CN100356216C - 在光学玻璃表面制备长周期条形波导光栅的方法 - Google Patents

在光学玻璃表面制备长周期条形波导光栅的方法 Download PDF

Info

Publication number
CN100356216C
CN100356216C CNB2005101360359A CN200510136035A CN100356216C CN 100356216 C CN100356216 C CN 100356216C CN B2005101360359 A CNB2005101360359 A CN B2005101360359A CN 200510136035 A CN200510136035 A CN 200510136035A CN 100356216 C CN100356216 C CN 100356216C
Authority
CN
China
Prior art keywords
print
waveguide
optical glass
photoresist
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101360359A
Other languages
English (en)
Other versions
CN1794023A (zh
Inventor
张德龙
陈才和
马锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CNB2005101360359A priority Critical patent/CN100356216C/zh
Publication of CN1794023A publication Critical patent/CN1794023A/zh
Application granted granted Critical
Publication of CN100356216C publication Critical patent/CN100356216C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本发明涉及光波导器件-长周期波导光栅,特别涉及在光学玻璃表面制备长周期条形波导光栅的方法。为解决以BK7光学玻璃为基底材料采用Ag+(K+)→Na+二次离子交换技术制作折射率调制型长周期条形波导光栅时遇到的一些重要的技术问题,本发明采用的技术方案是,(1)对BK7光学玻璃进行仔细清洗、镀膜,旋涂光刻胶;(2)将波导图样转移到光刻胶上;(3)显影;(4)刻蚀溶液;(5)腐蚀掉表面的铝掩膜;(6)镀金属膜;(7)采用同第4步相同的方法腐蚀掉膜,除去光刻胶;(8)形成长周期光栅,将样片表面的金属掩膜去掉;(9)旋涂透明环氧树脂层。本发明主要用于光学玻璃表面制备长周期条形波导光栅。

