to rapidly in the round-bottomed flask, put into microwave reactor and react to pH=1.The microwave reaction time is 7 minutes, and power is 650 watts.After question response finished, cooling was filtered, with hot water with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with the catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng identified as samples EPW@USY (sodium dihydrogen phosphate) in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1.
Embodiment 6
Be dissolved in 50 ml deionized water potassium tungstate 15 grams and sodium hydrogen phosphate 1.5 grams standby fully.Place round-bottomed flask to vacuumize 10 gram faujasites, at outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage.In faujasite, drip the mixed solution of potassium tungstate and sodium hydrogen phosphate then, make it to soak into fully, enter in the supercage of molecular sieve to help tungstate ion and phosphoric acid hydrogen radical ion.After solution dropwises, suspension is transferred to beaker stirred 12 hours, at room temperature drip concentrated hydrochloric acid again, it is transferred to rapidly in the round-bottomed flask, put into microwave reactor and react to pH=1.The microwave reaction time is 7 minutes, and power is 650 watts.After question response finished, cooling was filtered, with hot water with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with the catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng sample mark PW@USY (potassium tungstate) in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1.
Embodiment 7
Be dissolved in 50 ml deionized water ammonium tungstate 13 grams and sodium hydrogen phosphate 1.5 grams standby fully.Place round-bottomed flask to vacuumize 10 gram faujasites, at outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage.In faujasite, drip the mixed solution of ammonium tungstate and sodium hydrogen phosphate then, make it to soak into fully, enter in the supercage of molecular sieve to help tungstate ion and phosphoric acid hydrogen radical ion.After solution dropwises, suspension is transferred to beaker stirred 12 hours, at room temperature drip concentrated hydrochloric acid again, it is transferred to rapidly in the round-bottomed flask, put into microwave reactor and react to pH=1.The microwave reaction time is 7 minutes, and power is 650 watts.After question response finished, cooling was filtered, with hot water with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with the catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng sample mark PW@USY (ammonium tungstate) in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1.
Embodiment 8
Be dissolved in 50 ml deionized water sodium tungstate 15 grams standby fully.Place round-bottomed flask to vacuumize 10 gram faujasites, at outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage.In faujasite, drip sodium tungstate solution then, make it to soak into fully, enter in the supercage of molecular sieve to help tungstate ion.After solution dropwises, suspension is transferred to beaker stirred 12 hours, at room temperature drip phosphoric acid again, it is transferred to rapidly in the round-bottomed flask, put into microwave reactor and react to pH=1.The microwave reaction time is 7 minutes, and power is 650 watts.After question response finished, cooling was filtered, with hot water with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with the catalyst oven dry, 250 degrees centigrade of roastings 2 hours.He Cheng sample mark PW@USY (phosphoric acid) in this way.Above-mentioned structures of samples adopts means such as X-ray diffraction, nitrogen adsorption and ammonia temperature programmed desorption to detect, and the results are shown in Table 1.
Table 1, different synthetic method gained structures of samples
Catalyst Specific area (meters squared per gram) Supercage pore volume (milliliter/gram) The catalyst crystal formation
USY 693.6 0.25 Faujasite
PW@USY (hydro-thermal method) 171.1 0.07 Amorphous silica
PW@USY (9 minutes) 331.4 0.10 Amorphous silica
PW@USY (7 minutes) 324.5 0.11 Faujasite
PW@USY (5 minutes) 383.3 0.13 Faujasite
PW@USY (3 minutes) 542.8 0.22 Faujasite
PW/USY 476.7 0.21 Faujasite
PW@USY (sodium phosphate) 351.3 0.12 Faujasite
PW@USY (sodium dihydrogen phosphate) 362.4 0.11 Faujasite
PW@USY (potassium tungstate) 321.2 0.12 Faujasite
PW@USY (ammonium tungstate) 341.3 0.11 Faujasite
PW@USY (phosphoric acid) 375.3 0.14 Faujasite
Table 2: the acid matter of different synthetic method gained samples
Figure C20071006986000081
A: the strong acid acid amount B that faujasite produces: the strong acid acid amount that phosphotungstic acid produces

Claims (5)

