CN100429142C - Method for adjusting and controlling configuration of self-assembling block copolymer template oriented to nano micro machining - Google Patents

Method for adjusting and controlling configuration of self-assembling block copolymer template oriented to nano micro machining Download PDF

Info

Publication number
CN100429142C
CN100429142C CN 200410013641 CN200410013641A CN100429142C CN 100429142 C CN100429142 C CN 100429142C CN 200410013641 CN200410013641 CN 200410013641 CN 200410013641 A CN200410013641 A CN 200410013641A CN 100429142 C CN100429142 C CN 100429142C
Authority
CN
China
Prior art keywords
template
block copolymer
solvent
self
regulation
Prior art date
Application number
CN 200410013641
Other languages
Chinese (zh)
Other versions
CN1562730A (en
Inventor
铀 王
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to CN 200410013641 priority Critical patent/CN100429142C/en
Publication of CN1562730A publication Critical patent/CN1562730A/en
Application granted granted Critical
Publication of CN100429142C publication Critical patent/CN100429142C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material

Abstract

面向纳米微加工嵌段共聚物模板自组装形态调控方法,它涉及一种在纳米微加工时所需要的模板图案的调控方法。 Nano template for micromachining block copolymers self-assembled morphology regulation method, which relates to a method for the regulation of nanoparticles when required for processing of the template pattern. 目前能调控嵌段共聚物形态的处理方法具有调控能力有限、处理工艺比较复杂、所需时间很长的缺点。 Currently processing method capable of modulating the block copolymer morphology have limited ability to regulate treatment process more complicated, a long time is required drawbacks. 本发明的操作方法为:将嵌段共聚物溶解在二甲苯溶剂中配制成溶液,将溶液浇铸在基片表面自然挥发成膜,然后将基片放置于密闭容器内,再向密闭容器内滴加有机溶剂后密封,取出即为模板。 The method of operation of the present invention are: dissolving the block copolymer formulated as a solution in xylene solvent, and the solution was cast by natural evaporation deposition on the substrate surface, the substrate is then placed in a sealed container, sealed container drops again after the addition of the organic solvent was sealed, removed is the template. 本发明具有调控出来模板的形态多样性、调控过程高度可控、模板形态高度有序、调控不需复杂设备,工艺简单,成本低,效率高、能在基片上得到几百纳米尺度的各种图案等诸多优点,用本发明的方法还可以得到类似于圆锥齿轮形状的自组装模板图案。 The present invention has morphological diversity out template regulation, the regulation process is highly controllable, highly ordered morphology template, the regulation does not require complicated equipment, simple process, low cost, high efficiency, a few hundred nano-scale can be obtained on various substrates patterns and many other advantages, the method according to the present invention may also be obtained from a shape similar to the bevel gear assembly template pattern.

Description

面向纳米微加工嵌段共聚物模板自组装形态调控方法技术领域:本发明涉及一种在纳米微加工时所需要的模板图案的调控方法。 Nano template for micromachining block copolymers self-assembled morphology controlling methods Technical Field: The present invention relates to a method for the regulation of nanoparticles when required for processing of the template pattern.

背景技术:目前,制备加工纳米结构有三种不同的途径:一种朋宏观的块体物质,Mil去掉多余的部分,加工成纳米结构,通常称之为自上向下方法, 属于传统的微细加工技术,包括光刻技术和分子束外延技术;另一种是把^li 体系的物质单元组装成纳米器件,通常称之为自下向上方法,属于正在兴起的微细加工技术,包括扫描探针的操纵装配技术、分子m技术与化学合成技术。 BACKGROUND: Currently, processing nanostructures prepared in three different ways: one kind Four macroscopic bulk materials, Mil remove excess portion processed into the nanostructures, commonly referred to as top-down method, a traditional microfabrication techniques, including photolithography and molecular beam epitaxy; the other is the substance ^ li system unit assembled into nanodevices, commonly called bottom-up method, part of the emerging microfabrication technology, comprising a scanning probe manipulation assembly techniques, molecular techniques and chemical synthesis techniques m. 以上两种纳米加工都存庄一个无法回避问题:即当材料包含纳米结构时,其结构单元数量是惊人的。 Two or more are deposited Zhuang Nanofabrication an unavoidable problem: that is, when a material comprising a nanostructure, the number of structural units is staggering. 如果沿用传统的加工方式对逐个结构进行加工,即使工艺上可行,从所需的时间与成本角度去考虑则根本行不通。 If using the traditional processing methods for processing one by one structure, even if feasible process, from the required time and cost point of view to consider is unworkable. 难怪有人感叹:纳米材料是科学家的梦想,工程师的梦魇。 No wonder people sigh: nanomaterials nightmare is a dream of scientists and engineers. 第三种途径是娜一种与第二种方法 The third approach is one kind of Na and the second method

