CN100444515C - Voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function - Google Patents
Voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function Download PDFInfo
- Publication number
- CN100444515C CN100444515C CNB2007100370418A CN200710037041A CN100444515C CN 100444515 C CN100444515 C CN 100444515C CN B2007100370418 A CNB2007100370418 A CN B2007100370418A CN 200710037041 A CN200710037041 A CN 200710037041A CN 100444515 C CN100444515 C CN 100444515C
- Authority
- CN
- China
- Prior art keywords
- value
- stator
- control
- voltage
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000009466 transformation Effects 0.000 claims abstract description 37
- 230000003068 static effect Effects 0.000 claims abstract description 19
- 238000004364 calculation method Methods 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 230000004907 flux Effects 0.000 claims description 49
- 230000005284 excitation Effects 0.000 claims description 34
- 230000001360 synchronised effect Effects 0.000 claims description 15
- 238000011426 transformation method Methods 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 abstract description 10
- 238000005259 measurement Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 15
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
本发明涉及一种具有参数自整定功能的电压解耦变频调速矢量控制方法,通过外接电压检测单元、电流检测单元和测速单元测量变频控制异步电动机定子端的电压、电流和转子转速,并根据矢量变换将实际三相电压、电流变换为两相旋转坐标系下的值;对控制给定值实施负反馈调节以后,根据特殊的参数自整定电压解耦算法计算;将解耦所得的控制值经过逆向矢量变换计算,得出三相静止坐标系下的电压控制值,根据电压控制值调节变频器输出,再回到开始循环执行。参数自整定解耦算法在循环计算中参数根据电动机参数变化而更新,使得变频调速矢量控制不受电动机运行参数漂移的影响,达到提高异步电动机控制性能的效果。
The invention relates to a voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function. The voltage, current and rotor speed of the stator end of the frequency conversion control asynchronous motor are measured through an external voltage detection unit, current detection unit and speed measurement unit, and according to the vector The transformation transforms the actual three-phase voltage and current into the values in the two-phase rotating coordinate system; after the negative feedback adjustment is implemented on the control given value, it is calculated according to the special parameter self-tuning voltage decoupling algorithm; the control value obtained by decoupling is passed through Calculate the reverse vector transformation to obtain the voltage control value in the three-phase static coordinate system, adjust the output of the inverter according to the voltage control value, and then return to the start cycle execution. In the parameter self-tuning decoupling algorithm, the parameters are updated according to the changes of the motor parameters in the cycle calculation, so that the variable frequency speed control vector control is not affected by the drift of the motor operating parameters, and the effect of improving the control performance of the asynchronous motor is achieved.
Description
技术领域 technical field
本发明涉及一种具有参数自整定功能的电压解耦变频调速矢量控制方法,用于变频器控制方案的设计,属于电气自动化技术领域。The invention relates to a voltage decoupling frequency conversion speed regulation vector control method with a parameter self-tuning function, which is used for the design of a frequency converter control scheme and belongs to the technical field of electric automation.
背景技术 Background technique
随着电力电子技术,电子计算机技术,自动控制理论的不断发展,变频技术应用也越来越普及。变频技术应用最广的是变频器产品,例如变频空调,变频洗衣机、变频电冰箱等等,它正朝着高度数字集成化、转矩控制高性能化、保护功能健全化、操作简便化、驱动低噪声化、高可靠性、低成本和小型化的趋势发展。变频器产品主要应用到的技术中包括,脉宽调制技术,滑模技术、非线性变换技术、交流电机矢量控制技术、直接转矩控制技术、模糊控制技术和自适应控制技术等。With the continuous development of power electronics technology, electronic computer technology, and automatic control theory, the application of frequency conversion technology is becoming more and more popular. Frequency conversion technology is most widely used in frequency converter products, such as frequency conversion air conditioners, frequency conversion washing machines, frequency conversion refrigerators, etc. The trend of low noise, high reliability, low cost and miniaturization is developing. Inverter products are mainly applied to technologies including pulse width modulation technology, sliding mode technology, nonlinear transformation technology, AC motor vector control technology, direct torque control technology, fuzzy control technology and adaptive control technology.
