CN100406147C - Horizontal induction heating device and horizontal induction heating system - Google Patents
Horizontal induction heating device and horizontal induction heating system Download PDFInfo
- Publication number
- CN100406147C CN100406147C CNB2005100539408A CN200510053940A CN100406147C CN 100406147 C CN100406147 C CN 100406147C CN B2005100539408 A CNB2005100539408 A CN B2005100539408A CN 200510053940 A CN200510053940 A CN 200510053940A CN 100406147 C CN100406147 C CN 100406147C
- Authority
- CN
- China
- Prior art keywords
- plate
- induction heating
- rolled
- rolled plate
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 170
- 230000006698 induction Effects 0.000 title claims abstract description 95
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 230000035515 penetration Effects 0.000 claims abstract description 19
- 230000035699 permeability Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 50
- 229910000831 Steel Inorganic materials 0.000 claims description 21
- 239000010959 steel Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000005096 rolling process Methods 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 12
- 239000011810 insulating material Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 21
- 230000020169 heat generation Effects 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 230000005674 electromagnetic induction Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B15/00—Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/101—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
- Metal Rolling (AREA)
Abstract
Description
技术领域 technical field
本发明有关配置在钢铁热轧生产线上的横置式感应加热装置及采用多台横置式感应加热装置组成的横置式感应加热系统。The invention relates to a horizontal induction heating device arranged on a steel hot rolling production line and a horizontal induction heating system composed of multiple horizontal induction heating devices.
背景技术 Background technique
以往,有一种对整幅板宽进行加热的电磁式感应加热装置作为对被轧板材的板宽中央部位的再加热手段。(例如,参照特开平10-128428)号公报。Conventionally, an electromagnetic induction heating device that heats the entire width of the strip has been used as a reheating means for the center portion of the strip width to be rolled. (For example, refer to JP-A-10-128428).
在这种电磁式感应加热装置中,为了使由于集肤效应只在表面形成的高温这部分热能充分地向板的内部扩散并使表面的温度低于板厚中央的温度,就要一定的时间,这样,板厚方向上的温度分布才会变得合适。In this electromagnetic induction heating device, it takes a certain amount of time to fully diffuse the heat energy formed at the high temperature only on the surface due to the skin effect to the inside of the plate and make the surface temperature lower than the temperature at the center of the plate thickness. , so that the temperature distribution in the thickness direction of the plate becomes appropriate.
[专利文献1]特开平10-128424号公报(第5页、图1)[Patent Document 1] Japanese Unexamined Patent Publication No. 10-128424 (
发明内容 Contents of the invention
现有的电磁式感应加热装置中,加热频率越高,感应电流就越是集中在被轧板材的表面流动,使表面产生过度升温。In the existing electromagnetic induction heating device, the higher the heating frequency is, the more the induced current flows on the surface of the rolled plate, causing excessive temperature rise on the surface.
另外,板的厚度越厚,表面相对内部的过度升温更大。In addition, the thicker the plate, the greater the overheating of the surface relative to the interior.
因此存在的问题是,在精轧前需要足够的时间使板厚方向的温度分布适当,加热设备的设置场所也受到限制。Therefore, there is a problem that sufficient time is required to make the temperature distribution in the plate thickness direction appropriate before finish rolling, and the installation place of the heating equipment is also limited.
又因对整幅板宽进行加热,所以存在的问题是,在只想对板宽的中央部分加热时,会无谓地浪费电力。Furthermore, since the entire width of the board is heated, there is a problem that electric power is wasted unnecessarily when only the central portion of the board width is heated.
另外,在钢铁热轧生产线的上道至下道工序中设置多台横置式感应加热装置时,被轧板材的前端通过上道工序的感应加热装置后,有时电源会跳闸。In addition, when multiple horizontal induction heating devices are installed in the upper and lower processes of the steel hot rolling production line, the power may trip when the front end of the rolled plate passes through the induction heating device in the previous process.
本发明是为解决上述问题而提出的,其目的在于提供一种对被轧板材的板宽中央部的板表面和板厚中央近似均匀地进行加热、不使板的表面过度升温的横置式感应加热装置。The present invention is proposed to solve the above problems, and its object is to provide a horizontal induction heating system that heats the surface of the sheet at the center of the width and the center of the thickness of the sheet to be rolled approximately uniformly without excessively heating the surface of the sheet. heating equipment.
本发明之又一目的为提供一种在钢铁热轧生产线的上道至下道工序中设置多台横置式感应加热装置的横置式感应加热系统,这种横置式感应加热系统在被轧板材的前端通过上道工序的感应加热装置后能防止电源跳闸。Another object of the present invention is to provide a horizontal induction heating system in which multiple horizontal induction heating devices are installed in the upper process to the next process of the steel hot rolling production line. After the front end passes through the induction heating device of the previous process, it can prevent the power from tripping.
