CN100450440C - 旋转平台式小动物在体多模成像检测系统 - Google Patents

旋转平台式小动物在体多模成像检测系统 Download PDF

Info

Publication number
CN100450440C
CN100450440C CNB2006101442847A CN200610144284A CN100450440C CN 100450440 C CN100450440 C CN 100450440C CN B2006101442847 A CNB2006101442847 A CN B2006101442847A CN 200610144284 A CN200610144284 A CN 200610144284A CN 100450440 C CN100450440 C CN 100450440C
Authority
CN
China
Prior art keywords
imaging
toy
detector
visible
subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101442847A
Other languages
English (en)
Other versions
CN1994229A (zh
Inventor
黄国亮
白净
单宝慈
董洪莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2006101442847A priority Critical patent/CN100450440C/zh
Publication of CN1994229A publication Critical patent/CN1994229A/zh
Application granted granted Critical
Publication of CN100450440C publication Critical patent/CN100450440C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明属于生物在体多模成像检测技术领域,其特征在于,包括有一个双极对称的核素(PET)成像系统、一个红外光透射或反射成像系统、一个可见光(或荧光)透射(或反射)成像系统、一个紫外光(或X射线)透射(或反射)成像系统、放置小动物的旋转载物平台,以及多轴运动控制器、多通道处理器和计算机系统。所述放置小动物的旋转载物平台包括有一个载物平台和平台罩、一个恒温控制装置、一个旋转运动装置和一个XYZ三维运动装置结构。与国际上其他小动物在体成像检测仪器相比,本发明具有多模复合和360度全景扫描成像等特点,而且其结构简单、成本低廉,使得本发明更加有利于推广应用。

