CN100432740C - Integrative optical laying system - Google Patents

Integrative optical laying system Download PDF

Info

Publication number
CN100432740C
CN100432740C CNB2003101208579A CN200310120857A CN100432740C CN 100432740 C CN100432740 C CN 100432740C CN B2003101208579 A CNB2003101208579 A CN B2003101208579A CN 200310120857 A CN200310120857 A CN 200310120857A CN 100432740 C CN100432740 C CN 100432740C
Authority
CN
China
Prior art keywords
object lens
catoptron
prism
optical axis
aiming system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101208579A
Other languages
Chinese (zh)
Other versions
CN1635331A (en
Inventor
魏跃君
刘凤峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CNB2003101208579A priority Critical patent/CN100432740C/en
Publication of CN1635331A publication Critical patent/CN1635331A/en
Application granted granted Critical
Publication of CN100432740C publication Critical patent/CN100432740C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The present invention relates to technology for observing and sighting relevant viewing scenes and targets in an indoor simulation environment, more specifically an optical system. The present invention is composed of a liquid crystal display, reflection mirrors, an objective lens, a prism and an eye lens, wherein a primary optical axis is perpendicular to the liquid crystal display; a first reflection mirror forms a 45-degree angle with the primary optical axis; the objective lens is positioned on an optical path forming a 45-degree angle with the primary optical axis, and passes through the optical axis; the front end of the optical path where the objective lens is located forms a 45-degree angle with the first reflection mirror, and the rear end forms a 45-degree angle with a second reflection mirror; the rear prism surface of the prism is in parallel with the second reflection mirror, and the front prism surface is perpendicular to the optical path; the eye lens is perpendicular to the rear prism surface of the prism, and is arranged on the optical path. The present invention has the advantages of simple structure and larger observation viewing field. Moreover, limb action in the process of operation is totally the same as that in practical situation. The present invention is particularly used in a training simulator.

