CN100436237C - Human-imitating double-foot robot artificial leg - Google Patents

Human-imitating double-foot robot artificial leg Download PDF

Info

Publication number
CN100436237C
CN100436237C CN 200610047169 CN200610047169A CN100436237C CN 100436237 C CN100436237 C CN 100436237C CN 200610047169 CN200610047169 CN 200610047169 CN 200610047169 A CN200610047169 A CN 200610047169A CN 100436237 C CN100436237 C CN 100436237C
Authority
CN
China
Prior art keywords
knee
link
leg
mounted
foot
Prior art date
Application number
CN 200610047169
Other languages
Chinese (zh)
Other versions
CN1883994A (en
Inventor
丛德宏
刘兴刚
徐心和
倩 李
佳 王
军 程
谢华龙
贾鹏宇
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to CN 200610047169 priority Critical patent/CN100436237C/en
Publication of CN1883994A publication Critical patent/CN1883994A/en
Application granted granted Critical
Publication of CN100436237C publication Critical patent/CN100436237C/en

Links

Abstract

一种拟人双足机器人人工腿,属于机器人技术领域。 A Quasi human biped robot artificial leg, which belongs to the field of robotics. 包括髋关节、膝关节、踝关节、脚、大腿连杆及小腿连杆,其特征在于在髋关节和膝关节之间的大腿连杆上安装有膝关节驱动电机,膝关节为两个四连杆封闭链结构,膝关节驱动电机通过平行四连杆机构与膝关节的两个四连杆的后杆连接,在两个四连杆封闭链结构的前端固定有挡块,在一个四连杆封闭链结构的前杆上端的转轴上安装有编码器。 Including hip, knee, ankle, foot, thigh link and the shank link, characterized in that mounted on the thigh link between the hip and knee driving motor knee joint, the knee two tetranectin closing bar chain structure, a drive motor connected by a knee lever after two four-link parallelogram linkage mechanism of the knee, a stopper fixed to the front end of two four-link chain closed in a four-bar linkage an encoder mounted on the front end of the shaft rod closed chain structure. 本发明优点是提高了脚离地的高度,增强脚在行走过程中有更好的避障能力,而且在小腿摆动过程中不会碰到地面,增强行走的稳定性和高效性。 Advantage of the present invention is to increase the height of foot off the ground, the foot to enhance the ability to better avoidance during walking, but also during the swing leg does not hit the ground, to enhance the stability and efficiency of walking. 腿的质量分布更接近于人腿,整体结构紧凑,传动精度高。 Mass distribution legs closer human leg, overall structure is compact, high transmission accuracy.

Description

一种拟人双足机器人人工腿 A Quasi human biped robot artificial leg

技术领域 FIELD

本发明属于机器人技术领域,特别是涉及一种拟人双足机器人人工腿。 The present invention belongs to the field of robotics, in particular to a humanoid biped robot artificial leg. 技术背景 technical background

我国现有腿部残疾人约30多万,而且每年增加大约1.5万人,如果人的腿部因故从膝关节以上被切除,将会给他本人及家人带来极大的痛苦。 China's current leg of about 300,000 people with disabilities, but also an increase of about 1.5 million people per year, if for some reason people are cut off from the leg above the knee, will bring great suffering to himself and his family. 他们都企盼着具有适合中国国情的智能仿生腿的问世。 They have all looking forward to the advent of China's national conditions suitable for intelligent bionic leg. 伴随着微电子技术和控制技术的发展,20世纪90年代开始,康复医学领域研究用微处理器控制的智能假肢来代偿残疾人的残缺肢体。 With the development of microelectronics technology and control technology, beginning in the 1990s, the field of rehabilitation medicine research mutilated limbs with intelligent microprocessor controlled prostheses to compensate persons with disabilities. 智能假肢是一种能够很好代替残疾人部分或全部下肢功能的装置,可以帮助残疾人像正常人一样站立、行走、上下楼梯、 跑步甚至参加体育运动,做到"活动自如"。 Smart is a prosthetic device partially or totally disabled person can be a good substitute lower limb function, can help people with disabilities like a normal person standing, walking up and down stairs, running and even participate in sports, so that "freedom of movement." 它是集机械、电子、控制、人工智能、生物医疗等技术为一体的前沿性、多学科交叉的研究课题。 It is a mechanical, electronic, control, artificial intelligence, biotechnology and medical technology as one of the cutting-edge, interdisciplinary research. 目前,国外已经研制出智能仿生腿产品, 但价格昂贵、技术保密,而且服务上也不够到位。 At present, foreign countries have developed intelligent bionic leg product, but the price is expensive, technological security, and the service is also not in place. 在下肢智能假肢的研制开发过程中,需要对智能假肢做大量、重复、多种步态的实验。 In the lower limb prosthesis intelligent research and development process, the need to do a lot of intelligent prostheses, repeat, many gait laboratory. 显然,如果让一个残疾人穿戴智能假肢做这样的实验是不现实的,因为可能对残疾人造成不必要的伤害,而且残疾人也无法满足所要求的大量、重复性好、各种步态的实验。 Obviously, if a disabled person to wear make intelligent prosthesis for such an experiment is not realistic, because it may cause unnecessary harm to people with disabilities, and people with disabilities can not meet the requirements of a large number of good reproducibility, all kinds of gait experiment. 所以,智能假肢的开发需要一个理想的实验平台,这个实验平台的作用就是代替穿戴智能假肢的残疾人做各种各样的实验。 Therefore, the development of intelligent prostheses require an ideal experimental platform, the role of this experiment platform is in place wearable smart prosthetics with disabilities do all sorts of experiments. 这就要求实验平台具有良好的拟人性,能够模拟人的各种行走步态。 This requires a good experimental platform intended human, to simulate various human gait.