本申请的横置式感应加热装置的感应加热方法,在钢铁热轧生产线粗轧机和精轧机之间配置由铁心和卷绕在铁心上的线圈组成的感应器,使其当中隔着被轧板材相向对置,利用交流电源供电的所述感应器对输送辊道输送的所述被轧板材进行加热,In the induction heating method of the horizontal induction heating device of the present application, an inductor composed of an iron core and a coil wound on the iron core is arranged between the rough rolling mill and the finishing mill of the hot steel rolling production line, so that they face each other across the plate to be rolled Opposite, use the inductor powered by AC power to heat the rolled plate conveyed by the conveying roller table,
使所述感应器在所述被轧板材板宽方向上的铁心宽度小于所述被轧板材的板宽,并配置在所述被轧板材的板宽中心线上,设电流渗透深度为δ(m)、所述被轧板材的电阻率为ρ(Ω-m)、所述被轧板材的磁导率为μ(H/m)、所述交流电源的加热频率为f(Hz)、圆周率为π、所述被轧板材的板厚为tw(m)时,所述方法执行如下的加热频率设定步骤:The core width of the inductor in the width direction of the rolled plate is smaller than the width of the rolled plate, and is arranged on the center line of the rolled plate width, and the current penetration depth is δ( m), the resistivity of the rolled plate is ρ (Ω-m), the magnetic permeability of the rolled plate is μ (H/m), the heating frequency of the AC power supply is f (Hz), and the circumference ratio When π, the plate thickness of the rolled plate is tw (m), the method performs the following heating frequency setting steps:
即,为了对所述被轧板材的板宽中央部的板表面和板厚中央近似均匀地进行加热,设定所述交流电源的加热频率,使下述式(1)的电流渗透深度δ满足下述式(2),That is, in order to approximately uniformly heat the surface of the sheet at the center of the sheet width and the center of the sheet thickness of the sheet to be rolled, the heating frequency of the AC power supply is set so that the current penetration depth δ of the following formula (1) satisfies The following formula (2),
δ={ρ/(μ·f·π)}1/2……(1)δ={ρ/(μ·f·π)} 1/2 ...(1)
1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03……(2)。1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03...(2).
另外,本申请的横置式感应加热系统,将多台横置式感应加热装置设置在所述钢铁热轧生产线的上道工序至下道工序间,所述横置式感应加热装置在钢铁热轧生产线粗轧机和精轧机之间配置由铁心和卷绕在铁心上的线圈组成的感应器,使其当中隔着被轧板材相向对置,利用交流电源供电的所述感应器对输送辊道输送的所述被轧板材进行加热,In addition, in the horizontal induction heating system of the present application, multiple horizontal induction heating devices are installed between the upper process and the next process of the hot steel rolling production line. An inductor consisting of an iron core and a coil wound on the iron core is arranged between the rolling mill and the finishing mill so that they face each other across the plate to be rolled. The above-mentioned rolled plate is heated,
使所述感应器在所述被轧板材板宽方向上的铁心宽度小于所述被轧板材的板宽,并配置在所述被轧板材的板宽中心线上,设电流渗透深度为δ(m)、所述被轧板材的电阻率为ρ(Ω-m)、所述被轧板材的磁导率为μ(H/m)、所述交流电源的加热频率为f(Hz)、圆周率为π、所述被轧板材的板厚为tw(m)时,执行如下的加热频率设定步骤:The core width of the inductor in the width direction of the rolled plate is smaller than the width of the rolled plate, and is arranged on the center line of the rolled plate width, and the current penetration depth is δ( m), the resistivity of the rolled plate is ρ (Ω-m), the magnetic permeability of the rolled plate is μ (H/m), the heating frequency of the AC power supply is f (Hz), and the circumference ratio When π, the plate thickness of the rolled plate is tw (m), perform the following heating frequency setting steps:
即,为了对所述被轧板材的板宽中央部的板表面和板厚中央近似均匀地进行加热,设定所述交流电源的加热频率,使下述式(1)的电流渗透深度δ满足下述式(2),That is, in order to approximately uniformly heat the surface of the sheet at the center of the sheet width and the center of the sheet thickness of the sheet to be rolled, the heating frequency of the AC power supply is set so that the current penetration depth δ of the following formula (1) satisfies The following formula (2),
δ={ρ/(μ·f·π)}1/2……(1)δ={ρ/(μ·f·π)} 1/2 ...(1)
1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03……(2)1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03...(2)
多台所述横置式感应加热装置的感应器逐个分别与交流电源连接,从钢铁热轧生产线的上道工序开始设所述各个交流电源的加热频率为F1、F2、…Fn、并且K=1.05~1.20时,各所述交流电源的加热频率设定成满足F1>F2×K>…>Fn×Kn-1的关系式。The inductors of multiple horizontal induction heating devices are respectively connected to the AC power supply one by one, and the heating frequency of each AC power supply is set as F1, F2, ... Fn from the last process of the steel hot rolling production line, and K=1.05 When ∼1.20, the heating frequency of each AC power source is set to satisfy the relational expression of F1>F2×K>…>Fn×K n-1 .
根据本申请的横置式感应加热装置的感应加热方法,由于使感应器在被轧板材板宽方向上的铁心宽度小于被轧板材的板宽,并配置在被轧板材的板宽中心线上,选择加热频率使前述的式(1)的电流渗透深度δ满足前述的式(2),从而能对被轧板材的板宽中央部的板表面和板厚中央近似均匀地进行加热,能防止板表面的过度升温。According to the induction heating method of the horizontal induction heating device of the present application, since the core width of the inductor in the width direction of the rolled plate is smaller than the plate width of the rolled plate, and is arranged on the plate width center line of the rolled plate, The heating frequency is selected so that the current penetration depth δ of the aforementioned formula (1) satisfies the aforementioned formula (2), so that the plate surface and the center of the plate thickness of the rolled plate can be heated approximately uniformly, and the plate can be prevented from Excessive heating of the surface.
另外,根据本申请的横置式感应加热系统,能防止被轧板材的前端通过上道工序的感应加热装置后电源跳闸。In addition, according to the horizontal induction heating system of the present application, it can prevent the power from tripping after the front end of the plate to be rolled passes through the induction heating device in the previous process.
附图说明 Description of drawings
图1为表示实施形态1涉及的横置式感应加热装置的构成和利用该装置感应加热的被轧板材板宽方向距离和平均升温值间关系的示意图。Fig. 1 is a schematic diagram showing the configuration of a horizontal induction heating device according to
图2为表示实施形态1涉及的横置式感应加热装置的板厚(tw)对渗透深度(δ)的比率(tw/δ)、和板表面发热密度对板厚中央发热密度的比率(板表面/板中央发热密度)间关系的示意图。Fig. 2 is a diagram showing the ratio (tw/δ) of the plate thickness (tw) to the penetration depth (δ) and the ratio of the heat generation density at the plate surface to the heat density at the center of the plate thickness (plate surface) of the horizontal induction heating device according to
图3为图2的主要部分的放大图。FIG. 3 is an enlarged view of a main part of FIG. 2 .