Description

Integrated optical aiming system
Technical field
The present invention relates to observe under the indoor simulated environment and aim at corresponding what comes into a driver's and object technology, specifically a kind of optical system, it is applied to simulation trainer especially.
Background technology
At present, optical aiming system under the known indoor simulated environment is by the optical sight of seat on the dampening bracket of operator's operation, computer-controlled CRT monitor, for the position adjusting mechanism composition of operator by the six degree of freedom that accurately is provided with of gun sight observation display relative position, see Fig. 1.In addition, for guaranteeing in operator's aiming process the stable of relative position between the gun sight and display, ad hoc two steel poles are rigidly connected between the mechanical adjustment mechanism with the dampening bracket of gun sight and six degree of freedom, see Fig. 2.It is heavy and complicated that whole optical aiming system seems.Again owing between the object lens of gun sight and the display 1.71 meters distance is arranged, and the display area of display is limited, so observer's visual field is limited.The visual field of optical sight itself only is 6 °, again owing to be that relative fixed is motionless between gun sight and the display screen, gun sight was motionless when the operator operated the support handle, thereby operator's head and neck are motionless, action when this operates real system search pursuit movement target with the operator does not conform to, gun sight moves in fact, thereby operator's head and neck should move simultaneously with gun sight.
Summary of the invention
The equipment that existing optical aiming system exists is heavy and complicated in order to solve, observer's observation visual field and reality require to compare in too little, operator's operating process head motionless with neck, with problems such as the state of operating real system not too conforms to, the invention provides a kind of simple in structure, the observation visual field is relatively large and operating process in limb action and the identical integrated optical aiming system of actual conditions.
The technical solution adopted for the present invention to solve the technical problems: it is made up of LCD, catoptron, object lens, prism and eyepiece group, primary optical axis is vertical with LCD, first catoptron and primary optical axis are the miter angle setting, object lens are positioned at and are on the light path of miter angle with primary optical axis and by optical axis, its place light path front end and first catoptron are miter angle; The rear end and second catoptron are miter angle; A back minute surface of prism is parallel with second catoptron, and last minute surface is vertical with light path, and a back minute surface of eyepiece group and prism is vertical, be located on the light path;
Described object lens are made up of preceding group of object lens and back group object lens, and wherein preceding group object lens are positioned at the light path front end that is miter angle with primary optical axis, are miter angle by optical axis and with first catoptron; Back group object lens are installed in the light path rear end that is miter angle with primary optical axis, and are miter angle with second catoptron; Effective viewing area of LCD is 4~9 inches; The material of catoptron is an optical glass, and the reflecting surface type is the plane; Preceding group object lens are made up of 2~4 optical lenses, and back group object lens are made up of 1~4 optical lens; The focal length of preceding group object lens is 150~300mm, and relative aperture is 1: 3~1: 10; The focal length of back group object lens is 150~300mm, and relative aperture is 1: 3~1: 10; 100~the 300mm that is spaced apart of object lens is organized in preceding group object lens and back; The material of prism is an optical glass, and is Schmidt's roof prism of band ridge face; Eyepiece is made up of 3~6 optical lenses, and focal length is 100~200mm, and relative aperture is 1: 4~1: 10.
The present invention has following advantage:
In the novel optical sighting system scheme of the present invention, adopted 6.4 inches LCD to replace the bigger CRT monitor of original volume, the distance of liquid crystal display surface and the telescope objective of having furthered, and from overall angle gun sight is redesigned, LCD and periscopic gun sight are designed to incorporate structure.Because the mechanical adjustment mechanism that has cancelled the six degree of freedom that bears CRT monitor of complicated heaviness removes two fastening steel poles, thereby has fundamentally simplified the complicacy of original whole sighting system.In addition, owing to the distance that has furthered between LCD and aiming object lens, thereby make the optical laying visual field be increased to 30 ° (diagonal line visual fields), the apparent field that the observer observes has increased by 3.5 times than original apparent field, thereby has enlarged observer's the visual field.
Description of drawings
Fig. 1 is an optical aiming system structural representation in the prior art.
Fig. 2 is the position adjusting mechanism structural representation of six degree of freedom among Fig. 1.
Fig. 3 is an optical aiming system structural representation of the present invention.
Fig. 4 is an optical aiming system schematic diagram of the present invention.
Fig. 5 is another embodiment schematic diagram of optical aiming system of the present invention.
Embodiment
Shown in Fig. 3,4, the incorporate optical aiming system of the present invention is made up of LCD 1, object lens, folding axle relay system and eyepiece group 6; Form by LCD 1, catoptron, object lens 01, prism 5 and eyepiece group 6, primary optical axis is vertical with LCD 1, first catoptron 21 is the miter angle setting with primary optical axis, described object lens 01 are made up of preceding group of object lens 3 and back group object lens 4, and wherein preceding group object lens 3 formerly are miter angle by primary optical axis and with first catoptron 21; Back group object lens 4 pass through primary optical axis in the back, and are miter angle with second catoptron 22; A back minute surface of prism 5 is parallel with second catoptron 22, and last minute surface is vertical with light path, and a back minute surface of eyepiece group 6 and prism 5 is vertical, be located on the light path.
The enlargement ratio of optical system is 1.2~3.0; The horizontal field of view angle is ± 10 °~± 15 °; The vertical field of view angle is ± 6 °~± 12 °; The diagonal line field angle is ± 10 °~± 30 °; Exit pupil diameter is φ 3~φ 5mm; Distance of exit pupil is 10~25mm; Diopter is ± 4~± 5.
