CN100435448C - 有效电流共享系统 - Google Patents

有效电流共享系统 Download PDF

Info

Publication number
CN100435448C
CN100435448C CNB2004100330737A CN200410033073A CN100435448C CN 100435448 C CN100435448 C CN 100435448C CN B2004100330737 A CNB2004100330737 A CN B2004100330737A CN 200410033073 A CN200410033073 A CN 200410033073A CN 100435448 C CN100435448 C CN 100435448C
Authority
CN
China
Prior art keywords
current
resistance
conversion module
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100330737A
Other languages
English (en)
Other versions
CN1661877A (zh
Inventor
克丽丝·M·杨
鸿璜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec International Ltd
Original Assignee
Astec International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/378,854 external-priority patent/US6894466B2/en
Application filed by Astec International Ltd filed Critical Astec International Ltd
Publication of CN1661877A publication Critical patent/CN1661877A/zh
Application granted granted Critical
Publication of CN100435448C publication Critical patent/CN100435448C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

一种有效电流共享电路,该电路提供多个并联DC-DC转换器,每个转换器都有一个无耗损的基于电感器的电流感应电路,所述电路用于通过其输出电感器感应相关的DC-DC转换器的平均电流,该电路还提供了一种用于调整参考电压的装置,其中所述参考电压通过互连在这些转换器之间的一个管脚与每一个DC-DC转换器的PWM控制器耦合。此电路提供了一种成本低、电路电线简单、元件少的高百分比电流共享水平。在一个可替代实施例中,基于电感器的电流感应器被基于电阻的电流感应器所替代,这样在耗损更高的情况下,达到了类似的电流共享水平。