我们来分析一下普通双腿行走机器人的腿与人腿在结构上存在的根本差别以及产生的影响:人腿骨骼机构是人类经过漫长的进化形成的,应该是最适合双腿行走的生物机构。 Let's analyze the fundamental difference between an ordinary robot walking legs legs legs with the people in the existing structure and impact of: human leg bones of human bodies are formed after a long evolution, should be the most suitable for walking legs biological mechanism. 人腿膝关节主要由股骨内外侧髁、胫骨平台、髌骨、交叉韧带ACL和PCL、肌肉和神经组成。 Human leg knee consists of the femur lateral condyle, tibial plateau, patella, cruciate ligament ACL and PCL, muscles and nerves. 生物医学研究表明,股骨下端和胫骨上端接触表面形状不规则,在膝关节屈伸活动中,两表面间既有滚动又有滑动。 Biomedical research shows that the femur and tibia bone contacting surface of irregular shape, range of motion in the knee in both the rolling between two surfaces have slid. 韧带位于骨头之间,起润滑和缓冲作用。 Ligament located between the bones, lubrication and cushioning. 膝关节水平转动轴在屈伸活动中位置是不恒定的,可有一定的移动,其曲率中心即瞬时旋转中心(Instant Centre of Rotation, ICR)移动轨迹按J形曲线变化,如图1所示。 Knee flexion and extension in a horizontal rotation axis position is not constant, there may be some movement, (Rotation, ICR Instant Centre of) the movement trajectory by a J-shaped curve whose center of curvature i.e. instantaneous center of rotation, as shown in FIG. 关节由内外两侧肌肉伸缩运动驱动,如图2所示。 Joint driving both inner and outer muscle flexing movement, as shown in FIG. 因此,在人体步行过程中,大、小腿长度是变化的,膝关节ICR也是变化的,可以在较小关节曲屈角度下,提高脚离地高度。 Therefore, in the course of human walking, large, leg length is changed, the knee ICR also change, can at a smaller angle joint buckling, improve foot ground clearance. 其中大小腿长度是指上F大小腿连杆的交点分别与髋关节和踝关节中心点之间的距离。 Wherein a large leg length refers to the F major leg link, respectively, the distance between the point of intersection of the hip and ankle and the center point of. 同时,膝关节ICR的变化,可以调节地面反力对膝关节的转矩大小,也可以影响髋关节转动对膝关节的从动作用,所以对行走的稳定性和高效性有直接的影响。 Meanwhile, changes in the knee joint of the ICR, may be adjusted magnitude of the torque reaction force on the knee, the hip joint can be rotatably driven impact effect on the knee, the stability and efficiency have a direct effect on the walking. 而目前大多敛的双腿行走机器人,为了机构设计、控制、数学模型的建立和解算的方便,关节模型相比人体关节进行了大量的简化。 And most of the current convergence of legs walking robot, for mechanical design, control, convenient mathematical model and solver, the joint model has been simplified compared to the large number of human joint. 尤其是有源双腿行走机器 In particular the active machine walking legs

人,膝关节都沿用了工业机器人中常用的二连杆绞链膝关节机构,转动中心(Centre of Rotation, CR)固定不变,如图3所示。 Who follows the knee joint are commonly used in industrial robots second link hinge knee joint mechanism, the center of rotation (Centre of Rotation, CR) fixed, as shown in FIG.

这种膝关节结构上的差别导致保证支撑相稳定方法不同,人腿在站立和处于支撑相时, 膝关节是伸直状态,而普通双腿机器人在站立状态或处于支撑相时,大都弯曲着双腿,为防止冲击,脚在落地前总要先放平,并导致行走速度缓慢。 This difference in time leads to a different structure of the knee joint relative to the support to ensure the stabilization method, and a human leg when standing in a stance phase, knee is straightened state, and ordinary robot legs in a standing state or in the support phase, most of the bending legs, to prevent shock, total first flat feet before landing, and led to a slow walking speed. 人腿与普通双足机器人的腿另一个 Human leg and another leg ordinary biped robot

区别是:人脚具有柔性,而机器人的脚是刚性的。 The difference is: the human foot has flexibility, and the robot foot is rigid. 由于机器人的脚缺乏柔性,没有缓冲作用, 为避免在行走过程中地面对脚的冲击,必须从行走姿态上进行控制,从而影响了机器人歩态的拟人性。 Due to lack of flexibility of the robot foot, no buffer action during walking in order to avoid the impact face of the foot must be controlled from the walking posture, thus affecting the quasi ho state humane robot. 发明内容 SUMMARY

为了解决上述存在的问题,本发明提供一种拟人双足机器人人工腿,它使机器人具有拟人的行走步态,并降低控制的难度,用这种机器人作为开发研制智能假肢的试验平台。 In order to solve the above problems, present invention provides an artificial leg humanoid biped robot, which robot has anthropomorphic gait, and reduced difficulty of control, as developed by the robot intelligent prosthetic test platform.

本发明的人工腿包括髋关节、膝关节、踝关节、脚、大腿连杆及小腿连杆,在髋关节和膝关节之间的大腿连杆上安装有膝关节驱动电机,膝关节为两个四连杆封闭链结构,膝关节驱动电机通过平行四连杆机构与膝关节的两个四连杆封闭链结构的后杆连接,在两个四连杆封闭链结构的前端固定有挡块,在一个四连杆封闭链结构的前杆上端的转轴上安装有编码器。 Artificial leg according to the invention comprises a hip, knee, ankle, foot, thigh link and the shank link, mounted on the thigh link between the hip and knee driving motor knee joint, the knee joint of two four-link chain closed configuration, the drive motor is connected by the knee lever parallelogram linkage of two four-link knee closed chain structure, a stopper fixed to the front end of two four-link chain closed structure, on the front end of the shaft rod a four-link chain closed structure mounted encoder.

其膝关节处的两个四连杆封闭链结构:是在膝关节两侧分别设有一组四连杆,之间通过转轴连接。 Two four-link chain which is closed at the knee joint: the knee joint is respectively provided on both sides a set of four-bar linkage, is connected via a shaft between. 平行四连杆机构是以大腿连杆为一连杆形成的。 A parallel four-bar linkage is a linkage thigh link is formed. 踝关节为倒U型,倒U型结构内 Ankle inverted U-shape, inverted U-shaped structure within

平行置有两个转轴,在一个转轴上安装有踝关节电机,在倒u型结构外部一侧,两转轴端部 There are two parallel opposing rotating shaft mounted on a spindle motor of the ankle joint, the outer side of the inverted u-shaped structure, the two ends of the shaft

分别安装有消隙齿轮,两消隙齿轮相啮合传动,在安装有踝关节电机的转轴靠近消隙齿轮的 Backlash gear are mounted, two anti-backlash gears meshing transmission, the motor shaft is mounted near the ankle of backlash gear

一侧安装有谐波减速器。 Mounted side harmonic reducer. 脚为柔性储能假脚,安装在倒u型结构内两个平行转轴中下方的转轴上。 The flexible storage prosthetic foot pin is mounted on the shaft beneath the inverted u-shaped structure of the two parallel shaft.