结合在一起"自组装"技术。 Together "self-assembly" technique. 所谓自组装是一种无外来因素餅下形成超分子 The so-called self-assembly is a supramolecular the absence of external factors cake

结构或介观超结构的过程。 Mesoscopic structures or processes superstructure. 自组装制3tii程是绿色的、环境友好的,效率是极高 Self-assembly system 3tii process is green, environmentally friendly, high efficiency

的。 of. 由于以上诸多优点并源于纳米自发展的需要,源于生物的自组装技員年来已引起科学家高度重视并迅速成为最热门的研究领域。 Because of these advantages and from the needs of nano self-development, self-assembly technology staff from biological years has attracted great attention of scientists and quickly became the most popular field of study. 1996年,Whitesides 等人(发表于Science)首先利用离子刻蚀技术将嵌段共聚物的球形微区图案复制到50 nm厚的SiN2模板材料上,得到辨方厘米具有1(^个微孔的S恥膜材树见图1),标志着利用嵌段共聚物自组装模板技皿行纳米微加工新技术技术的开始。 In 1996, Whitesides et al (published in Science) firstly copy spherical ion etching pattern block copolymer microdomains onto the template material SiN2 50 nm thick, having 1 cm to give the defense (^ micropores S shame membranes tree in Figure 1), marking the start block copolymers self-assembled using a template processing technique cuvette row nanoparticles art technology.

对于自组装技术作为加工方法而言,新的机遇与挑战并存: 一方面是是如何利用自组,板制备相应结构纳米材料(模板图案的复制);另一方面的是如何人为调控自组皿板图案以调控希望构造的纳米结构(模板图案的调控)。 For the purposes of self-assembly technique as a processing method, new opportunities and challenges: on the one hand is how to use the ad hoc prepared from the corresponding structures of nanomaterials (patterned template copy) plate; the other hand, since the regulation is artificially set on how dish to regulate the desired board pattern (template pattern of regulation) of nanostructures configuration. 图案的复制已知可以iijl刻蚀技术实现(离子、臭氧、紫外縱择性地除去部分材料)。 The replication pattern can iijl known etching technology (plasma, ozone, ultraviolet longitudinal Optional removing portions of the material). 模板图案的调控技术目前还亟待提高,因为它是模板纳米加工技术的关键:只有调控出所需图案的,才有可能复制出理想的结构。 Control technology template pattern is still needs to be improved because it is the key template nanometer processing technology: only the regulation of the desired pattern, be possible to replicate the ideal structure. 目前能调控嵌段共聚物形态的处理方法主要有:高MM火处理、外加电场处理、剪切处理等三种方法。 The current treatment capable of modulating the block copolymer morphology are: high fire MM processing, three methods applied electric field processing, shear processing. 其中剪切处理由于对处理样品厚度有要求,不适用于涉及模鹏用的形态调控。 Because claim wherein the shear treatment, the regulation does not apply to aspect relates to treatment with a mold Peng sample thickness. 剩余的两种方法一方面对于形态调控能力有限,调控得到的有序 The remaining two methods to form an aspect of the regulation of the limited capacity of the resulting ordered regulation

形态是唯一的,更谈不上进行几百纳米微小模板调控;另一方面处理工艺比较复杂,所需时间很长。 Is the only form of, let alone conduct hundreds of tiny nano-template-control; on the other hand is more complex treatment process, the time required for very long.