Description

有效电流共享系统
发明领域
本发明涉及功率转换器,尤其涉及一种为多个并联功率转换器高效地提供有效电流共享的电路。
发明背景
很多应用需要供给负载更高的电流和功率。同时,现代电气设备则需要小型、成本低、密度高的功率转换器。功率转换器的并联提供了一种将两个或更多的单独的、小型的、高密度功率转换器并联耦合以便为高电流负载提供所需功率并提供冗余度的方法。可取的是并联结构中的各个转换器以稳定、有规律的方式均等地共享负载电流。此外,多个转换器间更好的电流共享减少了功率转换器的压力,这就提高了并联转换器系统的可靠性。
理论上说,比如并联的两个功率转换器模块的各电流共享水平为50%。这种水平中假设每一个模块的相关参数,比如电阻、电容和电感的数值都是相同的。实际上,由于设备容限等原因,这种假设没有得到保证。结果是,两个转换器模块的电流共享水平各不相同。试验表明,接近满负载的情况下,并联的转换器模块一般预计有1%容限的电阻、1%容限的脉宽调制发生器(PWM)和20%容限的电感器。因此,在实际中所希望的是各电流共享水平最好为40%和60%。这样有必要以一种低成本的方式减少电流共享水平级差。
高效的电流共享需要一种测量电流的设备。例如,已知的用于并联降压转换器的电流共享电路,其利用了一个与各并联转换器的输出电感器串联的感应电阻。如图1所示,众所周知,一个基本降压调节器包括以常规方式连接在一个输入终端和一个输出终端之间的一个开关10、一个二极管12、一个电感器14和一个电容16,该输入终端与一个相对于地的输入电压Vin耦合,在该输出终端,降压调节器产生一个相对于地的常规输出电压Vout。通常,该开关10是一个功率MOSFET,其由如响应输出电压Vout的一个脉宽调制器(未示出)这样的控制电路以已知方式控制。开关10关闭时,通过开关10和电感器14从输入电压Vin向电容16充电来产生一个比峰值输入电压Vin低的输出电压Vout。开关10打开时,流过电感器14的电流通过二极管12得以保持。电阻18是一个串联在电感器14和输出之间的感应电阻。为测量电流,需要测量通过感应电阻的压降。感应电阻必须有足够的阻抗来提供可被正确感应的电压。使用感应电阻的转换器电路的缺陷是,当转换器提供高输出电流时,在感应电阻中损失了大量功率,从而降低了转换器的效率。
另一个感应降压转换器的输出电流的方法是利用通过电感器的压降感应电流。6424129号美国专利公开了一种已知的电感器感应的例子,该例中电阻和电容与输出电感器并联。该专利的缺陷是没有提供任何有效电流共享而不能通过并联转换器的调整来输出电流电平。
感应降压转换器的输出电流的另一个方法是MOSFET感应法。该方法是当MOSFET打开时测量MOSFET的漏极-源极电压。感应的测量值的精确度取决于设备各不相同的MOSFET的特性。漏极-源极电阻一般会因设备不同而具有不同的容限。MOSFET设备的漏极-源极电阻也因温度不同而变化,而且这种变化往往界定不清。
因此,需要一种通过具有并联功率转换器的系统中的各功率转换器来主动高效地控制电流输出的电路。亦需要一种利用具有较少的和低成本的元件的无损耗感应器来提供这种功能的电路。
发明概述
本发明通过在一个包括多个并联转换器的系统中提供一种有效电流共享电路而解决了现有技术的设备的问题,该电路高效地为每个并联的转换器提供一个大致相等的负载电流共享百分比,以有效地为一个共同负载提供高功率。
在本发明的一个实施例中,有效电流共享电路控制两个并联的降压转换器,这些转换器各有一个无耗损的基于电感器的电流感应电路,用于通过转换器的输出电感器感应其各自的降压转换器的平均电流,每个转换器还具有一个用于调整反馈信号的装置,该装置使用一个互连在转换器之间的一个管脚与每个降压转换器的PWM控制器耦合,以便为每个满负载或接近满负载的转换器提供在40%至60%范围内的负载电流共享。在另一个实施例中,提供了一个包括多个具有有效电流共享的并联转换器功率模块的系统。在另一个实施例中,基于电阻的电流感应代替了基于电感器的电流感应。