本发明的优点是膝关节采用四连杆封闭链结构,•有利于提高的脚离地高度,增强脚在行走过程中有更好的避障能力,而且在小腿摆动过程中不会碰到地面,增强行走的稳定性和高效性。 Advantage of the invention is that the knee joint four-link chain closed configuration, • help to improve ground clearance of the foot, the foot to enhance the ability to better avoidance during walking, but also during the swing leg does not hit the ground enhance walk stability and efficiency. 采用平行四连杆机构将电机的驱动力矩传递到膝关节处,使腿的质量分布更接近于人 Using the parallel four-link mechanism the drive torque of the motor is transmitted to the knee joint, so that the distribution of mass is closer to human legs

腿,使膝关节的结构更加紧凑;从动力学角度来说,可以降低对髋关节电机驱动力矩的要求, 降低驱动力矩的耦合程度,使动力学模型更加简单,更加易于控制。 Leg, knee make the structure more compact; kinetically, the hip joint can reduce the requirements for the motor drive torque, the drive torque decrease the degree of coupling, so that kinetic model more simple and easier to control. 踝关节采用谐波减速器加消隙齿轮传动,结构更紧凑,而且传动精度提高;采用柔性储能假脚,使其接近于人脚。 Ankle harmonic reducer plus anti-backlash gear, more compact, and to improve transmission accuracy; prosthetic foot with flexible storage, it is close to the human foot. 附图说明 BRIEF DESCRIPTION

图1是本发明的整体结构示意图; 1 is a schematic overall configuration of the present invention;

图2是本发明中膝关节结构示意图;图3是本发明中膝关节驱动、传动结构示意图; FIG 2 is a schematic view of the structure of the knee joint of the present invention; FIG. 3 is a knee joint of the present invention is driven, a schematic view of the transmission structure;

图4是本发明中踝关节结构示意图; FIG 4 is a schematic view of the ankle joint structure of the present invention;

图5是人腿膝关节结构示意图; FIG 5 is a schematic view of human knee leg configuration;

图6是人腿膝关节肌肉驱动示意图; FIG 6 is a schematic view of a human leg knee muscles drive;

图7是现有的单轴膝关节转动示意图; FIG 7 is a schematic view of a conventional single-axis knee joint rotation;

图8是人腿膝关节等效转换示意图; FIG 8 is a schematic view of a human leg knee equivalent conversion;

图9是单轴和多轴膝关节摆动离地高度对比示意图,其中(a)为单轴膝关节,(b)为多轴膝关节; 9 is a ground clearance of single and multiple axis knee pivot schematic comparison, wherein (a) is a uniaxial knee joint, (b) is a multi-axis knee joint;

图IO是本发明支撑相反力作用线与ICR的关系示意图,其中:a为支撑相初期,b为支撑相中期,c为支撑相晚期; FIG IO is a schematic view of the opposite relationship between the force line of the present invention ICR support, wherein: a is the initial phase support, b is the mid-stance phase, c is the late stance phase;

图11刚体旋转和平移示意图; FIG 11 a schematic view of a rigid body rotation and translation;

图12是本发明的机构尺寸定义示意图; FIG mechanism 12 is a schematic view of the invention as defined size;

图13是本发明中踝关节点轨迹跟踪效果曲线示意图; FIG 13 is the present invention, a schematic view of the ankle joint effect curve point trajectory trace;

图14是优化程序流程图。 FIG 14 is a flowchart of the optimization procedure. 图中l.髋关节,2.大腿连杆,3.膝关节驱动电机,4.平行四连杆机构,5.膝关节,6.小腿连杆,7.踝关节,8.脚,9.挡块,IO.膝关节连杆,ll.编码器,12.踝关节电机,13.踝关节转轴,14.肌肉,15.消隙齿轮,16.股骨头,17.胫骨头,18.肌肉内侧,19.肌肉外侧。 FIG l. Hip, 2. thigh link, 3. knee driving motor 4. parallel four link mechanism 5. Knee, 6. Shank link, 7. Ankle, 8 feet, 9. stopper, the IO. knee link, LL. coder 12. ankle motor 13. ankle shaft, 14 muscle, 15. backlash gear 16 of the femoral head, 17. tibia bone 18. muscle inside, 19 outside the muscle. 具体实施方式 Detailed ways

下面结合附图对本发明做进一步描述- The present invention is further described below in conjunction with the accompanying drawings -

如图1所示,本发明包括髋关节1、膝关节5、踝关节7、脚8、大腿连杆2及小腿连杆6,在髋关节1和膝关节5之间的大腿连杆2上安装有膝关节驱动电机3,膝关节5为两个四连杆封闭链结构,膝关节驱动电机3通过平行四连杆机构4与膝关节5的两个四连杆封闭链结构的后杆连接,在两个四连杆封闭链结构的前端固定有挡块9,在两个四连杆封闭链结构的前杆上端的转轴上安装有编码器11。 1, the present invention comprises a hip, knee 5, 7 ankle, foot 8, the upper thigh link and the shank link 6 2, thigh link between the hip and knee 5 1 2 a drive motor 3 is mounted knee, knee 5 two four-link chain closed configuration, the driving motor 3 is connected to the knee lever after closing two four-link chain structure 5 by a knee joint parallelogram link mechanism 4 in the closed front end of two four-link chain stopper 9 is fixed, on the front end of the shaft rod enclosed two four-link chain 11 is attached to the encoder.

膝关节处的两个四连杆封闭链结构,如图2所示,是在膝关节5两侧分别设有一组四连杆,之间通过转轴连接。 Two four-link chain closed at the knee, as shown in FIG. 2, are respectively provided on both sides of the knee in a group of four-bar linkage 5, the connection between the through shaft. 平行四连杆机构4如图3所示,是以大腿连杆2为一连杆形成的。 3 shown in FIG. 4 the parallelogram linkage mechanism, is a thigh link rod 2 is formed. 如图4所示,踝关节7为倒U型,倒U型结构内平行置有两个转轴,在一个转轴上安装有踝关节电机12,倒U型结构外部一侧的两转轴端部分别安装有消隙齿轮15,两消隙齿轮啮合传动,在安装有踝关节电机的转轴靠近消隙齿轮的一侧安装有谐波减速器。 As shown, the ankle joint 7 is inverted U-shaped, with two opposed parallel shaft within the inverted U-shaped structure, are mounted on a spindle motor 12 of the ankle joint, the outer side of the inverted U-shaped configuration of two end shaft portions 4 backlash gear 15 is mounted, two anti-backlash gear drive, is mounted on one side of the ankle close to the motor shaft backlash gear is mounted harmonic reducer. 脚8为柔性储能假脚,安装在倒U型结构内两个平行转轴中下方的踝关节转轴13上。 Pin 8 as a flexible storage prosthetic foot, ankle rotation shaft mounted in the bottom of the inverted U-shaped structure 13 in two parallel shaft. 本发明中膝关节驱动电机3带动平行四连杆机构4运动,将动力传递给膝关节5的四连杆,使四连杆带动小腿、踝关节及脚运动,达到仿真人腿的效果。 In the present invention the knee driving motor 3 drives the parallel motion link mechanism 4, the power is transmitted to the knee joint of the four-link 5, so that the four-link drive leg, ankle and foot movement, to effect simulation of a human leg.