发明内容:本发明的目的在于提供一种简单、高效的面向纳米微加工嵌段共聚物模板自组装形态调控方法,具体操作方法为:将聚苯乙烯一饱和聚丁二烯—聚苯乙烯嵌段共聚物或聚苯乙烯—聚丁二烯一聚苯乙烯嵌段共聚物溶解在二甲苯溶剂中配制成0.1〜lwt。 SUMMARY OF THE INVENTION: The object of the present invention to provide a simple, efficient nano template for micromachining block copolymers self-assembled morphology controlling methods, specific methods of operation: a saturated Polystyrene-polybutadiene - polystyrene block block copolymer or polystyrene - polybutadiene polystyrene block copolymer formulated 0.1~lwt dissolved in xylene solvent. /。 /. 浓度的溶液,室温条件下浇铸在原子水平级平整的基片表面上,自然挥发成膜,将此浇铸膜与附着的基片放置于密闭容器内,密闭容器内垫有具有吸附溶剂蒸汽能力的材料,然后在室温下向密闭容器底部的具有吸附溶剂蒸汽能力的材料上滴加嵌段共聚物材料的良溶剂或选择性溶剂后迅速盖好盖子密封,良溶剂或选择性溶剂的滴加量为足以使溶剂蒸汽压达到饱和,1小时〜7天后取出即为面向纳米微加工嵌段共聚物模板。 Concentration solution, at room temperature is cast on a flat horizontal surface atoms of the substrate stage, natural evaporation deposition, this cast film is adhered with the substrate placed in a sealed container, the sealed container having an inner pad solvent vapor adsorption capacity dropping amount of sealing material rapidly capped, and having a good solvent or selective solvent solution of the block copolymer material on the solvent vapor adsorption capacity of the material to the bottom of the sealed container at room temperature, good solvent or selective solvent sufficient solvent saturated vapor pressure, that is, 1 hour ~ 7 days out for nano micromachined block copolymer templates. 模板形态的自由调控是实现按人的意愿进行纳米微加工的前提与基础,本发明丰富了嵌段共聚物纳米模板的调控技术,与现有的调控技术相比,它具有如下优点: l.它具有调控参数的多样性:本发明可以针对不同的需要使用不同类型的有机溶剂;通过调控温度改变溶剂蒸汽压;另外,溶剂与模板接触时间的不同也会产生不同的效果,从而影响着模板的调控结果。 Free form template is regulated to achieve the prerequisite and foundation nano micromachining according to the wishes of the person, the present invention enriches the block copolymer nano-template control technology compared with the conventional control technology, which has the following advantages: l. it has a variety of controllable parameters: the present invention may be used for different needs of different types of organic solvents; temperature-controlled by changing the solvent vapor pressure; Furthermore, different templates solvent contact time will produce different effects, thus affecting the template regulatory results. 总之,调控参数的多样性决定着调控出来模板的形态具有多样性;2.调控过程高度可控;3.调控模板形态高度有序;4.调控不需复杂设备,工艺简单,成本低,效率高;5. 在调控的同时溶剂蒸汽还具有刻蚀的功能,能在基片上得到几百纳米尺度的各种图案,这一点对于未来纳米零件的加工技术有重要意义;6.通过局部刻蚀与调控,用本发明的方法还可以得到类似于圆锥齿轮形状的自组装模板图案(见图6),这意味着将来利用这类模板可以加工纳米齿轮(见图7)。 In summary, the diversity of the parameters determines the regulation of regulation morphological diversity out template;. 2 process is highly controllable regulation; 3. Regulation highly ordered morphology template; 4. regulation does not require complicated equipment, simple process, low cost, efficiency high; 5 while the solvent vapor etching regulation also has the function of various patterns can be obtained dimensions of a few hundred nanometers on the substrate, which is part of the future nano-machining technology is important;. 6 by partially etching and control, by the method of the present invention can also obtain a similar conical gear shape pattern of self-assembled template (see FIG. 6), which means that the future use of such templates may be processed nanometers gear (see FIG. 7).