本发明通过提供一个电流共享电路,克服了已知电路和方法的缺点,该电路成本更低、线路简单、有效地利用了空间,提供了一个可接受(高)的电流共享水平,将并联模块的相互连接减到最小,同时实际消除了电路调谐的必要性。本发明的实施例可适用于其电流通过它的输出电感器可被感应并具有一个与其可接入的PWM控制器误差运算放大器耦合的参考电压的任何功率转换器。
因此,本发明电路的优点是使并联功率转换器共享更高的负载电流,同时与现有技术的设备相比需要的元件更少、成本更低。
广义上说,本发明在具有多个直流-直流(DC-DC)转换器模块的一个电路中提供了一个有效电流共享系统,其中每个转换器模块具有一个与输入直流电压耦合的输入终端和一个提供输出直流电压的输出终端,其中转换器模块通过其输出终端被并联到连接有负载的的公共总线,该有效电流共享系统用于将每个转换器模块的输出电流大概保持在多个并联转换器模块的平均电流值上,该系统包括一个电流感应电路、一个参考电路和一个控制电路。该电流感应电路与每个转换器模块耦合,用于检测转换器模块的输出电流和产生由其决定的一个电流感应信号;该参考电路用于在公共电流共享总线上产生一个随电流感应信号变化的电流共享信号;该控制电路与每个转换器模块耦合,用于根据转换器模块的电流感应信号和电流共享信号来调整各转换器模块的输出功率。
广义上说,本发明也提供一种具有多个直流-直流转换器模块的有效电流共享功率系统,每个转换器模块都具有一个与输入直流电压耦合的输入终端和一个提供输出直流电压的输出终端,转换器模块通过其输出终端被并联到一个连接有负载的公共总线,每个转换器模块包括:一个用于将输入直流电压转换为经稳压的输出直流电压的降压转换器,所述降压转换器在其输入端和输出端之间串联地连接有一个开关和一个电感器,所述电感器的一个端点连接到所述降压转换器的输出终端,该降压转换器还具有一个连接在电感器的另一个端点和地线之间的整流器和一个连接在所述降压转换器的输出端和地线之间的电容;一个电流感应电路,其与降压转换器耦合,用于检测降压转换器的输出电流和产生一个随其变化的电流感应信号;一个参考电路,其用于在一个公共电流共享总线上产生一个随各转换器模块的电流感应信号变化的电流共享信号;和一个与降压转换器耦合的控制电路,其用于根据电流感应信号和电流共享信号来调整降压转换器的输出功率。
附图简要说明
参考以下详细说明及其附图可更清楚地看到本发明的上述方面及其优点,其中:
图1所示为现有技术中具有一个用于电流感应的电阻的降压转换器拓扑结构;
图2所示为根据本发明的两个并联直流降压转换器的有效电流共享电路的优选实施例;以及
图3是根据本发明的一个为负载供电的并联耦合功率模块系统的实施例模块图。
本发明详细说明
本发明克服了已知现有技术的电路的缺陷。图2示出了根据本发明的两个并联直流降压转换器的有效电流共享电路的优选实施例。电路100包括并联的一个功率转换器模块110和一个功率转换器模块210。优选为,转换器模块110和210是相同的降压拓扑结构转换器,如图2中相互的镜像所示,它们具有相同的电路元件。因此,在一个模块中的电路和运行原理也适用于另一个模块。因此,尽管只以转换器模块110描述了转换器模块运行的一些方面,但是该描述同样适用于另一个转换器模块210。转换器模块210中的相应元件也可能在本说明书的括号中出现,以供参考。对于图2中的优选实施例,转换器模块110(210)有一个与输入直流电压耦合的输入终端22(222)和一个提供各转换器模块输出直流电压VAO(VBO)的输出终端24(224)。转换器模块110和210通过其输出终端24、224被并行连接到一个公共输出电压总线102,以在耦合有负载的所述总线上建立输出电压V0,该负载以RL表示。
虽然根据图2所示的本发明的优选实施例仅显示了两个并联模块,但是本发明的系统并非是受限的且可有任意数量的并联模块。根据本发明,图3是并联转换器模块(在此也称为“功率模块”)系统的一个实施例的模块图,该系统用于向一个公共输出电压总线提供功率并由此向一个负载提供功率。