Description

旋转平台式小动物在体多模成像检测系统
技术领域
本发明涉及小动物在体成像检测技术与科学仪器装置结构,特别是提供一种结构灵巧,成本低廉,而且检测灵敏度和分辨率都比较高的小动物分子影像检测系统与平台结构。
背景技术
小动物在体分子影像检测是系统生物学研究中的关键环节,也是由基因蛋白分子水平检测和细胞水平检测等科研探索向临床检测应用转化的中间桥梁纽带,近年来在Nature、Science上就有近百篇相关文章报道了这方面的研究成果。要开展这方面的研究工作离不开两类仪器,一种是PET检测仪器,国外产品的价格为300万→500万元以上;另一种是Xenogen公司的小动物在体可见光荧光检测仪器,价格为200万→300万元左右。此外,基于细胞水平的分子影象检测系统通常采用双光子激光共焦扫描仪,价格为30万美元左右。不仅这些系统价格昂贵,而且目前这些系统每次还只能给出在体检测的单项指标变化的信息。目前PET检测的分辨率为1.6mm左右,在体荧光检测的穿透深度<2-3cm。
在国内仅有少数单位能够购买PET或小动物在体可见光荧光检测仪器,并且局限于开展一些应用研究工作,目前还没有看到国产小动物在体检测系统方面的产品报道。而在PET检测仪器和在体红外检测技术方面已有多家单位进行了各自独立的前期基础研究,如科学院高能所首先在国内开发出单排和四排PET人体成像装备研究,他们研制的动物PET分辨率小于2mm;清华大学在漫射光学断层成像理论方面提出了一种新的方法,成功地解决了光在生物组织输运的边界问题,首次预言了边界条件对微观散射各向异性的依赖性,并成功建立了人体组织的漫射光学成像系统和断层成像系统雏形。
作为小动物在体检测技术与科学仪器的发展,综合光学检测与PET检测技术,进行优势互补,发挥红外光对活体的无损作用与良好的深层成像能力,辅助以光学漫射理论解决几何光学直线传播的不精确问题,将是小动物在体分子影象检测的重要发展方向。
在小动物在体分子影像检测技术研究与科学仪器开发过程中,发展其硬件系统涉及三个层面的关键问题。其一是系统方案与平台装置结构,新颖的系统结构方案设计与平台装置结构可以简化系统结构,缩小体积,降低仪器成本,提高整体性能指标。其二是探测器,它是小动物在体分子影像检测的核心部件,目前国外高灵敏度低温制冷CCD探测器为几万至十几万美元不等,并且只有3家国外公司有成熟的产品推出;第三个方面的关键问题是光学系统结构与镜头,大数值孔径长工作距离的高品质光学镜头为几千至一万多美元不等,如果需要配合具体的光学成像系统进行定制,则成套光学系统与镜头需要几万美元,并且为Zeiss、Nikon和Leica所垄断。由此可见要发展小动物在体分子影像检测技术,研制高性能、低成本的科学仪器,就必须先解决以上三个方面的关键问题。
发明内容
本发明的目的是提供一种多模混合,结构灵巧,成本低廉,而且检测灵敏度和分辨率都比较高的小动物分子影像检测系统与平台装置结构。
本发明的特征在于,包含一个双极对称的核素成像子系统、一个红外光透射或反射成像子系统、一个可见光透射或反射成像子系统、一个紫外光或X射线透射或反射成像子系统、放置小动物的旋转载物平台,以及多轴运动控制器、多通道处理器,以及一个连接多轴运动控制器和多通道处理器的计算机,以放置小动物的旋转载物平台中的小动物为中心,所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统和紫外光或X射线透射或反射成像子系统分布在该旋转载物平台的四周,并且光轴处在同一平面内,在小动物位置相交,可以相交成同一个点,或者按照设定的偏差相交成多点。为了简化起见,在说明书后面分别将双极对称的核素成像子系统表示为A、红外光透射或反射成像子系统表示为B、可见光透射或反射成像子系统表示为C、紫外光或X射线透射或反射成像子系统表示为D。
其中所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统按照不同的组合方式分解或组合成双模、三模或四模共三类应用模式的复合成像系统;
(1)、双模应用模式,由所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统中任意两种组合构成六种简单的小动物在体成像的双模系统,每种简单的小动物在体成像的双模系统中的两个子系统之间在空间按90度等角度间距的均匀对称分布排列,或者是其他角度间距的非均匀对称的分布排列,所述每个子系统均能进行180度旋转以改变位置;
(2)、三模应用模式,由所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统中任意三种按排列组合构成二十四种顺序不同的三模混合的小动物在体成像系统,每种三模混合的小动物在体成像系统中的三个子系统在空间按60度等角度间距的均匀对称分布排列,或者是其他角度间距的非均匀对称的分布排列,所述每个子系统均能进行180度旋转以改变位置;