Description

在光学玻璃表面制备长周期条形波导光栅的方法
技术领域
本发明涉及光波导器件-长周期波导光栅,特别涉及在光学玻璃表面制备长周期条形波导光栅的方法。
背景技术
近年来,长周期光纤光栅(Long Period Fiber Grating,LPFG)引起了国内外研究人员的极大兴趣。其工作原理是光栅将光纤芯层中传输的导模(core mode)耦合到包层(cladding mode),并在包层中沿同向传输。结果在其透射功率光谱中在满足一定位相条件的波长处(称之为共振波长)会出现一个或若干个功率衰减峰或衰减带(通常称之为dip)。利用LPFG的这种原理可研发光纤通信系统中关键器件如带阻滤波器(Band-Rejection Filter)和实现掺铒光纤放大器增益平坦化(Gain Flattening ofEDFA)器件。利用此原理还可研发各种传感器如折射率、温度、应变、扭曲、弯曲、液位传感器等。
目前虽然LPFG的制备方法已比较成熟,但具有一定的局限性,其只能是在掺锗或硼或二者共掺光纤的芯层采用紫外光写入并辅以载氢技术来完成的。此外,LPFG在制备材料和光纤截面几何形状方面同样也具有很大的局限性。正是LPFG在波导几何和材料方面的限制,大大延缓了其向实用化阶段迈进的步伐。近几年专利申请人尝试以条形光波导代替LPFG中的光纤制成长周期条形光波导光栅(Long Period Waveguide Grating,LPWG)。与LPFG相比,LPWG具有如下一些特点和优点。(1).在工艺制备方面,对于LPFG我们只能采用UV-writing技术来完成光栅的制作,主要的设备为输出波长为244nm的准分子激光器。所用光纤必须是特制的,芯层必须是UV敏感的(如采用掺锗或硼或二者共掺光纤),而且需要载氢(H2-1oading)工艺。而对于波导结构LPWG来讲,其制作工艺主要在Class-100级超净室来进行。由于我们所涉及的光栅为长周期而非布喇格光栅(其周期相对来讲要短的多,与工作波长相当),从制备工艺来讲无疑具有可行性。(2).从材料选择方面,LPWG占有绝对的优势。LPFG在材料方面到目前为止尚无选择的余地,只能是掺锗或硼或二者共掺的特制光纤。而对波导结构LPWG来讲,我们可以采用几乎所有波导材料,可以采用各种具有很大发展潜力的聚合物材料,各种光学玻璃、晶体材料等等。(3).从波导和光栅的类型和制作方法来讲,LPWG同样占有很大优势,有很多制作波导和光栅的方法和技术可供选择。可以制备脊型或扩散型波导,波导截面可以具有各种几何形状。对于光栅,可以是折射率调制型,也可以是波导表面凹凸型。对于LPWG,除了光栅效应(即LPG effect)可进行优化外,条形光波导的光学性能如所涉及到的导模有效折射率也可进行优化设计。总之,在条型光波导中(上)比在光纤芯层中具有更加灵活和丰富的制备方法。这是LPWG的最大优点。
发明内容
为克服现有技术的不足,本发明的目的在于解决以BK7光学玻璃为基底材料采用Ag+(K+)→Na+二次离子交换技术制作折射率调制型长周期条形波导光栅时遇到的一些重要的技术问题。主要包括制备单模(1.5μm)条形光波导的条件;在波导表面进一步制备长周期光栅的技术,包括掩膜材料的选用以及二次离子交换条件;以及在波导光栅表面旋涂覆盖层的必要性。本发明阐述了这些技术问题的解决方法。
本发明采用的技术方案是:
一种在光学玻璃表面制备长周期条形波导光栅的方法,包括下列步骤:
(1)对BK7光学玻璃进行仔细清洗,然后在其表面蒸镀一层厚度为180nm的铝膜,使用匀胶机在3000转/分钟的转速下在样片表面旋涂一层光刻胶,旋涂时间为60秒,将样片放置在提前预热90℃的烘烤盘上前烘5分钟,取下样片直到样片冷却至室温;
(2)利用光刻机和带有波导图样的掩模版,曝光15秒左右,将波导图样转移到光刻胶上;
