CN100452570C - 一种液体导引泵浦光束的装置 - Google Patents

一种液体导引泵浦光束的装置 Download PDF

Info

Publication number
CN100452570C
CN100452570C CNB2007100866714A CN200710086671A CN100452570C CN 100452570 C CN100452570 C CN 100452570C CN B2007100866714 A CNB2007100866714 A CN B2007100866714A CN 200710086671 A CN200710086671 A CN 200710086671A CN 100452570 C CN100452570 C CN 100452570C
Authority
CN
China
Prior art keywords
liquid
pump
optical fiber
fluid
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100866714A
Other languages
English (en)
Other versions
CN101043118A (zh
Inventor
巩马理
黄磊
黄云火
柳强
闫平
李晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2007100866714A priority Critical patent/CN100452570C/zh
Publication of CN101043118A publication Critical patent/CN101043118A/zh
Application granted granted Critical
Publication of CN100452570C publication Critical patent/CN100452570C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

一种液体导引泵浦光束的方法及装置,属于光学与激光光电子技术领域。它含有泵浦光源、光学耦合装置、液体导引装置和光纤。其中:光学耦合装置接受泵浦光源发出的泵浦光;液体喷嘴,经过光学耦合装置耦合的泵浦光束被耦合到液体喷嘴喷出的液柱中;冷却液收集器的中心线对准液体喷嘴的中心线;回液管,进液端与冷却液收集器连通;散热器和循环泵,相互串联,该散热器的进液口与回液管的出液口相连,而循环泵的输出端与液体喷嘴下端连通;液体喷嘴、冷却液收集器、回液管、散热器和循环泵串接形成了一个液体导引装置。本发明解决了固体激光器和光纤激光器中的高功率泵浦问题,可以使激光器的输出平均功率得到提高,确保激光器系统工作的稳定性和可靠性。