(3)、四模应用模式,由所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统按排列组合构成二十四种顺序不同的四模混合的小动物在体成像系统,每种四模混合的小动物在体成像系统中的四个子系统在空间按45度等角度间距的均匀对称分布排列,或者是按其他角度间距设定的非均匀对称的分布排列,每个子系统均能进行180度旋转以改变位置;
在所述旋转载物平台作用下,上述各种模式中的每一种结构方式均能在360度全景范围恒温成像,或在任意角度范围恒温成像。
本发明由于采取以上设计,具有以下优点:
1、本发明中设置了一种多模混合的小动物在体成像检测系统装置结构,可以同时从核素(PET)成像、红外光漫散射成像、可见光与荧光成像、紫外光与X射线成像等多个模式进行复合检测,充分发挥他们各自的优势,得到一个完整、全面的小动物在体分子影像图象,解决目前单模式检测中出现的分辨率不高、或穿透深度有限、或定位不准确等技术难题。
2、本发明中设置了一种旋转载物平台的小动物在体成像检测系统装置结构,与通常的固定载物平台成像检测方案相比,可以实现360度全景范围内的扫描成像,能够从不同角度或多个角度获得小动物在体分子影像成像。可以通过多个角度交叉定位获得小动物体内发光组织(或器官,或细胞,或基因蛋白分子)的准确位置,解决单模式或单方向成像无法进行小动物体内漫射物体的准确定位技术难题。如固定单模成像只能获得一个方向的信息,而本发明可以实现360度范围,旋转精度0.1度的多个方向信息;又如单模式或单方向成像的定位采用直线传播近似,即使是1cm厚的透明玻璃其偏差可以达到mm量级水平,而采用本发明多个角度交叉定位方式则可以将偏差控制在微米水平。
3、本发明提供了一种旋转载物平台进行小动物在体360度全景扫描成像的检测系统装置结构,具有结构简单,成本低,分辨率高(可以达到10um),容易实现等特点;同时,成像光路完全分开独立,也避免了多模式复合成像的干扰影响问题。
附图说明
图1是本发明的多模复合成像系统结构示意图;
图2是本发明的多模复合成像系统结构框图;
图3是本发明的多模复合成像系统反射光成像实施方案一结构示意图;
图4是本发明的多模复合成像系统反射光成像实施方案一结构框图;
图5是本发明的多模复合成像系统反射光成像实施方案二结构示意图;
图6是本发明的多模复合成像系统反射光成像实施方案二结构框图;
图7是本发明的旋转平台结构示意图;
图8是本发明的旋转平台结构框图;
图9是多模图象重建的计算机软件图象处理工作流程图。
具体实施方式
为实现上述目的,本发明提供了一种旋转平台式小动物在体多模混合成像检测系统,包括有一个双极对称的核素(PET)成像系统、一个红外光透射(或反射)成像系统、一个可见光(或荧光)透射(或反射)成像系统、一个紫外光(或X射线)透射(或反射)成像系统、一个多轴运动控制器(简称多轴控制器)和一个多通道信号处理器(简称多通道处理器),以及放置小动物的旋转载物平台。
所述一个双极对称的核素(PET)成像系统包括有两个晶体层,两个射线探测器(PET探测器)。
所述红外光透射(或反射)成像系统包括有一个红外光照明光源(或一个红外光光纤阵列照明光源,或一个红外光单光纤照明光源,或非阵列型红外光多光纤照明光源),一个成像透镜(或透镜组,或阵列透镜),一个红外光探测器(CCD,或光电倍增管PMT,或光子计数器,或其它光电转换器件)。在红外光的反射成像系统中还包含有一个光分束器件(棱镜,或二向色镜,或多向色镜)。
所述可见光(或荧光)透射(或反射)成像系统包括有一个可见光照明光源(激光,或LED,或其它多色灯光源,可以是其中的一个或多个组合可见光照明光源,也可以是这些光源组成的阵列照明光源,或通过其它分束器件、光纤等转换传输光能量进行照明的点光源或线光源或面光源等)、一个成像透镜(或透镜组,或阵列透镜)、一个可见光(或荧光)探测器(CCD,或PMT,或光子计数器,或其它光电转换器件)。在可见光(或荧光)的反射成像系统中还包含有一个光分束器件(棱镜,或二向色镜,或多向色镜)。
所述紫外光(或X射线)透射(或反射)成像系统包括有一个紫外光(或X射线)照明光源(或一个阵列照明光源,或一个非阵列型多路复合的照明光源)、一个紫外光(或X射线)成像透镜(或透镜组,或阵列透镜)、一个紫外光(或X射线)探测器(CCD,或PMT,或光子计数器,或其它光电转换器件)。在紫外光的反射成像系统中还包含有一个光分束器件(棱镜,或二向色镜,或多向色镜)。