矢量控制技术是数字化变频器设计的主要方向之一,异步电动机的矢量控制方法本质上是基于坐标变换,实现转矩与磁通的完全解耦,从而可以将定子电流中的转矩分量和励磁分量分别独立控制,从而实现高性能的控制应用。但是根据文献“一种改进的异步电机矢量控制方法”(王立新.中小型电机,2005,32(6))中指出,在实际应用中,由于温升及磁饱和等原因,使得异步电动机各项参数发生变化,在电动机的理想模型中出现的转矩磁通的完全解耦不再有效,进而影响矢量控制性能。Vector control technology is one of the main directions of digital frequency converter design. The vector control method of asynchronous motor is essentially based on coordinate transformation, which realizes the complete decoupling of torque and magnetic flux, so that the torque component in the stator current and the excitation The components are controlled independently, enabling high-performance control applications. However, according to the literature "an improved vector control method for asynchronous motors" (Wang Lixin. Small and medium-sized motors, 2005, 32 (6)), in practical applications, due to temperature rise and magnetic saturation, the various parameters of asynchronous motors The parameters change, and the complete decoupling of the torque flux that occurs in the ideal model of the motor is no longer effective, which in turn affects the vector control performance.
变频器矢量控制性能受异步电动机参数变化影响,调速性能上仍有待提高,需要寻找一种方法消除参数变化带来的偏差。具有参数自整定功能的变频调速矢量控制方法能有效地消除偏差,实现高性能变频调速,目前还没有这项技术研究应用的详细报道。The vector control performance of the frequency converter is affected by the parameter change of the asynchronous motor, and the speed regulation performance still needs to be improved. It is necessary to find a method to eliminate the deviation caused by the parameter change. The frequency conversion speed regulation vector control method with parameter self-tuning function can effectively eliminate the deviation and realize high performance frequency conversion speed regulation. At present, there is no detailed report on the research and application of this technology.
发明内容Contents of the invention
本发明的目的在于针对现有变频器矢量控制技术的不足,提出一种具有参数自整定功能的电压解耦变频调速矢量控制方法,在实现变频调速功能的基础上实现更优的调速性能。该方法通过实时地修正矢量变换交叉解耦计算的系数,使变频器数字控制的输出控制值始终符合电动机运行的状况,达到提升变频器调速性能的效果。The purpose of the present invention is to address the shortcomings of the existing frequency converter vector control technology, to propose a voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function, and to achieve better speed regulation on the basis of realizing the frequency conversion speed regulation function performance. This method corrects the coefficients calculated by vector transformation cross decoupling in real time, so that the output control value of the digital control of the frequency converter always conforms to the running condition of the motor, and achieves the effect of improving the speed regulation performance of the frequency converter.
本发明提出的这种具有参数自整定功能的电压解耦变频调速矢量控制方法,通过外接电压检测装置、电流检测装置和测速装置测量变频器控制异步电动机定子端的电压值、电流值和转子转速,根据矢量变换将实际三相电压值、电流值等效为两相旋转坐标系下的值,然后对控制给定值实施负反馈控制,并根据异步电动机实际模型推导出的解耦参数对控制模型进行解耦计算;最后解耦输出值矢量逆变换为三相静止坐标系下的定子电压控制值,根据三相定子电压控制值调节变频器逆变单元输出;该过程不断循环执行,使得解耦参数随着电动机参数变化实时更新,从而具有自整定功能。The voltage decoupling variable frequency speed regulation vector control method with parameter self-tuning function proposed by the present invention uses an external voltage detection device, current detection device and speed measurement device to measure the voltage value, current value and rotor speed of the stator terminal of the asynchronous motor controlled by the frequency converter , according to the vector transformation, the actual three-phase voltage and current values are equivalent to the values in the two-phase rotating coordinate system, and then the negative feedback control is implemented on the control given value, and the decoupling parameters derived from the actual model of the asynchronous motor are used to control the The decoupling calculation of the model is carried out; finally, the decoupling output value vector inverse transforms into the stator voltage control value in the three-phase static coordinate system, and the output of the inverter unit of the inverter is adjusted according to the three-phase stator voltage control value; this process is continuously executed in a loop, so that the solution The coupling parameters are updated in real time as the motor parameters change, so it has a self-tuning function.
