CN100344120C - Method of transmittng down data from insertion site in radio local network - Google Patents
Method of transmittng down data from insertion site in radio local network Download PDFInfo
- Publication number
- CN100344120C CN100344120C CNB031005160A CN03100516A CN100344120C CN 100344120 C CN100344120 C CN 100344120C CN B031005160 A CNB031005160 A CN B031005160A CN 03100516 A CN03100516 A CN 03100516A CN 100344120 C CN100344120 C CN 100344120C
- Authority
- CN
- China
- Prior art keywords
- terminal
- access point
- downlink data
- send
- sends
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种无线局域网中接入点使用固定波束智能天线发送下行数据的方法,包括预先确定并存储终端的位置;接入点根据位置信息使用覆盖该终端的波束发送一个询问消息;接入点判断是否在预先设置的时间内接收到来自终端的响应消息,如果是,接入点使用该波束发送下行数据,否则接入点确定该终端的当前位置,并根据当前位置信息使用覆盖该终端当前位置的波束发送下行数据。使用本发明有效地解决了目前将固定波束智能天线安装到接入点时存在的难以处理下行数据的困难,有利于智能天线在无线局域网中得到进一步的应用,从而提高了无线局域网的覆盖范围,扩大了无线局域网的工作能力。
The invention discloses a method for an access point in a wireless local area network to use a fixed beam smart antenna to send downlink data, including predetermining and storing the position of a terminal; the access point sends an inquiry message using the beam covering the terminal according to the position information; The access point judges whether a response message from the terminal is received within the preset time, if so, the access point uses the beam to send downlink data, otherwise the access point determines the current location of the terminal, and uses the beam to cover the beam according to the current location information. The beam at the terminal's current location sends downlink data. Using the present invention effectively solves the difficulty of processing downlink data existing when the fixed beam smart antenna is installed on the access point at present, which is conducive to the further application of the smart antenna in the wireless local area network, thereby improving the coverage of the wireless local area network. Expanded the working capacity of the wireless LAN.
Description
技术领域technical field
本发明涉及无线局域网的智能天线技术,具体涉及一种无线局域网中接入点使用固定波束智能天线发送下行数据的方法。The invention relates to a smart antenna technology of a wireless local area network, in particular to a method for an access point in a wireless local area network to use a fixed beam smart antenna to send downlink data.
背景技术Background technique
无线局域网是一种遵循国际电气和电子工程师协会(IEEE)802.11协议、以电磁波作为传输媒介的局域网。IEEE 802.11协议包括两个物理层标准:802.11a和802.11b,它们的工作频段分别为2.4G和5G,支持的最高物理接口速率分别为11Mbps和54Mbps。802.11a和802.11b采用相同的媒体接入控制协议(MAC)。Wireless local area network is a kind of local area network that follows the International Institute of Electrical and Electronics Engineers (IEEE) 802.11 protocol and uses electromagnetic waves as the transmission medium. The IEEE 802.11 protocol includes two physical layer standards: 802.11a and 802.11b. Their working frequency bands are 2.4G and 5G respectively, and the highest supported physical interface rates are 11Mbps and 54Mbps respectively. 802.11a and 802.11b use the same media access control protocol (MAC).
无线局域网主要由插入无线局域网卡的终端和接入点组成。终端可以组成无中心点的对等(Adhoc)模式,也可以和接入点组成中心点转发的基础设施(Infrastructure)模式,并通过接入点与有线网络互联,图1示出了一种基础设施模式的无线局域网的基本结构。在这种结构中,接入点使用全向天线和终端进行通信。A wireless LAN is mainly composed of a terminal and an access point inserted into a wireless LAN card. The terminal can form a peer-to-peer (Adhoc) mode without a central point, and can also form an infrastructure (Infrastructure) mode in which a central point forwards with an access point, and interconnect with a wired network through an access point. Figure 1 shows a basic Basic structure of wireless LAN in facility mode. In this configuration, the access point communicates with the terminal using an omni-directional antenna.
无线局域网最初是针对室内、小范围应用环境而设计的,因此覆盖范围小,抗干扰能力弱。目前接入点和终端一般都采用全向天线,在规定的发射功率下,室内只能覆盖30米左右,室外覆盖100米左右。较小的覆盖范围和较弱的抗干扰性限制了无线局域网的进一步发展。WLAN was originally designed for indoor and small-scale application environments, so the coverage area is small and the anti-interference ability is weak. At present, access points and terminals generally use omnidirectional antennas. Under the specified transmission power, the indoor coverage can only be about 30 meters, and the outdoor coverage is about 100 meters. Smaller coverage and weaker anti-interference limit the further development of WLAN.
在这种情况下,为提高无线局域网的覆盖范围,人们考虑采用先进的智能天线技术。智能天线最初应用于雷达、声纳及军用通信领域。图2示出了智能天线技术的原理。其基本原理是通过给多个天线加权,在空间实现具有指向性的波束。并能够通过调整加权值,动态调整天线阵波束,以适应信号环境的变化,得到较好的无线传输效果。采用智能天线后,可以提高系统覆盖能力,同时降低对发射功放的要求。In this case, in order to improve the coverage of WLAN, people consider adopting advanced smart antenna technology. Smart antennas were initially used in radar, sonar and military communications. Figure 2 shows the principle of smart antenna technology. The basic principle is to achieve directional beams in space by weighting multiple antennas. And by adjusting the weighted value, the beam of the antenna array can be dynamically adjusted to adapt to the change of the signal environment and obtain a better wireless transmission effect. After adopting the smart antenna, the system coverage capability can be improved, and the requirements for the transmitting power amplifier can be reduced at the same time.
目前的智能天线可以分为两大类:固定波束智能天线和自适应智能天线。固定波束智能天线使用天线阵形成多个固定波束,选择最大增强信号的波束进行接收和发射;而自适应智能天线则能根据噪声、干扰、多径和移动用户分布调整天线方向图,能够在期望信号方向有较大的增益的同时,在强干扰方向形成空间的波束零点,从而提高信号质量。自适应智能天线能达到较好的效果,但实现较为复杂,固定波束智能天线虽然不是最优,但实现相对简单。Current smart antennas can be divided into two categories: fixed beam smart antennas and adaptive smart antennas. The fixed-beam smart antenna uses the antenna array to form multiple fixed beams, and selects the beam with the largest enhanced signal for receiving and transmitting; while the adaptive smart antenna can adjust the antenna pattern according to noise, interference, multipath and mobile user distribution, and can be in the expected While there is a large gain in the signal direction, a spatial beam zero point is formed in the direction of strong interference, thereby improving the signal quality. Adaptive smart antennas can achieve better results, but the implementation is more complicated. Although the fixed beam smart antenna is not optimal, it is relatively simple to implement.
现有无线局域网和智能天线结合的方案一般都是将智能天线安装在终端侧,但由于目前技术水平的限制,终端侧实现智能天线成本高昂,产品不易推广,而且安装了智能天线的终端一般体积庞大,用户使用非常不方便。为了克服这个缺点,人们想到了将智能天线安装在接入点一侧。由于接入点由多个用户共用,成本分摊到单个用户上增加并不是很多,而且接入点体积偏大,对用户使用并不造成任何影响。因此接入点使用智能天线是更为合理的方案。The existing scheme of combining wireless local area network and smart antenna generally installs the smart antenna on the terminal side, but due to the limitation of the current technical level, the cost of implementing the smart antenna on the terminal side is high, the product is not easy to promote, and the terminal installed with the smart antenna is generally bulky Huge, very inconvenient for users to use. In order to overcome this shortcoming, people thought of installing the smart antenna on one side of the access point. Since the access point is shared by multiple users, the cost allocated to a single user does not increase much, and the access point is relatively large, which does not have any impact on user use. Therefore, it is more reasonable to use smart antennas for access points.
但是要将智能天线安装在接入点一侧,目前存在着下列困难:But to install the smart antenna on the side of the access point, there are currently the following difficulties:
1、广播数据难以处理1. Broadcast data is difficult to process
由于智能天线在某一瞬时只能覆盖到周围的部分区域,而不能覆盖无线局域网中的所有终端。因此对于需要所有终端必须侦听到的广播信息,按照目前协议无法处理。在无线局域网中,信标帧(Beacon)是最为重要的广播信息,接入点和终端必须分别周期性地广播和接收,因此要将智能天线安装在接入点一侧,必须解决如何发送广播消息的问题。Because the smart antenna can only cover part of the surrounding area at a certain moment, but cannot cover all terminals in the wireless local area network. Therefore, the broadcast information that all terminals must listen to cannot be processed according to the current protocol. In the wireless local area network, the beacon frame (Beacon) is the most important broadcast information, and the access point and the terminal must broadcast and receive periodically respectively. Therefore, to install the smart antenna on the side of the access point, it is necessary to solve how to send the broadcast message problem.
2、主动发送的下行数据难以处理2. The downlink data sent actively is difficult to process
对于终端主动发起的数据传输,接入点可以根据终端发送的信号确定终端位置,从而确定发送下行数据的波束。但是,对于接入点主动发起的数据传输,由于没有终端位置这样的参考信号可以用来帮助选择波束,因此难以处理。For the data transmission initiated by the terminal, the access point can determine the location of the terminal according to the signal sent by the terminal, so as to determine the beam for sending downlink data. However, for data transmission initiated by the access point, it is difficult to deal with since there is no reference signal such as the terminal location that can be used to help select the beam.
3、点协调功能难以处理3. The point coordination function is difficult to handle
在无线局域网的媒体接入控制协议中,接入点有一种点协调功能。在这种工作方式下,所有终端都不能主动发送数据,而是由接入点依次给终端发送一个用于轮询终端的CF_Poll帧。收到CF_Poll的终端如果正好有数据发送,才能开始发送。CF_Poll也属于接入点主动发送的下行数据,因此也难以处理。而且,当点协调功能结束时,接入点要发送一个表示无竞争阶段结束的广播帧CF_End,向所有终端宣告点协调功能的结束,而像前面介绍的那样,这个广播数据也难以处理。In the media access control protocol of the wireless local area network, the access point has a point coordination function. In this working mode, all terminals cannot actively send data, but the access point sequentially sends a CF_Poll frame for polling the terminals to the terminals. The terminal receiving CF_Poll can only start sending if there is data to send. CF_Poll also belongs to the downlink data actively sent by the access point, so it is also difficult to process. Moreover, when the point coordination function ends, the access point will send a broadcast frame CF_End indicating the end of the contention-free phase to announce the end of the point coordination function to all terminals, and as described above, this broadcast data is also difficult to process.
发明内容Contents of the invention
有鉴于此,本发明的目的是提供一种无线局域网中接入点使用固定波束智能天线发送下行数据的方法,以解决目前存在的由接入点主动发送的下行数据难以处理的问题。In view of this, the purpose of the present invention is to provide a method for an access point in a wireless local area network to send downlink data using a fixed beam smart antenna, so as to solve the current problem that the downlink data actively sent by the access point is difficult to process.
本发明的上述目的是通过如下的技术方案予以解决的:Above-mentioned purpose of the present invention is solved by following technical scheme:
一种无线局域网中接入点使用固定波束智能天线发送下行数据的方法,包括如下步骤:A method for sending downlink data by an access point in a wireless local area network using a fixed beam smart antenna, comprising the following steps:
a.预先确定终端的位置;a. Predetermine the location of the terminal;
b.接入点根据终端的位置信息使用覆盖该终端的波束发送一个询问消息;b. The access point sends an inquiry message using the beam covering the terminal according to the location information of the terminal;
c.接入点判断是否在预先设置的时间内接收到来自该终端的响应消息,如果是,接入点使用该波束发送下行数据,否则执行步骤d;c. The access point judges whether a response message from the terminal is received within the preset time, if yes, the access point uses the beam to send downlink data, otherwise, execute step d;
d.接入点依次在其他波束中发送询问消息,直到接收到来自该终端的响应消息为止,根据响应消息确定该终端的当前位置信息,或者,接入点缓存下行数据,并将标记接入点需要向该终端发送下行数据的广播消息发送给所有终端,直到接收到来自该终端的响应帧,根据所述响应帧确定终端当前位置信息;并根据终端的当前位置信息使用覆盖该终端当前位置的波束发送下行数据。d. The access point sends inquiry messages in other beams in turn until it receives a response message from the terminal, and determines the current location information of the terminal according to the response message, or the access point caches downlink data and marks the access The broadcast message that needs to send downlink data to the terminal is sent to all terminals until a response frame from the terminal is received, and the current location information of the terminal is determined according to the response frame; and the current location of the terminal is covered by using the current location information of the terminal beam to send downlink data.
步骤d中所述依次在其他波束中发送询问消息包括:按照距离当前波束由近及远的原则依次在其他波束中发送询问消息。The sequentially sending inquiry messages in other beams in step d includes: sequentially sending inquiry messages in other beams according to the principle of increasing distance from the current beam.
在上述发送下行数据的方法中,在步骤d中所述将标记接入点需要向该终端发送下行数据的广播消息发送给所有终端之后,且在接收到来自该终端的响应帧之前进一步包括:终端通过解析广播消息确定接入点是否需要给自己发送下行数据,如果不是,终端不响应;如果是,终端向接入点发送表示自己位置信息的响应帧。这里可以通过将业务指示映射信息中该终端的连接标识置位来标记接入点需要向该终端发送下行数据,并将该业务指示映射信息附加在广播消息中进行发送。这里的广播消息可以是信标帧。In the above method for sending downlink data, after sending the broadcast message indicating that the access point needs to send downlink data to the terminal to all terminals in step d, and before receiving the response frame from the terminal, it further includes: The terminal determines whether the access point needs to send downlink data to itself by analyzing the broadcast message, if not, the terminal does not respond; if so, the terminal sends a response frame indicating its location information to the access point. Here, the connection identifier of the terminal in the service indication mapping information may be set to mark that the access point needs to send downlink data to the terminal, and the service indication mapping information may be attached to the broadcast message for transmission. The broadcast message here may be a beacon frame.
在上述发送下行数据的方法中,通过使用覆盖终端的波束编号表示终端的位置信息。In the above method for sending downlink data, the position information of the terminal is indicated by using the number of the beam covering the terminal.
在上述发送下行数据的方法中,在步骤a中可以通过读取存储在接入点的终端位置信息来确定终端的位置。这里接入点可以根据终端向接入点发送的连接请求消息确定并存储终端的初始位置信息;接入点每一次和终端进行数据通信之后,使用终端的当前位置更新所存储的该终端的位置信息。In the above method for sending downlink data, in step a, the location of the terminal can be determined by reading the location information of the terminal stored in the access point. Here, the access point can determine and store the initial location information of the terminal according to the connection request message sent by the terminal to the access point; each time the access point performs data communication with the terminal, it uses the current location of the terminal to update the stored location of the terminal information.
从本发明的技术方案可以看出,无线局域网首先存储终端的位置信息,并在需要向终端发送下行数据时首先利用该位置信息使用相应波束发送一个询问帧,如果得到终端响应即使用该波束发送下行数据,如果没有在规定时间内得到终端响应,则在其他波束发送询问帧,并根据终端返回的响应帧确定终端位置信息,然后利用该位置信息向终端发送下行数据。或者没有在规定时间内得到终端响应时,AP认为终端处于省电模式,缓存下行数据,并将TIM中对应该用户的连接标识(AID)置位。由于每一个信标帧中都包含有TIM,因此终端通过解析信标帧即可发现有自己的缓存数据,然后发送PS_Poll帧给接入点,接入点通过来自终端的PS_Poll帧即可确定终端的位置信息,然后利用该位置信息向终端发送下行数据。这样通过预先存储终端的位置信息和给终端发送询问帧并通过终端响应确定终端的实际位置,即可根据该位置信息确定地向终端发送下行数据,因此这种方法有效地解决了由接入点主动发送的下行数据难以处理的问题。It can be seen from the technical solution of the present invention that the wireless local area network first stores the location information of the terminal, and when it needs to send downlink data to the terminal, it first uses the location information to send an inquiry frame using the corresponding beam, and if the terminal responds, it uses the beam to send an inquiry frame. For downlink data, if there is no response from the terminal within the specified time, an inquiry frame will be sent on other beams, and the location information of the terminal will be determined according to the response frame returned by the terminal, and then the downlink data will be sent to the terminal using the location information. Or when no response from the terminal is received within the specified time, the AP considers the terminal to be in power-saving mode, buffers the downlink data, and sets the connection identifier (AID) corresponding to the user in the TIM. Since each beacon frame contains a TIM, the terminal can find its own buffer data by parsing the beacon frame, and then send the PS_Poll frame to the access point, and the access point can determine the terminal through the PS_Poll frame from the terminal location information, and then use the location information to send downlink data to the terminal. In this way, by pre-storing the location information of the terminal, sending an inquiry frame to the terminal, and determining the actual location of the terminal through the terminal response, the downlink data can be sent to the terminal with certainty according to the location information. The problem that the downlink data sent actively is difficult to handle.
由于点协调功能中发送的CF_Poll帧实质上也是一个下行数据,完全可以采用本发明的第一种方案进行发送,因此本发明也部分地解决了目前点协调功能难以处理的问题。Since the CF_Poll frame sent in the point coordination function is essentially a downlink data, it can be sent using the first scheme of the present invention, so the present invention also partially solves the problem that the current point coordination function is difficult to handle.
在本申请人另案申请的无线局域网中接入点发送广播消息的方法的专利申请中提出的技术方案,可以成功解决目前存在的广播消息难以处理的问题以及点协调功能中的CF_End帧难以处理的问题,因此和本发明相结合,可以完全解决现有技术中的三大难题,为将固定波束智能天线安装到无线局域网中的接入点并能正常运作扫清了障碍。The technical solution proposed in the applicant's patent application for the method of sending broadcast messages by access points in wireless local area networks can successfully solve the existing problems of difficult processing of broadcast messages and the difficulty of processing CF_End frames in the point coordination function Therefore, in combination with the present invention, the three major problems in the prior art can be completely solved, and the obstacles are cleared for installing the fixed-beam smart antenna on the access point in the wireless local area network and normal operation.
因此,在无线局域网中将固定波束智能天线安装在接入点一侧成为可能,这样和使用全向天线相比,扩大了无线局域网的覆盖范围,避免了终端成本过高、体积过大的缺点。使用这种方法,只需对接入点的MAC层进行适当修改,而终端的MAC层不需要任何改动,因此易于实现。Therefore, it is possible to install fixed-beam smart antennas on the side of the access point in the wireless local area network. Compared with the use of omnidirectional antennas, the coverage of the wireless local area network is expanded, and the disadvantages of high cost and large size of the terminal are avoided. . With this method, only the MAC layer of the access point needs to be modified appropriately, while the MAC layer of the terminal does not need any modification, so it is easy to implement.
附图说明Description of drawings
图1是现有技术中接入点使用全向天线和终端通信的示意图;FIG. 1 is a schematic diagram of an access point communicating with a terminal using an omnidirectional antenna in the prior art;
图2是现有技术中智能天线的工作原理示意图;Fig. 2 is a schematic diagram of the working principle of the smart antenna in the prior art;
图3是本发明的接入点使用固定波束智能天线和终端通信的示意图;3 is a schematic diagram of the access point of the present invention using a fixed beam smart antenna to communicate with a terminal;
图4是智能天线的基本工作方式示意图;FIG. 4 is a schematic diagram of a basic working mode of a smart antenna;
图5是本发明发送信标帧的第一种方法的时序示意图;Fig. 5 is a timing diagram of the first method for sending a beacon frame in the present invention;
图6是本发明发送信标帧的第二种方法的时序示意图;FIG. 6 is a schematic diagram of a timing sequence of a second method for sending a beacon frame in the present invention;
图7是本发明发送下行数据的第一种方法的时序示意图;FIG. 7 is a schematic timing diagram of a first method for sending downlink data in the present invention;
图8是本发明发送CF_Poll消息的第一种方法的时序示意图。FIG. 8 is a schematic diagram of the sequence of the first method for sending a CF_Poll message in the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
在将固定波束智能天线安装在AP上的无线局域网系统中,终端仍然使用现有的全向天线,AP使用固定波束智能天线和终端进行通信,在图3中可以看出,无线局域网中的每一个终端位于固定波束智能天线的固定波束的覆盖范围内,AP通过终端所在的波束和终端通信。固定波束智能天线的固定波束可以根据实际情况在360度范围内进行划分,所有的固定波束组合在一起即可覆盖整个无线局域网的区域。In a WLAN system where fixed-beam smart antennas are installed on APs, terminals still use existing omnidirectional antennas, and APs use fixed-beam smart antennas to communicate with terminals. As can be seen in Figure 3, each A terminal is located within the coverage of the fixed beam of the fixed beam smart antenna, and the AP communicates with the terminal through the beam where the terminal is located. The fixed beams of the fixed beam smart antenna can be divided in a 360-degree range according to the actual situation, and all the fixed beams can be combined to cover the entire wireless LAN area.
根据固定波束智能天线的工作原理可知,固定波束智能天线发送数据时在某一个时刻只能覆盖部分区域,在接收数据时一个时刻可以同时覆盖整个区域。AP的基本工作过程是:在接收数据时,同时从多个波束接收,选择信号质量最好的波束接收;在发送数据时,各个固定波束中顺序快速切换,也就是在第一个时刻用波束1覆盖波束1可以到达的区域,在第二个时刻用波束2覆盖波束2可以到达的区域,如此循环往复,即可以覆盖周围的整个区域,这个过程如图4所示。在图4中,有两个终端需要和AP通信,AP在快速切换的过程中会在不同时间覆盖到这两个终端,从而可以向终端发送消息。According to the working principle of the fixed-beam smart antenna, the fixed-beam smart antenna can only cover part of the area at a certain moment when sending data, and can cover the entire area at one moment when receiving data. The basic working process of the AP is: when receiving data, receive from multiple beams at the same time, and select the beam with the best signal quality to receive; 1 covers the area that
下面介绍AP向终端发送广播消息和下行数据的方法。The following describes the method for the AP to send broadcast messages and downlink data to the terminal.
首先以信标帧为例说明AP如何向所有终端发送广播消息。在现有技术部分已经提到过,信标帧是无线局域网中非常重要的广播消息,AP需要周期性地向所有终端发送信标帧。而由于AP在固定波束之间轮询时在某一个时刻只能覆盖部分区域,为了不影响终端使用,需要对全向天线情况下信标帧的发送方式进行修改。下面提出了三种AP使用固定波束智能天线发送广播消息的方法,均以信标帧为例进行说明。First, take the beacon frame as an example to illustrate how the AP sends broadcast messages to all terminals. As mentioned in the prior art section, the beacon frame is a very important broadcast message in the wireless local area network, and the AP needs to periodically send the beacon frame to all terminals. However, since the AP can only cover part of the area at a certain moment when polling between fixed beams, in order not to affect the use of the terminal, it is necessary to modify the sending mode of the beacon frame in the case of an omnidirectional antenna. Three methods for an AP to send a broadcast message by using a fixed-beam smart antenna are proposed below, all of which are described by taking a beacon frame as an example.
发送广播消息的方法1:
图5示出了AP使用固定波束为4个的智能天线发送信标帧的第一种方法的时序示意图。如图5所示,AP仍然周期性地发送信标帧,只是每次发送时选择不同的波束。在图5中,AP首先在第一轮扫描中选择波束1发送一个信标帧,在其他波束不发送,然后在第二轮扫描中选择波束2发送一个信标帧,同样在其他波束不发送,这样经过四轮扫描后,位于每个波束覆盖范围内的终端都将收到一个信标帧。随后,AP再以同样的方式循环往复,在时隔预定周期后的四轮扫描中发送另一个信标帧。FIG. 5 shows a schematic diagram of a timing sequence of a first method in which an AP uses a smart antenna with four fixed beams to send a beacon frame. As shown in Figure 5, the AP still periodically sends beacon frames, but selects a different beam every time it sends. In Figure 5, the AP first selects
在这种方法中,如果AP发送信标帧的周期为T,则对于每个波束覆盖下的终端来说,实际接收的信标帧的周期为n×T,这里的n代表波束总数。因此使用这种方法时需要在协议中修改表示AP发送信标帧周期的参数aBeaconPeriod为n×T。In this method, if the period of the AP sending the beacon frame is T, then for the terminal covered by each beam, the period of the actually received beacon frame is n×T, where n represents the total number of beams. Therefore, when using this method, it is necessary to modify the parameter aBeaconPeriod indicating the period of the AP sending the beacon frame to n×T in the protocol.
发送广播消息的方法2:
图6示出了AP使用固定波束为4个的智能天线发送信标帧的第二种方法的时序示意图。如图6所示,当需要发送信标帧时,AP不像方法1中那样在一个扫描轮次内只选择一个波束发送一个信标帧,而是在一个扫描轮次内同时在所有的4个波束中分别发送4个信标帧。然后在时隔周期T后,再同样地在一个扫描轮次内同时在所有的波束发送信标帧。如果采用这种方法,每一个终端接收信标帧的周期依然为T,则不需要修改参数aBeaconPeriod的设置,但是需要对现有信标帧发送方式进行修改,固为在目前的无线局域网中只需要发送一个信标帧,而使用这种方法时需要发送和固定波束数量相对应的信标帧。FIG. 6 shows a schematic diagram of a second method for sending beacon frames by an AP using a smart antenna with four fixed beams. As shown in Figure 6, when it is necessary to send a beacon frame, the AP does not select only one beam to send a beacon frame in a scanning round as in
发送信标帧的方法3:
在这种方法中,可以在AP增加一个现有的全向天线,利用全向天线以和现有技术相同的方法发送信标帧。使用这种方法虽然需要增加一个全向天线,但是这种方法实现起来更加简单。In this method, an existing omnidirectional antenna can be added to the AP, and the beacon frame can be sent in the same way as in the prior art by using the omnidirectional antenna. Although using this method needs to add an omnidirectional antenna, this method is simpler to implement.
上面以发送信标帧的三种方法为例介绍了本发明如何向终端发送广播消息。需要说明的是,对于对时效性要求较高的广播消息,也就是要求在发送时所有终端都能接收到的广播消息,例如标志PCF阶段开始的信标帧和标志PCF结束的CF_End帧,则只能采用上面介绍的方法2或者方法3,因为在方法1中不同终端接收广播消息的时间间隔相对较大,不适于对时效性要求较高的情况。The above describes how to send broadcast messages to terminals in the present invention by taking the three methods of sending beacon frames as examples. It should be noted that for broadcast messages that require high timeliness, that is, broadcast messages that are required to be received by all terminals when they are sent, such as the beacon frame that marks the beginning of the PCF phase and the CF_End frame that marks the end of the PCF, then Only
下面说明在本发明中AP如何向特定终端发送下行数据。本发明同样提出了三种发送下行数据的方法。The following describes how the AP sends downlink data to a specific terminal in the present invention. The present invention also proposes three methods for sending downlink data.
发送下行数据的方法1:
图7示出了发送下行数据的时序示意图。在这种方法中,AP需要先存储每个终端的位置信息,也就是覆盖该终端的波束的编号。例如波束3覆盖STA1,则记录STA1的位置是波束3,如果波束1覆盖STA2,则记录STA2的位置是波束1。终端在开机时会向接入点发送一个连接请求信息,接入点通过该连接请求信息即可确定用户的位置信息并将该位置信息存储在接入点的存储器中,这样就得到了终端的初始位置信息。这里的存储位置信息过程对于本领域技术人员来说是熟知的技术,在此不再进行具体说明。AP每一次同终端进行通信后,都用终端当前的波束号更新这个位置信息。FIG. 7 shows a schematic diagram of a timing sequence for sending downlink data. In this method, the AP needs to first store the location information of each terminal, that is, the number of the beam covering the terminal. For example,
在记录了特定终端的位置信息后,AP向该终端发送下行数据时,首先用记录终端位置信息的波束发送一个RTS帧,也就是对于STA1,首先用STA1当前的位置信息波束3发送一个RTS帧,如果STA1现在位于波束3的覆盖范围内,则会向AP返回一个CTS帧。这里的RTS帧和CTS帧都是无线局域网中定义的控制帧,RTS帧用于数据发送端在发送数据之前发给接收端,CTS用来回应RTS帧。AP在接收到来自终端的CTS帧之后,即可确认该终端位于波束3的覆盖范围内,然后利用波束3发送下行数据,并在发送完成后接收由终端返回的ACK帧。After recording the location information of a specific terminal, when the AP sends downlink data to the terminal, it first sends an RTS frame with the beam that records the location information of the terminal, that is, for STA1, first sends an RTS frame with
如果STA1现在没有位于波束3的覆盖范围内,AP在规定时间ACK_Timeout内没有收到来自STA1的CTS帧,则依次在其他波束中发送RTS帧,直到接收到STA1的CTS帧为止。这里发送RTS帧的顺序是距离当前波束由近及远,例如固定波束一共有5个,当前波束是波束3,则可能按照3-2-4-1-5的顺序进行RTS帧的发送。If STA1 is not within the coverage of
需要说明的是,在无线局域网使用的原有协议中MAC层规定只有发送数据长度大于一个特定值时才使用RTS/CTS机制,而在这种方法中修改了这个设置,对于所有的下行数据无论长短都要使用RTS/CTS机制。It should be noted that in the original protocol used by the wireless LAN, the MAC layer stipulates that the RTS/CTS mechanism should only be used when the length of the sent data is greater than a specific value. In this method, this setting is modified. For all downlink data regardless of Both long and short must use the RTS/CTS mechanism.
发送下行数据的方法2:
这种方法和发送下行数据的方法1中的前半部分相同,也就是AP需要先存储每个终端的位置信息。AP向某个终端发送下行数据时,首先用记录终端位置信息的波束发送一个RTS帧,如果接收到终端返回的CTS帧,则利用当前波束发送下行数据,并在发送完成后接收由终端返回的ACK帧。如果该终端现在没有位于当前波束的覆盖范围内,AP在规定时间ACK_Timeout内没有收到来自终端的CTS帧,则按照不同于方法1的如下步骤进行。This method is the same as the first half of
如果AP在规定时间内没有收到CTS回应,即认为终端处于省电模式,将用户数据缓存,并将业务指示映射信息(TIM)中对应该用户的表示用户的标记AID置位。由于TIM包含在每个信标帧中,因此特定终端通过解析信标帧将发现有自己的缓存数据,然后该终端给AP发送一个Ps_Poll帧。AP收到来自特定终端的Ps_Poll后,即可获取用户位置信息,然后在响应帧中将数据发送给该终端。If the AP does not receive a CTS response within the specified time, it considers that the terminal is in power-saving mode, caches the user data, and sets the flag AID corresponding to the user in the service indication mapping information (TIM) indicating the user. Since the TIM is included in each beacon frame, a specific terminal will find its own cached data by parsing the beacon frame, and then the terminal sends a Ps_Poll frame to the AP. After the AP receives the Ps_Poll from a specific terminal, it can obtain the user location information, and then send the data to the terminal in the response frame.
需要说明的是,这种方法和现有的无线局域网的协议有所区别。在现有协议中,AP只为处于省电模式的终端缓存数据。而终端是否进入省电模式,由终端在发送的数据帧中标识。终端只有在省电模式下,才解析信标帧中的TIM域,以确定是否有缓存数据。而这种方法要求AP在不能确定下行波束的情况下都缓存数据,而且要求终端不管处于什么状态都要解析TIM的相关信息,如果有该终端的缓存,该终端通过发送Ps_Poll帧得到。这种修改是通过修改MAC层相应设置来得到的。It should be noted that this method is different from existing wireless local area network protocols. In existing protocols, the AP only caches data for terminals in power saving mode. Whether the terminal enters the power saving mode is identified in the data frame sent by the terminal. Only in the power saving mode, the terminal parses the TIM field in the beacon frame to determine whether there is cached data. However, this method requires the AP to cache data even if the downlink beam cannot be determined, and requires the terminal to parse the relevant information of the TIM no matter what state it is in. If there is a cache of the terminal, the terminal can obtain it by sending a Ps_Poll frame. This modification is obtained by modifying the corresponding setting of the MAC layer.
发送下行数据的方法3:
在AP增加一个全向天线,并利用全向天线向特定终端发送一个RTS帧,该终端在收到这个RTS帧之后向AP返回一个CTS帧,AP根据终端返回的CTS帧确定终端位置,也就是终端所在波束号,然后利用这个波束向特定终端发送下行数据。Add an omnidirectional antenna to the AP, and use the omnidirectional antenna to send an RTS frame to a specific terminal. After receiving the RTS frame, the terminal returns a CTS frame to the AP, and the AP determines the location of the terminal according to the CTS frame returned by the terminal, that is, The beam number of the terminal, and then use this beam to send downlink data to a specific terminal.
上面介绍了AP向特定终端发送下行数据的方法。在现有技术部分还提到了无线局域网使用的点协调功能,它其实包括两个部分,那就是在点协调功能开始时,AP需要向特定终端发送一个表示点协调功能开始的CF_Poll帧,而在点协调功能结束时,AP需要向所有终端发送一个表示点协调功能结束的CF_End帧的广播消息。因此可以看出,点协调功能的使用实际是结合了AP向所有终端发送广播消息和向特定终端发送下行数据消息的两个过程。The above describes the method for the AP to send downlink data to a specific terminal. The point coordination function used by the wireless local area network is also mentioned in the prior art part, which actually includes two parts, that is, when the point coordination function starts, the AP needs to send a CF_Poll frame indicating the start of the point coordination function to a specific terminal, and in When the point coordination function ends, the AP needs to send a CF_End frame broadcast message indicating the end of the point coordination function to all terminals. Therefore, it can be seen that the use of the point coordination function is actually a combination of two processes in which the AP sends a broadcast message to all terminals and sends a downlink data message to a specific terminal.
AP发送CF_Poll帧可以采用发送下行数据的方法1进行处理,也就是首先根据所记录的特定终端的位置信息,选择相应波束发送CF_Poll帧。如果没有得到终端的回应,则AP在各个波束轮流发送CF_Poll帧,这里波束轮询的顺序可以是由近及远,直到在某一个波束发送时收到终端的响应,完成数据传输,向终端发送一个CF_ACK帧,然后再按照同样的方法向下一个终端发送下一个CF_Poll帧,图8是其时序示意图。从图8中可以看出,AP在波束1和波束2都没有收到终端回应,而在波束3收到了STA1的回应,从而完成了和STA1的数据传输。The CF_Poll frame sent by the AP can be processed by
除了可以采用发送下行数据的方法1之外,AP发送CF_Poll帧也可以采用发送下行数据的方法3。此时,AP在一开始就使用全向天线向所有终端进行全向发送,然后根据终端的响应信息确定终端所在的波束位置,然后直接用终端所在的固定波束接收来自用户的数据。In addition to
由于无线局域网要求在使用点协调功能时所有终端都能迅速接收来自AP的CF_Poll帧,因此不适合使用发送下行数据的方法2。因为在方法2中,如果没有在规定时间内接收到来自终端的响应,则缓存数据并通过信标帧发送TIM,这样终端接收到该信标帧并解析出TIM之后在时间上将不能满足系统要求,因此对于点协调功能来说,不适宜于使用这种方法。Since the wireless local area network requires that all terminals can quickly receive the CF_Poll frame from the AP when using the point coordination function, it is not suitable to use the
CF_End帧是一种广播帧,其发送方法和发送广播消息并没有什么不同。但是由于无线局域网对它具有较高的时效性要求,也就是在AP发送该帧时要求所有终端必须接收到,因此不能采用发送广播消息的方法1,而只能采用发送广播消息的方法2或方法3,具体的发送方法在前面已经进行了详细介绍,因此这里不再赘述。The CF_End frame is a broadcast frame, and its sending method is no different from sending a broadcast message. However, because the wireless LAN has high timeliness requirements for it, that is, when the AP sends the frame, all terminals must receive it, so
本发明提出了将固定波束智能天线安装到接入点一侧之后的一系列解决方案,通过使用每一种方法中的任意一种,即可解决相应的技术难题。可以理解,可以采用的具体的发送数据和接收数据的方法并没有全部罗列于说明书中,因此上述只是对本发明精神的具体说明,而不用以限制本发明。The present invention proposes a series of solutions after the fixed beam smart antenna is installed on one side of the access point, and the corresponding technical problems can be solved by using any one of each method. It can be understood that not all the specific methods for sending data and receiving data that can be used are listed in the description, so the above is only a specific description of the spirit of the present invention, and is not intended to limit the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031005160A CN100344120C (en) | 2003-01-15 | 2003-01-15 | Method of transmittng down data from insertion site in radio local network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031005160A CN100344120C (en) | 2003-01-15 | 2003-01-15 | Method of transmittng down data from insertion site in radio local network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1518288A CN1518288A (en) | 2004-08-04 |
CN100344120C true CN100344120C (en) | 2007-10-17 |
Family
ID=34281206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031005160A Expired - Fee Related CN100344120C (en) | 2003-01-15 | 2003-01-15 | Method of transmittng down data from insertion site in radio local network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100344120C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1316836C (en) * | 2005-05-11 | 2007-05-16 | 西安海天天线科技股份有限公司 | Mobile communication substation based on beam switching type intelligent antenna and beam switching method |
CN1953387B (en) * | 2005-10-17 | 2010-05-05 | 鸿富锦精密工业(深圳)有限公司 | Mobile station and its method for detecting attack under power-saving mode |
US7953392B2 (en) * | 2006-12-19 | 2011-05-31 | International Business Machines Corporation | Method for controlling and calibrating access to a wireless access point |
CN101034925B (en) * | 2007-04-28 | 2010-07-28 | 华为技术有限公司 | A media access control method and device supporting smart antenna applications |
CN107769829B (en) * | 2016-08-19 | 2022-08-26 | 中兴通讯股份有限公司 | Beam guiding method, and inter-beam cooperative transmission method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0685901A2 (en) * | 1994-06-01 | 1995-12-06 | AT&T Corp. | A feed structure for use in a wireless communication system |
CN1165458A (en) * | 1997-04-21 | 1997-11-19 | 北京信威通信技术有限公司 | Time division duplex synchronous code partition multi-address radio communication system |
WO2002027972A2 (en) * | 2000-09-29 | 2002-04-04 | Arraycomm, Inc. | Downlink transmission in a wireless data communication system having a base station with a smart antenna system |
WO2002028119A2 (en) * | 2000-09-29 | 2002-04-04 | Arraycomm, Inc. | Cooperative polling in a wireless data communication system having smart antenna processing |
-
2003
- 2003-01-15 CN CNB031005160A patent/CN100344120C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0685901A2 (en) * | 1994-06-01 | 1995-12-06 | AT&T Corp. | A feed structure for use in a wireless communication system |
CN1165458A (en) * | 1997-04-21 | 1997-11-19 | 北京信威通信技术有限公司 | Time division duplex synchronous code partition multi-address radio communication system |
WO2002027972A2 (en) * | 2000-09-29 | 2002-04-04 | Arraycomm, Inc. | Downlink transmission in a wireless data communication system having a base station with a smart antenna system |
WO2002028119A2 (en) * | 2000-09-29 | 2002-04-04 | Arraycomm, Inc. | Cooperative polling in a wireless data communication system having smart antenna processing |
Also Published As
Publication number | Publication date |
---|---|
CN1518288A (en) | 2004-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105306120B (en) | Exchange 802.11 platforms of IEEE and method of antenna capability information | |
US7570921B2 (en) | Systems and methods for improving range for multicast wireless communication | |
JP4666890B2 (en) | COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND COMMUNICATION DEVICE | |
CN104126326B (en) | System and method for the sectorized transmission of wireless network | |
JP4456637B2 (en) | Access point using directional antenna for uplink transmission in WLAN | |
JP2021158691A (en) | BSS color enhanced transmission in WLAN (BSS-CET) | |
JP4578523B2 (en) | Method for selectively adjusting the antenna configuration of an access point to enhance mobile station coverage | |
WO2013070175A1 (en) | Addressing multiple communication terminals in a wireless communication network | |
WO2008131659A1 (en) | Medium access control method and equipment for supporting intelligent antenna application | |
CN102739296A (en) | Filling the space-time channels in sdma | |
US20070066299A1 (en) | Method and apparatus to transmit and receive data in a wireless communication system having smart antennas | |
CN100349428C (en) | Method for transmitting broadcast message from insertion site in radio local network | |
CN100344120C (en) | Method of transmittng down data from insertion site in radio local network | |
WO2023179437A1 (en) | Self-transmitting/self-receiving sensing method and related product | |
JP3914194B2 (en) | Communication method in ad hoc network | |
KR100567469B1 (en) | Media Access Control Method for Smart Wireless Communication System | |
CN108183344B (en) | Directional antenna and method for transmitting and receiving data by directional antenna | |
Niu et al. | A fully-distributed directional-to-directional MAC protocol for mobile ad hoc networks | |
WO2021196053A1 (en) | Beam determination method and related device | |
WO2023179368A1 (en) | Sensing method and device | |
CN100512185C (en) | Method of selectively adjusting the configuration of an access point antenna to enhance mobile station coverage | |
JP2004235839A (en) | Fixed radio access system | |
HK1090192A (en) | Antenna steering for an access point based upon spatial diversity | |
HK1109971A (en) | Method of selectively adjusting the configuration of an access point antenna to enhance mobile station coverage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071017 Termination date: 20200115 |