CN100382347C - 砷化镓基1.5微米量子阱结构及其外延生长方法 - Google Patents

砷化镓基1.5微米量子阱结构及其外延生长方法 Download PDF

Info

Publication number
CN100382347C
CN100382347C CNB2005100866397A CN200510086639A CN100382347C CN 100382347 C CN100382347 C CN 100382347C CN B2005100866397 A CNB2005100866397 A CN B2005100866397A CN 200510086639 A CN200510086639 A CN 200510086639A CN 100382347 C CN100382347 C CN 100382347C
Authority
CN
China
Prior art keywords
gaas
barrier layer
quantum well
nanometers
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100866397A
Other languages
English (en)
Other versions
CN1953217A (zh
Inventor
牛智川
倪海桥
韩勤
张石勇
吴东海
赵欢
杨晓红
彭红玲
周志强
熊永华
吴荣汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CNB2005100866397A priority Critical patent/CN100382347C/zh
Publication of CN1953217A publication Critical patent/CN1953217A/zh
Application granted granted Critical
Publication of CN100382347C publication Critical patent/CN100382347C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

一种砷化镓基1.5微米量子阱结构,该结构为多层结构,其特征在于,包括:一GaAs过渡层;一第一GaAs势垒层,该第一GaAs势垒层制作在GaAs过渡层上;一第一GaNAs势垒层,该第一GaNAs势垒层制作在第一GaAs势垒层上;一GaInNAsSb量子阱层,该GaInNAsSb量子阱层制作在第一GaNAs势垒层上;一第二GaNAs势垒层,该第二GaNAs势垒层制作在GaInNAsSb量子阱层上;一第二GaAs势垒层,该第二GaAs势垒层制作在第二GaNAs势垒层上;一GaAs覆盖层,该GaAs覆盖层制作在第二GaAs势垒层上。