如图5所示为人腿膝关节结构示意图,图6为人腿膝关节肌肉驱动示意图,图7为单轴膝关节示意图,由于四连杆膝关节的瞬时转动中心ICR的位置在转动过程中是变化的,从而导致大小腿长度在摆动中变化,如图9所示,所以在膝关节曲屈角度^相同时,两种膝关节使脚的离地高度是不同的;膝关节ICR的变化,可以调节地面反力对膝关节的转矩大小,也可以影响髋关节转动对膝关节的从动作用,所以对行走的稳定性和高效性有直接的影响,支撑相地面反力作用线与ICR的关系,如图10所示。 A schematic view of a human knee leg configuration shown in FIG. 5, FIG. 6 human knee leg muscles driver schematic, FIG. 7 is a schematic view of a uniaxial knee joint, the knee joint due to the four bar linkage of the instantaneous rotational position of the center ICR is varied during the rotation thereby resulting in a large variation in the wobble leg length, as shown in FIG. 9, the angle of the knee buckling ^ same two knee height from the ground so that the feet are different; ICR changes the knee and to be adjusting the magnitude of the torque reaction force on the knee, the hip joint can be rotatably driven impact effect on the knee, the direct impact of running stability and efficiency have to support reaction force with the line of action of ICR relationship, as shown in Figure 10. 膝关节瞬时转动中心ICR的变化,可以调节地面反力GRF对膝关节的转矩大小,也可以影响髋关节Hip (Hip是髋关节的英文表示) 转动对膝关节的从动作用,所以对行走的稳定性和高效性(即能耗)有直接的影响。 ICR transient rotational center of the knee joint of change can be adjusted GRF of torque reaction force on the knee, the hip joint may also affect the Hip (Hip hip is represented in English) effects driven rotation of the knee, so walking the stability and efficiency (i.e., energy) have a direct effect. 支撑相地面反力作用线与ICR的关系如图10所示。 Relationship with the support line and the ground reaction force acting ICR is shown in Fig. a图为支撑相初期,即脚跟着地,地面反力GRF 的延长线在瞬时转动中心的前面,GRF产生的力矩使腿绕ICR逆时针转动,但这种转动被限位挡块挡住,所以腿只能伸直;b图表示支撑相的中期,即脚掌平落在地面上,这时GRF的延长线已经向后移动,但仍然可以保证使腿伸直;c图为支撑相末期,即脚跟离地而脚尖着地,这时GRF的延长线已经移到ICR的后面,GRF产生的力矩将使腿弯曲,为腿的摆动相做准备。 The picture shows the initial phase a support, i.e. the heel, the ground reaction force GRF extended line of the rotation center of the front of the instantaneous torque produced GRF ICR make the legs rotate about the counterclockwise rotation is blocked but the limit stop, so that the leg only straight; FIG B represents the mid stance phase, i.e., feet flat on the ground falls, then the extension line of GRF has been moved rearwardly, but still ensure that the straight leg; C picture shows the end phase support, i.e., the heel toes from the ground and the ground, when an extension line of GRF has been moved to the back of ICR, the torque generated will GRF bent legs, the legs swing phase preparation.

本发明的设计过程中,最主要的是膝关节设计。 The design process of the present invention, the main knee design. 下面就四连杆多轴仿生膝关节的设计作以具体说明- Here will be described in detail in order to link four multi-axis knee bionic design -

1、仿生设计要求 1, bionic design requirements

本发明人工腿尺寸应该尽量类似人类双腿尺寸,所以在本发明的设计中,以成年中国男子为参照对象,机构总体参数设计采用类比设计方法。 Artificial leg size of the present invention should be as human-like legs size, so the design of the present invention, with reference to adult Chinese men objects, means the overall design parameter design method of analogy. 参考对象人体参数如表1所示: Human reference object parameters are shown in Table 1:

表l: Table l:

<table>table see original document page 6</column></row> <table><table>table see original document page 7</column></row> <table>在设计时,除上身外,要充分考虑上述的参数设计,从而使本发明的人工腿具有和人体非常逼近的机构参数和外形尺寸,关节运动范围相同,从根本上保证人工腿行走的拟人性。 <Table> table see original document page 6 </ column> </ row> <table> <table> table see original document page 7 </ column> </ row> <table> in the design, in addition to the around them, to fully consideration of the above design parameters, so that the artificial leg mechanism according to the present invention has dimensions and parameters of the human body is very approximation, the same range of articulation, intended to ensure the human artificial leg to walk fundamentally.

除上表中的参数外,在设计中还需考虑:膝关节中心应该位于腿直立状态时地面支撑反力作用线后方10至30mm处,以便于膝关节机构的支撑相自锁,保证支撑稳定;踝关节应位于膝关节后下方,两者前后的距离取决与所选择的脚的类型,在假肢领域称为假肢的对线技术; 脚的背屈和跖屈范围根据脚的类型和体重来确定。 In addition to the parameter table, the need to consider in the design: the center of the knee should be located at the rear of the supporting leg floor reaction force acting at 30mm line 10 to the upright state, in order to support the knee joint with self-locking mechanism, to ensure stable support ; should be positioned below the ankle joint, both before and after the distance depends on the selected type of foot, the line art prosthesis called in the field of prosthetics; dorsiflexion and plantar flexion of the foot in accordance with the scope of the foot to the type and weight determine.

这些性质都是人腿所具有的特性,在设计中需满足的,也是以往双腿行走机器人设计中所没有考虑的。 These are the properties of a human leg with the characteristics, to be fulfilled in the design, is a conventional robot walking legs that are not considered in the design. 以往双腿行走机器人的设计只注重整体大小和人体类似,没有关注关节摆动特性、关节中心点在站立状态垂直坐标之间的位置关系等细节。 Walking robot legs conventional design similar overall size and focus only on the human body, does not follow pivot joint characteristics, details of the joint center point in the standing state of the positional relationship between the vertical coordinates.

