CN100452571C - Frequency-doubling crystal temperature gradient compensation method temperature control apparatus - Google Patents

Frequency-doubling crystal temperature gradient compensation method temperature control apparatus Download PDF

Info

Publication number
CN100452571C
CN100452571C CNB2006101195731A CN200610119573A CN100452571C CN 100452571 C CN100452571 C CN 100452571C CN B2006101195731 A CNB2006101195731 A CN B2006101195731A CN 200610119573 A CN200610119573 A CN 200610119573A CN 100452571 C CN100452571 C CN 100452571C
Authority
CN
China
Prior art keywords
temperature
frequency
doubling crystal
heat sink
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101195731A
Other languages
Chinese (zh)
Other versions
CN1972037A (en
Inventor
赵智亮
陈立华
朱健强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Shanghai Micro Electronics Equipment Co Ltd
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CNB2006101195731A priority Critical patent/CN100452571C/en
Publication of CN1972037A publication Critical patent/CN1972037A/en
Application granted granted Critical
Publication of CN100452571C publication Critical patent/CN100452571C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

This invention relates to one temperature control device for high power solid laser double frequency transistor temperature gradient compensation, which forms one dimension temperature gradient from top to down in different temperature point by combining control element transistor and forms temperature gradient different from top to down at double frequency transistor poison through adjusting laser work base wave to achieve the whole work temperature evenness.