附图说明:图1是利用离子刻蚀技术将嵌段共聚物SBS的球形微区图案复制到50 nm厚的SiN2模板材料上,得到每平方厘米具有10"个微孔的SiN2 膜材料的结构示意图,图2 (尺寸800x800 nm)是原子力显微镜(AFM)关于SEBS或SBS嵌段共聚物溶于二甲苯之后浇铸在基片上自然挥发成膜的形态图,图3是用具体实施方式二或三方法调控所得模板的AFM形态图(尺寸800x800 nm),图4是用具体实施方式四方法调控所得模板的AFM形态图(尺寸800x800 nm),图5是用具体实施方式五方法调控所得模板的AFM形态图(尺寸500x500 nm),图6是是用具体实施方式六方法调控兼刻蚀的微小尺寸模板AFM形态图(尺寸800x800 nm),图7是由图6模板所能加工微小零件的示意图。 BRIEF DESCRIPTION OF DRAWINGS: FIG. 1 is a copy using ion etching spherical SBS block copolymer microdomains onto nm thick pattern SiN2 template material 50, having 10 per square centimeter to obtain "a microporous membrane structure of the material SiN2 schematic view, FIG. 2 (size 800x800 nm) are atomic force microscope (AFM) on the casting SEBS or SBS block copolymer morphology in FIG natural evaporation deposition on a substrate after dissolution in xylene, FIG. 3 is a di- or tri DETAILED DESCRIPTION AFM morphology images (size 800x800 nm) (size 800x800 nm) AFM aspect FIG method of modulating the resulting template, FIG. 4 is a four methods of modulating the resulting template with specific embodiments, FIG. 5 is an AFM DETAILED DESCRIPTION five methods resulting regulation template FIG morphology (size 500x500 nm), FIG. 6 is a diagram of a minute size template AFM FIG morphology (size 800x800 nm) with six DETAILED DESCRIPTION the method of regulation and etching, FIG. 7 is a template that can be accommodated by the small parts in FIG. 6.

具体实施方式一:嵌段共聚物自组装模板一般需要溶剂浇铸制备,模板的厚度需控制在纳米尺度以内。 DETAILED first embodiment: the self-assembled block copolymer generally require template preparation, solvent casting, stencil thickness should be controlled within the nanometer scale. 我们发现将厚度控制在100纳米以内嵌段共聚物薄膜,在室温下,利用有机良溶剂或选择性溶剂进行熏蒸,可以对模板的自组装图案进行全面的调控。 We found that controlling the thickness of 100 nm or less block copolymer film, at room temperature, using an organic good solvent or selective solvent fumigation, Full regulation of the self-assembled patterned template. 将聚苯乙烯一饱和聚丁二烯一聚苯乙烯嵌段共聚物或聚苯乙烯一聚丁二烯一聚苯乙烯嵌段共聚物溶解在二甲苯溶剂中配制成0.1〜lwt。 A saturated polystyrene polybutadiene polystyrene block copolymer or a polystyrene-polybutadiene polystyrene block copolymer formulated 0.1~lwt dissolved in xylene solvent. /。 /. 浓度的溶液,室温条件下浇铸在原子水平级平整的基片表面上,自然挥发成膜,将此浇铸膜与附着的基片放置于密闭容器内,密闭容器内垫有具有吸附溶剂蒸汽能力的材料,然后在室温下向密闭容器底部的具有吸附溶剂蒸汽能力的材料上滴加嵌段共聚物材料的良溶剂或选择性溶剂后迅速盖好盖子密封,有机溶剂的滴加量为足以使溶剂蒸汽压达到饱和,l小时〜7天后取出即为面向纳米微加工嵌段共聚物模板。 Concentration solution, at room temperature is cast on a flat horizontal surface atoms of the substrate stage, natural evaporation deposition, this cast film is adhered with the substrate placed in a sealed container, the sealed container having an inner pad solvent vapor adsorption capacity quickly cover the lid sealing material, and having a good solvent or selective solvent solution of the block copolymer material on the solvent vapor adsorption capacity of the material to the bottom of the sealed container at room temperature was added dropwise a sufficient amount of organic solvent solvent saturated vapor pressure, l h ~ 7 days out is the process for the block copolymer nanoparticles template. 用这种方法调控的模板图案形态丰富、高度有序。 In this way the regulation of the template pattern form a rich, highly ordered.