图4为说明横置式及电磁式感应加热装置的对于板厚方向的发热密度分布用的示意图。Fig. 4 is a schematic diagram for explaining heat generation density distribution in the plate thickness direction of a horizontal type and an electromagnetic induction heating device.
图5为说明实施形态2涉及的横置式感应加热装置的构成和动作的示意图。Fig. 5 is a schematic diagram illustrating the configuration and operation of a horizontal induction heating device according to
图6为表示利用实施形态2涉及的横置式感应加热装置和电磁式感应加热装置加热前后板温变化的示意图。Fig. 6 is a schematic diagram showing changes in plate temperature before and after heating by the horizontal induction heating device and the electromagnetic induction heating device according to the second embodiment.
图7为表示实施形态3涉及的横置式感应加热装置的线圈接线的示意图。Fig. 7 is a schematic view showing coil wiring of a horizontal induction heating device according to a third embodiment.
图8为表示实施形态3涉及的横置式感应加热装置中、被轧板材和上方的感应器铁心及下方的感应器铁心间的间距与电损耗的示意图。Fig. 8 is a schematic view showing the distance and electric loss between the rolled plate, the upper inductor core and the lower inductor core in the horizontal induction heating device according to the third embodiment.
图9为表示实施形态4涉及的横置式感应加热装置的构成的示意图。Fig. 9 is a schematic diagram showing the configuration of a horizontal induction heating device according to
图10为表示在实施形态4涉及的横置式感应加热装置中、使被轧板材和感应器铁心间的间距变化时板厚方向升温分布的示意图。Fig. 10 is a schematic view showing the temperature rise distribution in the thickness direction of the sheet when the distance between the sheet to be rolled and the inductor core is changed in the horizontal induction heating device according to the fourth embodiment.
图11为表示在实施形态4涉及的横置式感应加热装置中、(板上表面发热密度)/(板下表面发热密度)的比率对于(上间距)/(下间距)的比率的示意图。11 is a schematic diagram showing the ratio of (heat generation density on the upper surface of the plate)/(heat generation density on the lower surface of the plate) to the ratio of (upper pitch)/(lower pitch) in the horizontal induction heating device according to
图12为说明实施形态5涉及的横置式感应加热系统的构成和动作用的示意图。Fig. 12 is a schematic diagram for explaining the configuration and operation of the horizontal induction heating system according to the fifth embodiment.
标记说明Mark description
1、8、17被轧板材 2、3、19a、20a感应器 2a、3a、9a、10a铁心 2b、3b、9b、9c、10b、10c线圈 7a、7b、18a、18b、18c输送辊道 8、17被轧板材 19第1感应加热装置 20第2感应加热装置1, 8, 17 rolled
具体实施方式 Detailed ways
实施形态1
图1为表示本发明实施形态1的横置式感应加热装置的构成和利用该横置式感应加热装置感应加热的被轧板材板宽方向距离和平均升温值间关系的示意图。Fig. 1 is a schematic diagram showing the configuration of a horizontal induction heating device according to
图2为表示在图1(a)示出的实施形态1涉及的横置式感应加热装置中板厚(tw)对渗透深度(δ)的比率(tw/δ)、和板表面发热密度对板厚中央发热密度的比率(板表面/板中央发热密度)间关系的示意图,图3为将图2的主要部分放大后的示意图。Fig. 2 is a diagram showing the ratio (tw/δ) of the plate thickness (tw) to the penetration depth (δ) in the horizontal induction heating device according to
图1至图3中,利用输送辊道(图中未示出)将被轧板材1在钢铁热轧生产线的粗轧机(图中未示出)和精轧机(图中未示出)之间输送。In Fig. 1 to Fig. 3, the plate to be rolled 1 is placed between the rough rolling mill (not shown in the figure) and the finishing mill (not shown in the figure) of the steel hot rolling production line by using the conveying roller table (not shown in the figure). delivery.
然后,将一对(一组)感应器2、3上下对向配置,使得当中隔着被轧板材1。感应器2、3分别由被轧板材1的板宽方向上的铁心宽度不于轧板材1的板宽的铁心2a、3a、及卷绕在铁心2a、3a上的线圈2b、3b构成。Then, a pair (one set) of
从交流电源4向各线圈2b、3b供给高频电能,利用铁心2a、3a产生的磁通对被轧板材1进行感应加热。The
感应器2、3的铁心宽度由加热方式决定,现取小于等于从被轧板材1的板宽减去300mm后的值,再有,将感应器2、3设置在被轧板材1的板宽中心线上使被轧板材1的板宽端部至铁心2a、3a的距离至少离开150mm以上。The core width of the
还有,所谓‘被轧板材1的板宽端部至铁心2a、3a的距离,是指在和被轧板材1的板面平行的方向上,被轧板材1的板宽端部和铁心2a或铁心3a的外表面间的距离(即图1中的A或A’所示的距离)。In addition, the so-called "distance from the end of the width of the rolled
通过这样,利用实验可以确认,几乎能消除板宽端部的过度升温,同时如图1(b)所示,对包括板宽中央部在内的铁心宽度区域部分进行加热。In this way, it has been confirmed by experiments that the excessive temperature rise at the ends of the plate width is almost eliminated, and at the same time, as shown in FIG. 1( b ), the core width region including the center portion of the plate width is heated.
