CN100346548C - Discriminiting element for developmental fault of high-voltage transmission line of power system - Google Patents

Discriminiting element for developmental fault of high-voltage transmission line of power system Download PDF

Info

Publication number
CN100346548C
CN100346548C CNB2004100236044A CN200410023604A CN100346548C CN 100346548 C CN100346548 C CN 100346548C CN B2004100236044 A CNB2004100236044 A CN B2004100236044A CN 200410023604 A CN200410023604 A CN 200410023604A CN 100346548 C CN100346548 C CN 100346548C
Authority
CN
China
Prior art keywords
fault
ratio
phase
electric weight
sequence electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100236044A
Other languages
Chinese (zh)
Other versions
CN1658463A (en
Inventor
索南加乐
刘世明
杨立璠
杜肖功
许庆强
毛鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANTAI DONGFANG ELECTRONIC INFORMATION INDUSTRY Co Ltd
Xian Jiaotong University
Original Assignee
YANTAI DONGFANG ELECTRONIC INFORMATION INDUSTRY Co Ltd
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANTAI DONGFANG ELECTRONIC INFORMATION INDUSTRY Co Ltd, Xian Jiaotong University filed Critical YANTAI DONGFANG ELECTRONIC INFORMATION INDUSTRY Co Ltd
Priority to CNB2004100236044A priority Critical patent/CN100346548C/en
Publication of CN1658463A publication Critical patent/CN1658463A/en
Application granted granted Critical
Publication of CN100346548C publication Critical patent/CN100346548C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The present invention discloses a developmental fault discriminating element. Compared with the existing discriminating element, the present invention accurately and effectively judges whether a system has developmental faults, and the present invention is not influenced by the oscillation of a power system. The present invention is characterized in that after single phase grounding occurs, when the angle change of a ratio of the zero sequence electric quantity to the negative sequence exceeds a threshold value, or the ratio (obtained on a line in a later fault stage) of the zero sequence electric quantity to the negative sequence electric quantity and the ratio obtained in an initial fault stage are not in a threshold value range, the present invention judges that the system has the developmental faults. The discriminating element of the present invention can also accurately judge the faults occur in an open-phase operation period of the system.