如图3所示,功率模块1、功率模块2、....功率模块N各与一个单一的功率输出端口320耦合,用于向一个负载提供功率。所示的一个示例性负载330与系统300的输出接口320耦合。在一个优选实施例中,在一个单一的功率输入端口340向功率模块1-N提供功率。本领域技术人员将会认识到根据本发明,在一个单一的功率输入端口向功率模块1-N提供功率并不是必需的。而是,每个功率模块都可以从单独的交流-直流转换器(未图示)这样的单独电源获得功率。
如图3所示,系统300中的每个功率模块都有一个功率控制终端350,功率模块1-N的功率控制终端350均通过总线360彼此耦合。结合图2将作如下进一步说明,功率控制终端350和总线360能让一个控制电路比较每一个功率模块的输出电流和功率模块1-N的平均输出电流并调整每一个功率模块的输出功率,从而使每个功率模块的输出电流接近于功率模块1-N所输出的平均电流。
回过来参考图2,转换器模块110包括一个标示为40的电流感应电路,这里还可以称作电流感知电路,一个参考电路78和一个控制电路80。优选为,电流感应电路40是一个基于电感器的感应电路,这样就有了无耗损感应。转换器模块110包括一个在输入终端22和输出终端24之间的与一个电感器42串联的开关60。开关60优选为由一个具有时钟输入和控制输入的脉宽调制器(PWM)的输出直接控制。图2以框图将这些PWM显示为PWMA和PWMB,这些PWM为本领域所熟知。控制电路80包括一个为PWM的控制输入提供控制信号的PWM控制器70。
电感器42串联于开关60和以电压VAO显示的输出终端24之间。图2中的IA表示从开关60流入电感器42的电流。如图2所示,电流感应电路40跨接在电感器42上,并起到感应通过电感器42的电流的功能。电流感应电路40优选为包括与电容44和电阻46的并联组合串联的电阻48的组合。电阻48连接在电感器42的输入端和节点75之间。电容44和电阻46的并联组合连接在以终端24显示的电感器42的输出端和节点75之间。由此,在节点75产生电流感应信号。
如图2所示,两个相同的转换器模块110和210,通过其各自的输出电压终端与一个公共输出电压总线102相连,模块110的输出电压终端用电压VAO处的24表示,模块210的输出电压终端用电压VBO处的224表示。此外,转换器模块110和210之间通过被称为功率控制终端的每个模块的一个单独的终端有一个附加连接,模块110的功率控制终端标为P1、模块210的功率控制终端标为P2。如图2,转换器模块110和转换器模块210通过其功率控制终端连接到一个公共电流共享总线104。
在节点75,控制电路80与感应电路40耦合。参考电路78也在节点75与感应电路40耦合。转换器模块110中,参考电路78包括节点75处的电流感应信号的一个耦合,该电流感应信号通过电阻66耦合到其相应的电压VA4处的功率控制终端P1。同样的,来自转换器模块210的电流感应信号通过电阻266耦合到电压VB4处的功率控制终端P2。由于两个功率控制终端P1和P2共同连接到电流共享总线104,因此电路78(及电路278)使得在电流共享总线104上产生一个随每个转换器模块的电流感应信号变化的电流共享信号。通过一个串联于功率控制终端P1和一个运算放大器30的正极输入之间的电阻54,将电流共享信号与转换器模块110的控制电路80耦合。电阻58优选为串联在正极输入和一个标示为Vref的参考电压之间。Vref优选为0.9伏。用电阻52将电流感应信号耦合到控制电路80。电阻52串联于节点75和运算放大器30的负极输入之间。
图2中,在节点65处,运算放大器30的输出是一个被标示为VA1的电压。一个反馈电阻56连接在运算放大器30的负极输入和节点65的输出之间。一个电阻62串联在运算放大器30的输出和一个运算放大器20的正极输入之间。