本发明方法的具体步骤如下:The concrete steps of the inventive method are as follows:
1、在变频器逆变电路的三相输出端分别接电压检测装置和电流检测装置,变频器运行过程中检测装置测得异步电动机的定子三相电压值和定子三相电流值;在异步电动机电路中接入测速装置,变频器运行过程中测速装置测得异步电动机转子转速实际值;设定转子磁链控制给定值和转子转速控制给定值;将矢量回转器定子磁通角的初始值及矢量回转器逆变换的定子磁通角控制值的初始值均设置为0;1. Connect the voltage detection device and current detection device to the three-phase output terminals of the inverter circuit of the frequency converter respectively. During the operation of the frequency converter, the detection device measures the stator three-phase voltage value and stator three-phase current value of the asynchronous motor; The speed measuring device is connected to the circuit, and the speed measuring device measures the actual value of the rotor speed of the asynchronous motor during the operation of the inverter; the given value of the rotor flux linkage control and the given value of the rotor speed control are set; the initial value of the stator flux angle of the vector gyrator value and the initial value of the stator flux angle control value of the inverse transformation of the vector gyrator are set to 0;
2、分别将定子三相电压值及定子三相电流值,根据三相静止坐标系至两相静止坐标系变换公式变换为两相静止坐标系的值,把变换所得电压值和电流值分别连同矢量回转器定子磁通角的值通过矢量回转器运算,得到两相旋转坐标系下的矢量变换电压值和矢量变换电流值,即得到定子电压的励磁分量和转矩分量,以及定子电流的励磁分量和转矩分量;2. Transform the stator three-phase voltage value and the stator three-phase current value into values in the two-phase static coordinate system according to the transformation formula from the three-phase static coordinate system to the two-phase static coordinate system, and combine the transformed voltage and current values with The value of the stator flux angle of the vector gyrator is calculated by the vector gyrator to obtain the vector transformation voltage value and the vector transformation current value in the two-phase rotating coordinate system, that is, the excitation component and torque component of the stator voltage, and the excitation of the stator current component and torque component;
3、将定子电流的励磁分量和转矩分量通过转差频率计算,得出转差角速度,将转差角速度与转子转速求和,得到定子磁场同步旋转角速度;将定子电流的励磁分量通过转子磁链计算,得出转子磁链实际值;3. Calculate the excitation component and torque component of the stator current through the slip frequency to obtain the slip angular velocity, sum the slip angular velocity and the rotor speed to obtain the synchronous rotation angular velocity of the stator magnetic field; pass the excitation component of the stator current through the rotor magnetic chain calculation to obtain the actual value of the rotor flux chain;
4、对转子磁链控制给定值采用负反馈,即把转子磁链控制给定值减去转子磁链实际值,差值送入磁链调节器中得到定子电流励磁分量控制值;对转子转速控制给定值也采用负反馈,即把转子转速控制给定值减去转子转速实际值,差值送入转速调节器中得到转矩控制值,转矩控制值再通过转矩调节器计算,得到定子电流转矩分量控制值;4. Negative feedback is adopted for the given value of rotor flux linkage control, that is, the given value of rotor flux linkage control is subtracted from the actual value of rotor flux linkage, and the difference is sent to the flux linkage regulator to obtain the control value of stator current excitation component; The given value of speed control also adopts negative feedback, that is, the given value of rotor speed control is subtracted from the actual value of rotor speed, and the difference is sent to the speed regulator to obtain the torque control value, which is then calculated by the torque regulator , get the stator current torque component control value;
5、将定子电流励磁分量控制值和定子电流转矩分量控制值,通过转差频率计算公式得出转差角速度控制值,再将转差角速度控制值与转子转速控制给定值求和,得到定子磁场同步旋转角速度控制值;5. The stator current excitation component control value and the stator current torque component control value are obtained through the slip frequency calculation formula to obtain the slip angular velocity control value, and then the slip angular velocity control value and the rotor speed control given value are summed to obtain Stator magnetic field synchronous rotation angular velocity control value;
6、将求得的定子电流励磁分量控制值、定子电流转矩分量控制值、定子磁场同步旋转角速度控制值和定子电压励磁分量、定子电压转矩分量、定子电流励磁分量、定子电流转矩分量输入到参数自整定电压解耦计算模块中计算,得到定子电压励磁分量控制值和定子电压转矩分量控制值,根据异步电动机实际模型推导出的解耦参数对控制模型进行解耦计算,在循环计算过程中保持解耦参数始终跟随异步电动机参数变化,从而使得解耦参数的值具有自整定功能;6. The obtained stator current excitation component control value, stator current torque component control value, stator magnetic field synchronous rotation angular velocity control value and stator voltage excitation component, stator voltage torque component, stator current excitation component, stator current torque component Input to the parameter self-tuning voltage decoupling calculation module for calculation, and obtain the control value of the stator voltage excitation component and the stator voltage torque component control value, and decouple the control model according to the decoupling parameters derived from the actual model of the asynchronous motor. During the calculation process, keep the decoupling parameters always follow the changes of the asynchronous motor parameters, so that the value of the decoupling parameters has a self-tuning function;