Description

Power system high tension power line developing fault method of discrimination
Technical field the present invention relates to a kind of relay protection method of power system, specifically, is a kind of power system high tension power line that is used for, and judges whether system the method for developing fault has taken place.
The background technology developing fault is meant from single phase ground fault and develops into the phase fault earth fault that comprises this phase, during open-phase operation, also thinks to have taken place developing fault when other fault takes place again circuit.Protection at present at the countermeasure of developing fault is, after single phase ground fault is confirmed as in protection, if find that two perfect the phase current difference sudden change amount element action of phase; carrying out impedance immediately checks on; promptly calculate two and perfect, establish fault and be the A phase mutually, then calculate Z in three kinds of interior impedances B, Z CAnd Z BC, any resistance value is promptly confirmed as fault and has been developed into alternately in distance protection II segment limit, and three-phase tripping operation is carried out in protection.To the developing fault of not discerning, protection deferred action.
After transmission line broke down, if developing fault has taken place, phase selection element can be falsely dropped phase, and change has also taken place the line fault ring, and misoperation will take place in protection, therefore claimedly can whether developing fault take place the real-time judge system.Used in the past developing fault discriminating element, when vibration took place in electric power system, it was very big to measure the influence that the impedance that perfects phase vibrated, the protective value when having influenced circuit generation developing fault.
Summary of the invention the object of the present invention is to provide a kind of power system high tension power line developing fault method of discrimination, finds a kind of developing fault method of discrimination that is not subjected to the reaction steady-state quantity that transmission line vibration influences.
Technical scheme of the present invention is as follows:
A kind of power system high tension power line developing fault method of discrimination, it is characterized by: after single-phase earthing takes place, if the zero sequence electric weight changes above threshold value with the angle of the ratio of negative phase-sequence electric weight, perhaps the ratio of the ratio size that obtains of the size of the zero sequence electric weight that obtains on the fault later stage circuit and the ratio of negative phase-sequence electric weight and fault initial stage is not within the threshold scope, and developing fault has taken place in the system that just is judged as.
Below be effect of the present invention:
With the magnitude of current is example, has provided the partial simulation result of this developing fault discriminating element below:
The extra high voltage network of 300km, 500kV carries out Digital Simulation as model.System model as shown in Figure 3, its model parameter is as follows:
Bus M end system parameters behind: Z M1=j45.149 Ω; Z M0=j23.321 Ω
Bus N end system parameters behind: Z N1=j96.262 Ω; Z N0=j47.48 Ω
Circuit adopts concentrates coupling parameter, and its parameter is: Z 1=0.0270+j0.3032 Ω; Z 0=0.1957+j0.6945 Ω
Simulation result 1: two ends power supply equivalent potential phase angle difference is 60 degree, and when A developed into the AB two-phase through 50 ohm of transition resistance ground connection through 50 ohm of transition resistance ground connection, the amplitude of discriminating element correspondence and phase judgment amount were respectively as accompanying drawing 4; When A developed into the CA two-phase through 50 ohm of transition resistance ground connection through 50 ohm of transition resistance ground connection, the amplitude of discriminating element correspondence and phase judgment amount were respectively as accompanying drawing 5.Abscissa is a different position of failure point on 300 kilometers circuits.
By Fig. 4 and Fig. 5 as seen, for this system, magnitude relation and phase relation can both be judged as developing fault has taken place.
Simulation result 2: the electromotive force phase difference still is 60 degree; various faults take place during the BC two-phase operation; the amplitude and the phase judgment amount of protection installation place zero sequence and negative-sequence current correspondence see Table lattice 1, are 200 ohm to the earth fault earth resistance, and the phase fault transition resistance is 50 ohm.
Differentiation amount when breaking down during the form 1 BC two-phase operation
Differentiation amount fault type Phase change (degree) Amplitude changes
BG 59.3 1.07
CG -59.8 1.01
BC 75.2 0.13
BCG 77.9 0.20
As can be seen from the table, the amplitude variable quantity can accurately be judged developing fault to BC and BCG, and phase changing capacity differentiate to various can both accurately declare to have taken place developing fault, so this developing fault discriminating element also can accurately be worked during open-phase operation.
In a word, the developing fault method of discrimination of application in operation mutually entirely, when developing into the phase fault ground connection that comprises this phase by certain phase earth fault, can accurately be judged developing fault has taken place, and is not subjected to the influence of system oscillation; During open-phase operation, perfect phase (perhaps alternate) when breaking down, also can accurately judge.
In following diagram of description of drawings and the flow chart, all be example with the magnitude of current.
Fig. 1: the compound preface net of single-phase earthing figure;
Fig. 2: developing fault is differentiated flow chart;
Fig. 3: analogue system illustraton of model;
Fig. 4: discriminating element simulation result when AG develops into ABG;
Fig. 5: discriminating element simulation result when AG develops into CAG.
Embodiment further specifies the present invention below in conjunction with the drawings and specific embodiments
The a phase relation
Compound preface net figure during according to earth fault is disregarding under the situation of transition resistance as can be known, and zero sequence and negative phase-sequence electric weight relative phase relation (is example with the electric current) are as following table (1)
Relation between table (1) relative phase and the fault type
According to the form of giving above as can be seen, develop into the phase fault earth fault that comprises this phase from certain phase ground connection,
Figure C20041002360400062
Be changed to ± 120 the degree, for example develop into ABG or CAG from AG,
Figure C20041002360400063
Angle to change size be 120 degree.
Consider the influence of transition resistance and zero, negative phase-sequence braning factor to phase difference, after giving certain nargin, provide the criterion one of developing fault: take place after the single-phase earthing, surpass 30 degree, just think developing fault has taken place if the angle of the ratio of zero sequence electric weight and negative phase-sequence electric weight changes.
The b magnitude relation
If Z 0And Z 2Be respectively system's equivalence zero sequence and the negative sequence impedance seen into from the fault point, R fTransition resistance during for line to line fault ground connection,
Figure C20041002360400064
With
Figure C20041002360400065
Be respectively fault point negative phase-sequence and zero-sequence current over the ground.
The compound preface net of 1 single-phase earthing figure can obtain with reference to the accompanying drawings, and when single-phase earthing took place, no matter whether transition resistance is arranged, there was following magnitude relation: I fault point preface electric current over the ground F2=I F0, to the preface current amplitude pass of protection installation place be I 0 I 2 = | C 0 I f 0 C 2 I f 2 | = | C 0 C 2 | . If line to line fault ground connection is taken place, I 0 I 2 = | C 0 ( Z 0 + 3 R f ) C 2 Z 2 | . I behind the generation developing fault 0/ I 2With the I before the generation developing fault 0/ I 2Ratio | (Z 0+ 3R f)/Z 2|.
If behind the circuit generation single-phase earthing developing fault does not take place, I during owing to single-phase earthing 0/ I 2Size and transition resistance it doesn't matter, so I 0/ I 2Maintain a constant, and I behind the generation developing fault 0/ I 2Size may change; For given system, preface component voltage and preface current weight have fixing proportionate relationship, so the ratio of residual voltage and negative sequence voltage also satisfies above-mentioned relation.
We provide the criterion two of developing fault thus: circuit generation single-phase earthing, if the ratio of the zero sequence electric weight that obtains on the fault later stage circuit and the ratio of negative phase-sequence electric weight and fault early period of origination, the ratio that obtains when confirming as single-phase earthing exceeds the scope of 0.8-1.25, show that developing fault has taken place circuit.
When non full phases operation of line, if break down again, can differentiate with top criterion equally, go up and two criterions as long as satisfy wherein any one, just show that developing fault has taken place circuit.
Developing fault is differentiated flow process referring to accompanying drawing 2, is example with the preface electric current among the figure,
Figure C20041002360400071
With
Figure C20041002360400072
Be positive sequence, negative phase-sequence and the zero-sequence current that the protection installation place measures, I eSpecified in the circuit, a is a ratio of confirming as single-phase earthing zero sequence and negative-sequence current amplitude, b is the phase difference of confirming as between single-phase earthing zero sequence and the negative-sequence current.