Description

Frequency-doubling crystal temperature gradient compensation method temperature control apparatus
Technical field
The present invention relates to a kind of temperature regulating device that is used for solid state laser, specifically is a kind of high power solid state laser frequency-doubling crystal temperature gradient compensation method temperature control apparatus that is used for.
Background technology
High power solid frequency double laser all is widely used in fields such as scientific research, medical treatment, communication, laser processing and national defense and military.Along with developing rapidly of semiconductor laser technique, adopt the semiconductor pumped all solid state frequency double laser of high power with its efficient height, volume is little, running is stable and the life-span is long etc., and characteristics more and more get more and more people's extensive concerning.In recent years, domestic and international research for the quasi-continuous all solid state frequency double laser of high-mean-power high-repetition-rate is becoming one of hot research problem of high power laser light technical field.
The principal element that influences all solid state frequency double laser output characteristic of high power has the insertion loss of function element in diffraction efficiency that the thermal effect of element in the chamber, acoustooptic Q-switching turn-off and the chamber.Particularly produce phase mismatch and thermal lensing effect, how to reduce that frequency-doubling crystal matching angle mismatch and thermal lensing effect become one of main difficult point of research high power frequency double laser under the high power operating condition because of fundamental power density height causes frequency-doubling crystal local heating.In the superpower laser running, adopt the intracavity frequency doubling mode for improving shg efficiency, concentrate by the fundamental power density of frequency-doubling crystal for the intracavity frequency doubling structure, be beneficial to improve shg output power on the one hand, the fundamental power that is absorbed by frequency-doubling crystal also can increase on the other hand, cause the crystals heat accumulation, thereby cause inner intensification of frequency-doubling crystal to cause matching angle mismatch and thermal lensing effect, the relevant frequency-doubling crystal matching angle φ that studies show that raises near linear change with temperature.For all solid state frequency double laser of high power, frequency-doubling crystal adopts large-size crystals more, therefore the frequency-doubling crystal internal temperature rise makes crystals and crystal periphery have temperature gradient under the high power operating condition, is difficult to determine frequency-doubling crystal internal temperature in the laser operation process.For how compensating the crystalline phase mismatch that causes because of frequency-doubling crystal local temperature rise all further investigate both at home and abroad.Having taked as angular adjustment, forced cold etc. measure, is not very desirable though obtained higher shg efficiency beam quality.And, often be not studied the research that the person ignores and rarely be correlated with because the frequency-doubling crystal thermal lensing effect is little a lot of to the influence of laser output stability to the thermal lensing effect of the relative gain medium material of the influence of laser output stability.
Summary of the invention
The purpose of this invention is to provide a kind of temperature regulating device that is used for the frequency-doubling crystal temperature gradient compensation of high power solid state laser.This temperature regulating device is controlled frequency-doubling crystal two sides temperature in the superpower laser running respectively by the high-precision temperature control system, on crystals one dimension direction, form the temperature gradient of a temperature gradual change, phase mismatch and thermal lensing effect that the local temperature rise that causes because of the absorption base wave energy in order to the compensation frequency-doubling crystal causes, the shg efficiency and the output stability of raising high power solid-state laser.
For achieving the above object, the present invention adopts following technical scheme:
A kind of temperature gradient compensation temperature regulating device that is used for the high power solid state laser frequency-doubling crystal, be characterised in that it is constructed as follows: frequency-doubling crystal is parallel to the first-harmonic optical direction and places, the upper and lower surface of this frequency-doubling crystal respectively with first bronze medal heat sink with the heat sink formation of second bronze medal closely face contact, the left and right sides of this frequency-doubling crystal adopts heat insulation layer that the heat sink thermal insulation of copper is come respectively, make crystal along left and right sides direction thermal insulation simultaneously, described first bronze medal is heat sink and second bronze medal heat sink more respectively with the chill surface of first semiconductor cooler, the chill surface contact of second semiconductor cooler, described first bronze medal is heat sink and second bronze medal is provided with first temperature sensor and second temperature sensor in heat sink, this first temperature sensor connects the input of the first high-precision temperature control system, the control end of described first semiconductor cooler of output termination of this first high-precision temperature control system, second temperature sensor connects the input of the second high-precision temperature control system, the control end of described second semiconductor cooler of output termination of this second high-precision temperature control system.
Described high-precision temperature control system is the high-accuracy self-adaptation temperature-controlling system, temperature-controlled precision reaches ± and 0.05 ℃.
Utilize of the temperature gradient compensation method of described temperature gradient compensation temperature regulating device, be characterised in that to comprise the following steps: the high power solid state laser frequency-doubling crystal
1. temperature gradient compensation temperature regulating device is set, allows the first-harmonic light beam be parallel to the length direction of frequency-doubling crystal and the latter half of being positioned at this frequency-doubling crystal is passed through;
2. adjust the output of the first high-precision temperature control system and the second high-precision temperature control system, make the temperature of described first semiconductor cooler be higher than the temperature of second semiconductor cooler, in described frequency-doubling crystal, form a top-down temperature gradient and equate by the temperature gradient from bottom to top that in described frequency-doubling crystal, produces with the first-harmonic light beam.
The both sides up and down that the frequency-doubling crystal of apparatus of the present invention is parallel to the first-harmonic optical direction respectively with heat sink tight contact of copper, make frequency-doubling crystal up and down the both sides temperature be the heat sink temperature of copper that is contacted.Being parallel to the heat sink thermal insulation of copper that the left and right sides of the frequency-doubling crystal of first-harmonic optical direction adopts heat-insulating material to contact with the frequency-doubling crystal upper and lower surface comes, make crystal along left and right sides direction thermal insulation simultaneously, make crystals heat conduction just along the direction of one dimension up and down of vertical first harmonic optical direction.To with crystal up and down the copper of contact both sides sink to the bottom and adopt semiconductor cooling device to carry out adjustment respectively.Respectively sampling and crystal up and down the heat sink Temperature Feedback of the copper that contacts of two sides to separately high-precision temperature control system, control and the heat sink semiconductor cooling device power output that contacts of both sides copper up and down, thereby high accuracy adjustment both sides copper up and down sinks to the bottom temperature, i.e. two sides temperature about the High Accuracy Control frequency-doubling crystal.In laser high power running, the high-accuracy self-adaptation temperature-controlling system of employing, temperature-controlled precision reach ± and 0.05 ℃.For difference temperature control in both sides about the crystal, can accurately control frequency-doubling crystal respectively according to the laser service