所述放置小动物的旋转载物平台包括有一个圆型(或方型,或棱型,或其它形状)载物平台和平台罩、一个恒温控制装置、一个旋转运动装置(控制可以是直流电机,或步进电机,或侍服电机,或人力手动驱动控制结构)、一个XYZ三维运动装置结构(控制可以是电动,或人力手动控制),一个多轴运动控制器(简称多轴控制器)。所述XYZ三维运动装置结构包含导轨及滑块(可以是单导轨,也可以采用双导轨)、丝杠(可以安装在托板的边上,或中央,或其他位置),如果是全自动电动控制还有三个电机(可以是直流电机,或步进电机,或侍服电机),也可以采用部分电动控制(一维,或二维)与部分手动调节相结合的方式。所述多轴运动控制器由电机驱动模块和运动控制细分模块组成,电机驱动模块提供多路(1路、或2路、或3路、或4路、或5路)驱动电源(+12V,或-12V,或±12V,或+5V,或-5V,或±5V,或+3.5V,或-3.5V,或±3.5V,或+24V,或-24V,或±24V,或+15V,或-15V,或±15V,或其他电压),包括步进电机驱动与运动控制细分模块,能提供多种角度细分转换控制(2细分,4细分,8细分,16细分,32细分,64细分,128细分,256细分,512细分,或其他细分)。
上述的信号探测数字化处理系统包括有一计算机,一个多通道处理器(或多路信号采集卡),所述的多种探测器的输出端与该多通道处理器相连,并通过计算机接口输入计算机,生成一幅幅数字图象,先在计算机中暂存,由计算机软件进行位置校正、图象叠加,形成一幅完整的小动物在体多模成像检测信号图象。所述的多通道处理器可以是多路信号采集卡,或多路A/D采集卡,或多路信号接收处理单元,多路可以是1路至128路中的任意一个数字,每路可以单独工作,也可以是完全同时的工作,或不完全同时的工作。多模图象重建的计算机软件图象处理工作流程如图9所示。
首先进行多模独立成像(可以是同时或同步,也可以不同时或异步),对不同模式成像的图象进行特征点识别处理,在寻找特征点的过程中采用传统的计算机图象处理模糊识别算法,特征点匹配对应的图象大小可以选择2×2、或3×3、或4×4、或5×5、或6×6、或7×7、或8×8、或9×9、或10×10个象素的矩阵对称结构,也可以选择方形、“十”字形或其它形状的结构。接着进行相对位置偏差计算,采用象素坐标差值计算方法,计算不同模式下同一特征点(或目标物体图象中心)的位置偏差Xcm和Ycm,作为修正因子,其中m表示不同模式,m=1,2,3,4。然后,应用公式X’m(i,j)=Xm(i,j)-Xcm和Y’m(i,j)=Ym(i,j)-Ycm,其中Xm(i,j)和Ym(i,j)表示不同模式成像的象素坐标,就可以获得不同模式图象的校正位置坐标,图象位置校正的精度可以达到1个象素。最后,将校正位置后的不同模式图象进行图象融合叠加在一起,获得多模复合成像的图象。
如图1和图2所示,为本发明提供的一种多模混合的小动物在体成像检测系统与平台结构,包括有一个双极对称的核素(PET)成像系统、一个红外光透射(或反射)成像系统、一个可见光(或荧光)透射(或反射)成像系统、一个紫外光(或X射线)透射(或反射)成像系统、放置小动物的旋转载物平台,以及多轴运动控制器(简称多轴控制器)、多通道处理器(或多通道信号采集卡)和计算机系统。以放置小动物的旋转载物平台中的小动物为中心,一个双极对称的核素(PET)成像系统、一个红外光透射(或反射)成像系统、一个可见光(或荧光)透射(或反射)成像系统、一个紫外光(或X射线)透射(或反射)成像系统等分布在载物平台的四周,并且中心轴线(或光轴)在同一个平面内,在小动物位置相交,可以相交成同一个点,也可以保持一定的偏差相交成多个点。
在本实施例中的双极对称核素(PET)成像系统包括有两个晶体层,两个射线探测器(PET探测器),晶体层和探测器的分布以小动物为中心在一条直线上,结构顺序为探测器11→晶体层12→小动物00→晶体层13→探测器14,或结构顺序为探测器11
Figure C20061014428400111
晶体层12
Figure C20061014428400112
小动物00晶体层13
Figure C20061014428400114
探测器14,探测器11和探测器14接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02。
在本实施例中的红外光透射(或反射)成像系统包括有一个红外光照明光源(或一个红外光光纤阵列照明光源,或一个红外光单光纤照明光源,或非阵列型红外光多光纤照明光源)、一个成像透镜(或透镜组,或阵列透镜)、一个红外光探测器(CCD,或PMT,或光子计数器,或其它光电转换器件)。在红外光的反射成像系统中还包含有一个光分束器件(棱镜,或二向色镜,或多向色镜)。在红外光透射成像系统中,红外光照明光源与成像透镜和探测器分布在小动物的两侧,结构顺序为红外光照明光源21→小动物00→成像透镜22→探测器23,探测器3接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02。在红外光反射成像系统中,如图3和图4所示,红外光照明光源、光分束器件、成像透镜和探测器分布在小动物的同侧,结构顺序为红外光照明光源21→光分束器件24→小动物00→光分束器件24→成像透镜22→探测器23,探测器23接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02。在红外光反射成像系统中,也可以采用另一种结构顺序:红外光照明光源21→光分束器件24→成像透镜22→小动物00→成像透镜22→光分束器件24→探测器23,探测器23接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02,如图5和图6所示。