参见转换器模块210,控制电路280与感应电路240在节点275耦合。在节点275,参考电路278也与感应电路240耦合。在转换器模块210中,参考电路278包括节点275处的电流感应信号的一个耦合,该电流感应信号通过电阻266耦合到其相应的电压VB4处的功率控制终端P2。由于功率控制终端P1和P2均共同连接在电流共享总线104上,因此电路278(及电路78)使得在电流共享总线104上产生一个随每个转换器模块的电流感应信号变化的电流共享信号。通过一个串联于功率控制终端P2和一个运算放大器230的一个正极输入之间的电阻254,将电流共享信号与转换器模块210中的控制电路280耦合。电阻258优选为串联再正极输入和标示为Vref的参考电压之间。Vref优选为0.9V。电阻252被用来将电流感应信号耦合到控制电路280。电阻252串联于节点275和运算放大器230的负极输入之间。图2中节点265上,运算放大器230的输出是一个被标示为VB1的电压。一个反馈电阻256被连接在运算放大器230的负极输入和节点265的输出之间。一个电阻262串联在运算放大器230的输出和运算放大器220的正极输入之间。
再回到转换器模块110的操作上,一个输出电压反馈信号VAF,在节点85与运算放大器20的负极输入连接。节点85的输出电压反馈信号优选地由一个与输出电压VA0耦合的普通分压器电路产生。运算放大器20的正极输入是在节点25上标示为VA2的电压。一个电阻64串联在节点25和一个参考电压Vref之间。这样,节点25就在运算放大器20的正极输入上的电阻62和64的交叉处。传统上,诸如由Vref提供的一个固定参考电压是连接运算放大器20正极输入的唯一信号,起到输出用来控制PWM的误差信号的功能。这样,传统上,将输出电压反馈信号VAF与一个固定参考相比,根据两个电压的差值,运算放大器20产生一个由PWM使用以调整输出电压并将其保持在常规状态的误差信号。
与此相反,图2显示的本发明的实施例中,由运算放大器30输出的信号通过一个电阻62与节点25耦合,该节点也与Vref提供的固定参考耦合。控制电路80在运算放大器20的正极输入上,产生一个随着在转换器模块110中所感应到的电流和每个并联的转换器模块的平均输出电流而变化的明显参考信号。也就是说,控制电路80响应于电流感应电路40在节点75所感应到的电流和由参考电路78和278产生的在公共电流共享总线104上的电流共享信号。
在一个节点65处,运算放大器30的输出是一个被标示为VA1的电压。该输出VA1通过一个电阻62与运算放大器20的正极输入耦合。运算放大器30的输出用于调整出现在节点25的运算放大器20的正极输入的明显参考电压信号VA2。在运算放大器20的负极输入的输出电压反馈信号VAF与正极输入的明显参考电压信号VA2比较。运算放大器20的两个输入的差值作为一个误差信号的输出,该信号随输出电压VAO相对于节点25上的明显参考电压信号之间的差值而变化。这个误差信号,对于转换器110被标示为PWM控制A,是一个用于控制PWMA的控制信号。PWMA和PWMB调整各自转换器110和210的输出功率。
根据本发明,在操作中,如果转换器模块110的输出电流相对于转换器模块210的输出电流来说太高的话,节点25的明显参考电压VA2即被VA1信号降低。这使输出电压VA0显得好象太高(由于较低的明显参考电压)。因此,PWM控制器70使PWMA来控制开关60以试图降低输出电压。然而,由于输出电压还是由转换器模块210产生的,结果电流反而减少了。对于图2中标示为RL的负载:VA3+VA4=VB3+VB4。这样,在运行中,如果IA升高到IA>IB,则VA3升高,VA4下降,则VA1降低(低于0.9V的Vref电平),从而使VA2下降,结果IA下降,由此提供了转换器模块110的一个有效电流感应实时调整。可选择的调整顺序如下:如果IA升高到IA>IB,那么VA3升高,使-VB4升高。结果VB1升高(高于0.9V的Vref电平),使VB2升高,这样IB升高,由此提供了转换器模块210的一个有效电流感应实时调整。