Claims (2)

1, a kind of power system high tension power line developing fault method of discrimination, it is characterized by: after single-phase earthing takes place, if the zero sequence electric weight changes above threshold value with the angle of the ratio of negative phase-sequence electric weight, perhaps the ratio of the ratio size that obtains of the size of the zero sequence electric weight that obtains on the fault later stage circuit and the ratio of negative phase-sequence electric weight and fault initial stage is not within the threshold scope, and developing fault has taken place in the system that just is judged as.
2, power system high tension power line developing fault method of discrimination as claimed in claim 1 is characterized by:
When circuit moves entirely mutually:
The criterion one of developing fault: take place after the single-phase earthing, surpass 30 degree, just think developing fault has taken place if the angle of the ratio of zero sequence electric weight and negative phase-sequence electric weight changes;
The criterion two of developing fault: circuit generation single-phase earthing, if the ratio of the zero sequence electric weight that obtains on the fault later stage circuit and the ratio of negative phase-sequence electric weight and fault early period of origination, the ratio that obtains when confirming as single-phase earthing exceeds the scope of 0.8-1.25, show that developing fault has taken place circuit;
When non full phases operation of line:
Differentiate with top criterion equally, above two criterions as long as satisfy wherein any one, just show that developing fault has taken place circuit.
CNB2004100236044A 2004-02-19 2004-02-19 Discriminiting element for developmental fault of high-voltage transmission line of power system Expired - Fee Related CN100346548C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100236044A CN100346548C (en) 2004-02-19 2004-02-19 Discriminiting element for developmental fault of high-voltage transmission line of power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100236044A CN100346548C (en) 2004-02-19 2004-02-19 Discriminiting element for developmental fault of high-voltage transmission line of power system