conditions and be stabilized in different temperature spots respectively in both sides up and down, form an one-dimension temperature gradient in the whole cross section of crystal thereby on this heat conduction direction, make.Regulate in the laser high power running high-precision temperature control system make frequency-doubling crystal up and down in the two sides side temperature be higher than the another side temperature, make crystals form the temperature gradient of a temperature gradual change from top to bottom.For ease of regulating, multiselect makes frequency-doubling crystal have bigger adjusting range on the vertical first harmonic optical direction with the bigger crystal of the relative fundamental wave beam diameter of frequency-doubling crystal sectional dimension in high power solid state laser.In the high power laser light running, regulate the placement location on the frequency-doubling crystal vertical first harmonic optical direction, make the first-harmonic light beam pass through, make near this side of frequency-doubling crystal temperature be higher than near the temperature another side because of absorption base wave energy intensification temperature near the low side of crystal control temperature.Also form the temperature gradient that gradually changes of temperature from bottom to top at crystals because of the absorption base wave energy like this, and this temperature gradient is opposite with the temperature gradient of the gradual change of temperature from bottom to top that is formed at crystals by the crystal temperature gradient temperature-control structure, and these two opposite temperature gradients compensate mutually.Make these two opposite temperature gradients compensate mutually according to laser real-world operation condition adjusting temperature-controlling system again and reach balance, make and reach equalizing temperature on the external vertical first harmonic optical direction in the crystal, effectively phase mismatch and the thermal lensing effect in the laser operation process that causes because of local temperature rise because of frequency-doubling crystal of compensation improved laser-doubled efficient and output stability.
More than narrated temperature control left and right directions thermal insulation on the vertical first harmonic optical direction above-below direction realizes temperature gradient compensation temperature regulating device on above-below direction realization relation.In like manner, change that the thermal insulation of temperature control above-below direction also can realize temperature gradient compensation method temperature control apparatus on the vertical first harmonic optical direction left and right directions on left and right directions into.
Description of drawings
Fig. 1 is a high power solid state laser frequency-doubling crystal temperature gradient compensation method temperature control apparatus structural representation of the present invention
Embodiment
Below in conjunction with accompanying drawing the present invention is elaborated, but should not limit protection scope of the present invention with this.
See also Fig. 1 earlier, Fig. 1 is a high power solid state laser frequency-doubling crystal temperature gradient compensation method temperature control apparatus structural representation, as seen from the figure, high power solid state laser frequency-doubling crystal temperature gradient compensation method temperature control apparatus of the present invention mainly forms structure and high-precision temperature control two parts by temperature gradient and forms.
Among Fig. 1, laser frequency doubling crystal 5 closely contacts with heat sink 4 one sides of copper near the whole side that is parallel to first-harmonic 6 optical directions of Y1 side on the Y1-Y2 direction, and copper is heat sink, and 4 another sides closely contact with semiconductor refrigerating element 3 chill surfaces.Among Fig. 1, laser first-harmonic 6 optical directions are that vertical paper is by whole frequency-doubling crystal 5.Laser frequency doubling crystal 5 closely contacts with heat sink 8 one sides of copper near the whole side that is parallel to first-harmonic 6 optical directions of Y2 side on the Y1-Y2 direction, and copper is heat sink, and 8 another sides closely contact with semiconductor refrigerating element 9 chill surfaces.Between first bronze medal heat sink 4 of both sides on the X1-X2 of frequency-doubling crystal 5 direction and second bronze medal heat sink 8, adopt heat insulation layer 7 to fill, make crystal 5 on the Y1-Y2 direction with it the contact first bronze medal heat sink 4 and second bronze medal heat sink 8 between thermal insulation in case heat conduct mutually, make the crystal 5 internal heat not form crystals heat conduction only along Y1-Y2 one dimension direction in addition along the conduction of X1-X2 direction.Temperature sensor 2 is installed in the Temperature Feedback of accurately measuring copper heat sink 4 on the copper heat sink 4 and gives high-precision temperature control system 1, high-precision temperature control system 1 determines to export the power output that controlled quentity controlled variable is controlled first semiconductor cooler 3 according to the temperature of first bronze medal heat sink 4 that the design temperature T1 of device real work needs and first temperature sensor 2 record, thereby control the actual work temperature of first bronze medal heat sink 4 accurately, because of top and first bronze medal heat sink 4 of frequency-doubling crystal 5 near Y1 closely contacts, so frequency-doubling crystal 5 equals the temperature of first bronze medal heat sink 4 near the top temperature of Y1.Promptly can accurately control frequency-doubling crystal 5 is stabilized in first high-precision temperature control system 1 near the working temperature above the Y1 design temperature T1 by first high-precision temperature control system 1.In like manner, also can accurately control frequency-doubling crystal 5 is stabilized in second high-precision temperature control system 2 near the working temperature below the Y2 design temperature T2 by the high-precision temperature regulating system of forming by second semiconductor cooler 9, second temperature sensor 10 and second high-precision temperature control system 2.In service at laser, regulate first high-precision temperature control system, 1 design temperature T1 and be higher than second high-precision temperature control system, 2 design temperature T2, make frequency-doubling crystal 5 be higher than frequency-doubling crystal 5 near the work temperature 2 below the Y2, wholely on frequency-doubling crystal 5 inner Y1-Y2 directions form a temperature gradient that raises gradually to the Y1 temperature from Y2 near the work temperature 1 above the Y1.In the laser operation process, regulate the position of frequency-doubling crystal 5 along the Y1-Y2 direction, make laser first-harmonic 6 pass through frequency-doubling crystal 5 near the low Y2 of frequency-doubling crystal 5 control temperature, frequency-doubling crystal 5 passes through and the rising of absorption base wave energy temperature near Y2 side Yin Jibo 6, and the place of frequency-doubling crystal 5 close Y1 far makes the temperature of close Y1 be lower than the temperature of close Y2 because of the distance first-harmonic by point, thereby frequency-doubling crystal 5 is because of absorption base wave energy temperature gradient that reduces gradually to the Y1 temperature from Y2 of whole formation on crystals Y1-Y2 direction, and on this temperature gradient and the frequency-doubling crystal 5 inner Y1-Y2 directions that form by temperature-controlling system from Y2 to Y1, the temperature gradient that temperature raises gradually compensates mutually on the contrary mutually.When laser operation, according to condition of work, regulate first high-precision temperature control system 1, the design temperature T1 of second high-precision temperature control system 2 and the temperature difference between the T2, make and just to compensate by frequency-doubling crystal 5 because of absorption base wave energy integrally formed temperature gradient that reduces gradually to the Y1 temperature from Y2 on crystals Y1-Y2 direction to the temperature gradient that the Y1 temperature raises gradually from Y2 on the frequency-doubling crystal 5 inner Y1-Y2 directions that form by temperature-controlling system, make frequency-doubling crystal 5 inner body equalizing temperatures, thereby eliminate because of frequency-doubling crystal 5 near first-harmonics 6 by frequency multiplication phase mismatch and frequency-doubling crystal thermal lensing effect that near local temperature rise putting causes, reach the purpose that improves laser-doubled efficient and output stability.