Description

砷化镓基1.5微米量子阱结构及其外延生长方法
技术领域
本发明涉及一种发光波长在1.5微米波段的镓铟氮砷锑(GaInNAsSb)/镓氮砷(GaNAs)/砷化镓(GaAs)量子阱结构及其外延生长方法,特别是指一种砷化镓基1.5微米量子阱结构及其外延生长方法。
背景技术
砷化镓基1.5微米量子阱结构是制作1.5微米半导体激光器的基本结构,1.5微米半导体激光器是干线光纤通讯系统中核心光器件。目前商用产品是铟镓砷磷(InGaAsP)/磷化铟(InP)激光器,由于InGaAsP和InP的折射率差异甚小,对有源区载流子的限制不足,导致激光器温度稳定性不好,最大特征温度仅70K左右。同时用InGaAsP/InP材料难以制备垂直腔面发射类型的激光器。因此研究新型GaAs基近红外发光材料是目前光电子研发领域的重要课题。自发现GaInNAs量子阱材料具有长波长发光特性以来,1.5微米GaAs基量子阱材料成为长波长激光器重要研究热点。其优越性在于:这种量子阱体系可以提高器件的温度特性、降低功耗,同时可使用对有源区载流子限制更强的铝镓砷(AlGaAs)作为包裹层和波导层,使器件结构设计更灵活。还与GaAs基微电子器件工艺相兼容,易于制备垂直腔面发射激光器。
目前如何获得即具有高发光效率和强度、同时又能拓展其发光波长至1.5微米波段的GaAs基量子阱材料是制备激光器、探测器等各种器件的必要前提条件。如何设计量子阱结构、优化生长参数等成为核心技术。
发明内容
本发明的目的在于,提出了一种砷化镓基1.5微米量子阱结构及其外延生长方法,可以大幅度提高发光强度,并实现用这种量子阱结构作有源层的激光器室温连续激射。
本发明一种砷化镓基1.5微米量子阱结构,该结构为多层结构,其特征在于,包括:
一GaAs过渡层;
一第一GaAs势垒层,该第一GaAs势垒层制作在GaAs过渡层上;
一第一GaNAs势垒层,该第一GaNAs势垒层制作在第一GaAs势垒层上;
一GaInNAsSb量子阱层,该GaInNAsSb量子阱层制作在第一GaNAs势垒层上;
一第二GaNAs势垒层,该第二GaNAs势垒层制作在GaInNAsSb量子阱层上;
一第二GaAs势垒层,该第二GaAs势垒层制作在第二GaNAs势垒层上;
一GaAs覆盖层,该GaAs覆盖层制作在第二GaAs势垒层上。
其中该GaAs过渡层的厚度为300纳米。
其中该第一GaAs势垒层的厚度为50纳米。
其中该第一GaNAs势垒层的厚度为20纳米。
其中该GaInNAsSb量子阱的厚度为7纳米。
其中该第二GaNAs势垒层的厚度20纳米。
其中该第二个GaAs势垒层的厚度为50纳米。
其中该GaAs覆盖层的厚度为100纳米。
本发明一种砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,包括如下步骤:
步骤1:先生长GaAs过渡层,然后降低生长温度后在GaAs过渡层上生长第一GaAs势垒层;
步骤2:在第一GaAs势垒层上生长第一GaNAs势垒层,然后生长GaInNAsSb量子阱层,再覆盖生长第二GaNAs势垒层;
步骤3:在第二GaNAs势垒层上生长第二GaAs势垒层和GaAs覆盖层;
步骤4:退火处理,完成器件的制作。
其中该GaAs过渡层的厚度为300纳米。
其中该第一GaAs势垒层的厚度为50纳米。
其中该第一GaNAs势垒层的厚度为20纳米。
其中该GaInNAsSb量子阱的厚度为7纳米。
其中该第二GaNAs势垒层的厚度20纳米。
其中该第二个GaAs势垒层的厚度为50纳米。
其中该GaAs覆盖层的厚度为100纳米。
其中所述的退火处理,是指要通过先升温后降低温度来实施对量子阱的退火处理。
附图说明
本发明分为量子阱结构设计和分子束外延生长方法,以及一个量子阱激光器的实施例,包含结构设计及分子束外延生长技术。下面结合附图详述本发明,其中:
图1是量子阱结构(层状)图;
图2是量子阱激光器结构(层状)图;
图3是量子阱室温光荧光(PL)谱图;
图4是量子阱激光器注入电流输出功率(I-P)和电流电压(I-V)特性曲线图;
图5是量子阱激射谱线图。
具体实施方式
请参阅图1所示,本发明一种砷化镓基1.5微米量子阱结构10,该结构为多层结构,包括:
一GaAs过渡层11,该GaAs过渡层11的厚度为300纳米,此GaAs过渡层11,起到平整衬底损伤、平滑表面的作用;
一第一GaAs势垒层12,该第一GaAs势垒层12制作在GaAs过渡层11上,该第一GaAs势垒层12的厚度为50纳米,此第一GaAs势垒层12形成下面两层的能量势垒的一个面;
一第一GaNAs势垒层13,该第一GaNAs势垒层13制作在第一GaAs势垒层12上,该第一GaNAs势垒层13的厚度为20纳米,此第一GaNAs势垒层13构成下一层量子阱的一个势垒带阶过度;
