CN100400586C - 一种耐磨导电复合材料及其制备方法 - Google Patents
一种耐磨导电复合材料及其制备方法 Download PDFInfo
- Publication number
- CN100400586C CN100400586C CNB2006100498277A CN200610049827A CN100400586C CN 100400586 C CN100400586 C CN 100400586C CN B2006100498277 A CNB2006100498277 A CN B2006100498277A CN 200610049827 A CN200610049827 A CN 200610049827A CN 100400586 C CN100400586 C CN 100400586C
- Authority
- CN
- China
- Prior art keywords
- wear
- composite material
- density polyethylene
- conductive composite
- resistant conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title abstract description 9
- 229920001903 high density polyethylene Polymers 0.000 claims abstract description 23
- 239000004700 high-density polyethylene Substances 0.000 claims abstract description 23
- 239000002048 multi walled nanotube Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 238000002360 preparation method Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 5
- 238000005303 weighing Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000000654 additive Substances 0.000 abstract description 2
- 230000000996 additive effect Effects 0.000 abstract description 2
- 239000008187 granular material Substances 0.000 abstract 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000000155 melt Substances 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 239000002041 carbon nanotube Substances 0.000 description 14
- 229910021393 carbon nanotube Inorganic materials 0.000 description 14
- 239000000203 mixture Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241000208340 Araliaceae Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000006250 one-dimensional material Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开的耐磨导电复合材料的组分及其重量百分比含量:多壁碳纳米管4~7%,高密度聚乙烯96~93%。其制备采用熔融共混法,步骤如下:按比例称取多壁碳纳米管粉末及高密度聚乙烯颗粒,于150℃~170℃下均匀混合后放入模具中,先在165℃~180℃下预热5~20分钟,随后在5~20MPa及10~30MPa压力下各压制5~20分钟,脱膜,冷却到室温。本发明的耐磨导电复合材料,以高密度聚乙烯为基体,多壁碳纳米管为添加剂,既具有优良的导电性能,又具有优良的耐磨减摩功能,同时制备工艺简单,操作方便,重复性好。
Description
技术领域
本发明涉及一种耐磨导电复合材料及其制备方法。
背景技术
碳纳米管是上世纪90年代初发现的一种新材料,是由石墨层按一定的方式卷曲而成,按其形成的层数可分为单壁纳米碳管和多壁纳米碳管,是目前一维材料研究领域里最广受欢迎的纳米材料的典型代表。碳纳米管由于其优良的电学、力学和热学性能,在场发射、吸波、电极材料、通用高分子材料等很多领域都具有很好的应用前景,世界各国都在对其进一步的应用研究方面加大了力度和投入。
高分子材料一般具有容易成型等优点,但通常为绝缘材料,因而限制了它在许多方面的应用。为使其成为导体或半导体,可采用添加导电填料的方法。使用碳纳米管作为高分子材料的导电添加剂,由于碳纳米管具有极大的长径比,只需添加少量即可达到导电要求。在许多使用场合中,除了希望材料能导电以外还希望能具有耐磨减摩作用,如石油运输管道保温材料,电力机车电接触滑片等。碳纳米管是由石墨层卷绕而成的管状材料,石墨本身具有优异的耐磨减摩功能,常作为固体润滑剂,它具有比液体润滑剂更适合于在恶劣环境中,如环境温度变化剧烈的航空航天等领域内使用。由石墨层卷绕成管状的碳纳米管同样可以作为优良的润滑剂使用。而且在摩擦磨损过程中,复合材料表层的碳纳米管将成为碎片均匀分布于材料表面,可使材料表面保持长时间的润滑,不会存在液体润滑剂常见的干燥和失效。除此之外,因为碳纳米管具有独特的物理及化学性能,它还能赋予复合材料许多独特优点。
但目前尚未有将碳纳米管和高分子材料有机结合起来的耐磨导电复合材料。
发明内容
本发明的目的是提供一种既耐磨又具有导电功能的耐磨导电复合材料及其制备方法。
本发明的耐磨导电复合材料,它的组分及其重量百分比含量如下:
多壁碳纳米管 4~7%,
高密度聚乙烯 96~93%。
上述的多壁碳纳米管利用化学气相沉积法制备,其直径为10nm~25nm。
本发明的耐磨导电复合材料的制备采用熔融共混法,其步骤如下:
按比例称取多壁碳纳米管粉末及高密度聚乙烯颗粒,于150℃~170℃下均匀混合后放入模具中,先在165℃~180℃下预热5~20分钟,随后在5~20MPa及10~30MPa压力下各压制5~20分钟,脱膜,冷却到室温。
上述高密度聚乙烯的分子量为60000~100000。