1, a kind of preparation method of faujasite coated phosphorus heteropoly tungstic acid catalyzer, with tungstates and phosphate is raw material, and faujasite is the parent of coated phosphorus heteropoly tungstic acid, adopts the direct in-situ synthetic method, the reaction original position is synthetic in microwave reactor, and preparation process is as follows:
1) be 5-15 by tungstates and phosphate weight ratio: 1, two kinds of salt are dissolved in the deionized water fully, make tungstates and phosphatic mixed solution, wherein the volume ratio of the weight of tungstates and deionized water is 1: 5-10;
2) place reactor to vacuumize the faujasite parent, at outer wall heating steam and other desorbing gas to help to adhere in the molecular sieve pore passage;
3) by faujasite parent and tungstates weight ratio be: 1: 1-2, in the faujasite parent, drip tungstates and the phosphatic mixed solution that step 1 obtains, make it to soak into fully, tungstate ion and phosphoric acid hydrogen radical ion are entered in the supercage of molecular sieve, after treating that solution dropwises, suspension is transferred to beaker stirred 12-24 hour;
4) in the suspension of step 3 gained, drip acidulant to pH=1, be transferred to rapidly in the round-bottomed flask then, put into microwave reactor and react, 3-9 minute microwave reaction time, 650 watts of power, after reaction finished, cooling was filtered, water is with the complete wash-out of the phosphotungstic acid on molecular sieve surface, again with catalyst oven dry, 250 degrees centigrade of roastings 2 hours can obtain the faujasite coated phosphorus heteropoly tungstic acid catalyzer.
2, the preparation method of faujasite coated phosphorus heteropoly tungstic acid catalyzer according to claim 1 is characterized in that described raw material tungstates is a kind of in sodium tungstate, potassium tungstate and the ammonium tungstate.
3, the preparation method of faujasite coated phosphorus heteropoly tungstic acid catalyzer according to claim 1 is characterized in that described raw material phosphate is a kind of in sodium hydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate and the potassium phosphate.
4, the preparation method of faujasite coated phosphorus heteropoly tungstic acid catalyzer according to claim 1 is characterized in that described tungstates and phosphatic raw materials are respectively sodium tungstate and sodium hydrogen phosphate.
5, the preparation method of faujasite coated phosphorus heteropoly tungstic acid catalyzer according to claim 1 is characterized in that described acidulant selects concentrated hydrochloric acid or phosphoric acid for use.
CNB2007100698600A 2007-07-03 2007-07-03 Manufacturing method of faujasite coated phosphorus heteropoly tungstic acid catalyzer Expired - Fee Related CN100457266C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100698600A CN100457266C (en) 2007-07-03 2007-07-03 Manufacturing method of faujasite coated phosphorus heteropoly tungstic acid catalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100698600A CN100457266C (en) 2007-07-03 2007-07-03 Manufacturing method of faujasite coated phosphorus heteropoly tungstic acid catalyzer

Publications (2)

Publication Number Publication Date
CN101108361A CN101108361A (en) 2008-01-23
CN100457266C true CN100457266C (en) 2009-02-04

Family

ID=39040737

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100698600A Expired - Fee Related CN100457266C (en) 2007-07-03 2007-07-03 Manufacturing method of faujasite coated phosphorus heteropoly tungstic acid catalyzer

Country Status (1)

Country Link
CN (1) CN100457266C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845634A (en) * 2010-06-21 2010-09-29 华中科技大学 Corrosion inhibitor for inhibiting corrosion of magnesium alloy in automobile cooling liquid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029169B (en) * 2009-09-29 2014-03-26 中国科学院大连化学物理研究所 Method for preparing loaded transitional metal phosphide catalyst
CN102614930B (en) * 2012-03-16 2013-10-09 西南石油大学 Metal quaternary ammonium oxyphosphate dispersoid and application of metal quaternary ammonium oxyphosphate dispersoid in exploitation of thickened oil
CN107325321A (en) * 2017-01-18 2017-11-07 东北林业大学 A kind of method of magnetic cellulose base fabricated in situ phosphorus heteropoly tungstic acid catalyzer
CN107335472B (en) * 2017-07-28 2020-07-24 河南省科学院能源研究所有限公司 Magnetic iron oxide heteropoly acid catalyst and synthesis method thereof
CN108126751B (en) * 2017-12-27 2020-11-24 中海油天津化工研究设计院有限公司 Multi-stage pore molecular sieve supported heteropoly acid alkylation desulfurization catalyst and preparation method thereof
CN112403520A (en) * 2019-08-22 2021-02-26 昌吉学院 Preparation and application of vermiculite supported phosphotungstic acid green catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113564A (en) * 1996-10-07 1998-05-06 Koei Chem Co Ltd Heteropolyacid containing catalyst
CN1277894A (en) * 1999-06-16 2000-12-27 中国科学院大连化学物理研究所 Loading type heteropoly acid catalyst used for prepn. of linear alkyl benzene by alkylation of straight chair olefin and benzene
US6177596B1 (en) * 1997-12-12 2001-01-23 Secretary, Dept. Of Science And Technology, Government Of India Highly acidic microporous synergistic solid catalyst and its applications
CN1554481A (en) * 2003-12-26 2004-12-15 华东师范大学 Assembling method of heteropolyacid nano particles in mesoporous molecule sieve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113564A (en) * 1996-10-07 1998-05-06 Koei Chem Co Ltd Heteropolyacid containing catalyst
US6177596B1 (en) * 1997-12-12 2001-01-23 Secretary, Dept. Of Science And Technology, Government Of India Highly acidic microporous synergistic solid catalyst and its applications
CN1277894A (en) * 1999-06-16 2000-12-27 中国科学院大连化学物理研究所 Loading type heteropoly acid catalyst used for prepn. of linear alkyl benzene by alkylation of straight chair olefin and benzene
CN1554481A (en) * 2003-12-26 2004-12-15 华东师范大学 Assembling method of heteropolyacid nano particles in mesoporous molecule sieve