具体实施方式二:本实施方式模板的调控方法为:将聚苯乙烯一饱和聚丁二烯一聚苯乙烯(SEBS)嵌段共聚物溶解在二甲苯溶剂中配制成0.1 wt %浓度的溶液,20—30。 DETAILED Embodiment 2: The method of the present embodiment, the regulation of the template to: a saturated polystyrene polybutadiene polystyrene (SEBS) block copolymer is dissolved in a xylene solvent formulated as a 0.1 wt% concentration solution, 20-30. C条件下浇铸在云母片上自然挥发成膜,膜的厚度最好要小于100纳米,模板形态如图2所示,将此浇铸膜与附着的云母片放置于垫有滤纸的培养皿内恒温在25°C,滴加良溶剂甲苯于培养皿底部的滤纸上,迅速盖好盖子,甲苯的滴加量为足以使溶剂蒸汽压达到饱和,3小时后将所得产品取出,调控后模板形态如图3所示。 Natural evaporation under conditions of casting C on a mica film formation, the film preferably has a thickness less than 100 nanometers, the template shape shown in Figure 2, this cast film is attached to the mica sheet is placed on the filter paper pad with a petri dish in a thermostat 25 ° C, the good solvent of toluene was added dropwise on the filter paper in the bottom of the dish, quickly cover the lid, the amount of toluene was added dropwise to the solvent vapor pressure sufficient to reach saturation after three hours the resulting product is removed, as shown in the form of templates regulation 3 shown in FIG. 然后再通过水面将嵌段共聚物薄膜(即模板) 转移到要复型材料表面进行复型。 Then the block copolymer film (i.e., a template) by transferring the water to the surface of the material to be multiplexed type multiplex type.

具体实施方式三:本实施方式模板的调控方法为:将聚苯乙烯一聚丁二烯一聚苯乙烯(SBS)三嵌段共聚物溶解在二甲苯溶剂中配制成lwt %浓度的溶液,将单晶硅片放置于垫有绵花的培养皿内,室温条件下滴加二甲苯于培养皿底部的绵花上,然后将足以使溶剂蒸汽压达到饱和量的二甲苯浇铸在单晶硅片上,迅速盖好盖,10小时后将产品取出即得模板,调控后模板形态如图3所示,然后可以通过水面将嵌段共聚物模板转移到要复型材料表面进行复型即可。 DETAILED Embodiment 3: The method of embodiment regulation template present embodiment is as follows: a polystyrene-polybutadiene polystyrene (SBS) triblock copolymer was dissolved formulated lwt% strength solution in xylene solvent, placed in a silicon wafer with a pad of cotton flower dish, xylene was added dropwise to the bottom of the dish cotton take room temperature, then the solvent vapor pressure will be sufficient to saturate the amount of xylene cast single crystal silicon wafer the rapid cover cap 10 hours the product is removed to obtain the template, the template shape after the regulation shown in Figure 3, may then be transferred by the water to the surface of the material block copolymer template type to be multiplexed can be multiplexed type.

具体实施方式四:本实施方式模板的调控方法为:将美国Shell公司生产 DETAILED DESCRIPTION OF THE IV: template-control method described in this embodiment is: the American company Shell

的SEBS嵌段共聚物溶解在二甲苯溶剂中配制成0.5 wt %浓度的溶液,20— 30。 The SEBS block copolymer is dissolved in a xylene solvent formulated as a 0.5 wt% concentration of the solution, 20-30. C条件下浇铸在云母片上自然挥发成膜,膜的厚度为20纳米,模板形态如图2所示,将此浇铸膜与附着的云母片放置于垫有滤纸的培养皿内恒温在25。 Natural evaporation under conditions of casting C on a mica film formation, the film thickness of 20 nm, shown in FIG. 2 form the template, and this cast film adhered mica placed in a petri dish is lined with filter paper thermostated at 25. C,然后将足以使溶剂蒸汽压达到饱和量的选择性溶剂庚烷滴加于培养皿底部的滤纸上,迅速盖好盖,l小时后将产品取出即得调控后模板,所得模板形态如图4所示,然后可以通过水面将嵌段共聚物薄膜(即为所得模板)转移到要复型材料表面进行复型即可。 C, then the solvent vapor pressure will be sufficient to reach the saturation amount of a selective solvent of heptane was added dropwise to a petri dish bottom filter paper, quickly cover cap, l hour the product is removed to obtain the regulation of the template, the template shape shown in FIG resulting 4, then the block copolymer film (i.e. the resulting template) may be transferred to the surface of the material type to be multiplexed can be multiplexed by the water type.