对于图2中的电路110,通过测量经过电感器42的压降来感应电流。出现在电阻52、66、46、48和电容44的交汇处的节点75的电压,与电感器电流加上输出电压成比例。在模块110中,在节点75的电压标示为VA3,在对应的模块210中,节点275的电压标示为VB3。运行中,如果被感应的电感器电流增大,那么电压VA也升高。对于流经一个固定阻抗负载的恒定电压,VA3与VB3的和必然是恒定的。这样,如果来自模块110的电流增大,那么来自模块210的电流必须下降以保持总值不变。如果允许VA3与VB3的总值改变,则负载电压VO无法保持恒定。
对于转换器模块110,与电阻52、54、56和58相连的运算放大器30是一个具有Vref偏移的差动放大器。对于图2所示的系统100的实施例,电阻66优选为一个与用于差动放大器分析的电阻52、54的阻值相比可忽略不计的电阻值。对于电阻值,如果电阻56=电阻58且电阻52=电阻54,节点65处的运算放大器30的输出电压VA1如下:
V A 1 = V ref - R 56 R 52 [ ΔV A 3 - ΔV A 3 + ΔV B 3 2 ]
其中ΔVA3是VA3的变化量,其中ΔVB3是VB3的变化量。
通常对于两个以上模块,该公式变为:
V A 1 = V ref - R 56 R 52 [ ΔV A 3 - ΔV AVG ]
其中 ΔV AVG = ( ΔV A 3 + ΔV B 3 + . . . + ΔV n 3 n )
其中n为并联模块的个数。
这样,运算放大器30的输出VA1是参考电压值Vref减去被放大的差值,其中所述差值是VA3和来自所有并联模块的所有相应变化量的平均值之间的差值。例如,如果图2中模块110中的电流IA高于来自所有模块的平均电流值,则ΔVA3-ΔVAVG是一个非零正数。根据上述等式,VA1会是一个低于Vref的电压。如果电压VA1低于Vref,便使运算放大器20的正极输入的明显参考电压降低。因此,使PWMA控制器70去控制PWMA以控制开关60从而试图减少输出电压,这样做会降低模块110的输出电流。这种调整一直持续到电压误差(ΔVA3-ΔVAVG)达到最小。
若模块110中的电流IA低于来自所有模块的平均电流值,则系统100进行反向调整。也就是说,提高输出电压直到差值最小。其它与模块110并联的转换器模块随模块110的调整而调整,即,就本发明而言,致使所有模块设法降低其本身的输出电压和ΔVAVG的差值。
以下是图2中本发明的有效电流共享电路的优选实施例中的模块110的一组典型参数:电感器42:2.8μH带有直流电阻=8mΩ;电容44:1.0μF;电阻46:1.0kΩ;电阻48:10kΩ;电阻52:10kΩ;电阻54:10kΩ;电阻56:21.5kΩ;电阻58:21.5kΩ;电阻62:100kΩ;电阻64:10kΩ;电阻66:20kΩ;Vref:0.9伏;IA:8A;及VAO:1.8V。
一组相似的对应的典型参数被优选地使用在对应的转换器模块210中。
因此,根据本发明的优选实施例的优点在于提供了一种电路,该电路用于具有高百分比电流共享水平的非隔离式的直流-直流降压转换器电流共享,降低了成本,降低了电路的复杂性,高效地利用了空间并实际上消除了电路调谐的需要。
根据本发明的可替代实施例包括图2中的电路,其中将基于电感器的电流感应替换为基于电阻的电流感应。对于基于电阻的感应电路而言,感应电路40被一个图1所示的具有与电感器串联的感应电阻的电路所代替。尽管该可替代实施例可能达到与图1实施例类似的电流共享水平,但是基于电阻的电流感应有一个缺点,即由于在感应电阻中的功率损失导致了功率效率的降低。
以上提供了用于说明和描述的本发明的详细描述。虽然在此参考附图对本发明的典型实施例进行了详细描述,应理解本发明并不仅限于这些具体公开的实施例,在上述教导的启示下,对本发明的任何改变和变动都是可能的。