还有,所谓将感应器2、3配置在被轧板材1的中心线上,是指将感应器2、3配置在板宽中央部上,使铁心2a、3a的一部分处于板宽中心线上,也包括将感应器2、3的中心配置成和板宽中心线一致。在钢铁热轧生产线上,被轧板材1的板宽变动范围较大,为600~1900mm。In addition, the so-called disposing the
因此,感应器2、3的铁心2a、3a的铁心宽度最好设定在300~700mm的范围内。Therefore, the core width of the cores 2a, 3a of the
下述的式(1)为在本发明实施形态1的横置式感应加热装置中,表示计算利用感应加热的电流渗透深度δ(m)的算式。The following formula (1) is a formula for calculating the current penetration depth δ(m) by induction heating in the horizontal induction heating device according to
δ={ρ/(μ·f·π)}1/2……(1)δ={ρ/(μ·f·π)} 1/2 ...(1)
式中,ρ为被轧板材1的电阻率(Ω-m),μ为被轧板材1的磁导率(H/m),f为交流电源4的加热频率(Hz),π为圆周率。In the formula, ρ is the resistivity (Ω-m) of the rolled
图2及图3表示式(1)的电流渗透深度δ和被轧板材1的板厚tw的比率、及板表面和板厚中央部的发热密度比率间的关系。2 and 3 show the relationship between the ratio of the current penetration depth δ in the formula (1) and the thickness tw of the rolled
这里,板表面发热密度对板厚中央发热密度之比可采用被轧板材1的板厚tw和电流渗透深度δ如下述的式(3)进行表示。Here, the ratio of the heating density at the surface of the sheet to the heating density at the center of the sheet thickness can be expressed by the following formula (3) using the sheet thickness tw and the current penetration depth δ of the rolled
板表面发热密度/板厚中央发热密度=Heating density on the surface of the board/heating density in the center of the board thickness =
{cosh(tw/δ)+cos(tw/δ)}/2……(3){cosh(tw/δ)+cos(tw/δ)}/2...(3)
加热前的板厚方向的温度分布由于散热的影响,板表面的温度比板厚中央的温度低。The temperature distribution in the plate thickness direction before heating is that the temperature on the surface of the plate is lower than the temperature in the center of the plate thickness due to the influence of heat dissipation.
因而,通过将板表面发热密度对板厚中央发热密度之比(即板表面发热密度/板厚中央发热密度)设在1.03以下,能在板厚方向上进行近似均匀的加热,防止板表面过度升温。Therefore, by setting the ratio of the heating density on the surface of the plate to the heating density at the center of the plate thickness (ie, the heating density at the surface of the plate/the heating density at the center of the plate thickness) below 1.03, it is possible to perform approximately uniform heating in the direction of the plate thickness and prevent excessive heating on the surface of the plate. heat up.
为了满足上述关系只要选择频率使得被轧板材1的板厚tw和电流渗透深度δ之间的关系满足下述式(2)即可。In order to satisfy the above relationship, it is sufficient to select the frequency such that the relationship between the thickness tw of the rolled
1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03……(2)1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03...(2)
在钢铁热轧生产线上,按照规定的加热温度处理的被轧板材1的电阻率ρ大约为120μΩ-cm左右,相对磁导率为1。In the steel hot rolling production line, the resistivity ρ of the rolled
因此,对于被轧板材1的板厚tw的加热频率如果选择比tw=25mm时413Hz、tw=30mm时287Hz、tw=40mm时161Hz要低的适当的加热频率,则板表面发热密度对板厚中央发热密度之比为1.03以下,能在板厚方向上进行近似均匀的加热,防止板表面过度升温。Therefore, if the heating frequency for the thickness tw of the rolled
图4为说明横置式感应加热装置及电磁式感应加热装置的对于板厚方向的发热密度分布用的示意图。FIG. 4 is a schematic diagram for explaining the heat generation density distribution in the plate thickness direction of the horizontal induction heating device and the electromagnetic induction heating device.
图中,5表示电磁式感应加热装置的特性,6表示横置式感应加热装置的特性。In the figure, 5 represents the characteristics of the electromagnetic induction heating device, and 6 represents the characteristics of the horizontal induction heating device.
电磁式感应加热装置如特性5所示,理论上在板厚中心处发热密度为0,在板表面集中发热。The electromagnetic induction heating device is shown in
与此相反,横置式感应加热装置通过适当地选定频率,从而能如特性6所示,在板厚方向的距离上使发热分布近似均匀。On the contrary, in the horizontal induction heating device, by appropriately selecting the frequency, as shown in
实施形态1中,是对将一对(一组)感应器2、3配置在被轧板材1的板宽中心线上的例子进行了说明,但也可以沿被轧板材1的前进方向将多组(例如两组)感应器2、3配置在板宽方向上同一位置或左右移位的位置上,通过这样能与不同宽度的被轧板材1相对应,按照最佳的加热方式进行加热。In
另外,实施形态1中,是对感应器2、3的磁极分别为单极的例子进行了说明,但如采用两极或两极以上的多极,预计也能获得同样的效果。In addition, in
还有,实施形态1中,是对交流电源4产生高频电能的例子进行了说明,但50Hz或60Hz的市电频率也能满足式(2)的要求。Also, in
如上所述,本实施形态的横置式感应加热装置是将由铁心2a、3a、及分别卷绕在上述铁心2a、3a上的线圈2b、3b组成的感应器2、3配置在钢铁热轧生产线的粗轧机和精轧机之间使它们对置,当中隔着被轧板材1,并利用由交流电源4供电的感应器2、3对输送辊道输送的被轧板材1进行加热,在这样的横置式感应加热装置中,使感应器2、3在被轧板材1的板宽万向的铁心宽度小于被轧板材1的板宽,并配置在被轧板材1的板宽中心线上,设电流渗透深度为δ(m)、被轧板材1的电阻率为ρ(Ω-m)、被轧板材1的磁导率为μ(H/m)、交流电源4的加热频率为f(Hz)、圆周率为π、上述被轧板材的板厚为tw(m)时,设定交流电源4的加热频率,使下述式(1)的电流渗透深度δ满足下述式(2)。As described above, in the horizontal induction heating device of this embodiment, the
δ={ρ/(μ·f·π)}1/2……(1)δ={ρ/(μ·f·π)} 1/2 ...(1)
1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03……(2)1.0<{cosh(tw/δ)+cos(tw/δ)}/2<1.03...(2)
其结果,本发明实施形态的横置式感应加热装置能近似均匀地对被轧板材板宽中央部的板表面和板厚中央加热,并能防止板表面过度升温。As a result, the horizontal induction heating device according to the embodiment of the present invention can approximately uniformly heat the surface of the sheet to be rolled at the center of the width and the center of the sheet thickness, and prevent excessive temperature rise of the surface of the sheet.
实施形态2
图5为说明本发明实施形态2涉及的横置式感应加热装置的构成和动作的示意图。Fig. 5 is a schematic diagram illustrating the configuration and operation of a horizontal induction heating device according to
如图5(a)所示,在钢铁热轧生产线的粗轧机(图中未示出)和精轧机(图中未示出)之间利用输送辊道7a、7b输送被轧板材8。As shown in Fig. 5(a), between the rough rolling mill (not shown in the figure) and the finishing mill (not shown in the figure) of the steel hot rolling production line, the rolled
然后,将分别具有两个(多个)磁极的一对感应器9、10对向配置,使其当中隔着被轧板材8。Then, a pair of
感应器9、10分别由被轧板材8的板宽方向的铁心宽度小于被轧板材8的板宽的铁心9a、10a、及卷绕在各磁极上的线圈9b、9c、10b、10c构成。The
对各线圈9b、9c、10b、10c供给来自交流电源(图中未示出)的高频电能,利用各铁心9a、10a的磁极产生的磁通对被轧板材8进行感应加热。Each
和实施形态1一样,感应器9、10的铁心宽度为小于等于从被轧板材8的板宽减去300mm后的值,将铁心9a、10a配置在被轧板材8的板宽中心线上。Like
上述构成中,在按照交流电源(图中未示出)的频率(即加热频率)为150Hz、被轧板材8的厚度为40mm、输送速度为60mpm、平均升温量为20℃的设定条件进行加热时,如图5(c)所示,正在加热中的板表面和板厚中央近似均匀地升温。In the above-mentioned configuration, the frequency (that is, the heating frequency) according to the AC power supply (not shown in the figure) is 150 Hz, the thickness of the rolled
这里,在电磁感应式加热装置中,用电磁线圈按照和横置式相同的条件对被轧板材加热时,在被轧板材通过电磁线圈的过程中,板厚中央几乎不升温,而板表面明显升温。Here, in the electromagnetic induction heating device, when the electromagnetic coil is used to heat the rolled plate under the same conditions as the horizontal type, when the rolled plate passes through the electromagnetic coil, the center of the plate thickness hardly rises in temperature, while the surface of the plate heats up significantly. .
相对于平均升温值为20℃的设定值,板表面在瞬间(急速地)过度升温为52℃,约2.6倍。Compared with the set value of 20°C as the average temperature rise value, the surface of the plate is instantaneously (rapidly) excessively heated to 52°C, which is about 2.6 times.
被轧板材8的发热分布如图5(b)所示,从和感应器9、10对向的部位开始扩展,根据情况直至配置在感应器9、10前后的输送辊道7a、7b为止。As shown in Figure 5(b), the heat distribution of the rolled
因此,在被轧板材8上流动的电流有可能在和输送辊道7a、7b的接触点产生火花。Therefore, there is a possibility that sparks may be generated at contact points with the conveying roller tables 7a and 7b by the current flowing through the rolled
为防止上述现象的发生,例如用陶瓷涂料等电气绝缘材料涂覆在输送辊道7a、7b的表面,防止被轧板材8上流动的电流流入输送辊道7a、7b。In order to prevent the occurrence of the above phenomenon, for example, electric insulating materials such as ceramic coatings are used to coat the surfaces of the conveying roller tables 7a, 7b to prevent the current flowing on the rolled
图6为表示利用横置式感应加热装置和电磁式感应加热装置在加热前后的板温变化的示意图。FIG. 6 is a schematic view showing changes in plate temperature before and after heating by a horizontal induction heating device and an electromagnetic induction heating device.
用电磁式感应加热装置,在板表面及板厚中央为了达到升温设定湿度20℃,输送速度为60mpm时,需要20秒以上,换算成距离需要20m。With the electromagnetic induction heating device, it takes more than 20 seconds to reach the set humidity of 20°C on the surface of the board and the center of the thickness of the board, and the conveying speed is 60 mpm, which is converted into a distance of 20 m.
与此相反,用横置式感应加热装置能在数秒以内达到。In contrast, this can be achieved within seconds with a horizontal induction heating device.
实施形态3
图7为表示本发明实施形态3涉及的横置式感应加热装置的线圈接线的示意图。Fig. 7 is a schematic view showing coil wiring of a horizontal induction heating device according to
图7中,交流电源4和实施形态1相同,被轧板材8及感应器9、10和实施形态2相同。In Fig. 7, the
图7(a)中,各感应器9、10的线圈9b、9c、10b、10c串联连接,并接交流电源4及匹配电容器11。In FIG. 7(a), the
另外,图7(b)中,配置在被轧板材8上方的感应器(上感应器)9的线圈9b、9c串联连接,配置在下方的感应器(下感应器)10的线圈10b、10c串联连接。In addition, in FIG. 7(b), the
然后,被轧板材8上方的线圈9b、9c和下方的线圈10b、10c与交流电源4并联连接。Then, the
如图7(a)所示,在感应器9、10的线圈9b、9c、10b、10c全部串联连接时,即使感应器9、10未对称配置在被轧板材8的上下,流过所有线圈9b、9c、10b、10c的电流也都相同,各感应器9、10的电损耗相等。As shown in Figure 7(a), when the
另一方面,如图7(b)所示,在感应器9的线圈9b、9c和感应器10的线圈10b、10c并联连接时,由于靠近被轧板材8一侧的线圈阻抗变小,流过较多的电流,所以靠近被轧板材8一侧的感应器电损耗变大。On the other hand, as shown in FIG. 7(b), when the
图8为表示被轧板材8和上方的感应器9的铁心及下方的感应器10的铁心间间距与电损耗关系的示意图。FIG. 8 is a schematic diagram showing the relationship between the distance between the iron cores of the rolled
图8中,(a)表示上下感应器9、10的铁心和被轧板材8之间的间距相等、为90mm的情形,(b)表示上感应器9的铁心和被轧板材8之间的间距为50mm、下感应器10的铁心和被轧板材8之间的间距为130mm、而且线圈9b、9c、10b、10c的连接如图7(a)所示的情形,(c)表示上下感应器9、10和被轧板材8之间的间距和(b)相同、而线圈9b、9c和线圈10b、10c如图7(b)所示并联连接的情形。In Fig. 8, (a) shows the situation that the distance between the iron cores of the upper and
图8为按照任何一种被轧板材8的平均升温量都相同的条件进行比较的结果。FIG. 8 shows the results of comparison under the condition that the average temperature rise of any rolled
在上下各感应器9、10的铁心9a、10a和被轧板材8之间的间距相等时,则如图8(a)所示,各铁心9、10的电损耗相等。When the distances between the
与上不同的是,如图7(a)所示,上方的线圈9b、9c和下方的线圈10b、10c串联连接时,即使感应器9、10对被轧板材8没有对称配置,但由于在所有的线圈9b、9c、10b、10c中流过的电流相同,所以各感应器9、10的电损耗几乎相同。The difference is that, as shown in Figure 7(a), when the
另外,如图7(b)所示,上方的线圈9b、9c和下方的线圈10b、10c并联连接时,则如图8(c)所示,间距小的感应器9一侧的损耗变大,并且比如图7(a)所示连接的情形损耗大。In addition, as shown in FIG. 7(b), when the
如上所述,当上方的线圈9b、9c和下方的线圈10b、10c并联连接时,因靠近被轧板材8一侧的线圈9b、9c中流过的电流较多,接近该侧的感应器9的电损耗变大,线圈的冷却能力显得不足,所以有可能限制在线圈中流过的电流,并限制被轧板材8的升温值As mentioned above, when the
相反,如图7(a)所示,通过将所有的线圈9b、9c、10b、10c串联连接能使各感应器9、10的电损耗几乎相同。On the contrary, as shown in FIG. 7( a ), by connecting all the
实施形态4
图9为表示本发明实施形态4涉及的横置式感应加热装置的构成的示意图。Fig. 9 is a schematic diagram showing the configuration of a horizontal induction heating device according to
图9中,被轧板材8、感应器2、3及交流电源4和实施形态1相同。In Fig. 9, the sheet to be rolled 8, the
图9中,配置能沿被轧板材1板宽方向移动的台车12。各感应器2、3通过升降手段13、14当中隔看被轧板材1对向配置在台车12上,各自能够分别升降。In FIG. 9 , a
感应器2、3的线圈2a、3a通过配置在台车12上的匹配电容器15、16接交流电源4。还有,匹配电容器15、16也可以与台车12分开设置。The coils 2a, 3a of the
在上述构成的横置式感应加热装置中,通过利用升降手段13、14使配置在被轧板材1上下的感应器2、3升降,从而能随意地调整各感应器2、3和被轧板材1之间的间距。In the above-mentioned horizontal induction heating device, by using the lifting means 13, 14 to move the
图10为表示在实施形态4涉及的横置式感应加热装置中、使被轧板材1和上下配置的感应器2、3的铁心2a、3a之间的间距变化时在板厚方向的升温分布的示意图。Fig. 10 is a diagram showing the distribution of temperature rise in the thickness direction of the
如上下的间距不同,则不管上下的线圈2b、3b是串联连接还是并联连接,都有这样一种倾向,即间距小的一侧板面升温大。If the upper and lower spacings are different, no matter whether the upper and
图11为表示在实施形态4涉及的横置式感应加热装置中,(板上表面发热密度)/(板下表面发热密度)的比率对于(上间距)/(下间距)的比率的示意图。Fig. 11 is a schematic diagram showing the ratio of (heat generation density on the upper surface of the plate)/(heat generation density on the lower surface of the plate) to the ratio of (upper pitch)/(lower pitch) in the horizontal induction heating device according to
图11中,如上下的间距不同,则间距小的一侧板表面升温大。In Fig. 11, if the distance between the upper and lower sides is different, the surface temperature of the side plate with the smaller distance rises more.
这样,由于在上下间距不同时,被轧板材1在厚度方向的升温就不同,所以根据被轧板材1的板厚,通过用升降手段13、14调整各感应器2、3的位置,使上下间距相同,从而在板的上下面上产生同样的升温。In this way, when the upper and lower distances are different, the temperature rise of the rolled
通过感应器2、3前,被轧板材1在板厚方向的温度分布取决于在加热炉内利用燃气进行加热的工况、支承被轧板材1的滑道(图中未示出)的吸热、或在从加热炉中推出后的输送途中输送辊道(图中未示出)的吸热等情况,温度分布存在被轧板材1下方温度低于上方的倾向。Before passing through the
这种被轧板材1的上下面的温度差可能使板的质量不稳定,并影响机械加工性能。Such a temperature difference between the upper and lower surfaces of the rolled
但是,根据上述的构成,因为能用升降手段12、13使上下各感应器2、3升降,来调整各感应器2、3和被轧板材1之间的间距,通过将下方的间距调整得比上方的间距小,而便板下面的温度升得比板上面高,所以能使板的上下面形成均匀的温度。But, according to above-mentioned structure, because can make each
实施形态5
图12为说明本发明实施形态5涉及的横置式感应加热系统的构成和动作用的示意图。Fig. 12 is a schematic diagram for explaining the configuration and operation of a horizontal induction heating system according to
本实施形态5涉及的横置式感应加热系统的特征在于,从钢铁热轧生产线的上道工序开始至下道工序,配置多台具有实施形态1的构成的横置式感应加热装置。The horizontal induction heating system according to the fifth embodiment is characterized in that a plurality of horizontal induction heating devices having the configuration of the first embodiment are arranged from the upper process to the lower process of the hot steel rolling line.
还有,图12表示在钢铁热轧生产线的上道工序一侧配置第1感应加热装置19、在下道工序一侧配置第2感应加热装置20的情况。In addition, Fig. 12 shows the situation where the first induction heating device 19 is arranged on the upper process side of the steel hot rolling line, and the second
另外,图12(a)表示被轧板材17的前端(板头)开始通过第1感应加热装置19的感应器19a之间时的情形,图12(b)表示被轧板材17的末尾(板尾)开始通过第1感应加热装置19的感应器19a之间时的情形。In addition, Fig. 12 (a) shows the situation when the front end (plate head) of the rolled plate 17 begins to pass between the inductors 19a of the first induction heating device 19, and Fig. 12 (b) shows the end of the rolled plate 17 (plate tail). ) starts to pass between the inductors 19a of the first induction heating device 19.
图12中,被轧板材17靠输送辊道18a~18c从图的左方输送到图的右方。In Fig. 12, the plate to be rolled 17 is conveyed from the left side of the figure to the right side of the figure by the conveying roller tables 18a-18c.
沿被轧板材17的前进方向,从上道工序开始配置第1感应加热装置19和第2感应加热装置20。The first induction heating device 19 and the second
而且,感应加热装置19、20分别有各自的交流电源(图中未示出)。设与生产线上道工序一侧的感应加热装置19连接的交流电源(图中未示出)的频率为F1,设与生产线下道工序一侧的感应加热装置20连接的交流电源(图中未示出)的频率为F2。Moreover, the
再设从上道工序一侧开始与第n台感应加热装置连接的交流电源(图中未示出)的频率为Fn,在K=1.05~1.20时,上道工序一侧的交流电源(图中未示出)和下道工序一侧的交流电源(图中未示出)的频率设定成满足下述的式(4)。Let the frequency of the AC power supply (not shown) connected to the nth induction heating device from the previous process side be Fn, and when K=1.05~1.20, the AC power supply on the previous process side (Figure 1) ) and the frequency of the AC power supply (not shown) on the next process side are set to satisfy the following formula (4).
F1>F2×K>…>Fn×Kn-1……(4)F1>F2×K>…>Fn×Kn -1 ……(4)
横置式感应加热装置在被轧板材17不处于上下感应器19a、20a之间的无负载状态下,阻抗增大。In the horizontal induction heating device, the impedance increases in the no-load state where the rolled plate 17 is not located between the upper and lower inductors 19a, 20a.
因而,在将跟踪负载的谐振频率而运行的变频器作为交流电源使用时,如图12所示,与有负载时相比,频率降低。Therefore, when an inverter that operates following the resonance frequency of the load is used as an AC power supply, the frequency is lower than when there is a load, as shown in FIG. 12 .
被轧板材17从上道工序开始输送的前端通过感应器19a、20a之际,如将上道工序一侧的感应加热装置19的加热频率设定得低于下道工序一侧的感应加热装置20的加热频率,则在板的前端通过后的感应加热装置19和板的前端正在通过中的下道工序的感应加热装置20的加热频率在一瞬间变成一致。When the front end of the rolled plate 17 from the previous process passes through the inductors 19a and 20a, if the heating frequency of the induction heating device 19 on the previous process side is set lower than that of the induction heating device on the next process side If the heating frequency is 20, then the heating frequency of the induction heating device 19 after the front end of the plate passes and the
因此,有可能在相邻的感应加热装置19、20间发生磁性干扰,而使加热温度不稳定、或电源跳闸。Therefore, there is a possibility that magnetic interference occurs between the adjacent
但通过将生产线上道工序一侧的交流电源(图中未示出)的频率设得比下道工序一侧的交流电源(图中未示出)的频率高,从而能防止被轧板材17的前端通过上道工序一侧的感应加热装置19后产生的电源跳闸。However, by setting the frequency of the AC power supply (not shown) on the upper process side of the production line higher than the frequency of the AC power supply (not shown) on the next process side, it is possible to prevent the rolled plate 17 The front end of the machine passes through the induction heating device 19 on the side of the previous process, resulting in a power trip.