在本实施例中的可见光(或荧光)透射(或反射)成像系统包括有一个可见光照明光源(激光、或LED、或其它多色灯光源,可以是其中的一个或多个组合可见光照明光源,也可以是这些光源组成的阵列照明光源,或通过其它分束器件、光纤等转换传输光能量进行照明的点光源或线光源或面光源等)、一个成像透镜(或透镜组,或阵列透镜)、一个可见光(或荧光)探测器(CCD,或PMT,或光子计数器,或其它光电转换器件)。在可见光(或荧光)的反射成像系统中还包含有一个光分束器件(棱镜,或二向色镜,或多向色镜)。在可见光透射成像系统中,可见光照明光源、成像透镜和探测器的分布在小动物的两侧,结构顺序为可见光照明光源31→小动物00→成像透镜32→探测器33,探测器33接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02。在可见光(或荧光)的反射成像系统中,如图3和图4所示,可见光照明光源、成像透镜和探测器的分布在小动物的同侧,结构顺序为可见光照明光源31→光分束器件34→小动物00→光分束器件34→成像透镜32→探测器33,探测器33接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02。在可见光(或荧光)的反射成像系统中,也可以采用另一种结构顺序:可见光照明光源31→光分束器件34→成像透镜32→小动物00→成像透镜32→光分束器件34→探测器33,探测器33接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02,如图5和图6所示。
在本实施例中的紫外光(或X射线)透射(或反射)成像系统包括有一个紫外光(或X射线)照明光源(或一个阵列照明光源,或一个非阵列型多路复合的照明光源)、一个紫外光(或X射线)成像透镜(或透镜组,或阵列透镜)、一个紫外光(或X射线)探测器(CCD,或PMT,或光子计数器,或其它光电转换器件)。在紫外光反射成像系统中还包含有一个光分束器件(棱镜,或二向色镜,或多向色镜)。在紫外光(或X射线)透射成像系统中,紫外光(或X射线)照明光源、成像透镜和探测器的分布在小动物的两侧,结构顺序为紫外光(或X射线)照明光源41→小动物00→成像透镜42→探测器43,探测器43接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02。在紫外光的反射成像系统中,如图3和图4所示,紫外光照明光源、成像透镜和探测器的分布在小动物的同侧,结构顺序为紫外光照明光源41→光分束器件44→小动物00→光分束器件44→成像透镜42→探测器43,探测器43接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02。在紫外光反射成像系统中,也可以采用另一种结构顺序:紫外光照明光源41→光分束器件44→成像透镜42→小动物00→成像透镜42→光分束器件44→探测器43,探测器43接收的信号通过多通道处理器(或多通道信号采集卡)01输入计算机02,如图5和图6所示。
在本实施例中的放置小动物的旋转载物平台包括有一个圆型(或方型,或棱型,或其它形状)载物平台和平台罩、一个恒温控制装置、一个旋转运动装置(控制可以是直流电机,或步进电机,或侍服电机,或人力手动驱动控制结构)、一个XYZ三维运动装置结构(控制可以是电动,或人力手动控制),一个多轴控制器,如图7和图8所示。所述XYZ三维运动装置结构包含导轨及滑块(可以是单导轨,也可以采用双导轨)、丝杠(可以安装在托板的边上,或中央,或其他位置),如果是全自动电动控制还有三个电机(可以是直流电机,或步进电机,或侍服电机,也可以采用部分电动控制(一维,或二维)与部分手动调节相结合的方式。在旋转载物平台结构中,平台罩、载物平台、恒温控制装置、旋转运动装置、XYZ三维运动装置结构(XYZ三维运动机构和X轴电机、Y轴电机、Z轴电机)和多轴控制器组成层状叠加结构,结构顺序为平台罩51→小动物00→载物平台座52→恒温控制装置53→旋转运动装置54→XYZ三维运动装置55→多轴控制器56,计算机02通过多轴控制器56控制载物平台52进行旋转或XYZ方向运动,并接收反馈信号发出停止运动的指令,保证运动位置准确。
在图1和图2中,一个双极对称的核素(PET)成像系统、一个红外光透射(或反射)成像系统、一个可见光(或荧光)透射(或反射)成像系统和一个紫外光(或X射线)透射(或反射)成像系统的结构分布位置可以是45度等角度间距的均匀分布排列,也可以是其他角度间距的均匀分布排列,还可以是不等角度间距的非均匀分布排列。同时,四种模式的排列顺序可以组合成24种不同的顺序结构,用双极对称的核素成像系统、一个红外光透射(或反射)成像系统、一个可见光(或荧光)透射(或反射)成像系统和一个紫外光(或X射线)透射(或反射)成像系统分别对应的字母A、B、C和D具体描述如下:
1、ABCD;ABDC;ACBD;ACDB;ADBC;ADCB;BACD;BADC;BCAD;BCDA;BDAC;BDCA;CABD;CADB;CBAD;CBDA;CDAB;CDBA;DABC;DACB;DBAC;DBCA;DCAB;DCBA。
2、在上面24种结构方式中,每一种系统均可以进行180度旋转改变位置结构。
在图1和图2实施例的多模式系统中可以分解成单模、双模、三模和四模等不同应用模式的复合系统。将一个双极对称的核素(PET)成像系统、一个红外光透射(或反射)成像系统、一个可见光(或荧光)透射(或反射)成像系统、一个紫外光(或X射线)透射(或反射)成像系统等分别用对应的字母A、B、C和D四个字母代替,具体分解方案如下:
(1)、基于旋转平台扫描结构的360度全景范围成像或任意角度范围成像的单模应用模式,可以分别实现一个双极对称的核素(PET)成像系统、或一个红外光透射(或反射)成像系统、或一个可见光(或荧光)透射(或反射)成像系统、或一个紫外光(或X射线)透射(或反射)成像系统等四种简单的小动物在体成像检测系统结构装置。
(2)、基于旋转平台扫描结构的360度全景范围成像或任意角度范围成像的双模应用模式,可以分别实现AB、AC、AD、BC、BD、CD等六种简单的小动物在体成像检测系统结构装置。双模混合系统的结构分布位置可以是90度等角度间距的均匀对称分布排列,也可以是其他角度间距的非均匀对称的分布排列。在上面6种结构方式中,每一种系统均可以进行180度旋转改变位置结构。
(3)、基于旋转平台扫描结构的360度全景范围成像或任意角度范围成像的三模应用模式,可以分别实现ABC、ACB、ABD、ADB、ACD、ADC、BAC、BCA、BAD、BDA、BCD、BDC、CAB、CBA、CBD、CDB、CAD、CDA、DBC、DCB、DAB、DBA、DAC、DCA等24种三模混合的小动物在体成像检测系统结构装置。三模混合系统的结构分布位置可以是60度等角度间距的均匀对称分布排列,也可以是其他角度间距的非均匀对称的分布排列。在上面24种结构方式中,每一种系统均可以进行180度旋转改变位置结构。
(4)、基于旋转平台扫描结构的360度全景范围成像或任意角度范围成像的四模应用模式有24种不同的顺序结构,即:ABCD;ABDC;ACBD;ACDB;ADBC;ADCB;BACD;BADC;BCAD;BCDA;BDAC;BDCA;CABD;CADB;CBAD;CBDA;CDAB;CDBA;DABC;DACB;DBAC;DBCA;DCAB;DCBA。四模混合系统的结构分布位置可以是45度等角度间距的均匀对称分布排列,也可以是其他角度间距的非均匀对称的分布排列。在这24种结构方式中,每一种系统均可以进行180度旋转改变位置结构。
在图7和图8中,放置小动物的旋转载物平台包括有一个圆型(或方型,或棱型,或其它形状)载物平台和平台罩、一个恒温控制装置、一个旋转运动装置(控制可以是直流电机,或步进电机,或侍服电机,或人力手动驱动控制结构)、一个XYZ三维运动装置结构(控制可以是电动,或人力手动控制),一个多轴控制器。所述XYZ三维运动装置结构包含导轨及滑块(可以是单导轨,也可以采用双导轨)、丝杠(可以安装在托板的边上,或中央,或其他位置),也可以采用齿轮齿条或带轮齿条方式进行传动,如果是全自动电动控制还有三个电机(可以是直流电机,或步进电机,或侍服电机,也可以采用部分电动控制(一维,或二维)与部分手动调节相结合的方式。在旋转载物平台结构中,平台罩、载物平台、恒温控制装置、旋转运动装置、XYZ三维运动装置结构和多轴控制器组成层状叠加结构,结构顺序为平台罩51→小动物00→载物平台座52→恒温控制装置53→旋转运动装置54→XYZ三维运动装置55→多轴控制器56。
在图7和图8实施例的旋转载物平台中可以分解成旋转单轴运动装置、旋转与Z向运动结合的双轴运动装置、旋转与XZ向运动结合的三轴运动装置、旋转与YZ向运动结合的三轴运动装置、旋转与XYZ向运动结合的四轴运动装置等不同运动控制模式的载物平台结构。
本图7和图8实施例的旋转载物平台中,旋转运动控制精度为≥0.1度,旋转运动范围0→360度;XYZ扫描运动平台的精度为≥5um,XYZ扫描运动各个方向运动行程范围0→500mm;恒温控制精度≥0.5度,温度可变范围0→50度。
本发明通过上面的设计,其可以达到的具体性能指标如下:
<1>、系统可以实现小动物在体的单模、双模、三模和四模等不同应用模式的复合成像检测。
<2>、系统可以实现360度全景范围的0.1度精细扫描成像检测。
<3>、系统光学检测分辨率小于10微米(大于100线对/mm),被测小动物几何尺寸0→500mm。
<4>、系统核素和X射线检测分辨率达到1mm,被测小动物几何尺寸0→500mm。
<5>、系统XYZ方向的扫描运动精度为≥5um,XYZ各个方向运动行程范围0→500mm。
<6>、系统的恒温控制精度≥0.5度,温度可变范围0→50度。