(3)将光刻后的样片浸入显影液中显影30秒,在蒸馏水中漂洗30秒,然后用氮气吹干;
(4)在烧杯中放入预先配制好的刻蚀溶液,将样片浸入到刻蚀溶液中并放到50℃的烘烤盘上,直到铝膜被刻蚀掉,立刻取出样片在蒸馏水中漂洗30秒,将样片置于丙酮溶液中除去其表面的光刻胶,然后依次用异丙醇和蒸馏水清洗样片;
(5)预先按重量百分比99.5wt%的NaNO3和0.5wt%的AgNO3硝酸盐混合粉末40克放入坩锅中,将样片放置于特制的sample holder,sample holder中文译文是支架,并放入另一个空坩锅内,将该空坩锅和盛有混合硝酸盐的坩埚放入交换炉中加热到355℃,待硝酸盐完全熔解后将样片浸入到混合熔盐中交换7-8个小时后关掉电源,并将样片取出放回空坩埚内,待整个炉体自然冷却至室温,取出样片用蒸馏水清洗干净,最后将样片置回铝腐蚀溶液,将其表面的铝膜腐蚀掉并用蒸馏水将样片清洗干净;
(6)在样片表面镀一层150nm厚的镍膜,采用刻有光栅图样的掩模版经过旋胶、前焙、曝光、显影工艺过程将光栅图样转移到光刻胶上;
(7)采用同第4步相同的方法将没有光刻胶保护的镍膜腐蚀掉,然后除去表面的光刻胶;
(8)在相同的355℃温度下,在99.5wt%的KNO3+0.5wt%的AgNO3的混合交换熔液交换2小时即可在条形波导中形成折射率调制型的长周期光栅,然后将样片表面的镍金属掩膜去掉;
(9)最后在所制备的波导光栅表面旋涂一层4μm厚的透明环氧树脂作为覆盖层。
在所述步骤(1)中的表面蒸镀是热蒸发。
在所述步骤(2)中的波导图样掩模版的条宽要求为5微米、6微米或7微米中的一种。
在所述步骤(4)刻蚀溶液成分是75%的磷酸,20%的醋酸和5%的硝酸。
在所述步骤(6)中刻有的光栅图样周期为90-120微米,所采用的金属掩膜材料不再采用步骤(1)所用的铝掩膜而采用镍膜,所用交换熔盐由步骤(5)所用的NaNO3/AgNO3换为KNO3/AgNO3
本发明具备以下效果:
由于采用上述步骤,因而根据本发明的方法可以实现在光学玻璃表面制备长周期条形波导光栅,因而本发明是一种完全可行的制备工艺,可以采用几乎所有波导材料和光学玻璃,条形光波导的光学性能如所涉及到的导模有效折射率也可进行优化设计。
附图说明
图1波导[步骤(1)-(6)]和光栅[步骤(7)-(12)]制备工艺流程。
图2离子交换原理示意图。
图3离子交换玻璃光波导光栅示意图
图4 LPWG性能测量原理简图
图5 LPWG在1.5μm波段的归一化透射光谱
具体实施方式
下面结合附图和实施例进一步说明本发明。
1.首先对BK7光学玻璃进行仔细清洗,然后在其表面蒸镀(热蒸发)一层厚度约180nm的铝膜,以便在离子交换过程中保护不需要进行离子交换的玻璃表面。使用匀胶机在3000转/分钟的转速下在样片表面旋涂一层AZ1500光刻胶,旋涂时间为60秒。将样片放置在提前预热(90℃)的烘烤盘上前烘5分钟。取下样片直到样片冷却至室温。
2.利用光刻机和带有波导图样的掩模版(条宽为5,6,7μm),曝光15秒左右,这样便将波导图样转移到了光刻胶上。
3.将光刻后的样片浸入AF300显影液中显影30秒左右,在蒸馏水中漂洗30秒,然后用氮气吹干。
4.在烧杯中放入预先配制好的刻蚀溶液(75%的磷酸,20%的醋酸和5%的硝酸),将样片浸入到刻蚀液中并放到50℃的烘烤盘上,直到铝膜被刻蚀掉。立刻取出样片在蒸馏水中漂洗30秒。将样片置于丙酮溶液中除去其表面的光刻胶,然后依次用异丙醇和蒸馏水清洗样片。
5.接下来是离子交换过程(其原理见图2)。预先将99.5wt%的NaNO3和0.5wt%的AgNO3硝酸盐混合粉末约40克放入坩锅中。将样片放置于特制的sample holder并放入另一个空坩锅内,将该空坩锅和盛有混合硝酸盐的坩埚放入交换炉中加热到355℃。待硝酸盐完全熔解后将样片浸入到混合熔盐中交换7-8个小时后关掉电源,并将样片取出放回空坩埚内,待整个炉体自然冷却至室温。取出样片用蒸馏水清洗干净。最后将样片置回铝腐蚀溶液,将其表面的铝掩膜腐蚀掉并用蒸馏水将样片清洗干净。