7、将定子电压励磁分量控制值、定子电压转矩分量控制值连同矢量回转器逆变换的定子磁通角控制值,通过矢量回转器逆变换,得到两相静止坐标系下变换值,再将两相静止坐标系下变换值按照两相静止坐标系至三相静止坐标系变换公式进行变换,得到三相定子电压控制值;根据三相定子电压控制值调节逆变器驱动控制装置,进而控制定子电压实际输出;7. The control value of the stator voltage excitation component, the control value of the stator voltage torque component and the stator flux angle control value of the inverse transformation of the vector gyrator are converted by the vector gyrator to obtain the transformation value of the two-phase stationary coordinate system, and then the The conversion value in the two-phase static coordinate system is transformed according to the transformation formula from the two-phase static coordinate system to the three-phase static coordinate system, and the three-phase stator voltage control value is obtained; the inverter drive control device is adjusted according to the three-phase stator voltage control value, and then the control Actual output of stator voltage;
8、将定子磁场同步旋转角速度对时间积分得到矢量回转器定子磁通角的值,将定子磁场同步旋转角速度控制值对时间积分得到矢量回转器逆变换的定子磁通角控制值;分别用矢量回转器定子磁通角的值及矢量回转器逆变换的定子磁通角控制值更新步骤1中的初始值,同时利用检测装置当前测得的定子三相电压值、定子三相电流值、异步电动机转子转速实际值,以及转子磁链控制给定值和转子转速控制给定值,返回步骤2进行新一轮循环计算,从而实现具有自整定功能的电压解耦变频调速矢量控制。8. Integrate the synchronous rotation angular velocity of the stator magnetic field with respect to time to obtain the value of the stator flux angle of the vector gyrator, and integrate the control value of the synchronous rotational angular velocity of the stator magnetic field with respect to time to obtain the stator flux angle control value of the inverse transformation of the vector gyrator; The value of the stator flux angle of the gyrator and the stator flux angle control value of the inverse transformation of the vector gyrator update the initial value in step 1, and at the same time use the stator three-phase voltage value, stator three-phase current value, asynchronous The actual value of the rotor speed of the motor, as well as the given value of the rotor flux linkage control and the given value of the rotor speed control, return to
本发明用于变频器产品的数字化矢量控制策略的设计,上述具有参数自整定功能的电压解耦变频调速矢量控制方法,随着循环计算的不断进行,解耦系数可自整定,使得解耦计算后的输出值更加独立。该方法通过测量运行参数,实时计算出当前解耦系数,从而实现矢量控制策略不受电动机运行参数漂移的影响,进而提高交流电动机控制性能。The present invention is used in the design of digital vector control strategy for inverter products. The above-mentioned voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function can be self-tuned with the continuous calculation of the cycle, so that the decoupling The calculated output values are more independent. The method calculates the current decoupling coefficient in real time by measuring the operating parameters, so that the vector control strategy is not affected by the drift of the motor operating parameters, thereby improving the control performance of the AC motor.
附图说明 Description of drawings
图1为本发明具有参数自整定功能的矢量控制变频器的硬件结构示意图。Fig. 1 is a schematic diagram of the hardware structure of the vector control frequency converter with parameter self-tuning function of the present invention.
图2为本发明具有参数自整定功能的电压解耦变频调速矢量控制的结构示意图。Fig. 2 is a schematic structural diagram of the voltage decoupling frequency conversion speed regulation vector control with parameter self-tuning function of the present invention.
具体实施方式 Detailed ways
图1为具有参数自整定功能的电压解耦矢量控制变频器的硬件结构示意图,在整流单元、制动单元和逆变单元组成的变频器主电路上接入矢量控制电路,矢量控制电路如下:在逆变器输出线路处接电压检测装置和电流检测装置,得到的模拟输出经过隔离转换和信号调理,得到的信号输入DSP模块;异步电动机接脉冲编码器,得到的模拟信号经过光电隔离脉冲滤波器、倍频处理装置,再经计数装置,信号输入DSP模块;DSP程序处理后的信号输出至FPGA脉冲分配单元,经过驱动缓存和基极驱动电路,得到的模拟控制信号用于控制逆变单元;计算机键盘与显示装置连接至DSP模块,用于控制输入与显示输出。Figure 1 is a schematic diagram of the hardware structure of a voltage decoupling vector control inverter with parameter self-tuning function. The vector control circuit is connected to the main circuit of the inverter composed of a rectifier unit, a braking unit and an inverter unit. The vector control circuit is as follows: The voltage detection device and current detection device are connected to the output line of the inverter, and the obtained analog output is subjected to isolation conversion and signal conditioning, and the obtained signal is input to the DSP module; the asynchronous motor is connected to the pulse encoder, and the obtained analog signal is filtered by photoelectric isolation pulse The signal is input to the DSP module through the counting device; the signal processed by the DSP program is output to the FPGA pulse distribution unit, and the analog control signal obtained through the drive buffer and base drive circuit is used to control the inverter unit ; The computer keyboard and display device are connected to the DSP module for controlling input and display output.