Description

一种液体导引泵浦光束的装置
技术领域
本发明涉及一种液体引导光束的方法及装置,可以用于激光谐振腔和激光放大器,属于光学与激光光电子技术领域。
背景技术
在固体激光器与光纤激光器领域,高功率固体激光器与光纤激光器工作时,需要向增益介质内注入大量泵浦光。
在光纤激光器的现有技术中,如图1所示,包括泵浦源1,光学系统2,光纤3和热沉4。泵浦光束经过光学系统2压缩汇聚后,直接入射到光纤3的端面并被光纤吸收,光纤端部热量分布集中,温度高,必须进行冷却,否则会导致光纤涂覆层燃烧,严重时会造成光纤端部炸裂。在高功率光纤激光器和高功率光纤放大器中光纤端部的冷却尤为重要。现有技术中常用的冷却方法是将光纤端部放置在金属热沉4中,光纤端部的热量通过接触传导从热沉中散出。由于这种散热方式中,热沉只与光纤的侧面接触,只能对光纤侧面进行传导冷却,而光纤端面的热量最为集中,因此散热效果不佳;同时侧面冷却还使得光纤产生了非常不均匀的温度分布,中心热边缘冷,使得端面上形成很大的热梯度,其产生的较大的热效应导致激光束的畸变,降低光束质量;光纤较冷的外部制约着较热的内部膨胀,在纤内产生较大的机械应力,严重时会导致光纤产生裂纹。此外,由于光纤直径微小(小于1mm),因此,为确保散热,必须使热沉与光纤侧面紧密接触而又不能太紧使得光纤产生应力,因此热沉的加工精度必须很高。
在固体激光器的现有技术中,泵浦光束直接或经过光学系统后入射到固体激光介质的端面、侧面或其他泵浦面。入射端面热量分布集中,温度高,必须对固体激光介质进行冷却,否则激光介质激活区内温度差造成的热效应会使得激光器工作不稳定,光束质量下降,温度差造成的热应力会使得晶体产生形变,过热易导致端面膜层容易烧毁,严重时固体介质会炸裂,因此高效率的散热和热效应的降低通常是设计高平均功率系统时考虑的主要因素。现有技术中常用的冷却方法有液冷和传导冷却两种,都是通过对晶体侧面进行冷却,不能解决晶体端面及中心过热问题,因而散热效果不佳;同时由于中心热边缘冷,使得晶体的温度分布更不均匀,热效应和热应力不能得到有效降低。如图2所示,5是晶体,传导冷却是用金属热沉4与固体激光介质紧密接触,通过接触传导实现散热,由于这种散热方式中,热沉与固体激光介质的冷却结合面质量不是很高(尤其是曲面),因此散热效果不佳,为确保散热,热沉的加工精度也必须很高。如图3所示,液冷由于O型密封圈17要覆盖一定的体积,所以冷却液6不可能充分冷却晶体末端的几毫米长度。
发明内容
本发明的目的是提出一种液体引导泵浦光束的方法及装置,克服现有技术中被泵浦端面的散热问题,采用液体引导泵浦光束的方法与装置,实现被泵浦端面的良好散热,有效地改善端部的热梯度,减小热效应和热应力,使得原金属热沉只需主要起夹持作用,解决了泵浦激光注入与机械夹持结构的矛盾,降低了夹持结构的加工精度要求,从而解决了固体激光器和光纤激光器中的高功率泵浦问题,确保激光器系统工作的稳定性和可靠性。
本发明的特征之一在于,含有泵浦光源、光学耦合装置8、液体导引装置9和光纤3,其中:
光学耦合装置8,接受泵浦光源发出的泵浦光;
液体喷嘴10,经过光学耦合装置8耦合的泵浦光束通过液体喷嘴10前端的透明窗口被耦合到所述的液体喷嘴10喷出的液柱15中;
冷却液收集器11,一端是开口状,该冷却液收集器的中心线对准液体喷嘴10的中心线,而该冷却液收集器11的出口端插入了光纤3的输入端,由液体喷嘴10喷出的液柱15的中心线精确对准光纤3的中心线;
回液管12,进液端与冷却液收集器11的下底部连通;
散热器14和循环泵13,相互串联,该散热器14的进液口与所述回液管12的出液口相连,而循环泵13的输出端经回液管12与开在所述的液体喷嘴10下端的进液口连通;
所述液体喷嘴10、冷却液收集器11、回液管12、散热器14和循环泵13串接构成的液柱15的闭合环路形成了一个液体导引装置9。
所述的光纤3可用一个整个浸在冷却液收集器11中的激光晶体16代替。
所述的液体喷嘴10产生的液柱15的长度为液柱15直径的1倍至10000倍之间。
本发明的特征之二在于,含有:泵浦光源、光学耦合装置8、液体导引装置9和光纤3,其中:
光纤3,有一个激光输出口;
液体导引装置9含有:冷却液腔17、回液管12、散热器14和循环泵13,其中:
冷却液腔17,腔体内充满冷却液6,光纤3输入口所在的一端穿过被O型密封圈7封闭的冷却液腔17的沿轴向一侧进入腔体内,并固定在腔体内壁上,冷却液腔17的沿轴向的另一侧与光学耦合装置8的输出端口相连,泵浦光源输出的泵浦光经过光学耦合装置8后被耦合到腔体内的冷却液6中,再沿着光纤3的轴向中心线入射到光纤3输入口的端口上,进入光纤3;
散热器14和循环泵13,相互串联,散热器14通过回液管12与冷却液腔17靠近激光输出口一侧的底部连通,循环泵13通过回液管12与冷却液腔17靠近光纤输入口一侧的底部连通;
所述冷却液腔17、散热器14和循环泵13串接构成的冷却液6的闭合回路形成了一个液体导引装置。