Claims (13)

1、一种旋转平台式小动物在体多模成像检测系统,其特征在于,包含一个双极对称的核素成像子系统、一个红外光透射或反射成像子系统、一个可见光透射或反射成像子系统、一个紫外光或X射线透射或反射成像子系统、放置小动物的旋转载物平台,以及多轴运动控制器、多通道处理器,以及一个连接多轴运动控制器和多通道处理器的计算机;以放置小动物的旋转载物平台中的小动物为中心,所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统分布在该旋转载物平台的四周,并且光轴处在同一平面内,在小动物位置相交,相交成同一个点或者按照设定的偏差相交成多点;
其中所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统四个成像子系统按照不同的组合方式分解或组合成双模、三模或四模共三类应用模式的复合成像系统;
(1)、双模应用模式,由所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统中任意两种组合构成六种简单的小动物在体成像的双模系统,每种简单的小动物在体成像的双模系统中的两个子系统之间在空间按90度等角度间距的均匀对称分布排列,或者是其他角度间距的非均匀对称的分布排列,所述每个子系统均能进行180度旋转以改变位置;
(2)、三模应用模式,由所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统中任意三种按排列组合构成二十四种顺序不同的三模混合的小动物在体成像系统,每种三模混合的小动物在体成像系统中的三个子系统在空间按60度等角度间距的均匀对称分布排列,或者是其他角度间距的非均匀对称的分布排列,所述每个子系统均能进行180度旋转以改变位置;
(3)、四模应用模式,由所述双极对称的核素成像子系统、红外光透射或反射成像子系统、可见光透射或反射成像子系统、紫外光或X射线透射或反射成像子系统按排列组合构成二十四种顺序不同的四模混合的小动物在体成像系统,每种四模混合的小动物在体成像系统中的四个子系统在空间按45度等角度间距的均匀对称分布排列,或者是按其他角度间距设定的非均匀对称的分布排列,每个子系统均能进行180度旋转以改变位置;
在所述旋转载物平台作用下,上述各种模式中的每一种结构方式均能在360度全景范围恒温成像,或在任意角度范围恒温成像。
2、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述双极对称核素成像子系统,包括第一晶体层(12)、第二晶体层(13)、第一射线探测器(11)和第二射线探测器(14),第一晶体层、第二晶体层、第一射线探测器和第二射线探测器的分布以小动物为中心在一条直线上,结构顺序为第一射线探测器(11)→第一晶体层(12)→放置小动物(00)的旋转载物平台→第二晶体层(13)→第二射线探测器(14),或结构顺序为第一射线探测器(11)第一晶体层(12)
Figure C2006101442840003C2
放置小动物(00)的旋转载物平台
Figure C2006101442840003C3
第二晶体层(13)
Figure C2006101442840003C4
第二射线探测器(14),第一射线探测器(11)和第二射线探测器(14)接收的信号通过多通道处理器(01)输入计算机(02)。
3、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述红外光透射成像子系统,包括有一个红外光照明光源(21)、一个成像透镜(22)和一个红外光探测器(23),该红外光照明光源(21)分布在小动物(00)的一侧,而成像透镜(22)和红外光探测器(23)则分布在小动物(00)的另一侧,光路的结构顺序依次为红外光照明光源(21)→小动物(00)→成像透镜(22)→红外光探测器(23),该探测器(23)接收的信号通过多通道处理器(01)输入计算机(02)。
4、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述红外光反射成像子系统,包括有一个红外光照明光源(21)、一个成像透镜(22)、一个红外光探测器(23)和一个光分束器件(24),都分布在小动物(00)的同侧,光路的结构顺序依次为红外光照明光源(21)→光分束器件(24)→小动物(00)→光分束器件(24)→成像透镜(22)→红外光探测器(23),光路的另一种结构顺序依次为红外光照明光源(21)→光分束器件(24)→成像透镜(22)→小动物(00)→成像透镜(22)→光分束器件(24)→红外光探测器(23),红外光探测器(23)接收的信号通过多通道处理器(01)输入计算机(02)。
5、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述可见光透射成像子系统包括有一个可见光照明光源(31)、一个成像透镜(32)和一个可见光探测器(33),可见光照明光源(31)分布在小动物(00)的一侧,而成像透镜(32)和可见光探测器(33)分布在小动物(00)的另一侧,光路结构顺序为可见光照明光源(31)→小动物(00)→成像透镜(32)→可见光探测器(33),可见光探测器(33)接收的信号通过多通道处理器(01)输入计算机(02)。
6、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述可见光反射成像子系统包括有一个可见光照明光源(31)、一个成像透镜(32)、一个可见光探测器(33)和一个光分束器件(34),都分布在小动物(00)的同侧,光路的结构顺序依次为可见光照明光源(31)→光分束器件(34)→小动物(00)→光分束器件(34)→成像透镜(32)→可见光探测器(33),该探测器(33)接收的信号通过多通道处理器(01)输入计算机(02)。
7、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述可见光反射成像子系统包括有一个可见光照明光源(31)、一个成像透镜(32)、一个可见光探测器(33)和一个光分束器件(34),都分布在小动物(00)的同侧,光路的结构顺序依次为可见光照明光源(31)→光分束器件(34)→成像透镜(32)→小动物(00)→成像透镜(32)→光分束器件(34)→可见光探测器(33),该探测器(33)接收的信号通过多通道处理器(01)输入计算机(02)。
8、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述紫外光透射成像子系统包括有一个紫外光照明光源(41)、一个紫外光成像透镜(42)和一个紫外光探测器(43),紫外光照明光源(41)分布在小动物(00)的一侧,而紫外光成像透镜(42)和紫外光探测器(43)分布在小动物(00)的另一侧,光路结构顺序为紫外光照明光源(41)→小动物(00)→紫外光成像透镜(42)→紫外光探测器(43),该探测器(43)接收的信号通过多通道处理器(01)输入计算机(02)。
9、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述紫外光反射成像子系统包括有一个紫外光照明光源(41)、一个紫外光成像透镜(42)、一个紫外光探测器(43)和一个光分束器件(44),都分布在小动物(00)的同侧,光路的结构顺序依次为紫外光照明光源(41)→光分束器件(44)→小动物(00)→光分束器件(44)→紫外光成像透镜(42)→紫外光探测器(43),该探测器(43)接收的信号通过多通道处理器(01)输入计算机(02)。
10、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述紫外光反射成像子系统包括有一个紫外光照明光源(41)、一个紫外光成像透镜(42)、一个紫外光探测器(43)和一个光分束器件(44),都分布在小动物(00)的同侧,光路的结构顺序依次为紫外光照明光源(41)→光分束器件(44)→紫外光成像透镜(42)→小动物(00)→紫外光成像透镜(42)→光分束器件(44)→紫外光探测器(43),该探测器(43)接收的信号通过多通道处理器(01)输入计算机(02)。
11、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述旋转载物平台包括:
一个平台座(52)和一个放在该平台座(52)上的一个平台罩(51),该平台罩(51)内载有小动物(00);
一个恒温控制装置(53),位于平台座(52)下且相接触,保持平台罩(51)内有一个适合小动物(00)生存的温度范围;
一个旋转运动装置(54),位于恒温控制装置(53)下,通过电机带动平台罩(51)、平台座(52)、恒温控制装置(53)作旋转运动;
一个由X轴电机、Y轴电机、Z轴电机及相应传动装置组成的XYZ三维运动装置(55),带动平台罩(51)、平台座(52)、恒温控制装置(53)、旋转运动装置(54)作三维运动,所述X轴电机、Y轴电机、Z轴电机由所述多轴运动控制器(56)控制,而该多轴运动控制器(56)又受计算机(02)控制。
12、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述多轴运动控制器(56)由电机驱动模块和运动控制细分模块组成。
13、根据权利要求1所述的一种旋转平台式小动物在体多模成像检测系统,其特征在于,所述计算机(02)依据以下步骤生成多模图像:多模独立成像→寻找特征点→相对位置偏差计算→位置校正→图象融合叠加合成。
CNB2006101442847A 2006-12-01 2006-12-01 旋转平台式小动物在体多模成像检测系统 Expired - Fee Related CN100450440C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101442847A CN100450440C (zh) 2006-12-01 2006-12-01 旋转平台式小动物在体多模成像检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101442847A CN100450440C (zh) 2006-12-01 2006-12-01 旋转平台式小动物在体多模成像检测系统