6.重复第1步的做法在样片表面镀一层厚度为150nm的镍金属膜,采用刻有光栅图样(周期为90-120微米)的掩模版经过旋胶、前焙、曝光、显影工艺过程将光栅图样转移到光刻胶上。
7.采用同第4步相同的方法将未有光刻胶保护的镍膜腐蚀掉,然后除去表面的光刻胶。
8.接下来是二次离子交换过程。在相同的温度(355℃)下,在KNO3(99.5wt%)+AgNO3(0.5wt%)的混合交换熔液交换2小时即可在条形波导中形成折射率调制型的长周期光栅。然后将样片表面的镍金属掩膜去掉。
9.最后在所制备的波导光栅表面旋涂一层4μm厚的透明环氧树脂作为覆盖层。至此我们完成了折射率调制型条形波导光栅器件的制作工艺过程。图3给出了器件结构简图。
下面是本发明有益效果的实验验证情况。
申请人利用图4所示的测量系统对所制备的LPWG器件的性能进行了表征。测量系统利用一带宽为1510-1620nm(C+L带)EDFA作为光源,利用一光谱分析仪(OSA)测量器件的透射光功率谱。在满足位相匹配条件: λ r = Λ ( N eff Waveguide - N eff Cladding ) 的共振波长λr处光栅可将条形波导中传输的导模(有效折射率为Neff Waveguide)耦合到覆盖层并在包层中以包层模式沿同向传输(有效折射率为Neff Cladding),从而在所测得的透射功率谱中在λr处会出现一个功率衰减峰(dip)。图5给出了光栅周期为95μm的LPWG器件在TE(channel waveguide)-TE(cover layer)和TM(channel waveguide)-TM(cover layer)耦合方式下的归一化透射光谱(有LPG波导和无LPG波导透射光功率谱之比)。可以看出在TE-TE耦合方式下,在1520nm波长处出现一功率衰减峰(约15dB),对于TM-TM耦合,功率衰减峰出现在较长波长1561nm处,衰减幅度与TE-TE耦合方式相当。这些实验光谱特征与进一步的理论分析结果基本吻合,表明采用上述技术方案研制LPWG器件是可行的。
本发明还解决了以下技术问题:
(1).单模条形光波导的制备条件。实验结果表明:当采用99.5wt%NaNO3+0.5wt%AgNO3作为离子交换熔盐时,在355℃交换7-8小时条宽为5-7μm的波导在1.5μm波段即为单模波导。
(2).在波导表面进一步制备光栅时存在一关键的问题,即是掩膜材料的选用。在波导制备工艺过程中,我们选择了经常被采用的、成本较低的铝膜作为掩膜。但是,在接下来的光栅制备工艺过程中,发现铝膜不再适合做掩膜,否则在栅区以外的条形波导表面会形成一种含有铝离子和银离子的黄色絮状沉积物,从而严重破坏波导表面。实验结果表明,采用镍金属作为掩膜可以解决该技术问题。此外,我们还选择KNO3/AgNO3混合硝酸盐替代NaNO3/AgNO3作为离子交换熔盐以提高栅区的折射率。因为选用前者作为交换熔盐,不仅存在Ag+→Na+交换过程,而且还存在K+→Na+交换过程。
(3).在完成裸器件制备后,在波导光栅表面旋涂一层覆盖层是非常必要的。否则将观察不到所期待的LPG效应。  这里的波导覆盖层相当于LPFG中的光纤包层,对LPWG的性能起着关键的作用。没有覆盖层,LPWG变为三层结构,从原理上说LPG可以将导模耦合为辐射模式或基底模模式,但耦合效率很低,即使发生耦合也会因辐射模有效折射率的连续性而无法观察到明显的功率衰减峰。因此通过增加覆盖层来产生一系列离散的覆盖层模式(cladding mode)是至关重要的。由位相匹配条件 λ r = Λ ( N eff Waveguide - N eff Cladding ) 可知,覆盖层的厚度和折射率对N0、Nm和共振波长λ0都有很大的影响。