2、四连杆多轴膝关节机构综合 2, four-bar linkage mechanism integrated multi-axis knee

由于仿生腿膝关节的四连机构是一个封闭机构链,机构参数设计较开链复杂。 Since bionic leg knee joint means is a closed tetranectin chain mechanism, the parametric design more complex open-chain. 仿生腿膝 Bionic Tuixi

关节四连杆机构参数的设计是一个机构综合问题,要求在大小腿满足人腿摆动角度关系的情 Four-bar linkage design parameters of a problem is a comprehensive joint institutions, to meet the requirements of a human leg swing angle in relation love big leg

况下,保证仿生膝关节转动中心点和踝关节转动中心点的轨迹与人腿相应关节转动中心的轨 Under conditions to ensure that track bionic knee ankle pivot point and the center point of the rotation locus of the corresponding rotation center of a human leg joint

迹相同,归属于机构综合刚体引导(Rigid Body Guide, RBG)问题。 The same track, attributed to the mechanism synthesis rigid guide (Rigid Body Guide, RBG) problem. 参数的确定可以通过 Parameters can be determined by

多变量优化计算实现。 Multivariable optimization to achieve.

根据上面提出的对仿生膝关节刚体引导的要求,确定优化目标函数为<formula>formula see original document page 8</formula> The rigid guide bionic knee requirements set forth above, the objective function to determine document page 8 </ formula> of <formula> formula see original

(1) (1)

St. /,,,,,„</,<(,,應(;,)-min(、,)《X眼x , max(zfa)-min(zfa) SZ,' St. / ,,,,, "</, <(,, to be (;,) - min (,,)" X eye x, max (zfa) -min (zfa) SZ, '

其中, among them,

/' = 1..."表示轨迹采样数; / '= 1 ... "represents a track number of samples;

~,〜,表示实际膝关节转动中心的笛卡尔坐标值; Ap, , 5—表示理想膝关节转动中心的笛卡尔坐标值; x,,z。 ~, ~, It represents a Cartesian coordinate values ​​of the actual center of rotation of the knee joint; Ap,, 5- expressed over the knee of the rotation center with Cartesian coordinate values; x ,, z. p,表示实际踝关节转动中心的笛卡尔坐标值; ^,,^,表示理想踝关节转动中心的笛卡尔坐标值; 《,=《-《表示小腿相对对于大腿的延长线的摆角; p, denotes the Cartesian coordinate values ​​of the actual center of rotation of the ankle joint; ^ ,, ^, indicates the Cartesian coordinate values ​​over the rotation center of the ankle joint; "=" - "indicates an extension line of the lower leg relative to the thigh of the swing angle;

C,, C2表示加权系数,C,+C2=l。 Represent weighting coefficients C ,, C2, C, + C2 = l. 因为踝关节转动中心的轨迹比膝关节转动中心的轨迹对仿生特性影响大,所以一般q比C,的取值大很多,本设计:C,=0.2,C2=0.8。 Because the center of rotation of the ankle joint of the track center of the track of rotation of the knee than a large influence on the bionic, q is generally much larger than C, the value of this design: C, = 0.2, C2 = 0.8.

目标函数第一部分用来评价实际膝关节转动中心轨迹跟踪理想膝关节转动中心轨迹的性能; A first portion of the objective function to evaluate the actual center of rotation of the knee joint tracking over the track center of rotation of the knee joint performance;

目标函数第二部分用来评价实际踝关节转动中心点轨迹跟踪理想踝关节转动中心轨迹的性能; A second portion of the objective function to evaluate the actual ankle pivot point tracking over the track center of rotation of the ankle joint performance;

|C0S(《,-0)1用于表示小腿的位姿并不是同等重要,^表示小腿摆动中非常重要的姿态角, 一般是脚到达离地最高点时的小腿摆动角度。 | C0S ( ", - 0) 1 is used to indicate the position and orientation is not as important as the calf, the calf ^ represents a very important swing attitude angle, usually from the leg when the foot reaches the highest point swing angle. 优化计算中不需要考虑大腿的摆动,所以膝关 Optimization calculations necessary to consider swing the thigh, the knee

节机构参数设计可以在大腿不动,小腿摆动情况下进行。 Section of the parametric design can not move in the thighs, legs swinging under the situation. 仿生腿膝关节中心&,点计算公式为 Bionic & leg knee center point is calculated as

—一(2) 约束条件中的第一项为连杆长度约束,第二、三项为运动空间约束。 - a first constraint conditions (2) is a constraint length of the connecting rod, a second, three motion space constraints. 为计算优化目标,首先要建立关节转动角度和关键点空间坐标之间的变换模型。 To calculate the optimization goal, the first to establish a conversion model between the rotation angle of the joint space coordinates and key. 在此不采用DH参数建模。 The DH is not used parametric modeling. 因为DH参数是一种综合参数,无法表征机构详细特性,不利于机构优化设计。 Because the DH parameters is a comprehensive parameter, institutional characteristics can not be characterized in detail, is not conducive to optimum design agency. 要求解四连杆机构参数优化问题,首先需建立关节中心点笛卡尔坐标和机构参数之间的关系。 Solution four-bar linkage mechanism required parameter optimization problem, first need to establish the relationship between Cartesian and institutional parameters joint center point.

定义i?W(y,。为平面旋转矩阵,也就是机器人学坐标变换中的旋转变换矩阵。将旋转矩阵作用到一个既有平动又有转动的刚体上,并用刚体上的两个点P、 2构成的向量《0,和 Defined i? W (y ,. planar rotation matrix, i.e. transformation of coordinates of the robot to learn the rotational transformation matrix. The rotation matrix is ​​applied to both a flat rigid body rotating motion on another, and two points on the rigid body P 2 constitute vectors of "0, and

^;表示刚体的位置,如图ii所示,则下式成立 ^; It represents the position of a rigid body, as shown in Figure II, the following equation is established

<table>table see original document page 9</column></row> <table>式(4)可简化为G-^Q,式中^称为点平面位移矩阵,表示在物体运动过程中,尸点由《运动到A点,同时^旋转了^角情况下g点坐标变换,尸点称为牵连点。 <Table> table see original document page 9 </ column> </ row> <table> formula (4) can be simplified G- ^ Q, ^ wherein plane displacement is called dot matrix representing the object in motion, dead from the point "a is moved to the point while rotating the ^ g ^ corner points where the coordinate conversion, the point is called dead points implicated. 对于仿生膝^^A点、^帛^^; 《43^尺3^3牵3$^。 A biomimetic knee point for ^^, ^ ^^ silk; "43 ft ^ 3 ^ 3 ^ 3 $ retractor. 各点、tl司是刚tt Points, tl company is just tt

连接,膝关节和踝关节中心点的空间轨迹由尺!、 &、 ^、《4、 A点的初始坐标和连杆摆动角度确定。 Connection, spatial trajectory of the center point of the knee and ankle joints!, &, ^, "4, A initial coordinate point determined by the swing angle and the foot link. 5个点的初始坐标又是由^、《、《、《、《、c、 c、《、a、 ^等10个机构 5 initial coordinates point in turn ^, ",", ",", c, c, ", a, ^ mechanism 10, etc.