所述的光纤3可用一个整个浸在冷却液腔17中的激光晶体16代替。
本发明提出的液体引导泵浦光束的方法及装置,由于采取以上技术方案,具有以下优点:本发明采用液体对端面进行冷却,由于液体导热性能好,因此能够迅速带走被泵浦端面的热量,冷却效果好,解决了现有技术存在的散热难题;由于对整个端面进行冷却,改善了中间热边缘冷的问题,减小了热梯度,因而降低了热效应和热应力,改善了光束质量,减小了端部的形变;由于采用液体散热良好,因此对被泵浦介质的机械夹持结构的精度要求降低,结构设计与系统装调更为容易;冷却液可以起到折射率匹配的作用,减少泵浦光在端面上的反射,还可以起到滤波片的作用,消除不需要的泵浦辐射。本发明的冷却方法和装置简单,实施效果显著,解决了固体激光器和光纤激光器中的高功率泵浦问题,可以使激光器的输出平均功率得到进一步的提高,确保激光器系统工作的稳定性和可靠性。在诸多领域都有广阔的应用前景。
附图说明
图1为现有技术中端面泵浦光纤激光器的泵浦与散热装置示意图。
图2为现有技术中固体激光器的传导冷却装置示意图。
图3为现有技术中固体激光器的液冷装置示意图。
图4为本发明所述的液体导引泵浦光束的方法及装置的第一实施例结构示意图。
图5为本发明所述的液体导引泵浦光束的方法及装置的第二实施例结构示意图。
图6为本发明所述的液体导引泵浦光束的方法及装置的第三实施例结构示意图。
图7为本发明所述的液体导引泵浦光束的方法及装置的第四实施例结构示意图。
图8为本发明所述的液体导引泵浦光束的方法及装置的第五实施例结构示意图。
具体实施方式
下面结合附图来说明本发明。
本发明的第一实施例如图4所示,本发明装置包括耦合系统8,液体导引装置9,以及用于输出的光纤3。液体导引装置9由特制的液体喷嘴10,冷却液收集器11,回液管12,循环泵13和散热器14组成。如图4所示,本发明的特点是经过耦合系统8的泵浦光通过前端带有一透明窗口的特制液体喷嘴10后被耦合进喷嘴喷出的液柱15中,液柱15的中心线精确对准光纤3的中心线,将一呈管状的冷却液收集器11的后端密封套设在光纤3上,冷却液收集器11的前端进液口探出光纤3的输入端,且呈开放状对准液体喷嘴10,在冷却液收集器11与液体喷嘴10进液端之间设置一回液管12,在回液管12上设置一循环泵13和散热器14,使整个冷却系统形成一冷却循环回路。本发明装置工作时,从液体喷嘴10喷出的压力液体,形成一段液体柱15,泵浦光在液体柱15内全内反射被导引入射到光纤3的输入端,由光纤3继续传输,喷射到光纤3输入端的液体由冷却液收集器11收集,并通过散热器14进行冷却,经过循环泵13回到液体喷嘴10的输入端继续循环使用。液体喷嘴10与光纤3输入端之间的距离也即稳定的液体柱15的有效长度最长可达液柱直径的10000倍,可根据实际情况取适当的长度。该实施例中,通过液体柱15导引泵浦光束入射到光纤3端面的过程中,液体柱对泵浦光束波长的折射率越高,液体柱导引泵浦光能力越强;液体柱对泵浦光束波长的吸收系数越小,液体柱吸收泵浦光的功率越少,可导引的功率越高;液体柱的比热越大,液体柱对光纤3端部的冷却效果越好。因此,冷却液回路中的液体可以采用具有较高折射率(至少大于1)、对泵浦波长吸收小,且冷却作用好的液体,比如:水。在此实施例中,如果泵浦光为光束质量足够好的激光或其他调教好的光束则可以不经耦合系统8而直接入射喷嘴10直接耦合进液柱15中。
本发明的第二实施例如图5所示,本发明装置包括第一实施例所述的耦合系统8,液体导引装置9,以及光纤耦合器中的支路光纤3。装置设置与工作原理与第一实施例所述相同。
本发明的第三实施例如图6所示,本发明装置包括第一实施例所述的耦合系统8,液体导引装置9,以及激光晶体3。装置设置与工作原理与第一实施例所述相同。此外,整个激光晶体浸没在冷却液收集器11中由冷却液6实现液冷,使得晶体5的侧面也可以得到简单有效的冷却。
本发明的第四实施例如图7所示,本发明装置包括耦合系统8,液体导引装置9,以及激光晶体16。液体导引装置9由回液管12,循环泵13,散热器14和冷却液腔17组成。本发明的特点是耦合系统8与冷却液腔17以及晶体16共同构成一密闭腔,里面充满了冷却液6,在冷却液腔17上设置了回液管12,在回液管12上设置一循环泵13和散热器14,使整个冷却系统形成一冷却循环回路。泵浦光经过耦合系统8入射到晶体16端面被晶体吸收。几乎整个激光晶体16都浸没在冷却液6中因而可以得到充分有效的冷却。
本发明的第五实施例如图8所示,本发明装置包括耦合系统8,液体导引装置9,以及光纤3。液体导引装置9如第四实施例所述由回液管12,循环泵13,散热器14和冷却液腔17组成。本发明的特点是耦合系统8与冷却液腔17共同构成一密闭腔,里面充满了冷却液6,在冷却液腔17上设置了回液管12,在回液管12上设置一循环泵13和散热器14,使整个冷却系统形成一冷却循环回路。泵浦光经过耦合系统8入射到光纤端面被光纤吸收。光纤端部都浸没在冷却液中因而可以得到充分有效的冷却。