Claims (5)

1.一种在光学玻璃表面制备长周期条形波导光栅的方法,其特征在于,包括下列步骤:
(1)对BK7光学玻璃进行仔细清洗,然后在其表面蒸镀一层厚度180nm的铝膜,使用匀胶机在3000转/分钟的转速下在样片表面旋涂一层光刻胶,旋涂时间为60秒,将样片放置在提前预热到90℃的烘烤盘上前烘5分钟,取下样片直到样片冷却至室温;
(2)利用光刻机和带有波导图样的掩模版,曝光15秒左右,将波导图样转移到光刻胶上;
(3)将光刻后的样片浸入显影液中显影30秒,在蒸馏水中漂洗30秒,然后用氮气吹干;
(4)在烧杯中放入预先配制好的刻蚀溶液,将样片浸入到刻蚀溶液中并放到50℃的烘烤盘上,直到铝膜被刻蚀掉,立刻取出样片在蒸馏水中漂洗30秒,将样片置于丙酮溶液中除去其表面的光刻胶,然后依次用异丙醇和蒸馏水清洗样片;
(5)预先将按重量百分比99.5wt%的NaNO3和0.5wt%的AgNO3硝酸盐混合粉末40克放入坩锅中,将样片放置于特制的样品支架并放入另一个空坩锅内,将该空坩锅和盛有混合硝酸盐的坩埚放入交换炉中加热到355℃,待硝酸盐完全熔解后将样片浸入到混合熔盐中交换7-8个小时后关掉电源,并将样片取出放回空坩埚内,待整个炉体自然冷却至室温,取出样片用蒸馏水清洗干净,最后将样片置回铝腐蚀溶液,将其表面的铝膜腐蚀掉并用蒸馏水将样片清洗干净;
(6)在样片表面镀一层厚度为150nm的镍膜,采用刻有光栅图样的掩模版经过旋胶、前焙、曝光、显影工艺过程将光栅图样转移到光刻胶上;
(7)采用同第4步相同的方法将没有光刻胶保护的镍膜腐蚀掉,然后除去表面的光刻胶;
(8)在相同的355℃温度下,在99.5wt%的KNO3+0.5wt%的AgNO3的混合交换熔液交换2小时即可在条形波导中形成折射率调制型的长周期光栅,然后将样片表面的镍金属掩膜去掉;
(9)最后在所制备的波导光栅表面旋涂一层4μm厚的透明环氧树脂作为覆盖层。
2.根据权利要求1所述的一种在光学玻璃表面制备长周期条形波导光栅的方法,其特征在于,在所述步骤(1)中的表面蒸镀是热蒸发。
3.根据权利要求1所述的一种在光学玻璃表面制备长周期条形波导光栅的方法,其特征在于,在所述步骤(2)中的波导图样掩模版的条宽要求为5微米、6微米或7微米中的一种。
4.根据权利要求1所述的一种在光学玻璃表面制备长周期条形波导光栅的方法,其特征在于,在所述步骤(4)刻蚀溶液成分是75%的磷酸,20%的醋酸和5%的硝酸。
5.根据权利要求1所述的一种在光学玻璃表面制备长周期条形波导光栅的方法,其特征在于,在所述步骤(6)中刻有的光栅图样周期为90-120微米。
CNB2005101360359A 2005-12-29 2005-12-29 在光学玻璃表面制备长周期条形波导光栅的方法 Expired - Fee Related CN100356216C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101360359A CN100356216C (zh) 2005-12-29 2005-12-29 在光学玻璃表面制备长周期条形波导光栅的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101360359A CN100356216C (zh) 2005-12-29 2005-12-29 在光学玻璃表面制备长周期条形波导光栅的方法

Publications (2)

Publication Number Publication Date
CN1794023A CN1794023A (zh) 2006-06-28
CN100356216C true CN100356216C (zh) 2007-12-19

Family

ID=36805574

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101360359A Expired - Fee Related CN100356216C (zh) 2005-12-29 2005-12-29 在光学玻璃表面制备长周期条形波导光栅的方法

Country Status (1)

Country Link
CN (1) CN100356216C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197732B2 (en) 2016-08-26 2019-02-05 Corning Optical Communications LLC Methods for forming ion-exchanged waveguides in glass substrates