参数确定,所以机构刚体引导优化设计参数共有10个。 Parameters determined, so the agency rigid guide optimal design parameters of a total of 10.

将得到的优化目标步态数据作为人工腿设计的模拟对象。 Optimization target gait data object as an analog artificial leg design obtained. 由于变量受到等式和不等式约束,所以本文采用拟牛顿法和内惩罚函数方法进行优化计算,其计算流程如图12所示。 Since the variable by equality and inequality constraints, so this using the quasi-Newton method and penalty function optimization method, which calculates the flow shown in Fig. 包括以下步骤: Comprising the steps of:

1.给定初始变量,控制精度及约束条件; 1. Given the initial variable, control precision and constraints;

初始变量即优化变量:首先膝关节四杆机构共有/,, //, " /6共4个边长可调。其次大腿固<formula>formula see original document page 9</formula>结于膝关节上连杆上的位置也是可调的,其位置可用固结点到^的距离c,大腿杆长度e及 I.e. original variables optimization variables: First four-bar mechanism total knee / ,, //, "/ 4 6 Second side length adjustable thigh solid <formula> formula see original document page 9 </ formula> junction in the knee position of the link is adjustable, the position of which can be used to consolidation point distance C ^, thigh bar length and e

大腿杆与上连杆之间的夹角a三者来表示。 A three angle between the upper thigh link rod denoted. 同样,小腿也有3个可调参数:小腿在膝关节下连杆上的固结点到^的距离e,小腿杆长度《以及小腿杆与下连杆之间的夹角^。 Similarly, the lower leg has three adjustable parameters: calf consolidation point on the knee joint to the lower link distance ^ E, the angle between the leg length of the bar, "and the lower link lever leg ^. 可见,整 Visible, whole

个仿生腿系统共有10个参数可供调整。 A bionic leg system a total of 10 parameters that can be adjusted. <formula>formula see original document page 9</formula> <Formula> formula see original document page 9 </ formula>

给定初始变量:在优化开始,需要给优化变量一个初始值,根据约束条件,在符合约束的范围内,优化变量初始量可任意给定,通过优化程序,优化变量逐渐逼近最优结果。 Given the initial variables: optimization starts, a variable needs to optimize the initial value, to the constraints, to the extent consistent constrained optimization variables may be the initial amount of any given by the optimizer, gradually approaching optimization variables for optimal results. 约束条件:a) 仿生性条件 Constraint conditions: a) Conditions biomimetic

机构运动过程中,各构件上的任何点除满足性能要求外,其运动位置不能超过人体下肢的活动范围。 Movement means, any other member of each point on the meet the performance requirements, the position of which can not exceed the range of movement of the lower limbs activity. 一是膝关节机构在小腿接受腔相对转动的所有角度都有正常合理的外观,且在站立相时其瞬时转动中心有较高的位置;二是膝关节机构在工作时其各杆和铰链点必须位于正常人体下肢的活动范围内;三是膝关节机构的屈曲角的范围小于120° 。 First, all angles of knee mechanism in the cavity rotatably receiving the lower leg has the appearance of normal and reasonable, and in the standing phase instantaneous center of rotation which has a higher position; two knee mechanism during operation thereof the bars and the hinge points must be in the range of normal activities of the lower limbs; Third range of flexion of the knee joint mechanism is less than 120 °.

上述仿生性条件可通过对设计变量取值范围的限定来解决,即: Bionic above conditions can be solved by limiting the range of design variables, namely:

<formula>formula see original document page 10</formula> <Formula> formula see original document page 10 </ formula>

b) 动态外形合理性条件 b) dynamic outline reasonable conditions

为使假肢膝关节在运动过程中其外形与正常人体膝关节相吻合,可通过对膝关节瞬时转动中心/C7?(x,„.,乂„)的位置变化区域加以限制来实现。 For prosthetic knee during movement thereof with the normal human knee joint shape coincide, through instantaneous center of rotation of the knee joint / C7? (X, "., Qe") to limit the region to achieve a change in position. 即: which is:

c) 四杆膝关节闭链约束条件 c) four knee constraint closed chain

仿生腿膝关节4-bar封闭链几何约束可表示以下的复数形式: Bionic leg knee 4-bar chain closed geometric constraints may represent the plural form:

-zV("-4一"V由)+ zV《=o -zV ( "- 4 a" V a) + zV "= o

控制精度:就是优化算法停止的条件,优化中:当目标函数值^lx10—6,优化停止,否 Control precision: stopping algorithm is optimized conditions, optimization: when the objective function value ^ lx10-6, the optimization is stopped, NO

则继续优化。 Continued optimization.

2. 按约束条件确定各加权系数; 2. Each weighting coefficients determined by the constraint condition;

不同的约束对机构设计的影响是不一样的,为了突出这种特点,给目标函数不同部分赋 The effects of different constraints on institutional design is not the same, in order to highlight this feature, assigned to different parts of the objective function

予不同权值。 To a different weight. 显然,踝关节的目标轨迹的影响对人工腿设计是最重要的,因此^<(:2。 Clearly, the impact of the target trajectory of the ankle joint is the most important for the design of artificial legs, so ^ <(: 2.

3. 设置优化计算的循环次数cycl^O; 3. Optimization of the number of repetitions of calculation cycl ^ O;

4. 调用无约束极小化过程,求得使惩罚函数取极小值的变量Z。 4. Call unconstrained minimization process, so that the penalty function to obtain a minimum value of the variable Z. 无约束极小化过程可采用多种优化算法来实现,本设计釆用的是"变尺度法"优化算法,通过VC编程实现。 Unconstrained minimization process may be employed to implement various optimization algorithms, preclude the use of this design is the "variable metric method" optimization algorithm, implemented by programming VC.

5. 判断1/(1)1—f是否成立,若成立,转到第9步:己求出最优解,优化计算结束;否 5. Analyzing 1 / (1) 1-f is established, if established, go to Step 9: hexyl optimal solution, optimization calculation ends; No

则继续下一步;其中1/(1)11是优化目标函数值,f是前面设定的精度lxl0-6。 Continue next step; wherein 1 / (1) 11 to optimize the objective function, f is the front setting accuracy lxl0-6.