具体实施方式五..本实施方式模板的调控方法为:将美国Shell公司生产的SBS三嵌段共聚物溶解在二甲苯溶剂中配制成0.2 wt %浓度的溶液,室温条件下浇铸在单晶硅片上自然挥发成膜,所得膜的厚度为40纳米,模板形态如图2所示,将此浇铸膜与附着的单晶硅片放置于垫有滤纸的培养皿内恒温在25°C,滴加足以使溶剂蒸汽压达到饱和量的环己垸于培养皿底部的滤纸上,迅速盖好盖,24小时后将产品取出即得调控后模板,所得模板形态如图5所示, 然后可以通过水面将嵌段共聚物薄膜(即用本发明方法所得模板)转移到要复型材料表面进行复型即可。 DETAILED DESCRIPTION five .. regulation method of the present embodiment, the template to: U.S. Shell produced SBS triblock copolymer was dissolved formulated to 0.2 wt% concentration in xylene solution of a solvent, at room temperature silicon single crystal cast natural evaporation deposition on the substrate, the thickness of the resulting film is 40 nm, the template shape shown in Figure 2, this cast film and adhesion to the silicon wafer is placed in a vessel with a filter paper pad thermostat at 25 ° C, dropwise adding sufficient amount of saturated vapor pressure of the solvent cyclohexyl embankment bottom petri dish on filter paper, quickly cover cap, the product is taken out after 24 hours to obtain regulatory template, resulting form template shown in Figure 5, may then be the block copolymer film surface (i.e., the resulting template by the method of the present invention) to the surface of the material type to be multiplexed can be multiplexed type.

具体实施方式六:本实施方式模板的调控方法为:将聚苯乙烯—饱和聚丁二烯一聚苯乙烯嵌段共聚物溶解在二甲苯溶剂中配制成0.8wt %浓度的溶液, 20—30。 DETAILED DESCRIPTION Embodiment six: Method regulation embodiment according to the present embodiment as template: Polystyrene - a saturated polybutadiene polystyrene block copolymer formulated as a dissolving 0.8wt% strength solution in xylene solvent, 20-30 . C条件下浇铸在云母片上自然挥发成膜,模板形态如图2所示,将此浇铸膜放置带有磨口密闭性能非常好的称量瓶中,样品距离称量瓶底部lcm, 滴加足以使溶剂蒸汽压达到饱和量的二甲苯于称量瓶底部迅速盖好盖,恒温25°C 7天后将产品取出即得调控后模板,所得模板形态如图6所示,此时溶剂蒸汽已将大部分嵌段共聚物模板腐蚀掉,留下局部微小尺寸的模板图案,为利用此模板加工微纳米零件提供了条件。 Natural evaporation under conditions of casting C on a mica film formation, the template shape shown in Figure 2, this cast film is placed very good performance in a weighing bottle sealed with a ground, from the bottom of LCM samples weighing bottle, was added dropwise sufficient the solvent is saturated with the vapor pressure at the bottom of the weighing bottle xylene quickly cover cap, temperature 25 ° C 7 days after the product is removed to obtain the regulation of the template, the resulting morphology template shown in Figure 6, where the solvent vapors have most of the block copolymer template etched, leaving a pattern of the local micro-sized template, provided the conditions for the use of this micro-nano template processing part.

Claims (6)