Claims (11)

1、一种具有多个直流-直流转换器模块的电路中的有效电流共享系统,每个转换器模块都有一个与输入直流电压耦合的输入终端和一个提供输出直流电压的输出终端,其中所述多个转换器模块通过它们的输出终端被并联到一个连接有负载的公共总线,所述有效电流共享系统用于将每个转换器模块的输出电流保持在多个并联转换器模块的平均电流值上,该系统包括:
一个电流感应电路,该电路与每个所述转换器模块耦合,用于检测所述转换器模块的输出电流和产生一个随其变化的电流感应信号;
一个参考电路,其用于在一公共电流共享总线上产生一个随每个所述电流感应信号变化的电流共享信号;
一个控制电路,其与每个所述转换器模块耦合,用于调整各转换器模块的输出功率,该功率随转换器模块的电流感应信号和所述电流共享信号变化。
2、根据权利要求1的系统,其中每个所述转换器模块是一个用于将所述输入直流电压转换为一个经稳压的输出直流电压的降压转换器,所述降压转换器具有串联在其输入终端和输出终端之间的一个开关和一个电感器,所述电感器的一个端点与所述降压转换器的输出终端连接,所述降压转换器还具有一个连接在所述电感器的另一个端点和地线之间的整流器以及一个连接在所述降压转换器的输出终端和地线之间的电容。
3、根据权利要求2的系统,其中所述电流感应电路与所述电感器并联。
4、根据权利要求2的系统,其中所述电流感应电路包括一个与所述电感器串联的感应电阻,这样通过所述感应电阻就可感应每个所述转换器模块的输出电流。
5、根据权利要求1的系统,其中所述参考电路包括耦合电阻,且所述电流感应信号通过所述耦合电阻与所述电流共享总线耦合。
6、根据权利要求2的系统,其中一个PWM控制所述开关的状态,所述控制电路进一步包括:
一个PWM控制器,其用于向PWM提供一个控制信号输入;所述控制电路调整与所述PWM控制器耦合的一个参考电压。
7、根据权利要求6的系统,其中与所述电感器跨接的所述电流感应电路包括一个第一电阻,该第一电阻与一个第二电容和一个第二电阻的并联组合相串联;
其中所述第一电阻、所述第二电阻和所述电容在第一节点连接。
8、根据权利要求7的系统,其中所述控制电路包括一个第一运算放大器、一个第三电阻和一个第四电阻,该第一运算放大器具有一个正极输入和一个负极输入及一个与第二节点耦合的输出;该第三电阻串联在所述第一节点和所述负极输入之间;该第四电阻连接在所述负极输入和在所述第二节点的所述第一运算放大器的输出之间。
9、根据权利要求8的系统,还包括与每个所述转换器模块耦合并连接到所述电流共享总线的功率终端,其中所述参考电路包括一个第五电阻、一个第六电阻和一个第七电阻,该第五电阻串联在所述第一个节点和所述功率终端之间;该第六电阻串联在所述功率终端和所述第一运算放大器的正极输入之间;该第七电阻连接在提供第二参考电压的参考电压终端和所述第一运算放大器的正极输入之间。
10、根据权利要求9的系统,其中所述PWM控制器包括一个第二运算放大器,该运算放大器具有一个与第三节点相连的正极输入、一个和与所述输出直流电压成比例的信号相连的负极输入、和一个提供与所述PWM耦合的误差信号的输出,所述PWM响应所述误差信号对所述开关的状态加以控制;
其中所述控制电路进一步包括一个第八电阻和一个第九电阻,该第八电阻串联在所述第一运算放大器的所述输出和所述第二运算放大器的所述正极输入之间;该第九电阻连接在提供所述第二参考电压的参考电压终端和所述第二运算放大器的所述正极输入之间。
11、一个具有多个直流-直流转换器模块的有效电流共享功率系统,每个转换器模块具有一个与输入直流电压耦合的输入终端和一个提供输出直流电压的输出终端,所述多个转换器模块通过它们的输出终端被并联到一个连接有负载的公共总线,每一个所述转换器模块包括:
一个降压转换器,其用于将所述输入直流电压转换成一个经稳压的输出直流电压,所述降压转换器具有串联于其输入终端和输出终端之间的一个开关和一个电感器,所述电感器的一个端点连接到所述降压转换器的输出终端,该降压转换器还具有一个连接于所述电感器的另一个端点和地线之间的整流器;和一个连接在所述降压转换器的输出终端和地线之间的电容;
一个电流感应电路,其与所述降压转换器耦合,用于检测所述降压转换器的输出电流和产生一个随之变化的电流感应信号;
一个参考电路,其用于在一个公共电流共享总线上产生一个电流共享信号,该信号随每个所述转换器模块的电流感应信号而变化;和
一个控制电路,其与所述降压转换器耦合用来调整所述降压转换器的输出功率,该功率随所述降压转换器的电流感应信号和所述电流共享信号而变化。
CNB2004100330737A 2003-03-03 2004-02-27 有效电流共享系统 Expired - Fee Related CN100435448C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/378,854 2003-03-03
US10/378,854 US6894466B2 (en) 2003-02-28 2003-03-03 Active current sharing circuit