Publications (2)

Publication Number Publication Date
CN1994229A CN1994229A (zh) 2007-07-11
CN100450440C true CN100450440C (zh) 2009-01-14

Family

ID=38249498

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101442847A Expired - Fee Related CN100450440C (zh) 2006-12-01 2006-12-01 旋转平台式小动物在体多模成像检测系统

Country Status (1)

Country Link
CN (1) CN100450440C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915616A (zh) * 2010-07-22 2010-12-15 南昌航空大学 一种螺旋发射光谱层析装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584576B (zh) * 2009-07-06 2013-01-02 上海展弈信息科技有限公司 动物自发痛行为自动化检测系统
CN101653355B (zh) * 2009-09-11 2012-01-11 华中科技大学 一种活体小动物成像系统及成像方法
CN102753962B (zh) * 2010-11-30 2014-10-08 中国科学院自动化研究所 基于特异性的多模态三维光学断层成像系统和方法
CN102319058B (zh) * 2011-09-09 2013-03-06 清华大学 一种融合荧光、核素和x光三模态的小动物成像系统
WO2013159250A1 (zh) * 2012-04-28 2013-10-31 清华大学 一种动态荧光分子断层图像的重建方法
CN102871679B (zh) * 2012-09-20 2014-03-05 清华大学 分辨率至少为 50μm 在体多模成像检测系统
CN103610471B (zh) * 2013-12-16 2015-10-28 中国科学院自动化研究所 一种光学多模态成像系统与方法
CN104873212B (zh) * 2015-04-05 2018-02-02 清华大学 双模同轴在体成像方法与系统
CN104888356B (zh) * 2015-06-30 2018-03-02 瑞地玛医学科技有限公司 影像引导及呼吸运动分析系统
CN106199673B (zh) * 2016-09-07 2023-09-15 武汉京邦科技有限公司 一种基于事件计数的双模正电子显像机
CN107242860B (zh) 2017-07-25 2021-01-19 京东方科技集团股份有限公司 荧光分子层析成像系统及方法
CN108387519A (zh) * 2018-05-03 2018-08-10 上海市质子重离子临床技术研发中心 上转换发光近红外和彩色成像多功能宽场正置显微系统
CN109998480A (zh) * 2019-02-01 2019-07-12 中国科学院苏州生物医学工程技术研究所 体内药物活体筛选系统
CN113109307A (zh) * 2021-04-01 2021-07-13 南京超维景生物科技有限公司 位移控制方法及装置、电子设备及多光子荧光成像设备
CN113827194A (zh) * 2021-11-01 2021-12-24 锘海生物科学仪器(上海)有限公司 近红外二区活体荧光成像系统
CN116942078B (zh) * 2022-04-19 2024-03-29 上海天能生命科学有限公司 活体成像系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816256A (en) * 1997-04-17 1998-10-06 Bioanalytical Systems, Inc. Movement--responsive system for conducting tests on freely-moving animals
CN1537514A (zh) * 2002-10-04 2004-10-20 Ge医药系统环球科技公司 多模态成像方法和装置
CN1650804A (zh) * 2004-01-20 2005-08-10 Ge医药系统环球科技公司 多模成像的方法与系统
US20060064000A1 (en) * 2004-09-21 2006-03-23 Vizard Douglas L Apparatus and method for multi-modal imaging
WO2006064400A2 (en) * 2004-12-15 2006-06-22 Koninklijke Philips Electronics, N.V. Registration of multi-modality images
CN1802122A (zh) * 2003-05-08 2006-07-12 博世创医疗公司 同时进行实时多模式成像和它的光谱学使用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816256A (en) * 1997-04-17 1998-10-06 Bioanalytical Systems, Inc. Movement--responsive system for conducting tests on freely-moving animals
CN1537514A (zh) * 2002-10-04 2004-10-20 Ge医药系统环球科技公司 多模态成像方法和装置
CN1802122A (zh) * 2003-05-08 2006-07-12 博世创医疗公司 同时进行实时多模式成像和它的光谱学使用
CN1650804A (zh) * 2004-01-20 2005-08-10 Ge医药系统环球科技公司 多模成像的方法与系统
US20060064000A1 (en) * 2004-09-21 2006-03-23 Vizard Douglas L Apparatus and method for multi-modal imaging
WO2006064400A2 (en) * 2004-12-15 2006-06-22 Koninklijke Philips Electronics, N.V. Registration of multi-modality images

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915616A (zh) * 2010-07-22 2010-12-15 南昌航空大学 一种螺旋发射光谱层析装置
CN101915616B (zh) * 2010-07-22 2012-01-11 南昌航空大学 一种螺旋发射光谱层析装置

Also Published As

Publication number Publication date
CN1994229A (zh) 2007-07-11

Similar Documents

Publication Publication Date Title
CN100450440C (zh) 旋转平台式小动物在体多模成像检测系统
Farahani et al. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives
CN207336917U (zh) 显微镜
CN105308949B (zh) 图像获取装置、图像获取方法以及记录介质
CN101653355B (zh) 一种活体小动物成像系统及成像方法
WO2008050254A1 (en) A system for imaging an object
CN102871679B (zh) 分辨率至少为 50μm 在体多模成像检测系统
CN106164736A (zh) 用于对大的完整组织样品进行成像的方法及装置
CN101365377A (zh) 一种连续动态采集式小动物诱发荧光分子成像系统及方法
CN111279201B (zh) 载片架夹具设备
Yang et al. Real-time molecular imaging of near-surface tissue using Raman spectroscopy
CN110327020B (zh) 近红外二区/一区双模态荧光断层成像系统
CN104570315A (zh) 一种基于结构照明的彩色三维层析显微成像系统及方法
US10895726B2 (en) Two-dimensional and three-dimensional fixed Z scanning
CN106023291A (zh) 快速获取大样本三维结构信息和分子表型信息的成像装置和方法
CN111279200B (zh) 载片架转盘
CN103808702A (zh) 图像获取单元及图像获取方法
CN110140129A (zh) 使用双光学路径和单成像传感器的低分辨率载片成像和载片标签成像以及高分辨率载片成像
CN104939858B (zh) 一种结合X-ray和荧光的多模态断层成像系统和方法
CN112114423A (zh) 一种便携式全自动多模态显微成像装置
JP6952891B2 (ja) 2×3および1×3スライド用のカルーセル
Guo et al. Depth-multiplexed ptychographic microscopy for high-throughput imaging of stacked bio-specimens on a chip
Wang et al. UCsim2: 2D structured illumination microscopy using UC2
CN110731759B (zh) 一种多模式3d荧光断层动物分子影像扫描设备
CN110132969A (zh) 一种便携式病理玻片扫描仪及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090114

Termination date: 20191201