Claims (3)

1, a kind of frequency-doubling crystal temperature gradient compensation temperature regulating device that is used for high power solid state laser, be characterised in that it is constructed as follows: frequency-doubling crystal (5) is parallel to the first-harmonic optical direction and places, the upper and lower surface of this frequency-doubling crystal (5) forms closely with first bronze medal heat sink (4) and second bronze medal heat sink (8) respectively, and face contacts, the left and right sides of this frequency-doubling crystal (5) adopts heat insulation layer (7) that the heat sink thermal insulation of copper is come respectively, make crystal along left and right sides direction thermal insulation simultaneously, described first bronze medal heat sink (4) and second bronze medal heat sink (8) more respectively with the chill surface of first semiconductor cooler (3), the chill surface contact of second semiconductor cooler (9), be respectively equipped with first temperature sensor (2) and second temperature sensor (10) in described first bronze medal heat sink (4) and second bronze medal heat sink (8), this first temperature sensor (2) connects the input of the first high-precision temperature control system (1), the control end of described first semiconductor cooler of the output termination of this first high-precision temperature control system (1) (3), second temperature sensor (10) connects the input of the second high-precision temperature control system (11), the control end of described second semiconductor cooler of the output termination of this second high-precision temperature control system (11) (9).
2, temperature gradient according to claim 1 compensation temperature regulating device is characterized in that described high-precision temperature control system is the high-accuracy self-adaptation temperature-controlling system, temperature-controlled precision reaches ± and 0.05 ℃.
3, utilize of the temperature gradient compensation method of the described temperature gradient compensation of claim 1 temperature regulating device, be characterised in that to comprise the following steps: the high power solid state laser frequency-doubling crystal
1. temperature gradient compensation temperature regulating device is set, allows the first-harmonic light beam be parallel to the length direction of frequency-doubling crystal (5) and pass through in the latter half that is positioned at this frequency-doubling crystal (5);
2. adjust the output of the first high-precision temperature control system (1) and the second high-precision temperature control system (11), make the temperature of described first semiconductor cooler (3) be higher than the temperature of second semiconductor cooler (9), in described frequency-doubling crystal (5), form a top-down temperature gradient and equate with the temperature gradient from bottom to top of first-harmonic light beam by generation in described frequency-doubling crystal (5).
CNB2006101195731A 2006-12-13 2006-12-13 Frequency-doubling crystal temperature gradient compensation method temperature control apparatus Expired - Fee Related CN100452571C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101195731A CN100452571C (en) 2006-12-13 2006-12-13 Frequency-doubling crystal temperature gradient compensation method temperature control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101195731A CN100452571C (en) 2006-12-13 2006-12-13 Frequency-doubling crystal temperature gradient compensation method temperature control apparatus

Publications (2)

Publication Number Publication Date
CN1972037A CN1972037A (en) 2007-05-30
CN100452571C true CN100452571C (en) 2009-01-14

Family

ID=38112696

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101195731A Expired - Fee Related CN100452571C (en) 2006-12-13 2006-12-13 Frequency-doubling crystal temperature gradient compensation method temperature control apparatus

Country Status (1)