Claims (3)

1、液体导引泵浦光束的系统,其特征在于含有泵浦光源、光学耦合装置(8)、液体导引装置(9)和光纤(3),其中:
光学耦合装置(8),接受泵浦光源发出的泵浦光;
液体喷嘴(10),经过光学耦合装置(8)耦合的泵浦光束通过液体喷嘴(10)前端的透明窗口被耦合到所述的液体喷嘴(10)喷出的液柱(15)中;
冷却液收集器(11),一端是开口状,该冷却液收集器的中心线对准液体喷嘴(10)的中心线,而该冷却液收集器(11)的出口端插入了光纤(3)的输入端,由液体喷嘴(10)喷出的液柱(15)的中心线精确对准光纤(3)的中心线;
回液管(12)的进液端与冷却液收集器(11)的下底部连通;
散热器(14)和循环泵(13),相互串联,该散热器(14)的进液口与所述回液管(12)的出液口相连,而循环泵(13)的输出端经回液管(12)与开在所述的液体喷嘴(10)下端的进液口连通;
所述液体喷嘴(10)、冷却液收集器(11)、回液管(12)、散热器(14)和循环泵(13)串接构成的液柱(15)的闭合环路形成了所述的液体导引装置(9)。
2、根据权利要求1所述的液体导引泵浦光束的系统,其特征在于,所述的光纤(3)用一个整个浸在冷却液收集器(11)中的激光晶体(16)代替。
3、根据权利要求1所述的液体导引泵浦光束的系统,其特征在于:所述的液体喷嘴(10)产生的液柱(15)的长度为液柱(15)直径的1倍至10000倍之间。
CNB2007100866714A 2007-03-23 2007-03-30 一种液体导引泵浦光束的装置 Expired - Fee Related CN100452570C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100866714A CN100452570C (zh) 2007-03-23 2007-03-30 一种液体导引泵浦光束的装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200710064683.7 2007-03-23
CN200710064683 2007-03-23
CNB2007100866714A CN100452570C (zh) 2007-03-23 2007-03-30 一种液体导引泵浦光束的装置

Publications (2)

Publication Number Publication Date
CN101043118A CN101043118A (zh) 2007-09-26
CN100452570C true CN100452570C (zh) 2009-01-14

Family

ID=38808427

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100866714A Expired - Fee Related CN100452570C (zh) 2007-03-23 2007-03-30 一种液体导引泵浦光束的装置

Country Status (1)