一GaInNAsSb量子阱层14,该GaInNAsSb量子阱层14制作在第一GaNAs势垒层13上,该GaInNAsSb量子阱14的厚度为7纳米,此GaInNAsSb量子阱层14为最核心的量子阱层;
一第二GaNAs势垒层15,该第二GaNAs势垒层15制作在GaInNAsSb量子阱层14上,该第二GaNAs势垒层15的厚度20纳米,此第二GaNAs势垒层15对称于第一GaNAs层,构成量子阱层的另一侧势垒带阶过度;
一第二GaAs势垒层16,该第二GaAs势垒层16制作在第二GaNAs势垒层15上,该第二个GaAs势垒层16的厚度为50纳米,此第二GaAs势垒层16为第一GaAs势垒层的对称势垒层;
一GaAs覆盖层17,该GaAs覆盖层17制作在第二GaAs势垒层16上,该GaAs覆盖层17的厚度为100纳米,此GaAs覆盖层17为隔离保护层。
请再结合参阅图1所示,本发明一种砷化镓基1.5微米量子阱结构的外延生长方法,包括如下步骤:
步骤1:先生长GaAs过渡层11,然后降低生长温度后在GaAs过渡层11上生长第一GaAs势垒层12,该GaAs过渡层11的厚度为300纳米,该第一GaAs势垒层12的厚度为50纳米;
步骤2:在第一GaAs势垒层12上生长第一GaNAs势垒层13,然后生长GaInNAsSb量子阱层14,再覆盖生长第二GaNAs势垒层15,该第一GaNAs势垒层13的厚度为20纳米,该GaInNAsSb量子阱14的厚度为7纳米,该第二GaNAs势垒层15的厚度20纳米;
步骤3:在第二GaNAs势垒层15上生长第二GaAs势垒层16和GaAs覆盖层17,该第二个GaAs势垒层16的厚度为50纳米,该GaAs覆盖层17的厚度为100纳米;
步骤4:退火处理,所述的退火处理,是指要通过先升温后降低温度来实施对量子阱的退火处理,完成器件的制作。
实施例
本发明砷化镓基1.5微米量子阱层状结构及分子束外延方法,如图1所示,文字说明如下:
GaAs过渡层11的厚度为300纳米。
在GaAs过渡层11上是第一GaAs势垒层12,厚度为50纳米。
在第一GaAs势垒层12上是第一GaNAs势垒层13,厚度为20纳米。
在第一GaNAs势垒层13上是GaInNAsSb量子阱层14,厚度为7纳米。
在GaInNAsSb量子阱层14上是第二GaNAs势垒层15,厚度为20纳米。
在第二GaNAs势垒层15上是第二个GaAs势垒层16,厚度为50纳米。
在第二GaAs势垒层16上是GaAs覆盖层17,厚度为100纳米。
表1:量子阱结构及其分子束外延生长技术参数
Figure C20051008663900131
此表按照量子阱层状结构,阐明了每一层的厚度、所含元素、衬底温度(生长温度)、和退火温度等。
本发明的实施例是采用上述量子阱结构作为激光器有源层的一种激光器结构,如图2所示,以及生长这种激光器20的分子束外延实施例。
GaAs过渡层,掺Si(N型),浓度为3-5E+18/cm3,厚度为300纳米;
第一AlGaAs过渡层21,A1组分从0%线性增加至50%。掺Si(N型),浓度为1-3E+18/cm3,厚度50纳米;
第一Al0.5Ga0.5As波导层22,掺Si(N型),厚度为1500纳米;
第二AlGaAs过渡层23,A1组分线性减至0,掺Si(N型),厚度为50纳米。
第一GaAs势垒层24,厚度50纳米;
第一GaNAs势垒层25,厚度20纳米;
GaInNAsSb量子阱26,厚度为7纳米;
第二GaNAs势垒层27,厚度20纳米;
第二GaAs势垒层28,厚度为50纳米;
第三AlGaAs过渡层29,A1组分从0%-50%线性增加,厚度为50纳米;
第二AlGaAs波导层30,掺Be(P型),浓度1-3E+18/cm3,厚度1500纳米;
第四AlGaAs过渡层31,A1组分从50%-0%线性减小,掺Be(P型),浓度为1-3E+18/cm3,厚度50纳米;
第一GaAs接触层32,掺Be(P型),浓度1-3E+19/cm3,厚度150纳米;
第二GaAs接触层33,掺Be(P型),浓度3-5E+19/cm3,厚度40纳米。
实施例1
表2:1.5微米量子阱激光器结构
Figure C20051008663900151
此表按照量子阱激光器层状结构,注明每一层的组分、衬底温度(生长温度)、退火温度,掺杂浓度以及类型(N型或P型)等。
采用本发明设计的量子阱材料的外延层结构和分子束外延生长技术参数,通过精确控制分子束外延生长条件、组分、外延层厚度等,可以实现室温下大于1.5微米波段的高强度发光,其室温光荧光谱线如图3所示。其注入电流-输出功率(I-P)特性和电流电压特性(I-V)曲线如图4所示,图5为室温连续激射谱线。