Publications (2)

Publication Number Publication Date
CN1658463A CN1658463A (en) 2005-08-24
CN100346548C true CN100346548C (en) 2007-10-31

Family

ID=35007775

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100236044A Expired - Fee Related CN100346548C (en) 2004-02-19 2004-02-19 Discriminiting element for developmental fault of high-voltage transmission line of power system

Country Status (1)

Country Link
CN (1) CN100346548C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034128B (en) * 2007-02-09 2010-05-19 田伟 Method for quickly recognizing symmetrical failure in vibration
CN103091605B (en) * 2013-01-31 2015-02-18 福建省电力有限公司 Method using dynamic extraction coefficient to realize line inter-phase single-terminal fault location
CN106410764B (en) * 2016-10-21 2018-12-28 云南电网有限责任公司电力科学研究院 A kind of calculation method and device of positive sequence polarization voltage
CN114966326B (en) * 2022-08-01 2022-11-11 国家电网有限公司 Single-phase earth fault section positioning method and system based on current negative sequence fault

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123416A (en) * 1994-11-21 1996-05-29 斯维则工程实验室公司 Distance relay with load encroachment protection for use with power transmission lines
CN1355585A (en) * 2000-10-20 2002-06-26 施魏策尔工程实验公司 Failure type selecting system for identificating failure in electric system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123416A (en) * 1994-11-21 1996-05-29 斯维则工程实验室公司 Distance relay with load encroachment protection for use with power transmission lines
CN1355585A (en) * 2000-10-20 2002-06-26 施魏策尔工程实验公司 Failure type selecting system for identificating failure in electric system

Also Published As

Publication number Publication date
CN1658463A (en) 2005-08-24

Similar Documents

Publication Publication Date Title
CN1180272C (en) Small-current earth fault switch-selecting and sectioning method for power system
RU2489724C1 (en) Method of identifying type of short-circuiting in electric power line
CN110988740B (en) Single-phase earth fault detection method suitable for neutral point small-resistance earth distribution network
WO2013185521A1 (en) Full component differential coefficient matrix-based method for ultra-high-voltage alternating current electric power transmission line protection
CN100335912C (en) Small Current earthing line selecting method based on model parametric recognition
Das et al. Effects of distributed generators on impedance-based fault location algorithms
Sidhu et al. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions
CN100346548C (en) Discriminiting element for developmental fault of high-voltage transmission line of power system
CN109066607B (en) Voltage acceleration method and device for variable time-limit distance protection of power grid line
CN113541111B (en) Power transmission line disconnection fault judgment method based on disconnection fault criterion
Dhakulkar et al. Inspection of Voltage Sags and Voltage Swells Incident in Power Quality Problems—A Review
Kumar et al. Fault detection in a series compensated line during power swing using superimposed apparent power
CN100463327C (en) High voltage circuit phase selection based on pallern identification
Sidhu et al. A digital technique for stator winding protection of synchronous generators
CN110061475A (en) A kind of phase modifier field loss protection method and system based on to systematic influence degree
CN100463324C (en) Failure component extracting algorithm based on failure type
CN100344040C (en) Negative-sequence longitudinal differential element for electric system
CN112684288A (en) Method for realizing small-current single-phase grounding line selection by utilizing three-phase fault signal current
Bikić et al. Transferred voltages due to single phase earth fault on power transformers
CN108666985B (en) Accurate diagnosis and protection method for power frequency overvoltage of power transmission line
CN1154218C (en) Single-phase earthing protection method for small current earthing system
Desai Three-Terminal Transmission Line Protection By Considering Effect of Infeed Current
CN104767184A (en) High-voltage direct-current transmission line protection method for improving transition resistance tolerance ability
CN110780235B (en) Disconnection fault identification method and system based on phase-to-phase voltage difference
CN103972872A (en) Fault handling method of main lines and branch lines in 10KV distribution automation line

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071031

Termination date: 20100219