图2为具有参数自整定功能的电压解耦变频调速矢量控制的结构示意图,它指出DSP模块中的算法框图。Figure 2 is a schematic diagram of the structure of voltage decoupling frequency conversion speed regulation vector control with parameter self-tuning function, and it points out the algorithm block diagram in the DSP module.
具有参数自整定功能的电压解耦变频调速矢量控制方法的具体实施步骤如下:The specific implementation steps of the voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function are as follows:
1、在变频器逆变电路部分的三相输出端分别接电压检测装置和电流检测装置,变频器运行过程中检测装置测得异步电动机的定子三相电压输入值uA、uB、uC和定子三相电流输入值iA、iB、iC;在异步电动机电路中接入测速装置,变频器运行过程中测速装置测得异步电动机转子转速实际值ω2;通过计算机键盘设定转子磁链控制给定值ψ2 *和转子转速控制给定值ω2 *;程序中将矢量回转器定子磁通角θ的初始值及矢量回转器逆变换的定子磁通角控制值θ*的初始值均设置为0;1. Connect the voltage detection device and current detection device to the three-phase output terminals of the inverter circuit part of the frequency converter respectively. During the operation of the frequency converter, the detection device measures the stator three-phase voltage input values u A , u B , u C of the asynchronous motor and stator three-phase current input values i A , i B , i C ; the speed measuring device is connected to the asynchronous motor circuit, and the speed measuring device measures the actual value of the asynchronous motor rotor speed ω 2 during the operation of the frequency converter; the rotor is set through the computer keyboard The given value of flux linkage control ψ 2 * and the given value of rotor speed control ω 2 * ; in the program, the initial value of the stator flux angle θ of the vector gyrator and the control value of the stator flux angle θ * of the inverse transformation of the vector gyrator The initial values are all set to 0;
2、分别将定子三相电压值uA、uB、uC及定子三相电流值iA、iB、iC根据三相静止坐标系至两相静止坐标系3s/2s变换公式:
把变换所得电压值uα1、uβ1和电流值iα1、iβ1分别连同矢量回转器定子磁通角θ的值通过矢量回转器公式:
3、将定子电流的励磁分量iM1和转矩分量iT1通过转差频率公式
4、对转子磁链控制给定值ψ2 *采用负反馈,即把转子磁链控制给定值ψ2 *减去转子磁链实际值ψ2,差值送入磁链调节器AψR中得到定子电流励磁分量控制值iM1 *;对转子转速控制给定值ω2 *也采用负反馈,即把转子转速控制给定值ω2 *减去转子转速实际值ω2,差值送入转速调节器ASR中得到转矩控制值Te *,转矩控制值Te *再通过转矩调节器ATR计算,得到定子电流转矩分量控制值iT1 *;4. Negative feedback is adopted for the rotor flux linkage control given value ψ 2 * , that is, the rotor flux linkage control given value ψ 2 * is subtracted from the rotor flux linkage actual value ψ 2 , and the difference is sent to the flux linkage regulator AψR to obtain Stator current excitation component control value i M1 * ; Negative feedback is also used for the rotor speed control given value ω 2 * , that is, the rotor speed control given value ω 2 * is subtracted from the rotor speed actual value ω 2 , and the difference is sent to the speed The torque control value T e * is obtained in the regulator ASR, and the torque control value T e * is calculated by the torque regulator ATR to obtain the stator current torque component control value i T1 * ;
5、将定子电流励磁分量控制值iM1 *和定子电流转矩分量控制值iT1 *通过转差频率公式:
6、将求得的定子电流励磁分量控制值iM1 *、定子电流转矩分量控制值iT1 *、定子磁场同步旋转角速度控制值ω1 *和定子电压励磁分量uM1、定子电压转矩分量uT1、定子电流励磁分量iM1、定子电流转矩分量iT1输入到参数自整定电压解耦计算模块中计算,解耦算法为:6. The obtained stator current excitation component control value i M1 * , stator current torque component control value i T1 * , stator magnetic field synchronous rotation angular velocity control value ω 1 * , stator voltage excitation component u M1 , stator voltage torque component u T1 , stator current excitation component i M1 , and stator current torque component i T1 are input to the parameter self-tuning voltage decoupling calculation module for calculation, and the decoupling algorithm is:
uM1 *=A·iM1 *+B·siM1 *-C·ω1 *iT1 * u M1 * =A i M1 * +B si M1 * -C ω 1 * i T1 *
uT1 *=A·iT1 *+B·ω1 *iM1 *+C·siT1 * u T1 * =A i T1 * +B ω 1 * i M1 * +C si T1 *
得到定子电压励磁分量控制值uM1 *和定子电压转矩分量控制值uT1 *,其中系数A、B、C的值计算方法如下:Obtain the stator voltage excitation component control value u M1 * and the stator voltage torque component control value u T1 * , where the coefficients A, B, and C are calculated as follows:
A=r1,
具体原理如下,根据异步电动机解耦控制模型:The specific principle is as follows, according to the asynchronous motor decoupling control model:
则和σLs两个系数随着电动机参数变化而变,根据异步电动机实际运行模型可推出:but The two coefficients σ and σL s change with the motor parameters, according to the actual operation model of the asynchronous motor, it can be deduced that:
由此可见,以上解耦算法根据异步电动机实际模型推导出的解耦参数对控制模型进行解耦计算,在循环计算过程中保持解耦参数始终跟随异步电动机参数变化,从而使得解耦参数A、B、C的值具有自整定功能;It can be seen that the above decoupling algorithm performs decoupling calculation on the control model based on the decoupling parameters derived from the actual model of the asynchronous motor. The values of B and C have self-tuning function;
7、将定子电压励磁分量控制值uM1 *、定子电压转矩分量控制值uT1 *连同矢量回转器逆变换的定子磁通角控制值θ*通过矢量回转器逆变换公式
8、将定子磁场同步旋转角速度ω1对时间t积分,得到矢量回转器定子磁通角θ的值,即θ=∫ω1dt,将定子磁场同步旋转角速度控制值ω1 *对时间t积分得到矢量回转器逆变换的定子磁通角控制值θ*,即θ*=∫ω1 *dt;分别用矢量回转器定子磁通角θ的值及矢量回转器逆变换的定子磁通角控制值θ*更新步骤1中的初始值,同时利用检测装置当前测得的定子三相电压值、定子三相电流值、异步电动机转子转速实际值,以及转子磁链控制给定值和转子转速控制给定值,返回步骤2进行新一轮循环计算,从而实现具有自整定功能的电压解耦变频调速矢量控制。8. Integrate the synchronous rotation angular velocity ω 1 of the stator magnetic field with time t to obtain the value of the stator flux angle θ of the vector gyrator, that is, θ=∫ω 1 dt, and integrate the control value ω 1 * of the synchronous rotation angular velocity of the stator magnetic field with respect to time t Obtain the stator flux angle control value θ * of the inverse transformation of the vector gyrator, that is, θ * = ∫ω 1 * dt; respectively use the value of the stator flux angle θ of the vector gyrator and the stator flux angle control of the inverse transformation of the vector gyrator Value θ * Update the initial value in step 1, and at the same time use the current measured stator three-phase voltage value, stator three-phase current value, asynchronous motor rotor speed actual value, and rotor flux linkage control given value and rotor speed control Given the value, return to step 2 for a new cycle of calculation, so as to realize the voltage decoupling frequency conversion speed regulation vector control with self-tuning function.
综上所述,具有参数自整定功能的电压解耦变频调速矢量控制方法是:首先通过外接电压检测装置、电流检测装置和测速装置测量变频器控制异步电动机定子端的电压值、电流值和转子转速,根据矢量变换将实际三相电压值、电流值等效为两相旋转坐标系下的值,然后对控制给定值实施负反馈控制,并根据异步电动机实际模型推导出的解耦参数对控制模型进行解耦计算;最后解耦输出值经逆矢量变换方法变换为三相静止坐标系下的定子电压控制值,根据三相定子电压控制值调节变频器逆变单元输出:循环执行上述算法,则解耦参数随着电动机参数变化实时更新,从而具有自整定功能。To sum up, the voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function is as follows: firstly, through the external voltage detection device, current detection device and speed measurement device, measure the voltage value, current value and rotor According to the vector transformation, the actual three-phase voltage and current values are equivalent to the values in the two-phase rotating coordinate system, and then negative feedback control is implemented on the control given value, and the decoupling parameters derived from the actual model of the asynchronous motor The control model performs decoupling calculation; the final decoupling output value is transformed into the stator voltage control value in the three-phase static coordinate system by the inverse vector transformation method, and the output of the inverter unit of the inverter is adjusted according to the three-phase stator voltage control value: the above algorithm is executed cyclically , the decoupling parameters are updated in real time as the motor parameters change, thus having a self-tuning function.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100370418A CN100444515C (en) | 2007-02-01 | 2007-02-01 | Voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007100370418A CN100444515C (en) | 2007-02-01 | 2007-02-01 | Voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101013876A CN101013876A (en) | 2007-08-08 |
CN100444515C true CN100444515C (en) | 2008-12-17 |
Family
ID=38701209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100370418A Expired - Fee Related CN100444515C (en) | 2007-02-01 | 2007-02-01 | Voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100444515C (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100557942C (en) * | 2008-05-06 | 2009-11-04 | 南京航空航天大学 | Speed regulation method of asynchronous motor based on slip linear control |