Country Link
CN (1) CN100452571C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374325B (en) * 2016-11-22 2019-02-22 西安工业大学 A kind of efficient method for measuring heat deposition percentage in solid state laser
CN108666855A (en) * 2018-07-24 2018-10-16 核工业理化工程研究院 Laser crystal bilateral temperature regulating device
CN112234412A (en) * 2020-10-26 2021-01-15 苏州英谷激光有限公司 Device for accurately controlling temperature of laser crystal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019159A (en) * 1975-10-14 1977-04-19 Hughes Aircraft Company Optical frequency doubler using electro-optic crystal with improved feedback control of crystal phase match
US4949346A (en) * 1989-08-14 1990-08-14 Allied-Signal Inc. Conductively cooled, diode-pumped solid-state slab laser
JPH09199882A (en) * 1996-01-22 1997-07-31 Topcon Corp Temperature control device
US5832016A (en) * 1997-01-29 1998-11-03 Northrop Grumman Corporation Slab laser assembly
US6034977A (en) * 1998-02-17 2000-03-07 Trw Inc. Optical path difference control system and method for solid state lasers
US6747789B2 (en) * 2000-12-09 2004-06-08 Trumpf Laser Gmbh + Co. Kg Laser amplifying system
CN201008073Y (en) * 2006-12-13 2008-01-16 中国科学院上海光学精密机械研究所 Double frequency crystal temperature gradient compensation method temperature-controlled device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019159A (en) * 1975-10-14 1977-04-19 Hughes Aircraft Company Optical frequency doubler using electro-optic crystal with improved feedback control of crystal phase match
US4949346A (en) * 1989-08-14 1990-08-14 Allied-Signal Inc. Conductively cooled, diode-pumped solid-state slab laser
JPH09199882A (en) * 1996-01-22 1997-07-31 Topcon Corp Temperature control device
US5832016A (en) * 1997-01-29 1998-11-03 Northrop Grumman Corporation Slab laser assembly
US6034977A (en) * 1998-02-17 2000-03-07 Trw Inc. Optical path difference control system and method for solid state lasers
US6747789B2 (en) * 2000-12-09 2004-06-08 Trumpf Laser Gmbh + Co. Kg Laser amplifying system
CN201008073Y (en) * 2006-12-13 2008-01-16 中国科学院上海光学精密机械研究所 Double frequency crystal temperature gradient compensation method temperature-controlled device

Also Published As

Publication number Publication date
CN1972037A (en) 2007-05-30

Similar Documents

Publication Publication Date Title
CN201008073Y (en) Double frequency crystal temperature gradient compensation method temperature-controlled device
CN101872933B (en) Semiconductor pumped full-cavity microchip laser device with stable output wavelength
CN2922219Y (en) Cooling temperature controlling device for solid laser device
CN100479274C (en) A standard temperature control device
CN101567515B (en) Device for improving stability of deep ultraviolet lasers
CN100452571C (en) Frequency-doubling crystal temperature gradient compensation method temperature control apparatus
CN101505029B (en) Laser and heat radiation device
CN111478159A (en) Temperature control system for internal device of solid laser
CN102957085A (en) Optical device for laser beam wave-front correction and wave-front correction method
CN105870772B (en) A kind of laser gain chip and laser module, power amplifier and oscillator
CN102820605A (en) High power mini laser package
CN201966487U (en) Temperature control device of slice laser medium
CN1794521A (en) Phase miss match compensation heater of high power internal cavity freguency multiplier laser and its method
CN205319502U (en) Improve packaging hardware of wide temperature range of laser instrument
CN201174497Y (en) Laser and heat radiating device
CN204290031U (en) A kind of high power semiconductor lasers encapsulating structure
CN103545700A (en) Integrated single-platform miniature laser
CN105207045A (en) Thermal distortion compensation device of disk laser amplifier
CN112038745B (en) Active phased array radar antenna array surface autonomous heat dissipation device based on Peltier effect
CN208781092U (en) A kind of temperature controlling box and femtosecond frequency comb of grading control
Sun et al. Impact of forced convective heat transfer on temperature uniformity and frequency doubling efficiency in large aperture ammonium dihydrogen phosphate (ADP) crystals
CN204615150U (en) Based on the low drifting laser attemperating unit of double T EC
CN207625066U (en) A kind of hundred picoseconds of microchip solid state lasers with temperature control device
CN111060452B (en) Crystal furnace device for compensating Guyi phase shift and increasing nonlinear interaction
CN111952825A (en) Gain medium cooling device of laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090114

Termination date: 20111213