Wherein, object lens are made up of two to three optical lenses, and the face type of lens is rotational symmetric secondary sphere.The objective focal length scope is between 50~300mm; Folding axle relay system is by forming with folding axle catoptron, Schmidt's roof prism and the lens relay system at primary optical axis angle at 45.Wherein lens transition rotate sphere for secondary.The present embodiment eyepiece adopts five; The focal length of eyepiece is 100~200mm.
Its parameter is as follows:
Preceding group object lens (3) are made up of three optical lenses, and back group object lens (4) are made up of three optical lenses, and eyepiece (6) is made up of five optical lenses, and LCD is 6.4 inches.
The objective focal length of combination is f ' Thing=279.89mm;
Eyepiece focal length is f ' Order=199.5mm;
Measured data: optics enlargement ratio 1.4 X
Horizontal field of view angle ± 12.46 °;
Vertical field of view angle ± 9.89 °;
Diagonal line field angle ± 14.74 °;
Emergent pupil is apart from 22mm;
Exit pupil diameter φ 4.8mm;
Diopter is regulated ± 4 diopters.
Principle of work of the present invention:
Because display of the present invention and gun sight have been made incorporate structure, so the code-disc rotating mechanism of gun sight and dampening bracket is fixed together, thus, the operator is rotating by handle in the process of code-disc aiming, tracking, lock motion target, gun sight and display be all corresponding follows rotation, so operator's head and neck certainly will be followed motion together, this has just finished and the real system identical operations, and this point is very important a kind of improvement concerning the training and operation person.
In addition, for strengthening the sense of reality that the observer observes what comes into a driver's and target, adopted virtual reality technology.Computing machine produces three-dimensional what comes into a driver's and target image, and sends it to LCD.In addition, the present invention has solved the problem of ground coupling well, make moving object (tank) under various landforms (hills, meadow etc.) environment, all close proximity to ground motions truly, after the tank motion, its afterbody produces dust and the smog that flies upward, and also can produce various weather environments such as cloudy day, greasy weather, thereby provides sense true to nature extremely strong battlefield training environment for the shooter who observes by gun sight.
Yet in the former scheme of prior art simulation trainer, gun sight is to be located on the supporting disk of dampening bracket, and this coils relative ground and display is fixed, thereby the display in the relative the place ahead of gun sight all is fixed.The operator is by handling orientation and the height handle on the support, driving the rotation data that code-disc in it provides orientation and height passes in the computing machine, motion by what comes into a driver's in Computer Processing and the driving display and moving target, by the what comes into a driver's that moves in the eyepiece observation display of operator by fixed gun sight and moving target rotational orientation and height handle, moving target locks the cross curve center (whole tracking and aiming locking are dynamic change procedures) of gun sight the most at last again.In view of this, be to replace gun sight to move searching for tracking target at this with the motion of what comes into a driver's and target.Can solve the problem of rotating ferret out and the required very big very big display of what comes into a driver's with gun sight like this, and this display also is non-existent.Adopted less display (14~15 cun) for this reason, motion with target and the relative gun sight of what comes into a driver's replaces gun sight to search for extraneous what comes into a driver's and target, and display is motionless, therefore must be rigidly connected between gun sight and the display, to guarantee that the cross center between the two is constant.Again for guaranteeing the suitable field angle and the convenience of certain precision and adjustment, so adopted the adjusting mechanism of six degree of freedom and two fastening steel pole structures, so that easily adjust the exact position between display and gun sight, so it is heavy and complicated that the system that makes seems, but there is not suitable LCD at that time, can not select very big very big display again for use, adopt gun sight to maintain static the scheme of mode, this scheme also should be considered as a kind of rational selection.
The present invention is by the incorporate design of simulation trainer optical aiming system, make simple in structure, the observation visual field is relatively large, and the limb action in the operating process is identical with the manipulation real system, thereby it is little to have solved the field angle that exists in the prior art separate type design proposal, the visual field is unopen, gun sight and guidance dampening bracket relative fixed, operator's head and neck are admittedly easily and what comes into a driver's during training, display separates with gun sight, need the mechanical adjustment mechanism of six degree of freedom, must set up the chassis and be connected variety of issues such as steel pipe, and field angle of the present invention increases 3.5 times, and broad view is taken aim at system's basically identical with real light.Gun sight rotates with dampening bracket, and operator's limb action is identical with the operation real system during training.What comes into a driver's show and gun sight structure-integrated, cancel six degree of freedom mechanical adjustment mechanism, the chassis be connected steel pipe, simple in structure.
Embodiment 2
Be with the embodiment difference: adopt 8.4 inches LCD, preceding group object lens 3 are made up of two optical lenses, back group object lens 4 are made up of two optical lenses, eyepiece 6 is made up of three optical lenses, its advantage is that used optical lens quantity has reduced four, but the aberration that shortcoming is an every lens burden to be solved is overweight, has increased difficulty of processing.Select 8.4 inches LCD for use, can increase field angle and broaden one's vision, but the volume of the corresponding increase gun sight of meeting.
Wherein: the focal length of object lens is designed to 200mm, and the focal length of eyepiece is designed to 142.85mm, and the optics enlargement ratio still is 1.4 X
Vertical field of view angle ± 13.08 °
Horizontal field of view angle ± 17.21 °
Diagonal line field angle ± 21.17 °
Emergent pupil is apart from 25mm
Exit pupil diameter φ 4mm
Diopter is regulated ± 4 diopters.