Claims (17)

1.一种砷化镓基1.5微米量子阱结构,该结构为多层结构,其特征在于,包括:
一GaAs过渡层;
一第一GaAs势垒层,该第一GaAs势垒层制作在GaAs过渡层上;
一第一GaNAs势垒层,该第一GaNAs势垒层制作在第一GaAs势垒层上;
一GaInNAsSb量子阱层,该GaInNAsSb量子阱层制作在第一GaNAs势垒层上;
一第二GaNAs势垒层,该第二GaNAs势垒层制作在GaInNAsSb量子阱层上;
一第二GaAs势垒层,该第二GaAs势垒层制作在第二GaNAs势垒层上;
一GaAs覆盖层,该GaAs覆盖层制作在第二GaAs势垒层上。
2.按权利要求1所述的砷化镓基1.5微米量子阱结构,其特征在于,其中该GaAs过渡层的厚度为300纳米。
3.按权利要求1所述的砷化镓基1.5微米量子阱结构,其特征在于,其中该第一GaAs势垒层的厚度为50纳米。
4.按权利要求1所述的砷化镓基1.5微米量子阱结构,其特征在于,其中该第一GaNAs势垒层的厚度为20纳米。
5.按权利要求1所述的砷化镓基1.5微米量子阱结构,其特征在于,其中该GaInNAsSb量子阱的厚度为7纳米。
6.按权利要求1所述的砷化镓基1.5微米量子阱结构,其特征在于,其中该第二GaNAs势垒层的厚度为20纳米。
7.按权利要求1所述的砷化镓基1.5微米量子阱结构,其特征在于,其中该第二个GaAs势垒层的厚度为50纳米。
8.按权利要求1所述的砷化镓基1.5微米量子阱结构,其特征在于,其中该GaAs覆盖层的厚度为100纳米。
9.一种砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,包括如下步骤:
步骤1:先生长GaAs过渡层,然后降低生长温度后在GaAs过渡层上生长第一GaAs势垒层;
步骤2:在第一GaAs势垒层上生长第一GaNAs势垒层,然后生长GaInNAsSb量子阱层,再覆盖生长第二GaNAs势垒层;
步骤3:在第二GaNAs势垒层上生长第二GaAs势垒层和GaAs覆盖层;
步骤4:退火处理,完成器件的制作。
10.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中该GaAs过渡层的厚度为300纳米。
11.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中该第一GaAs势垒层的厚度为50纳米。
12.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中该第一GaNAs势垒层的厚度为20纳米。
13.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中该GaInNAsSb量子阱的厚度为7纳米。
14.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中该第二GaNAs势垒层的厚度为20纳米。
15.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中该第二个GaAs势垒层的厚度为50纳米。
16.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中该GaAs覆盖层的厚度为100纳米。
17.按权利要求9所述的砷化镓基1.5微米量子阱结构的外延生长方法,其特征在于,其中所述的退火处理,是指要通过先升温后降低温度来实施对量子阱的退火处理。
CNB2005100866397A 2005-10-20 2005-10-20 砷化镓基1.5微米量子阱结构及其外延生长方法 Expired - Fee Related CN100382347C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100866397A CN100382347C (zh) 2005-10-20 2005-10-20 砷化镓基1.5微米量子阱结构及其外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100866397A CN100382347C (zh) 2005-10-20 2005-10-20 砷化镓基1.5微米量子阱结构及其外延生长方法

Publications (2)

Publication Number Publication Date
CN1953217A CN1953217A (zh) 2007-04-25
CN100382347C true CN100382347C (zh) 2008-04-16

Family

ID=38059424

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100866397A Expired - Fee Related CN100382347C (zh) 2005-10-20 2005-10-20 砷化镓基1.5微米量子阱结构及其外延生长方法

Country Status (1)