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
超稳Y 沸石负载杂多酸催化剂的制备、表征及催化性能Ⅱ. 萘的异丙基化反应. 武文良等.石油化工,第32卷第6期. 2003
超稳Y 沸石负载杂多酸催化剂的制备、表征及催化性能Ⅱ. 萘的异丙基化反应. 武文良等.石油化工,第32卷第6期. 2003 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845634A (en) * 2010-06-21 2010-09-29 华中科技大学 Corrosion inhibitor for inhibiting corrosion of magnesium alloy in automobile cooling liquid

Also Published As

Publication number Publication date
CN101108361A (en) 2008-01-23

Similar Documents

Publication Publication Date Title
CN100457266C (en) Manufacturing method of faujasite coated phosphorus heteropoly tungstic acid catalyzer
Ma et al. Dehydration of glycerol to acrolein over Wells–Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts
EP2495042B1 (en) PREPARATION AND APPLICATION of a TUNGSTEN CARBIDE CATALYST SUPPORTED ON MESOPOROUS CARBON
Guo et al. Dehydration of D-xylose into furfural over bimetallic salts of heteropolyacid in DMSO/H2O mixture
Engin et al. Production of lactic acid esters catalyzed by heteropoly acid supported over ion-exchange resins
Zhang et al. Na 2 HPO 4-modified NaY nanocrystallites: efficient catalyst for acrylic acid production through lactic acid dehydration
CN102655931A (en) Catalyst and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
EP1113877A1 (en) Wells-dawson type heteropolyacids, their preparation and use as oxidation catalysts
CN101365536A (en) Catalyst and process for producing ketone using the same
CN104248991A (en) Spherical montmorillonite mesoporous composite carrier, supported catalyst, preparation methods of spherical montmorillonite mesoporous composite carrier and supported catalyst, use of supported catalyst and preparation method of ethyl acetate
CN105502433B (en) A kind of preparing gasoline by methanol catalyst nano Zn ZSM 5 preparation method
CN102746129A (en) Process method for preparing 2-ethyl-2-hexenal by catalyzing self-condensation of n-butanal with heteropoly acid
CN107866240A (en) Catalyst for preparing maleic anhydride and preparation method thereof
CN105562046B (en) Methanol and the ethanol condensed catalyst for preparing propyl alcohol and butanol and preparation method and application
CN101455976A (en) Effective catalyst used in hydrogenation of dimethyl oxalate to synthesizing ethylene glycol and production method thereof
Ma et al. 12-Tungstophosphoric acid-encapsulated metal-organic framework UiO-66: A promising catalyst for the esterification of acetic acid with n-butanol
Sreekantan et al. Enhanced one-pot selective conversion of cellulose to ethylene glycol over NaZSM-5 supported metal catalysts
Pulikkal Thumbayil et al. Pd nanoparticles encapsulated in mesoporous HZSM-5 zeolite for selective one-step conversion of acetone to methyl isobutyl ketone
CN102553647A (en) Magnetic nanometer solid acid catalyst and preparation method thereof
Zhang et al. Enhanced selectivity in the conversion of glycerol to pyridine bases over HZSM-5/11 intergrowth zeolite
CN103752339B (en) A kind of aluminium doped mesoporous molecular sieve load phosphorus heteropoly tungstic acid catalyzer and preparation thereof and the application in benzoic acid synthesis
CN108722455B (en) Preparation method of vanadium phosphorus oxide catalyst
Zhang et al. A pronounced catalytic activity of heteropoly compounds supported on dealuminated USY for liquid-phase esterification of acetic acid with n-butanol
CN109847800B (en) Polycarboxyl type heteropoly acid polyion liquid and preparation method and application thereof
CN101829552A (en) Preparation method of mesoporous alumina catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20100703