1、一种面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于将聚苯乙烯-饱和聚丁二烯-聚苯乙烯嵌段共聚物或聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物溶解在二甲苯溶剂中配制成0.1~1wt%浓度的溶液,室温条件下浇铸在原子水平级平整的基片表面上,自然挥发成膜,将此浇铸膜与附着的基片放置于密闭容器内,密闭容器内垫有具有吸附溶剂蒸汽能力的材料,然后在室温下向密闭容器底部的具有吸附溶剂蒸汽能力的材料上滴加嵌段共聚物材料的良溶剂或选择性溶剂后迅速盖好盖子密封,良溶剂或选择性溶剂的滴加量为足以使溶剂蒸汽压达到饱和,1小时~7天后取出即为面向纳米微加工嵌段共聚物模板。 1, a nano-template for micromachining block copolymers self-assembled morphology regulation, characterized in that the polystyrene - saturated polybutadiene - polystyrene block copolymer or polystyrene - polybutadiene - polystyrene block copolymer is dissolved in a xylene solvent formulated in a concentration of 0.1 ~ 1wt% solution, cast on a flat horizontal surface atoms of the substrate stage, forming natural evaporation at room temperature, this cast film and attached substrate placed in a sealed container with a material having a mat solvent vapor adsorption capacity of the closed vessel, and having a good solvent solution of the block copolymer material on the solvent vapor adsorption capacity of the material to the bottom of the sealed container at room temperature or select after the solvent quickly cover cap for sealing, the amount of the good solvent solution of a selective solvent or sufficient solvent saturated vapor pressure, for 1 hour to 7 days out for micromachining is the nano-block copolymer templates.
2、据权利要求1所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于二甲苯溶液浇涛于基片上挥发成膜的厚度小于100纳米。 2, according to the nano template for micromachining block copolymer according to claim 1 self-assembled morphology regulation method, wherein a xylene solution cast film forming volatile Tao thickness less than 100 nanometers on the substrate.
3、 据权利要求1所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于所述原子水平级平整的基片为云母片或单晶硅。 3, according to the nano template for micromachining block copolymer according to claim 1 self-assembled morphology regulation method, wherein the atomic level stage flat substrate is single crystal silicon or mica.
4、 据权利要求1所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于所述密闭容器为培养皿或称量瓶。 4, according to the nano template for micromachining block copolymer according to claim 1 self-assembled morphology regulation method, wherein said closed container is a dish or weighing bottle.
5、 据权利要求1所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于所述具有吸附溶剂蒸汽能力的材料为滤纸或绵花。 5, according to the nano template for the micromachined block copolymer as claimed in claim 1, the self-assembled morphology about methods, wherein said solvent vapor adsorbing material having the ability to filter paper or the cotton.
6、 据权利要求1所述的面向纳米微加工嵌段共聚物模板自组装形态调控方法,其特征在于良溶剂为甲苯或二甲苯,选择性溶剂为环乙烷或庚垸。 6, according to the nano template for micromachining block copolymer according to claim 1 self-assembled morphology regulation method, wherein a good solvent is toluene or xylene, cyclohexane or selective solvent is heptane embankment.
CN 200410013641 2004-03-24 2004-03-24 Method for adjusting and controlling configuration of self-assembling block copolymer template oriented to nano micro machining CN100429142C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410013641 CN100429142C (en) 2004-03-24 2004-03-24 Method for adjusting and controlling configuration of self-assembling block copolymer template oriented to nano micro machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410013641 CN100429142C (en) 2004-03-24 2004-03-24 Method for adjusting and controlling configuration of self-assembling block copolymer template oriented to nano micro machining

Publications (2)

Publication Number Publication Date
CN1562730A CN1562730A (en) 2005-01-12
CN100429142C true CN100429142C (en) 2008-10-29

Family

ID=34478227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410013641 CN100429142C (en) 2004-03-24 2004-03-24 Method for adjusting and controlling configuration of self-assembling block copolymer template oriented to nano micro machining

Country Status (1)