Publications (2)

Publication Number Publication Date
CN1661877A CN1661877A (zh) 2005-08-31
CN100435448C true CN100435448C (zh) 2008-11-19

Family

ID=35011018

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100330737A Expired - Fee Related CN100435448C (zh) 2003-03-03 2004-02-27 有效电流共享系统

Country Status (1)

Country Link
CN (1) CN100435448C (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594196A (zh) * 2012-03-21 2012-07-18 中冶连铸技术工程股份有限公司 一种开关脉冲电源的控制装置和控制方法
CN103812328A (zh) * 2012-11-07 2014-05-21 江苏兆能电子有限公司 一种用于电压变换器的并联均流线路
CN103812508B (zh) * 2012-11-12 2019-03-15 中兴通讯股份有限公司 均流装置、方法及系统
CN103532129B (zh) * 2013-10-10 2016-09-07 杭州华三通信技术有限公司 直流电源并联系统及其供电方法
CN105337493A (zh) * 2014-06-13 2016-02-17 株式会社村田制作所 功率转换系统及功率转换方法
US9748843B2 (en) * 2014-09-24 2017-08-29 Linear Technology Corporation DCR inductor current-sensing in four-switch buck-boost converters
US9880574B2 (en) 2015-03-02 2018-01-30 Texas Instruments Incorporated Power combiner and balancer
KR102051570B1 (ko) * 2017-04-03 2019-12-05 한국과학기술원 멀티 패스를 가지는 컨버터 및 이의 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276590A (en) * 1979-04-30 1981-06-30 The Perkin-Elmer Corporation Current sharing modular power system
CN1317868A (zh) * 2000-04-10 2001-10-17 国际商业机器公司 容错动态电流共享方法及装置
US6414469B1 (en) * 1998-12-03 2002-07-02 Virginia Tech Intellectual Properties, Inc. Current sensing and current sharing
CN1384991A (zh) * 1999-10-29 2002-12-11 艾利森公司 一种简化的电流共享电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276590A (en) * 1979-04-30 1981-06-30 The Perkin-Elmer Corporation Current sharing modular power system
US6414469B1 (en) * 1998-12-03 2002-07-02 Virginia Tech Intellectual Properties, Inc. Current sensing and current sharing
CN1384991A (zh) * 1999-10-29 2002-12-11 艾利森公司 一种简化的电流共享电路
CN1317868A (zh) * 2000-04-10 2001-10-17 国际商业机器公司 容错动态电流共享方法及装置

Also Published As

Publication number Publication date
CN1661877A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
US6894466B2 (en) Active current sharing circuit
CN101989814B (zh) 调压电路及其适用的并联式调压电路系统
US4924170A (en) Current sharing modular power supply
US6768658B2 (en) DC-DC power supply with at least two paralleled converters and current share method for same
CN101682291B (zh) 电机控制装置
US5448155A (en) Regulated power supply using multiple load sensing
US9608450B2 (en) Modular static converters with parallel or series architecture and decentralized modular control (DMC)
CN105871208A (zh) 具有非对称相电感的多相开关电压调节器
CN102224665B (zh) 开关电源装置
CN103154851A (zh) 使用多个电源向电子设备供电
CN101630169A (zh) 开关型调节器
CN102130613B (zh) 具有一个被连接在绕组之间的开关的功率转换器
CN105103426A (zh) 在电压调节的开关模式电源中的电压下降控制
CN103490610A (zh) 可控中间总线架构优化
CN101562395A (zh) 具有轻载效率提升功能的电压调制电路
US20100027169A1 (en) Power distribution arrangement
CN103299524A (zh) 具有串行通信接口的用户可配置、效率优化的电力/能量转换切换模式电力供应器
KR20220034165A (ko) 차동 용량성 에너지 전달을 이용한 rf 전력 증폭기용의 다중 출력 공급 제너레이터
CN100435448C (zh) 有效电流共享系统
CN111819779B (zh) 电源
CN103997202A (zh) 供电系统和控制方法
CN102217180B (zh) 具有提高的电压调节精度的用于初级受控的开关电源的控制电路以及初级受控的开关电源
US20070114983A1 (en) Switching regulator with hysteretic mode control using zero-ESR output capacitors
CN103314398B (zh) 用于信号输出级的输出晶体管的电压控制
CN103314514A (zh) 切换模式电力供应器中的效率最优化、经校准无传感器的电力/能量转换

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Hongkong, China

Patentee after: Astec Internat Ltd.

Address before: Hongkong, China

Patentee before: Astec Internat Ltd

C56 Change in the name or address of the patentee

Owner name: YADA ELECTRONIC INTERNATIONAL CO., LTD.

Free format text: FORMER NAME: ISOTECH INTERNATIONAL CO., LTD.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081119

Termination date: 20130227