Claims (10)

1. integrated optical aiming system, it is characterized in that: it is made up of LCD (1), first and second catoptron, object lens (01), prism (5) and eyepiece group (6) successively, the primary optical axis of system is vertical with LCD (1), first catoptron (21) is the miter angle setting with primary optical axis, object lens (01) are positioned at and are on the light path of miter angle with first catoptron (21) and by primary optical axis, front end and first catoptron (21) are miter angle on the light path of primary optical axis place; Rear end and second catoptron (22) are miter angle; A back minute surface of prism (5) is parallel with second catoptron (22), and last minute surface is vertical with light path, and eyepiece group (6) is vertical with the emission light path of a back minute surface of prism (5), be located on the light path.
2. by the described integrated optical aiming system of claim 1, it is characterized in that: described object lens (01) are made up of preceding group of object lens (3) and back group object lens (4), and wherein preceding group object lens (3) are positioned at the primary optical axis front end, and are miter angle with first catoptron (21); Back group object lens (4) are installed in the primary optical axis rear end, and are miter angle with second catoptron (22).
3. by the described integrated optical aiming system of claim 1, it is characterized in that: effective viewing area of LCD (1) is 4~9 inches.
4. by the described integrated optical aiming system of claim 1, it is characterized in that: the material of first and second catoptron (2) is an optical glass, and the reflecting surface type is the plane.
5. by the described integrated optical aiming system of claim 1, it is characterized in that: preceding group of object lens (3) are made up of 2~4 optical lenses, and back group object lens (4) are made up of 1~4 optical lens.
6. by the described integrated optical aiming system of claim 1, it is characterized in that: the focal length of preceding group of object lens (3) is 150~300mm, and relative aperture is 1: 3~1: 10.
7. by the described integrated optical aiming system of claim 1, it is characterized in that: the focal length of back group object lens (4) is 150~300mm, and relative aperture is 1: 3~1: 10.
8. by the described integrated optical aiming system of claim 1, it is characterized in that: the 100~300mm that is spaced apart of object lens (4) is organized in preceding group of object lens (3) and back.
9. by the described integrated optical aiming system of claim 1, it is characterized in that: the material of prism (5) is an optical glass, and is Schmidt's roof prism of band ridge face.
10. by the described integrated optical aiming system of claim 1, it is characterized in that: eyepiece group (6) is made up of 3~6 optical lenses, and focal length is 100~200mm, and relative aperture is 1: 4~1: 10.
CNB2003101208579A 2003-12-30 2003-12-30 Integrative optical laying system Expired - Fee Related CN100432740C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2003101208579A CN100432740C (en) 2003-12-30 2003-12-30 Integrative optical laying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2003101208579A CN100432740C (en) 2003-12-30 2003-12-30 Integrative optical laying system