6. 调用外插过程,求得1(—人 6. Call the extrapolation process, to obtain 1 (- People

优化是一个逐渐逼近的过程,每次优化都会得到一个比前次优化更好的结果JT^w,通 Optimization is a process of gradually approaching, each optimization will get a better optimized than the previous results JT ^ w, through

过反复多次优化,就会得到最优结果。 Through repeated optimization, you'll get the best results. 外插过程是"求解z^一"的程序,通过程序中的调 Extrapolation process "solving z ^ a" program, the program by modulation

10用,求得本次优化的变量X^'W的结果作为下次优化的初始变量值。 With 10, to obtain this optimization variables X ^ 'W results as the initial value of the variable Save optimization.

7. 设置优化计算循环次数Cycle-cycle+l; 7. Set optimization cycles Cycle-cycle + l;

8. 判断优化计算循环次数Cycle《MaxCycle是否成立,如果成立,则返回第四步;如果不成立,则认为得到最优解,优化计算结束; 8. Analyzing optimization cycles Cycle "MaxCycle is satisfied, if true, then the fourth step returns; if not set up, the optimal solution is obtained, that the end of optimization;

优化结果和设定的误差控制精度有关。 And error optimization results set control accuracy related. 优化结果有可能在设定的精度范围内得不到最优解,这时候应该放大控制精度。 Optimization results may not be the optimal solution within the accuracy of the set, this time should amplification control accuracy. MaxCycle即最大优化次数,当在最大优化次数范围内,仍未求得满足控制精度的结果时,程序应停止,以免死循环。 MaxCycle i.e. the maximum number of optimization, when the range of the maximum number of optimization, the results still meet the control accuracy is obtained, the procedure should be stopped to avoid an endless loop.

9. 令1_ =义"',,已得到最优解,程序可以停止了。 Z"一)是每次优化的结果,X,是我们最终得到的最优解。 9. make sense 1_ = " ',, have been the optimal solution, the program can be stopped. Z" a) are each optimized result, X, is the best solution we ultimately get. 优化变量<formula>formula see original document page 11</formula>10. 程序停止。 Optimization variables <formula> formula see original document page 11 </ formula> 10. The program stops.

通过流程优化计算,即给了初始变量值和理想目标轨迹后,程序自动运行,所有的数据 It is calculated by the optimized process, i.e., to the initial variable values ​​over the target track and, automatically run, all the data

计算都是按照设计的优化算法程序自动计算,优化结果如表2所示。 Calculations are calculated automatically according to the design optimization procedure to optimize the results shown in Table 2. 本例中所设计的人工腿 In this embodiment designed artificial leg

的踝关节点轨迹跟踪效果,如图13所示。 Ankle point tracking effect, as shown in Fig. 图14为优化程序流程图。 14 is a flowchart optimizer. 表2<table>table see original document page 11</column></row> <table> Table 2 <table> table see original document page 11 </ column> </ row> <table>

Claims (5)

1、一种拟人双足机器人人工腿,包括髋关节、膝关节、踝关节、脚、大腿连杆及小腿连杆,其特征在于在髋关节和膝关节之间的大腿连杆上安装有膝关节驱动电机,膝关节为两个四连杆封闭链结构,膝关节驱动电机通过平行四连杆机构与膝关节的两个四连杆封闭链结构的后杆连接,在两个四连杆封闭链结构的前端固定有挡块,在一个四连杆封闭链结构的前杆上端的转轴上安装有编码器。 1. A biped humanoid robot artificial leg, including the hip, knee, ankle, foot, thigh link and the shank link, characterized in that the thigh link between the hip and knee are mounted knee joint driving motor, knee two four-link chain is closed, a drive motor connected by the knee lever closing two four-link chain structure parallel four-link mechanism and the knee joint, the two four-bar linkage closed chain structure is fixed to the front end of the stopper rod on the front end of a rotating shaft of a four-link chain closed configuration of the encoder is mounted.
2、 根据权利要求1所述的一种拟人双足机器人人工腿,其特征在于所述的膝关节处的两个四连杆封闭链结构:是在膝关节两侧分别设有一组四连杆,之间通过转轴连接。 2, according to one of the humanoid biped robot according to claim 1, artificial leg, characterized in that the two four-link chain closed at the knee: is a set of four links are provided at both sides of knee between the connection shaft.
3、 根据权利要求1所述的一种拟人双足机器人人工腿,其特征在于所述的平行四连杆机构是以大腿连杆为一连杆形成的。 3. A anthropomorphic according to claim 1 biped robot artificial leg, wherein the four-bar linkage is parallel to a thigh link formed by the link.
4、 根据权利要求1所述的一种拟人双足机器人人工腿,其特征在于所述的踝关节为倒l 型,倒U型结构内平行置有两个转轴,在一个转轴上安装有踝关节电机,在倒U型结构外部一侧的两转轴端部分别安装有消隙齿轮,两消隙齿轮相啮合,在安装有踝关节电机的转轴靠近消隙齿轮的一侧安装有谐波减速器。 4, in accordance with claim 1, wherein said anthropomorphic biped robot artificial leg, wherein said ankle is l-type inverted, the inverted U-shaped configuration with two parallel opposing rotating shaft mounted on a spindle with a ankle joint motor, the outer side of the inverted U-shaped configuration of two end shaft portions backlash gear is mounted, two backlash gear engaged at one side of the ankle joint is mounted near the motor shaft backlash gear is mounted with a harmonic gear device.
5、 根据权利要求4所述的一种拟人双足机器人人工腿,其特征在于在倒U型结构内两个平行转轴中下方的转轴上,安装有柔性储能假脚。 5, in accordance with claim 4, wherein the anthropomorphic biped robot artificial leg, wherein the shaft beneath the shaft in the two parallel inverted U-shaped configuration, is attached to flexible storage prosthetic foot.
CN 200610047169 2006-07-10 2006-07-10 Human-imitating double-foot robot artificial leg CN100436237C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610047169 CN100436237C (en) 2006-07-10 2006-07-10 Human-imitating double-foot robot artificial leg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610047169 CN100436237C (en) 2006-07-10 2006-07-10 Human-imitating double-foot robot artificial leg

Publications (2)

Publication Number Publication Date
CN1883994A CN1883994A (en) 2006-12-27
CN100436237C true CN100436237C (en) 2008-11-26

Family

ID=37582333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610047169 CN100436237C (en) 2006-07-10 2006-07-10 Human-imitating double-foot robot artificial leg

Country Status (1)