Country Link
CN (1) CN100429142C (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347953B2 (en) 2006-02-02 2008-03-25 International Business Machines Corporation Methods for forming improved self-assembled patterns of block copolymers
US7579278B2 (en) 2006-03-23 2009-08-25 Micron Technology, Inc. Topography directed patterning
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8083953B2 (en) 2007-03-06 2011-12-27 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US7959975B2 (en) 2007-04-18 2011-06-14 Micron Technology, Inc. Methods of patterning a substrate
US8372295B2 (en) 2007-04-20 2013-02-12 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US8404124B2 (en) 2007-06-12 2013-03-26 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8080615B2 (en) 2007-06-19 2011-12-20 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8294139B2 (en) 2007-06-21 2012-10-23 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
US8283258B2 (en) 2007-08-16 2012-10-09 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US8101261B2 (en) 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8425982B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8114300B2 (en) 2008-04-21 2012-02-14 Micron Technology, Inc. Multi-layer method for formation of registered arrays of cylindrical pores in polymer films
US8114301B2 (en) 2008-05-02 2012-02-14 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
US8097175B2 (en) 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US8304493B2 (en) 2010-08-20 2012-11-06 Micron Technology, Inc. Methods of forming block copolymers
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
CN105384952B (en) * 2015-09-15 2018-01-23 北京航空航天大学 A kind of regulation and control method being orientated using mechanical shear stress to Self-Assembling of Block Copolymer
CN105713189B (en) * 2016-02-16 2018-01-16 浙江大学 The methods and applications of the vertical phase domain structure of block copolymer and formation microphase-separated
CN106222752B (en) * 2016-08-29 2019-02-15 上海理工大学 A method of preparing organic crystal film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031002A1 (en) 2000-10-11 2002-04-18 Uab Research Foundation Nanostructures formed through cyclohexadiene polymerization
WO2002055185A2 (en) 2000-10-19 2002-07-18 Eidgenoess Tech Hochschule Block copolymers for multifunctional self-assembled systems
JP2003146625A (en) 2001-11-19 2003-05-21 National Institute Of Advanced Industrial & Technology Nonsilica-based mesostructure and method for manufacturing the same
CN1425706A (en) 2003-01-14 2003-06-25 天津大学 Polyglycol block modified polyhexanolactone and its preparing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031002A1 (en) 2000-10-11 2002-04-18 Uab Research Foundation Nanostructures formed through cyclohexadiene polymerization
WO2002055185A2 (en) 2000-10-19 2002-07-18 Eidgenoess Tech Hochschule Block copolymers for multifunctional self-assembled systems
JP2003146625A (en) 2001-11-19 2003-05-21 National Institute Of Advanced Industrial & Technology Nonsilica-based mesostructure and method for manufacturing the same
CN1425706A (en) 2003-01-14 2003-06-25 天津大学 Polyglycol block modified polyhexanolactone and its preparing method

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Self-assembled structures of block copolymers in selectivesolvents reproduced by lattice Monte Carlo simulation. J. Ding.Computational and Theoretical Polymer Science,Vol.11 . 2001
Self-assembly of block copolymers derived fromelastin-mimetic polypeptide sequences. Elizabeth R. Wright.Advanced Drug Delivery Reviews,Vol.54 . 2002
嵌段共聚物自组装及其在纳米材料制备中的应用(下). 袁建军等.高分子通报,第2卷. 2002
嵌段共聚物自组装在微纳制造领域的应用研究. 曹永智等.中国机械工程学会年会微纳制造技术应用研讨会. 2003
嵌段共聚物自组装模板-构造纳米结构的一种新方法. 曹永智等.纳米技术与精密工程,第1卷第1期. 2003
溶剂对SBS溶液浇铸膜形态结构及性能影响. 王铀等.高等学校化学学报,第21卷第7期. 2000
纳米结构的自组装高分子研究进展. 何光国等.功能材料,第34卷第3期. 2003

Also Published As

Publication number Publication date
CN1562730A (en) 2005-01-12

Similar Documents

Publication Publication Date Title
De Volder et al. Diverse 3D microarchitectures made by capillary forming of carbon nanotubes
Aizenberg et al. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver
Zhang et al. Breath figure: a nature-inspired preparation method for ordered porous films
TWI287170B (en) Patterning of solid state features by direct write nanolithographic printing
Lee et al. Manual assembly of microcrystal monolayers on substrates
Harrison et al. Lithography with a mask of block copolymer microstructures
Cong et al. Current status and future developments in preparation and application of colloidal crystals
US6720469B1 (en) Cell adhesion
Segalman Patterning with block copolymer thin films
Bae et al. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy
JP2007313568A (en) Micro-structure, pattern medium, and manufacturing method thereof
TWI389840B (en) Decal transfer lithography
Zhang et al. Micropatterning of Proteins on 3D Porous Polymer Film Fabricated by Using the Breath‐Figure Method
US8377243B2 (en) Method for transferring a nanolayer
US20040124092A1 (en) Inorganic nanoporous membranes and methods to form same
US9493588B2 (en) Diblock copolymer, preparation method thereof, and method of forming nano pattern using the same
Jennings et al. Physicochemical Properties of Surface‐Initiated Polymer Films in the Modification and Processing of Materials
US7923075B2 (en) Methods for preparing nanotextured surfaces and applications thereof
Rodriguez-Hernandez Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces
Bai et al. Breath figure arrays: unconventional fabrications, functionalizations, and applications
Park et al. Enabling nanotechnology with self assembled block copolymer patterns
Li et al. Patternable block copolymers
Gerasopoulos et al. Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates
Xiao et al. Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays
JP2009262004A (en) Production of nanopore

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right