本发明的耐磨导电复合材料,以高密度聚乙烯为基体,多壁碳纳米管为添加剂,既具有优良的导电性能,又具有优良的耐磨减摩功能,同时该材料采用熔融共混法制备,工艺简单,操作方便,重复性好,本发明的复合材料适合于既需要导电或电加热同时又要求耐磨减摩的场合使用。也可应用于航空航天等极端恶劣条件下的耐磨导电材料。
附图说明
图1是本发明的耐磨导电复合材料与纯聚乙烯材料的摩擦系数随摩擦时间变化的示意图;
图2是本发明的耐磨导电复合材料的扫描电子显微(SEM)照片;
图3是本发明的耐磨导电复合材料的导电率随碳纳米管成分变化的曲线。
具体实施方式
实施例1:
将4克多壁碳纳米管粉末与96克高密度聚乙烯(分子量约为80000)颗粒均匀混合后,放入共混机内在160℃下共混10分钟。取出已混合均匀的材料放入铜制模具内在165℃预热5分钟,然后在5MPa下压制5分钟,再在10MPa下压制10分钟。得到块状耐磨导电复合材料。该复合材料与纯聚乙烯材料的摩擦系数随摩擦时间变化结果见图1,由图可知,随着摩擦时间增加,发明的复合材料摩擦系数逐渐下降,而纯高密度聚乙烯材料摩擦系数随摩擦时间增加而增加。所得材料的扫描电子显微(SEM)照片如图2所示,由图可知采用简单的熔融共混方法可使碳纳米管在高分子基体材料中分布基本均匀。
实施例2:
将6克多壁碳纳米管粉末与94克高密度聚乙烯(分子量约为80000)颗粒均匀混合后,放入共混机内在170℃共混15分钟。取出已混合均匀的材料放入铜制模具内在170℃预热10分钟,然后在5MPa下压制10分钟,再在10MPa下压制20分钟,得到耐磨导电复合材料。
实施例3:
将7克多壁碳纳米管粉末与93克高密度聚乙烯(分子量约为100000)颗粒均匀混合后,放入共混机内在165℃共混10分钟。取出已混合均匀的材料放入铜制模具内在180℃预热5分钟,然后在5MPa下压制10分钟,再在10MPa下压制20分钟,得到耐磨导电复合材料。
试验表明,当碳纳米管重量百分比含量在3%时复合材料由绝缘体变为半导体,当碳纳米管重量百分比含量接近5%时复合材料转变为导体(参見图3所示)。
Claims (3)
1.一种耐磨导电复合材料的制备方法,其步骤如下:
按重量百分比:多壁碳纳米管4~7%,高密度聚乙烯96~93%,称取多壁碳纳米管粉末及高密度聚乙烯颗粒,于150℃~170℃下均匀混合后放入模具中,先在165℃~180℃下预热5~20分钟,随后在5~20MPa及10~30MPa压力下各压制5~20分钟,脱膜,冷却到室温。
2.根据权利要求1所述的耐磨导电复合材料的制备方法,其特征是所说的高密度聚乙烯的分子量为60000~100000。
3.根据权利要求1所述的耐磨导电复合材料的制备方法,其特征是所说的多壁碳纳米管的直径为10nm~25nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100498277A CN100400586C (zh) | 2006-03-14 | 2006-03-14 | 一种耐磨导电复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100498277A CN100400586C (zh) | 2006-03-14 | 2006-03-14 | 一种耐磨导电复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1834144A CN1834144A (zh) | 2006-09-20 |
CN100400586C true CN100400586C (zh) | 2008-07-09 |
Family
ID=37002049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100498277A Expired - Fee Related CN100400586C (zh) | 2006-03-14 | 2006-03-14 | 一种耐磨导电复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100400586C (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101161360B1 (ko) * | 2010-07-13 | 2012-06-29 | 엘에스전선 주식회사 | 공간전하 저감 효과를 갖는 직류용 전력 케이블 |
CN109370078A (zh) * | 2018-09-19 | 2019-02-22 | 湖州练市飞迪电器塑料有限公司 | 一种耐磨导电复合材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6184280B1 (en) * | 1995-10-23 | 2001-02-06 | Mitsubishi Materials Corporation | Electrically conductive polymer composition |
CN1410475A (zh) * | 2002-03-14 | 2003-04-16 | 四川大学 | 聚合物/碳纳米管复合粉体及其固相剪切分散的制备方法 |
CN1431342A (zh) * | 2003-01-28 | 2003-07-23 | 东华大学 | 冻胶纺超高分子质量聚乙烯/碳纳米管复合纤维及其制备 |
CN1643620A (zh) * | 2002-03-18 | 2005-07-20 | 阿托菲纳研究公司 | 机械性能良好的导电聚烯烃 |
CN1640923A (zh) * | 2004-12-10 | 2005-07-20 | 中国科学院长春应用化学研究所 | 碳纳米管与聚乙烯复合材料的原位聚合制备方法 |
-
2006
- 2006-03-14 CN CNB2006100498277A patent/CN100400586C/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6184280B1 (en) * | 1995-10-23 | 2001-02-06 | Mitsubishi Materials Corporation | Electrically conductive polymer composition |
CN1410475A (zh) * | 2002-03-14 | 2003-04-16 | 四川大学 | 聚合物/碳纳米管复合粉体及其固相剪切分散的制备方法 |
CN1643620A (zh) * | 2002-03-18 | 2005-07-20 | 阿托菲纳研究公司 | 机械性能良好的导电聚烯烃 |
CN1431342A (zh) * | 2003-01-28 | 2003-07-23 | 东华大学 | 冻胶纺超高分子质量聚乙烯/碳纳米管复合纤维及其制备 |
CN1640923A (zh) * | 2004-12-10 | 2005-07-20 | 中国科学院长春应用化学研究所 | 碳纳米管与聚乙烯复合材料的原位聚合制备方法 |