Country Link
CN (1) CN100436237C (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204347B (en) 2007-12-06 2010-07-07 上海大学 Automatic gait correcting device in lower limb rehabilitation
CN101229826B (en) 2008-02-28 2010-04-14 清华大学 Lower limb mechanism of biped robot
US8231688B2 (en) * 2008-06-16 2012-07-31 Berkeley Bionics Semi-actuated transfemoral prosthetic knee
CN101947177B (en) * 2010-09-03 2012-09-26 哈尔滨工程大学 Rope driving walking aid
CN102107688B (en) * 2011-03-24 2013-03-20 天津理工大学 Dual-leg travelling mechanism with adjustable joint length
CN102922535B (en) * 2012-10-24 2014-11-19 北京大学 Magnetorheological braking ankle joint
CN102897244B (en) * 2012-10-24 2014-12-03 北京大学 Direct-drive ankle joint
CN103448828B (en) * 2013-06-03 2016-08-10 上海大学 Quadrupedal robot bionic leg agencies
CN103387017B (en) * 2013-08-13 2015-09-16 戴文钟 Robot simulation using a knee link structure of the human knee operation
CN103723208A (en) * 2013-12-16 2014-04-16 广西大学 Humanoid-leg robot walking mechanism
CN103707951A (en) * 2013-12-23 2014-04-09 东北大学 Two-leg robot leg mechanism based on driving of artificial muscles
CN104015826B (en) * 2014-05-27 2016-05-18 东北大学 Insulator inspection robot foot type moving mechanism imitation
CN104369790B (en) * 2014-09-04 2016-11-23 中国科学院合肥物质科学研究院 One kind of bipedal walking robot mechanism
CN104512493B (en) * 2014-12-12 2017-01-11 重庆邮电大学 A gear transmission apparatus control method of the sub upper body passive energy traveling
CN106309082B (en) * 2015-07-03 2019-04-09 深圳市肯綮科技有限公司 A kind of light movement power assisting device executing agency
CN106309081B (en) * 2015-07-06 2019-05-31 深圳市肯綮科技有限公司 The light movement power assisting device of one kind and its control method
CN104973161B (en) * 2015-07-10 2017-05-10 陕西九立机器人制造有限公司 Leg structure of a foot robot
CN105291131B (en) * 2015-12-03 2017-03-08 哈尔滨工业大学 Humanoid one kind having an adjustable flexible knee
CN105291132B (en) * 2015-12-03 2017-03-08 哈尔滨工业大学 A knee achieve active and semi-passive driven humanoid robot
CN105584552B (en) * 2015-12-17 2018-06-12 常州大学 Two DOF humanoid robot mechanical low enough
CN105438310B (en) * 2015-12-17 2017-09-08 常州大学 Two DOF humanoid robot mechanical shock foot
CN105438309B (en) * 2015-12-17 2017-07-14 常州大学 The humanoid robot with two degrees of freedom hybrid impact sufficient mechanical
CN105667624B (en) * 2016-01-06 2018-04-17 山东优宝特智能机器人有限公司 Electric drive quadruped bionic robot
CN105643598B (en) * 2016-02-23 2017-10-20 东南大学 Based on semi-passive energy driven lower extremity exoskeleton lasso
CN106184464A (en) * 2016-09-20 2016-12-07 上海逸动医学科技有限公司 Lower-limb robot
CN106347517B (en) * 2016-10-26 2018-06-22 河南工业大学 Walking humanoid robot end tray
CN106347518B (en) * 2016-10-26 2018-07-06 河南工业大学 Push dining car bipedal walking robot
CN106627831B (en) * 2017-02-21 2018-12-07 哈尔滨工业大学 A kind of quadruped robot list leg mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003400A (en) 1998-05-16 1999-12-21 Jason W. Rauchfuss Robotic wrist mechanism
CN1317399A (en) 2001-04-27 2001-10-17 清华大学 Four bar linkage mechanism driver for malleolus joint of anthropomorphic robot
CN1317400A (en) 2001-04-27 2001-10-17 清华大学 Four bar linkage mechanism driver for hip joint of anthropomorphic robot
GB2400686A (en) 2003-04-04 2004-10-20 Christopher Charles Box Motion logging and robotic control and display system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003400A (en) 1998-05-16 1999-12-21 Jason W. Rauchfuss Robotic wrist mechanism
CN1317399A (en) 2001-04-27 2001-10-17 清华大学 Four bar linkage mechanism driver for malleolus joint of anthropomorphic robot
CN1317400A (en) 2001-04-27 2001-10-17 清华大学 Four bar linkage mechanism driver for hip joint of anthropomorphic robot
GB2400686A (en) 2003-04-04 2004-10-20 Christopher Charles Box Motion logging and robotic control and display system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
仿生膝关节虚拟样机与协同仿真方法研究. 王斌锐,金英连,徐心和.系统仿真学报,第18卷第6期. 2006

Also Published As

Publication number Publication date
CN1883994A (en) 2006-12-27

Similar Documents

Publication Publication Date Title
Ashby et al. Role of arm motion in the standing long jump
Vitiello et al. NEUROExos: A powered elbow exoskeleton for physical rehabilitation
Strausser et al. The development and testing of a human machine interface for a mobile medical exoskeleton
EP2535024B2 (en) Actuated prosthesis for above-knee amputees
Cherelle et al. Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0
Grabowski et al. Leg exoskeleton reduces the metabolic cost of human hopping
US6796926B2 (en) Mechanism for manipulating and measuring legs during stepping
Riener et al. Stair ascent and descent at different inclinations
US20060069336A1 (en) Ankle interface
Grimes An active multi-mode above knee prosthesis controller
Neptune et al. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant
CN100393295C (en) Torque imparting system
CA2834011C (en) Impedance simulating motion controller for orthotic and prosthetic applications
Yoshioka et al. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements
Owen The importance of being earnest about shank and thigh kinematics especially when using ankle-foot orthoses
US20070123997A1 (en) Exoskeletons for running and walking
Au et al. An ankle-foot emulation system for the study of human walking biomechanics
Anglin et al. Glenohumeral contact forces
CN101786478B (en) Fictitious force-controlled lower limb exoskeleton robot with counter torque structure
Bregman et al. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study
CN103054692B (en) Wearable lower limb exoskeleton walking-assisted robot
Popovic et al. Angular momentum regulation during human walking: biomechanics and control
CN101589983B (en) Wearable lower limb exoskeleton device
CN101810533B (en) Walking aid exoskeleton rehabilitation robot
CN1275578C (en) Lower limb walking external skeleton capable of being worn

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right