Country Link
CN (1) CN100452570C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054466A1 (ja) * 2021-10-01 2023-04-06 三菱重工業株式会社 光コネクタ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130897A1 (zh) * 2010-04-19 2011-10-27 华中科技大学 盘式固体激光器
CN102244340A (zh) * 2011-05-24 2011-11-16 中国科学院上海光学精密机械研究所 非石英光纤激光器的冷却方法
CN102684044A (zh) * 2012-04-26 2012-09-19 深圳市创鑫激光技术有限公司 光纤激光器及其冷却方法
DE102012112554A1 (de) * 2012-12-18 2014-06-18 A.R.C. Laser Gmbh Kühlanordnung für laseraktive Festkörpermaterialien, Laseranordnung und Verfahren zur Kühlung eines laseraktiven Festkörpermaterials
CN103199413B (zh) * 2013-03-29 2015-08-26 中国科学院半导体研究所 端泵激光器的冷却方法和冷却装置
CN104124604B (zh) * 2013-04-28 2018-07-06 大族激光科技产业集团股份有限公司 薄片激光器
CN104698543A (zh) * 2013-12-05 2015-06-10 方强 大功率光纤头、准直器、隔离器及频域合束器
CN105470789A (zh) * 2014-08-21 2016-04-06 方强 具有冷却功能的光学元件
CN111244733B (zh) * 2020-02-11 2021-08-10 中国工程物理研究院应用电子学研究所 基于直接液冷阵列分布增益模块的变口径多通激光放大器
CN115621820A (zh) * 2022-12-06 2023-01-17 武汉光谷航天三江激光产业技术研究院有限公司 一种用于有效补偿热退偏效应的线偏振输出激光器结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657014A (en) * 1985-03-11 1987-04-14 Shiley, Inc. Liquid interface fiberoptic coupler
US4732450A (en) * 1985-02-27 1988-03-22 Amada Engineering & Service Co., Inc. Input/output coupling device for optical fiber used in high power laser beam delivery
JPS63272085A (ja) * 1987-04-30 1988-11-09 Matsushita Electric Ind Co Ltd 固体レ−ザ発振器
JPH07140350A (ja) * 1993-11-17 1995-06-02 Fanuc Ltd 光伝送器
US20030142710A1 (en) * 2000-03-17 2003-07-31 Jorg Meister Device for producing laser light
US20030161365A1 (en) * 2001-11-21 2003-08-28 General Atomics Laser containing a distributed gain medium
CN1676335A (zh) * 2004-03-30 2005-10-05 三星电子株式会社 使用液体射流导引激光制造喷墨打印头的方法
WO2007023621A1 (ja) * 2005-08-25 2007-03-01 Shibuya Kogyo Co., Ltd. ハイブリッドレーザ加工装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732450A (en) * 1985-02-27 1988-03-22 Amada Engineering & Service Co., Inc. Input/output coupling device for optical fiber used in high power laser beam delivery
US4657014A (en) * 1985-03-11 1987-04-14 Shiley, Inc. Liquid interface fiberoptic coupler
JPS63272085A (ja) * 1987-04-30 1988-11-09 Matsushita Electric Ind Co Ltd 固体レ−ザ発振器
JPH07140350A (ja) * 1993-11-17 1995-06-02 Fanuc Ltd 光伝送器
US20030142710A1 (en) * 2000-03-17 2003-07-31 Jorg Meister Device for producing laser light
US20030161365A1 (en) * 2001-11-21 2003-08-28 General Atomics Laser containing a distributed gain medium
CN1676335A (zh) * 2004-03-30 2005-10-05 三星电子株式会社 使用液体射流导引激光制造喷墨打印头的方法
WO2007023621A1 (ja) * 2005-08-25 2007-03-01 Shibuya Kogyo Co., Ltd. ハイブリッドレーザ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054466A1 (ja) * 2021-10-01 2023-04-06 三菱重工業株式会社 光コネクタ

Also Published As

Publication number Publication date
CN101043118A (zh) 2007-09-26

Similar Documents

Publication Publication Date Title
CN100452570C (zh) 一种液体导引泵浦光束的装置
CN103904535B (zh) 一种高功率光纤激光器包层光滤除装置
CN201466466U (zh) 高功率半导体激光偏振合束传导冷却光纤耦合模块
CN105375246B (zh) 一种端面倾斜泵浦的平面波导激光放大器
CN102244349B (zh) 一种双波长端面泵浦的掺钕的钒酸钇晶体全固态激光器
CN105305207A (zh) 端面泵浦单程行波激光放大器
CN102064469A (zh) 二极管泵浦板条固体激光器
CN100399651C (zh) 反射玻璃实现z形光路的板条激光器
CN102637995A (zh) 一种功率比例可调的双波长或多波长激光器
CN106898937A (zh) 半导体激光器侧面耦合轴向泵浦的碱金属激光器
CN101340053A (zh) 中红外掺铥光纤激光放大器
CN101593927B (zh) 一种半导体侧面泵浦模块
CN113078534A (zh) 一种基于复合结构增益介质的腔内级联泵浦激光器
CN111725688A (zh) 一种光纤激光器的高功率包层光剥除器
CN108581196B (zh) 水导激光加工装置及其应用、激光加工系统及方法
CN106936056B (zh) 一种热容冷却液体激光器
CN201243158Y (zh) 中红外掺铥光纤激光放大器
CN214849522U (zh) 一种抗高返的激光输出头
CN110829157A (zh) 基于流动低沸点液体的光纤激光冷却装置及方法
CN1309124C (zh) 高功率双包层光纤激光器输出端的冷却装置
CN106129793A (zh) 一种dpl脉冲激光器侧泵腔体
CN104466637A (zh) 包层光泄漏装置、光纤激光器及制造方法
CN101635428B (zh) 一种采用激光加热镜片实时补偿激光介质热效应的固体激光器
CN113510395A (zh) 一种一体化激光器输出头
CN104332807A (zh) 一种板条激光放大器及其激光输出方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090114

Termination date: 20110330