Non-Patent Citations (4)
Title |
---|
"多壁碳纳米管/聚乙烯复合材料的制备及其导电行为". 李文春等.《应用化学》,第23卷第1期. 2006 |
"纳米碳管/高密度聚乙烯复合材料性能的研究". 冯学斌等.《炭素》,第1期. 2004 |
"多壁碳纳米管/聚乙烯复合材料的制备及其导电行为". 李文春等.《应用化学》,第23卷第1期. 2006 * |
"纳米碳管/高密度聚乙烯复合材料性能的研究". 冯学斌等.《炭素》,第1期. 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1834144A (zh) | 2006-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites | |
Sun et al. | Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance | |
Liao et al. | Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells | |
Moriarty et al. | Fully organic nanocomposites with high thermoelectric power factors by using a dual‐stabilizer preparation | |
Gu et al. | Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites | |
Meng et al. | Recent progress on fabrication and performance of polymer composites with highly thermal conductivity | |
Liu et al. | Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities | |
Tarhini et al. | The effect of graphene flake size on the properties of graphene‐based polymer composite films | |
Zhao et al. | Preparation, structure, and property of polyoxymethylene/carbon nanotubes thermal conducive composites | |
CN102775705B (zh) | 一种聚合物基复合材料及其制备方法 | |
Ma et al. | Highly thermally conductive epoxy composites with anti-friction performance achieved by carbon nanofibers assisted graphene nanoplatelets assembly | |
CN103910905B (zh) | 一种富勒烯‑碳化硼复合材料及其制备方法与用途 | |
Wei et al. | Constructing a “Pearl-Necklace-Like” architecture for enhancing thermal conductivity of composite films by electrospinning | |
Yan et al. | 3D interconnected high aspect ratio tellurium nanowires in epoxy nanocomposites: Serving as thermal conductive expressway | |
Wang et al. | Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification | |
Mokhtari et al. | A review of electrically conductive poly (ether ether ketone) materials | |
Qian et al. | Enhanced thermal conductivity via in situ constructed CNT aerogel structure in composites | |
CN100400586C (zh) | 一种耐磨导电复合材料及其制备方法 | |
Zhang et al. | A strategy towards fabrication of thermoplastic-based composites with outstanding mechanical and thermoelectric performances | |
CN102952328A (zh) | 一种碳纳米管/聚烯烃导电复合材料及制备方法 | |
Suherman et al. | Electrical properties of carbon nanotubes-based epoxy nanocomposites for high electrical conductive plate | |
Suarez et al. | Influence of the Reinforcement Distribution and Interface on the Electronic Transport Properties of MWCNT‐Reinforced Metal Matrix Composites | |
Fang et al. | Freeze‐drying method prepared UHMWPE/CNT s composites with optimized micromorphologies and improved tribological performance | |
Han et al. | Anchoring carbon nanotubes to boron nitride microrods for enhancing the thermal conductivity of polystyrene | |
Wang et al. | High Performance Antistatic HDPE Composites with Bridging Effect of Hybrid Carbon Black and Multi‐Walled Carbon Nanotubes Fillers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080709 Termination date: 20140314 |