如上所述,本发明实施形态的横置式感应加热系统是一种将多台实施形态1所述的横置式感应加热装置设置在钢铁热轧生产线从上道工序开始至下道工序之间的横置式感应加热系统,由于多台横置式感应加热装置的感应器分别逐个与交流电源连接,从钢铁热轧生产线的上道工序开始设上述各交流电源的加热频率为F1、F2、…Fn,而且在K=1.05~1.20时,上述各交流电源的加热频率设定成能满足“F1>F2×K>…>Fn×Kn-1”,所以能将钢铁热轧生产线上道工序一侧的交流电源的频率高于下道工序一侧的交流电源的频率,能防止被轧板材前端通过上道工序一侧的感应加热装置后产生的电源跳闸。As mentioned above, the horizontal induction heating system according to the embodiment of the present invention is a horizontal induction heating system in which a plurality of horizontal induction heating devices according to
工业上的实用性Industrial Applicability
本发明适用于能对被轧板材板宽中央部分的板表面和板厚中央进行近似均匀的加热、并不让板表面过度升温的横置式感应加热装置及横置式感应加热系统。The present invention is suitable for a horizontal induction heating device and a horizontal induction heating system capable of heating approximately uniformly the surface of the plate at the central part of the width and the center of the thickness of the plate without causing the surface of the plate to rise excessively in temperature.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004261017A JP4369332B2 (en) | 2004-09-08 | 2004-09-08 | Transverse induction heating apparatus and transverse induction heating system |
JP2004261017 | 2004-09-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1745921A CN1745921A (en) | 2006-03-15 |
CN100406147C true CN100406147C (en) | 2008-07-30 |
Family
ID=36155751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100539408A Expired - Fee Related CN100406147C (en) | 2004-09-08 | 2005-03-08 | Horizontal induction heating device and horizontal induction heating system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4369332B2 (en) |
KR (1) | KR100633520B1 (en) |
CN (1) | CN100406147C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7255370B2 (en) * | 2019-06-07 | 2023-04-11 | 富士電機株式会社 | induction heating device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122649A (en) * | 1975-04-03 | 1976-10-26 | Uddeholms Ab | Combined strip heating and guiding device |
JPS531339A (en) * | 1976-06-26 | 1978-01-09 | Toyo Aluminium Kk | Induction heating coil |
JPS5832383A (en) * | 1981-08-20 | 1983-02-25 | 三菱電機株式会社 | Induction heater |
JPH0638563Y2 (en) * | 1990-03-29 | 1994-10-12 | 日新製鋼株式会社 | Table roller for hot rolling equipment |
JPH1094818A (en) * | 1996-09-26 | 1998-04-14 | Sumitomo Metal Ind Ltd | Method and apparatus for descaling steel |
CN1481443A (en) * | 2000-12-18 | 2004-03-10 | 杰富意钢铁株式会社 | Method and equipment for manufacturing thick steel plate |
-
2004
- 2004-09-08 JP JP2004261017A patent/JP4369332B2/en not_active Expired - Fee Related
-
2005
- 2005-03-07 KR KR1020050018729A patent/KR100633520B1/en not_active Expired - Fee Related
- 2005-03-08 CN CNB2005100539408A patent/CN100406147C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51122649A (en) * | 1975-04-03 | 1976-10-26 | Uddeholms Ab | Combined strip heating and guiding device |
JPS531339A (en) * | 1976-06-26 | 1978-01-09 | Toyo Aluminium Kk | Induction heating coil |
JPS5832383A (en) * | 1981-08-20 | 1983-02-25 | 三菱電機株式会社 | Induction heater |
JPH0638563Y2 (en) * | 1990-03-29 | 1994-10-12 | 日新製鋼株式会社 | Table roller for hot rolling equipment |
JPH1094818A (en) * | 1996-09-26 | 1998-04-14 | Sumitomo Metal Ind Ltd | Method and apparatus for descaling steel |
CN1481443A (en) * | 2000-12-18 | 2004-03-10 | 杰富意钢铁株式会社 | Method and equipment for manufacturing thick steel plate |
Also Published As
Publication number | Publication date |
---|---|
KR20060043465A (en) | 2006-05-15 |
JP2006075859A (en) | 2006-03-23 |
JP4369332B2 (en) | 2009-11-18 |
CN1745921A (en) | 2006-03-15 |
KR100633520B1 (en) | 2006-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2709494C1 (en) | Compact homogenization line by continuous annealing | |
EP1854335B1 (en) | Induction heating device for a metal plate | |
CN100469199C (en) | Horizontal induction heating device | |
CN100371096C (en) | Metal strip connection method | |
WO2016139944A1 (en) | Heating method, heating apparatus and method for manufacturing press-molded article | |
JP6083156B2 (en) | Rapid heating apparatus and rapid heating method for continuous annealing equipment | |
CN100406147C (en) | Horizontal induction heating device and horizontal induction heating system | |
JPH04147596A (en) | Induction heating of metallic thin plate | |
US20070051152A1 (en) | Device for heating a metal strip, and apparatuses equipped with a device of this type, for producing hot-rolled metal strip | |
JPH088051A (en) | Method and apparatus for induction heating of metal plate | |
CN115704056A (en) | Induction heating device and method suitable for multi-specification steel plates | |
CN204490950U (en) | The portable induction heating device continuously of plate of moderate thickness | |
JP3869711B2 (en) | Metal strip heating device with excellent temperature uniformity in the plate width direction | |
JP2003290812A (en) | Induction heating equipment and hot rolling equipment | |
JP3896110B2 (en) | In-line soaking method for heated steel sheet | |
CN115803465A (en) | Method and installation for inductively heating flat parts | |
JP5332072B2 (en) | Heat treatment method and apparatus for thick steel plate | |
CN114007773A (en) | Equipment for inductively heating products by means of transverse flow | |
KR100352593B1 (en) | Roll for feeding slab in induction heater | |
JPH03755B2 (en) | ||
JPH0938712A (en) | Induction heating method for metal plate | |
JP4035122B2 (en) | Steel strip heating method with excellent temperature uniformity in the width direction | |
JP3112617B2 (en) | Induction heating method for rolled material | |
JPS5926370B2 (en) | Method of heating steel billet for hot rolling | |
JP6083157B2 (en) | Rapid heating apparatus and rapid heating method for continuous annealing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080730 |
|
CF01 | Termination of patent right due to non-payment of annual fee |