CN101604953B (en) * | 2009-07-13 | 2011-09-07 | 山西合创电力科技有限公司 | Comprehensive method for vector or direct torque control of permanent magnetism type wind generator |
CN101604954B (en) * | 2009-07-13 | 2011-12-28 | 山西合创电力科技有限公司 | Comprehensive method for vector or direct torque control of doubly-fed wind generator |
CN101777868B (en) * | 2010-02-02 | 2012-12-19 | 北京科技大学 | Method and system for driving asynchronous motor servo for robot |
CN101951222A (en) * | 2010-08-03 | 2011-01-19 | 天津大学 | Control method of brushless double-fed motor and application thereof |
CN102012674A (en) * | 2010-09-21 | 2011-04-13 | 上海大学 | Building method for electric drive system hardware-in-the-loop simulation device |
CN102315816B (en) * | 2011-08-02 | 2013-10-23 | 江苏大学 | A Real-time Sector Subdivision Direct Torque Control Method of Arbitrary Hierarchy |
CN103248305B (en) * | 2012-02-10 | 2016-01-20 | 武汉大禹电气有限公司 | For the method for two synchronous coordinate system vector control of Electric Machine Control |
CN102739150B (en) * | 2012-06-20 | 2014-07-30 | 哈尔滨工业大学 | Parameter identification control device and control method of sensorless permanent magnet synchronous motor |
CN102983806B (en) * | 2012-11-29 | 2015-02-18 | 深圳市汇川技术股份有限公司 | Asynchronous machine stator flux estimation system based on current model and method |
CN102967034B (en) * | 2012-12-25 | 2014-10-29 | 广州市优能电子科技有限公司 | Vector frequency control method of VAV (variable air volume) system |
CN103427442B (en) * | 2013-07-09 | 2015-12-09 | 上海交通大学 | The synchronous grid-connected control method of variable-ratio pumped storage ac excitation generating motor |
US10521519B2 (en) * | 2013-07-23 | 2019-12-31 | Atieva, Inc. | Induction motor flux and torque control with rotor flux estimation |
CN103475298A (en) * | 2013-09-30 | 2013-12-25 | 湖南科技大学 | Vector control device and method of asynchronous motor |
CN104639009B (en) * | 2013-11-11 | 2018-02-06 | 北京动力源科技股份有限公司 | A kind of control method of vector control type frequency converter, device and a kind of vector control type frequency converter |
CN105281348B (en) * | 2014-07-21 | 2018-03-06 | 苏州伟创电气设备技术有限公司 | A kind of control method and control device of motor power feedback |
CN105634355B (en) * | 2014-11-05 | 2020-03-06 | 博世力士乐(西安)电子传动与控制有限公司 | Frequency converter and control device and control method for frequency converter |
CN105099317A (en) * | 2015-08-26 | 2015-11-25 | 南京信息工程大学 | Space vector-based direct torque control system and method for three-phase induction motor |
CN105262380A (en) * | 2015-10-08 | 2016-01-20 | 江苏科技大学 | Stator linkage amplitude given method during weak magnetic operation of PMSM |
CN105610373B (en) * | 2016-02-02 | 2019-11-08 | 西安交通大学 | A direct torque control system and method for improving motor torque performance |
CN105634368A (en) * | 2016-04-08 | 2016-06-01 | 中车株洲电力机车研究所有限公司 | Self-adaptive speed regulating method and system having maximum deceleration |
CN107947662A (en) * | 2017-12-08 | 2018-04-20 | 四川长虹空调有限公司 | Adaptive and/or Self-tuning System the control system and method for DC brushless motor parameter |
CN109039195B (en) * | 2018-05-24 | 2021-04-20 | 广州市香港科大霍英东研究院 | Indirect vector control method, system and device of servo motor |
CN109256996B (en) * | 2018-11-12 | 2021-02-26 | 河南工学院 | Parameter self-tuning and variable frequency control system and unified device thereof, and parameter identification method |
CN110752793A (en) * | 2019-10-14 | 2020-02-04 | 湖南强军科技有限公司 | ZYNQ-based multi-motor direct torque control system and control method thereof |
CN113236443B (en) * | 2021-04-25 | 2022-02-01 | 上海新力动力设备研究所 | Self-tuning method for pressure feedback control parameter of variable thrust engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0345190A (en) * | 1989-07-12 | 1991-02-26 | Meidensha Corp | Vector controller for induction motor |
JPH0775398A (en) * | 1993-03-15 | 1995-03-17 | Hosei Ho | Vector controller for induction motor |
EP0637870B1 (en) * | 1992-07-21 | 1997-05-28 | Kabushiki Kaisha Meidensha | Vector control apparatus for induction motor |