Country Link
CN (1) CN100382347C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368074B (zh) * 2013-07-18 2015-12-23 中国科学院苏州纳米技术与纳米仿生研究所 半导体激光器有源区、半导体激光器及其制作方法
LT6045B (lt) 2013-09-26 2014-06-25 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Puslaidininkinio įsisotinančio sugėriklio veidrodis
CN103872198B (zh) * 2014-03-24 2016-09-28 天津三安光电有限公司 一种多量子阱结构及采用该结构的发光二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218449A (ja) * 2002-01-18 2003-07-31 Ricoh Co Ltd 半導体発光素子およびその製造方法および光伝送システム
JP2004207380A (ja) * 2002-12-24 2004-07-22 Furukawa Electric Co Ltd:The 面発光レーザ素子、面発光レーザ素子を用いたトランシーバ、光送受信器および光通信システム
JP2004296845A (ja) * 2003-03-27 2004-10-21 Ricoh Co Ltd 量子井戸構造および半導体発光素子および光送信モジュールおよび光伝送システム
JP2005243722A (ja) * 2004-02-24 2005-09-08 Sony Corp 半導体レーザ素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218449A (ja) * 2002-01-18 2003-07-31 Ricoh Co Ltd 半導体発光素子およびその製造方法および光伝送システム
JP2004207380A (ja) * 2002-12-24 2004-07-22 Furukawa Electric Co Ltd:The 面発光レーザ素子、面発光レーザ素子を用いたトランシーバ、光送受信器および光通信システム
JP2004296845A (ja) * 2003-03-27 2004-10-21 Ricoh Co Ltd 量子井戸構造および半導体発光素子および光送信モジュールおよび光伝送システム
JP2005243722A (ja) * 2004-02-24 2005-09-08 Sony Corp 半導体レーザ素子

Also Published As

Publication number Publication date
CN1953217A (zh) 2007-04-25

Similar Documents

Publication Publication Date Title
US10305250B2 (en) III-Nitride nanowire array monolithic photonic integrated circuit on (001)silicon operating at near-infrared wavelengths
US7596158B2 (en) Method and structure of germanium laser on silicon
US9513436B2 (en) Semiconductor device
Wei et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration
CN1780004A (zh) 一种含隧道结的垂直腔型光电子器件
CN103346478B (zh) 镓锑基中红外圆斑输出低发散角边发射光子晶体激光器
CN110880675A (zh) 侧面光栅氧化限制结构单纵模边发射激光器及其制备方法
Yang et al. Highly uniform InGaAs/InP quantum well nanowire array-based light emitting diodes
CN100382347C (zh) 砷化镓基1.5微米量子阱结构及其外延生长方法
Chang et al. Mid-infrared resonant light emission from GeSn resonant-cavity surface-emitting LEDs with a lateral pin structure
Yuan et al. A buried ridge stripe structure InGaAsP-Si hybrid laser
CN212011600U (zh) 侧面光栅氧化限制结构单纵模边发射激光器
US7049641B2 (en) Use of deep-level transitions in semiconductor devices
JP2003519438A (ja) 放射源
Qiao et al. Monolithic fabrication of InGaAs/GaAs/AlGaAs multiple wavelength quantum well laser diodes via impurity-free vacancy disordering quantum well intermixing
Ban et al. 1.5 to 0.87 µm optical upconversion device fabricated by wafer fusion
US6607932B2 (en) High modulation frequency light emitting device exhibiting spatial relocation of minority carriers to a non-radiative recombination region
Camacho-Aguilera et al. Electroluminescence of highly doped Ge pnn diodes for Si integrated lasers
US20060226440A1 (en) Use of deep-level transitions in semiconductor devices
Zhang et al. Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm
Todaro et al. 1.31 μ m InGaAs quantum dot light-emitting diodes grown directly in a GaAs matrix by metalorganic chemical-vapor deposition
US20210408324A1 (en) Enhanced room temperature mid-ir leds with integrated semiconductor 'metals'
Lin et al. Improved 1.3-$\mu {\rm m} $ Electroluminescence of InGaAs-Capped Type-II GaSb/GaAs Quantum Rings at Room Temperature
Lu et al. Mid-infrared interband cascade light-emitting diodes with InAs/GaAsSb superlattices on InAs substrates
CN1786107A (zh) 1.3微米高密度量子点结构及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080416

Termination date: 20091120