Publications (2)

Publication Number Publication Date
CN1635331A CN1635331A (en) 2005-07-06
CN100432740C true CN100432740C (en) 2008-11-12

Family

ID=34843996

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101208579A Expired - Fee Related CN100432740C (en) 2003-12-30 2003-12-30 Integrative optical laying system

Country Status (1)

Country Link
CN (1) CN100432740C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162909A (en) * 2011-04-01 2011-08-24 安徽省科普产品工程研究中心有限责任公司 Simulation astronomical telescope
CN107367829B (en) * 2017-08-16 2023-10-31 桂林优利特医疗电子有限公司 Single lens light-splitting zoom microscope system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576432A (en) * 1983-08-17 1986-03-18 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Aiming or sighting apparatus with synchronously rotating thermal imager and aiming head
EP0458311A2 (en) * 1990-05-25 1991-11-27 Firma Carl Zeiss Multiple Reproduction System
JP2001343593A (en) * 2000-06-01 2001-12-14 Nikon Corp Astronomical telescope
CN2484578Y (en) * 2001-06-14 2002-04-03 上海海鸥照相机销售有限公司 Digital remote observation recording instrument
WO2003075072A1 (en) * 2002-03-07 2003-09-12 Flir Systems Ab A process and a device for bi-monocular image transfer
CN2665654Y (en) * 2003-12-30 2004-12-22 中国科学院沈阳自动化研究所 Integrated optical sighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576432A (en) * 1983-08-17 1986-03-18 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Aiming or sighting apparatus with synchronously rotating thermal imager and aiming head
EP0458311A2 (en) * 1990-05-25 1991-11-27 Firma Carl Zeiss Multiple Reproduction System
JP2001343593A (en) * 2000-06-01 2001-12-14 Nikon Corp Astronomical telescope
CN2484578Y (en) * 2001-06-14 2002-04-03 上海海鸥照相机销售有限公司 Digital remote observation recording instrument
WO2003075072A1 (en) * 2002-03-07 2003-09-12 Flir Systems Ab A process and a device for bi-monocular image transfer
CN2665654Y (en) * 2003-12-30 2004-12-22 中国科学院沈阳自动化研究所 Integrated optical sighting device

Also Published As

Publication number Publication date
CN1635331A (en) 2005-07-06

Similar Documents

Publication Publication Date Title
JP2790584B2 (en) Binocular reflex telescope
CN101730831B (en) Dot sighting device with large caliber
US3749494A (en) Gun sighting and ranging mechanism
EP0660155B1 (en) Image display apparatus
US4367949A (en) Aiming method and means
CN105866949A (en) Binocular AR (Augmented Reality) head-mounted device capable of automatically adjusting scene depth and scene depth adjusting method
JPS61502911A (en) Adaptive modular stabilization system
CN101866052A (en) Visual display unit
CN104570346A (en) Long-wave infrared optical imaging system for image stabilization indirectly based on image spaces
RU2019101696A (en) METHOD OF EXTERNAL TARGET INDICATION WITH INDICATION OF TARGETS FOR SAMPLES OF ARMORED WEAPONS
US3918813A (en) Optical collimating alignment units
CN100432740C (en) Integrative optical laying system
GB960383A (en) Observation and sighting telescope
CN2665654Y (en) Integrated optical sighting device
US3468596A (en) Stabilized zoom optical device
IL94811A (en) Combined telescope and autocollimator
US8542440B2 (en) Tube for an observation device
CN103345039A (en) Cube-corner prism horizontal type optical axis determining system and method
US3556632A (en) Stabilized direction sighting device
JPH10510369A (en) Target capture telescope
CN211123465U (en) Operating microscope
DE1802120A1 (en) Surveying and observation theodolite
RU2399073C1 (en) Optical panoramic system
US5264913A (en) Reduced combiner helicopter sight system
RU2359297C1 (en) Virtual reality helmet

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081112

Termination date: 20100201