JPH11206200A (en) * | 1998-01-14 | 1999-07-30 | Toyo Electric Mfg Co Ltd | Induction motor control equipment |
JP3070391B2 (en) * | 1994-06-22 | 2000-07-31 | 富士電機株式会社 | Induction motor vector control device |
-
2007
- 2007-02-01 CN CNB2007100370418A patent/CN100444515C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0345190A (en) * | 1989-07-12 | 1991-02-26 | Meidensha Corp | Vector controller for induction motor |
EP0637870B1 (en) * | 1992-07-21 | 1997-05-28 | Kabushiki Kaisha Meidensha | Vector control apparatus for induction motor |
JPH0775398A (en) * | 1993-03-15 | 1995-03-17 | Hosei Ho | Vector controller for induction motor |
JP3070391B2 (en) * | 1994-06-22 | 2000-07-31 | 富士電機株式会社 | Induction motor vector control device |
JPH11206200A (en) * | 1998-01-14 | 1999-07-30 | Toyo Electric Mfg Co Ltd | Induction motor control equipment |
Non-Patent Citations (2)
Title |
---|
一种改进的异步电机矢量控制方法. 王立新,周顺荣.中小型电机,第2005,32卷第6期. 2005 |
一种改进的异步电机矢量控制方法. 王立新,周顺荣.中小型电机,第2005,32卷第6期. 2005 * |
Also Published As
Publication number | Publication date |
---|---|
CN101013876A (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100444515C (en) | Voltage decoupling frequency conversion speed regulation vector control method with parameter self-tuning function | |
CN102780443B (en) | Aerial three-level electric excitation motor starting control method and aerial three-level electric excitation motor starting control device | |
CN101383585A (en) | A vector control method without speed sensor for AC asynchronous motor | |
CN110022105A (en) | Permanent magnet synchronous motor predictive-current control method and system based on FOSMC | |
CN101425777B (en) | Open loop speed sensorless voltage oriented variable frequency controller | |
CN209844868U (en) | Dead beat current prediction control system of permanent magnet synchronous motor | |
CN102684592B (en) | Torque and flux linkage control method for permanent synchronous motor | |
CN103178769A (en) | Off-line identification method of parameters of permanent magnet synchronous motor in static state | |
CN110022106B (en) | A position sensorless control method of permanent magnet synchronous motor based on high frequency signal injection | |
CN101286724A (en) | A Direct Torque Control Method for Permanent Magnet Synchronous Motor | |
CN107370436A (en) | A kind of direct Torque Control based on Super twisting sliding formworks | |
CN104811115A (en) | Quasi-proportional resonance control-based permanent magnet synchronous motor parameter identification system and method | |
CN107482982A (en) | A Vector Control Method of Asynchronous Motor Based on Iron Loss Model | |
CN105680754A (en) | D-axis and A-axis current vector composite controller of permanent-magnet synchronous motor | |
CN101557193B (en) | Vector control method of non-sinusoidal back EMF surface type AC permanent magnet motor | |
CN103953546B (en) | The control gear of compressor and there is its compressor control system | |
CN102025313A (en) | Vector control method based on counter potential feedforward control | |
CN108306570A (en) | Direct torque control method for permanent magnetic synchronous electric machine and system | |
CN106788119A (en) | A kind of permagnetic synchronous motor frequency converter and its application process | |
CN104967382A (en) | A sensorless control method for permanent magnet synchronous motor | |
CN113676102B (en) | Rotor position simplified estimation method of three-stage brushless alternating current synchronous motor | |
CN103986392B (en) | A kind of control method of low-speed direct driving type AC servo | |
CN109861605B (en) | A deadbeat torque prediction control method for permanent magnet synchronous motor | |
CN109391209A (en) | Line inductance electromotor senseless control strategy suitable for middle low speed magnetic suspension | |
CN105227022A (en) | Based on the time constant of rotor of asynchronous machine on-line identification method improving reactive power model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081217 Termination date: 20120201 |