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706429B (zh) * 2009-11-02 2012-07-11 浙江大学 基于长周期光栅的玻璃基光传感器
CN103197432B (zh) * 2013-01-30 2015-07-15 中国电子科技集团公司第三十八研究所 一种具有数字显示屏功能的分划板及其制造方法
CN104730007B (zh) * 2015-01-19 2017-07-14 电子科技大学 基于聚合物长周期波导光栅的生化传感器及其制备方法
CN104808289B (zh) * 2015-04-17 2017-11-21 天津理工大学 一种在铌酸锂晶体上制备周期性波导光栅的方法
CN107168010B (zh) * 2016-03-08 2020-06-09 中芯国际集成电路制造(上海)有限公司 光刻掩膜版的制造方法
CN107478861A (zh) * 2017-06-27 2017-12-15 浙江大学 一种弹光型光子晶体波导加速度计
CN113200513B (zh) * 2021-04-29 2023-11-24 中山大学南昌研究院 一种高度可控的电容加速度计封装的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734772A (en) * 1995-10-13 1998-03-31 Eastman Kodak Company Inverted domain structure in ferroelectric crystals with polarization in the crystal plane
CN1205444A (zh) * 1997-07-15 1999-01-20 三星电子株式会社 均匀平面光波导的制造方法
JP2001133649A (ja) * 1999-11-05 2001-05-18 Fdk Corp 光導波路グレーティングの製造方法
CN1424597A (zh) * 2002-12-25 2003-06-18 浙江大学 基于离子交换的脊形光波导器件的制作方法
CN1527076A (zh) * 2003-09-22 2004-09-08 吉林大学 有机聚合物阵列波导光栅及其制作方法
CN1553236A (zh) * 2003-12-19 2004-12-08 上海交通大学 掺铒磷酸盐两步离子交换光波导制作方法
CN1603869A (zh) * 2004-11-08 2005-04-06 华中科技大学 一种脊形圆波导器件的制作方法
CN1605893A (zh) * 2004-11-05 2005-04-13 中国科学院上海微系统与信息技术研究所 一次离子交换工艺制备平面集成布拉格波导光栅的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734772A (en) * 1995-10-13 1998-03-31 Eastman Kodak Company Inverted domain structure in ferroelectric crystals with polarization in the crystal plane
CN1205444A (zh) * 1997-07-15 1999-01-20 三星电子株式会社 均匀平面光波导的制造方法
JP2001133649A (ja) * 1999-11-05 2001-05-18 Fdk Corp 光導波路グレーティングの製造方法
CN1424597A (zh) * 2002-12-25 2003-06-18 浙江大学 基于离子交换的脊形光波导器件的制作方法
CN1527076A (zh) * 2003-09-22 2004-09-08 吉林大学 有机聚合物阵列波导光栅及其制作方法
CN1553236A (zh) * 2003-12-19 2004-12-08 上海交通大学 掺铒磷酸盐两步离子交换光波导制作方法
CN1605893A (zh) * 2004-11-05 2005-04-13 中国科学院上海微系统与信息技术研究所 一次离子交换工艺制备平面集成布拉格波导光栅的方法
CN1603869A (zh) * 2004-11-08 2005-04-06 华中科技大学 一种脊形圆波导器件的制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197732B2 (en) 2016-08-26 2019-02-05 Corning Optical Communications LLC Methods for forming ion-exchanged waveguides in glass substrates

Also Published As

Publication number Publication date
CN1794023A (zh) 2006-06-28

Similar Documents

Publication Publication Date Title
CN100356216C (zh) 在光学玻璃表面制备长周期条形波导光栅的方法
Saliminia et al. First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses
Emmerson et al. Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings
Paterson et al. Optically inscribed surface relief diffraction gratings on azobenzene‐containing polymers for coupling light into slab waveguides
Ng et al. Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect
Lu et al. Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser
US4963177A (en) Method for making a grating assisted optical waveguide device
Hill et al. Photosensitivity in Eu2+: Al2O3-doped-core fiber: Preliminary results and application to mode converters
JPH07244210A (ja) 光導波路型回折格子の作製方法及びその作製用光導波路
Malo et al. Photosensitivity in optical fiber and silica-on-substrate waveguides
Ewen et al. Diffractive infrared optical elements in chalcogenide glasses
KR101527484B1 (ko) 체적 브래그 격자 및 이의 제조방법
Kintaka et al. Athermalization of a silica-based waveguide with a UV-induced Bragg grating on a crystallized glass substrate
JP3578376B2 (ja) 光回路の製造方法
Pissadakis et al. Excimer laser inscribed submicron period relief gratings in InO x films and overlaid waveguides
Pun et al. Fabrication of periodic waveguides by ion exchange
CZ2018648A3 (cs) Odrazivá metalická rezonanční difrakční mřížka s vytékajícím videm, způsob její výroby a její použití
Huebner et al. UV-written Y-splitter in Ge-doped silica
CN100359348C (zh) 离子交换工艺中基片表面的保护方法
Oh et al. Compositional dependence of the temperature sensitivity in a long period grating imprinted on GeO2-B2O3 co-doped core silica fibers
Simmons-Potter et al. Photosensitive thin films: Manipulation of defects through synthesis control
Khazanov et al. Measurements of thermooptic characteristics of magnetoactive glasses
Viens et al. Photoinduced integrated optical devices in sulfide chalcogenide glasses
Floreani et al. A flexible approach for the apodization of planar waveguide Bragg gratings
Yliniemi Studies on passive and active ion-exchanged glass waveguides and devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee