CN100339460C - Preparation method of silicate luminous body for converting blue light to white light - Google Patents
Preparation method of silicate luminous body for converting blue light to white light Download PDFInfo
- Publication number
- CN100339460C CN100339460C CNB2005101222537A CN200510122253A CN100339460C CN 100339460 C CN100339460 C CN 100339460C CN B2005101222537 A CNB2005101222537 A CN B2005101222537A CN 200510122253 A CN200510122253 A CN 200510122253A CN 100339460 C CN100339460 C CN 100339460C
- Authority
- CN
- China
- Prior art keywords
- preparation
- particles
- europium
- strontium
- phosphor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000002245 particle Substances 0.000 claims abstract description 28
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 18
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 18
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims abstract description 17
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 13
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 9
- 230000009467 reduction Effects 0.000 claims abstract description 7
- 239000000443 aerosol Substances 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 5
- 229910052917 strontium silicate Inorganic materials 0.000 claims abstract description 5
- QSQXISIULMTHLV-UHFFFAOYSA-N strontium;dioxido(oxo)silane Chemical compound [Sr+2].[O-][Si]([O-])=O QSQXISIULMTHLV-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 238000000889 atomisation Methods 0.000 claims description 5
- 239000002270 dispersing agent Substances 0.000 claims description 5
- 239000012153 distilled water Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910002651 NO3 Inorganic materials 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 239000000084 colloidal system Substances 0.000 claims description 2
- 238000001935 peptisation Methods 0.000 claims description 2
- 239000003034 coal gas Substances 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000012456 homogeneous solution Substances 0.000 claims 1
- 239000005543 nano-size silicon particle Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 150000001875 compounds Chemical class 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 238000000498 ball milling Methods 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract description 2
- 239000007863 gel particle Substances 0.000 abstract 2
- 239000007788 liquid Substances 0.000 abstract 1
- 239000007791 liquid phase Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000003980 solgel method Methods 0.000 abstract 1
- 238000005507 spraying Methods 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- GAGGCOKRLXYWIV-UHFFFAOYSA-N europium(3+);trinitrate Chemical compound [Eu+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GAGGCOKRLXYWIV-UHFFFAOYSA-N 0.000 description 3
- 238000010907 mechanical stirring Methods 0.000 description 3
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明属于光电材料技术领域,尤其是提供一种掺铕的蓝光转换合成白光的硅酸盐荧光体的气溶胶制备方法。The invention belongs to the technical field of optoelectronic materials, and in particular provides a method for preparing an aerosol of a silicate phosphor doped with europium to convert blue light into white light.
【背景技术】【Background technique】
现有固态照明技术中的白光二极管(LED)是由掺铈钇铝石榴石(YAG,Y3Al5O12:Ce3+)荧光体的黄色荧光与LED的蓝光混合形成白光,器件的发光颜色随驱动电压和荧光粉涂层厚度的变化而变化,色彩还原性差,显色指数低。YAG用蓝光(~465nm)激发产生橙光(~560nm),从而合成白光,Eu2+,Tb3+和Mn2+掺杂的碱土金属硅酸盐基质荧光体是一个重要的技术替代方案。The white light diode (LED) in the existing solid-state lighting technology is formed by mixing the yellow fluorescence of the cerium-doped yttrium aluminum garnet (YAG, Y 3 Al 5 O 12 :Ce 3+ ) phosphor with the blue light of the LED to form white light. The color changes with the change of the driving voltage and the thickness of the phosphor coating, the color reproduction is poor, and the color rendering index is low. YAG is excited by blue light (~465nm) to produce orange light (~560nm) to synthesize white light. Eu 2+ , Tb 3+ and Mn 2+ doped alkaline earth metal silicate matrix phosphor is an important technical alternative.
固相合成法至今仍是制备发光材料的传统方法,例如,采用BaCO3,SrCO3,CaCO3,MgO,SiO2和Eu2O3混合,加入熔剂NH4Cl,在异丙醇环境中球磨48小时,空气中挥发掉异丙醇,进行造粒,在600℃下的马福炉内预烧4小时,再转到管式炉内在还原气氛、1200-1400℃下烧几个小时,烧成料用水洗去熔剂后,再在1300℃下复烧3小时(Control of spectralproperties of strontium-alkaline earth-silicate-europium phosphors for LEDapplications,J of the Electrochem.Soc.,152(5)G382-G385,2005)。该法存在组分不均匀、烧成温度高、产物容易存在杂相等一系列局限性。Solid phase synthesis is still the traditional method for preparing luminescent materials. For example, mix BaCO 3 , SrCO 3 , CaCO 3 , MgO, SiO 2 and Eu 2 O 3 , add flux NH 4 Cl, and ball mill in isopropanol environment After 48 hours, volatilize the isopropanol in the air, carry out granulation, and pre-fire in a muffle furnace at 600°C for 4 hours, then transfer to a tube furnace and burn for several hours in a reducing atmosphere at 1200-1400°C. After washing with water to remove the solvent, re-fire at 1300°C for 3 hours (Control of spectral properties of strontium-alkaline earth-silicate-europium phosphors for LEDapplications, J of the Electrochem.Soc., 152(5)G382-G385, 2005) . This method has a series of limitations such as uneven composition, high firing temperature, and impurities in the product.
采用可溶性盐(通常为荧光体中的各组分的硝酸盐)溶液的喷雾-热解技术在发光材料制备技术中得到发展.主要不足是,雾化液滴在水分快速蒸发时,和后续烧成时,发光颗粒容易破损,不容易形成球形。The spray-pyrolysis technology using soluble salt (usually the nitrate of each component in the phosphor) solution has been developed in the luminescent material preparation technology. The main disadvantage is that when the water evaporates quickly, the atomized droplets and the subsequent burning When finished, the luminescent particles are easily damaged and difficult to form a spherical shape.
【发明内容】【Content of invention】
本发明的目的在于提供一种蓝光转换合成白光的硅酸盐荧光体的气溶胶制备方法。该发明采用一种预先埋入纳米尺度的二氧化硅颗粒的气凝胶技术,既能使原料组分混合均匀,还能使最终荧光体的物相纯、大小和形貌容易得到控制。The object of the present invention is to provide an aerosol preparation method of a silicate phosphor that converts blue light into white light. The invention adopts an airgel technology pre-embedded with nano-scale silicon dioxide particles, which can not only mix the raw material components evenly, but also make the phase purity, size and shape of the final phosphor easily controlled.
本发明公开了一种蓝光转换合成白光的硅酸盐荧光体的气溶胶制备方法,其特征是采用二氧化硅颗粒作为荧光体基质,用弱酸进行胶溶,并加入分散剂,与锶和铕的可溶盐一起配成均匀溶液后雾化,形成球形干凝胶颗粒;该颗粒再进行还原热分解反应,即可得到掺杂铕的硅酸锶荧光体。The invention discloses an aerosol preparation method of a silicate phosphor that converts blue light into white light, and is characterized in that silicon dioxide particles are used as a phosphor matrix, peptized with a weak acid, and a dispersant is added to combine with strontium and europium. The soluble salts of these compounds are formulated into a uniform solution and then atomized to form spherical xerogel particles; the particles are subjected to reduction thermal decomposition reaction to obtain strontium silicate phosphor doped with europium.
本发明的方法先配成硅胶溶液,再雾化成干凝胶颗粒,最后经过一次烧成得到组分分布均匀的高纯球形铕掺杂硅酸锶荧光体,与现有技术相比具有几大特点:1)廉价的纳米二氧化硅既作产物的硅源,也作为干凝胶和颗粒结晶的中心,防止或减少空壳荧光体的产生;2)原料成分在纳米、原子、分子尺度水平上混合均匀;3)荧光体烧成温度降低;4)荧光体颗粒亚微米或几十纳米大小,不再需要以往的球磨工序;5)制备的荧光体热稳定性和化学稳定性比现有YAG高,成本更低适合扩大规模生产。荧光体经蓝光转换成橙黄光,最终合成白光。The method of the present invention is first formulated into a silica gel solution, then atomized into xerogel particles, and finally fired once to obtain a high-purity spherical europium-doped strontium silicate phosphor with uniform component distribution, which has several advantages compared with the prior art. Features: 1) Cheap nano-silica is used not only as the silicon source of the product, but also as the center of xerogel and particle crystallization to prevent or reduce the generation of empty shell phosphors; 2) The raw material components are at the nano, atomic, and molecular scale levels 3) The firing temperature of the phosphor is lowered; 4) The size of the phosphor particles is submicron or tens of nanometers, and the previous ball milling process is no longer needed; 5) The thermal and chemical stability of the prepared phosphor is better than that of the existing YAG is high, and the cost is lower, which is suitable for large-scale production. The phosphor converts blue light into orange-yellow light, and finally synthesizes white light.
【具体实施方式】【Detailed ways】
本发明蓝光转换合成白光的硅酸盐荧光体的气溶胶制备方法,采用纳米尺度的二氧化硅颗粒作为预埋晶种,用弱酸进行胶溶,并加入少量分散剂,与锶和铕的可溶盐按计量比一起配成均匀溶液后雾化,使液滴内的水在飞行过程中蒸发,形成组分分布均匀的球形干凝胶颗粒。该颗粒再进行还原热分解反应,即可得到掺杂铕的硅酸锶荧光体。其中:The method for preparing the aerosol of the silicate phosphor that converts blue light into white light according to the present invention uses nanoscale silicon dioxide particles as pre-embedded crystal seeds, peptizes with weak acid, and adds a small amount of dispersant, which can be combined with strontium and europium. The dissolved salt is formulated into a uniform solution according to the metering ratio and then atomized, so that the water in the droplet evaporates during the flight to form spherical xerogel particles with uniform distribution of components. Reductive thermal decomposition reaction is carried out on the particles to obtain strontium silicate phosphor doped with europium. in:
荧光体基质组成为Sr2SiO4。荧光体的硅源采用纳米尺度的二氧化硅,纯度为99.9-99.99%(百分重量),大小为5-40纳米。用蒸馏水配液,按重量比控制二氧化硅∶水=1∶20~40,pH=2~4,制成胶溶。荧光体成分中的锶采用可溶于水的硝酸盐或乙酸盐,盐的纯度≥99.99%(百分重量),按化学计量比加入到二氧化硅溶胶。往二氧化硅溶胶中加入铕和锶的化合物,铕和锶的化合物采用可溶于水的硝酸盐或乙酸盐,纯度≥99.99%(百分重量),数量按锶∶铕=1∶0.01~0.05(原子摩尔数)计。往二氧化硅溶胶中加入的分散剂是固体聚乙烯醇或固体烷基三甲基类,数量是溶胶总重量的0.1-5%。然后采用溶胶空气雾化法,在压缩空气温度110℃~250℃,干燥空气量100~300m3/h,物料流1~2L/h下对掺杂氧化硅胶体进行雾化,得到干凝胶颗粒。最后,得到的干凝胶颗粒在弱还原气氛,及温度1000℃~1400℃,时间2-4小时中进行高温烧成,烧成的还原气氛可以采用N2+H2、活性炭还原、氨分解气体或煤气中的一种。The composition of the phosphor matrix is Sr 2 SiO 4 . The silicon source of the fluorescent body is nanoscale silicon dioxide with a purity of 99.9-99.99% (weight percent) and a size of 5-40 nanometers. Prepare solution with distilled water, control silicon dioxide: water = 1: 20-40, pH = 2-4 according to weight ratio, and make peptization. The strontium in the phosphor component adopts water-soluble nitrate or acetate, the purity of the salt is ≥99.99% (percentage weight), and is added to the silica sol according to the stoichiometric ratio. Add the compound of europium and strontium to the silica sol, the compound of europium and strontium adopts water-soluble nitrate or acetate, the purity is more than 99.99% (percent weight), and the quantity is strontium: europium=1: 0.01 ~0.05 (atomic moles). The dispersant added to the silica sol is solid polyvinyl alcohol or solid alkyl trimethyl, and the amount is 0.1-5% of the total weight of the sol. Then use the sol air atomization method to atomize the doped silica colloid at a compressed air temperature of 110°C-250°C, a dry air volume of 100-300m 3 /h, and a material flow of 1-2L/h to obtain a xerogel particles. Finally, the obtained xerogel particles are fired at a high temperature in a weak reducing atmosphere at a temperature of 1000°C to 1400°C for 2-4 hours. The reducing atmosphere of firing can be reduced by N 2 +H 2 , activated carbon reduction, or ammonia decomposition. One of gas or gas.
下面的实例是为了进一步阐明本发明的工艺过程特征而非限制本发明。The following examples are to further illustrate the process characteristics of the present invention without limiting the present invention.
实例1Example 1
按照二氧化硅∶水(重量比)=1∶20,把大小为10纳米大小的SiO2加入到蒸馏水中,用少量硝酸调pH=2,再按照Sr2SiO4式子计算加入理论量的硝酸锶,按锶∶铕(原子摩尔数)=1∶0.01加入硝酸铕,再向溶胶中加入聚乙烯醇,加入的聚乙烯醇为溶胶总重量的0.1%,进行机械搅拌成溶胶,溶胶静置1小时;设置空气雾化参数为:入口温度110℃,干燥空气量100m3/h,物料流2L/h,得到干凝胶颗粒;在水平管式炉内通入流量为2L/h的N2+5%H2(体积比)混合气体,在1000℃下烧成2小时后,得到荧光体,颗粒大小为6微米,呈球形。According to silicon dioxide: water (weight ratio) = 1:20, add SiO2 with a size of 10 nanometers into distilled water, adjust pH=2 with a small amount of nitric acid, and then add theoretical amount of SiO2 according to the formula of Sr2SiO4 Strontium nitrate, add europium nitrate by strontium: europium (atomic moles)=1: 0.01, then add polyvinyl alcohol in the sol, the polyvinyl alcohol that adds is 0.1% of sol gross weight, carries out mechanical stirring to become sol, sol static Leave it for 1 hour; set the air atomization parameters as follows: inlet temperature 110°C, dry air volume 100m 3 /h, material flow 2L/h, to obtain xerogel particles; N 2 +5% H 2 (volume ratio) mixed gas was fired at 1000° C. for 2 hours to obtain a phosphor with a particle size of 6 microns and a spherical shape.
实例2Example 2
按照二氧化硅∶水(重量比)=1∶30,把大小为20纳米大小的SiO2加入到蒸馏水中,用少量硝酸调pH=3,再按照Sr2SiO4式子计算加入理论量的硝酸锶,按锶∶铕(原子摩尔数)=1∶0.03加入硝酸铕,再向溶胶中加入聚乙烯醇,加入的聚乙烯醇为溶胶总重量的O.5%,进行机械搅拌成溶胶,溶胶静置2小时;设置空气雾化参数为:入口温度150℃,干燥空气量200m3/h,物料流2L/h,得到干凝胶颗粒;用活性炭还原,在1200℃下高温升降炉内烧成3小时后,得到荧光体,颗粒大小为3微米,呈球形。According to silicon dioxide: water (weight ratio) = 1: 30, add SiO 2 with a size of 20 nanometers into distilled water, adjust pH=3 with a small amount of nitric acid, and then add theoretical amount of SiO according to the formula of Sr 2 SiO 4 Strontium nitrate, add europium nitrate by strontium: europium (atomic moles)=1: 0.03, then add polyvinyl alcohol in sol, the polyvinyl alcohol of adding is 0.5% of sol gross weight, carries out mechanical stirring and becomes sol, The sol was left to stand for 2 hours; the air atomization parameters were set as follows: inlet temperature 150°C, dry air volume 200m 3 /h, material flow 2L/h, to obtain xerogel particles; reduction with activated carbon, in a high-temperature lifting furnace at 1200°C After firing for 3 hours, the fluorescent body was obtained, the particle size of which was 3 microns, and it was spherical.
实例3Example 3
按照二氧化硅∶水(重量比)=1∶40,把大小为40纳米大小的SiO2加入到蒸馏水中,用少量硝酸调pH=2.5,再按照Sr2SiO4式子计算加入理论量的硝酸锶,按锶∶铕(原子摩尔数)=1∶0.04加入硝酸铕,再向溶胶中加入聚乙烯醇,加入的聚乙烯醇为溶胶总重量的0.8%,进行机械搅拌成溶胶,溶胶静置3小时;设置空气雾化参数为:入口温度200℃,干燥空气量300m3/h,物料流2L/h,得到干凝胶颗粒;在水平管式炉内通入流量为2L/h的N2+5%H2(体积比)混合气体,在1300℃下烧成2小时后,得到荧光体,颗粒大小为1微米,呈球形。According to silicon dioxide: water (weight ratio) = 1: 40, add SiO 2 with a size of 40 nanometers into distilled water, adjust pH=2.5 with a small amount of nitric acid, and then add theoretical amount of SiO according to the formula of Sr 2 SiO 4 Strontium nitrate, add europium nitrate by strontium: europium (atomic moles)=1: 0.04, then add polyvinyl alcohol in the sol, the polyvinyl alcohol that adds is 0.8% of sol gross weight, carry out mechanical stirring and become sol, sol static Leave it for 3 hours; set the air atomization parameters as follows: inlet temperature 200°C, dry air volume 300m 3 /h, material flow 2L/h, to obtain xerogel particles; N 2 +5% H 2 (volume ratio) mixed gas was fired at 1300° C. for 2 hours to obtain a phosphor with a spherical particle size of 1 micron.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101222537A CN100339460C (en) | 2005-12-09 | 2005-12-09 | Preparation method of silicate luminous body for converting blue light to white light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101222537A CN100339460C (en) | 2005-12-09 | 2005-12-09 | Preparation method of silicate luminous body for converting blue light to white light |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1786108A CN1786108A (en) | 2006-06-14 |
CN100339460C true CN100339460C (en) | 2007-09-26 |
Family
ID=36783722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101222537A Expired - Fee Related CN100339460C (en) | 2005-12-09 | 2005-12-09 | Preparation method of silicate luminous body for converting blue light to white light |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100339460C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103013502A (en) * | 2012-12-03 | 2013-04-03 | 合肥工业大学 | Silicate-based fluorescent material and synthetic method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101892048B (en) * | 2010-07-30 | 2012-11-07 | 陕西科技大学 | Preparation method of alkaline earth chloride silicate-based white fluorescent powder for white LED |
CN101892054B (en) * | 2010-07-30 | 2012-11-07 | 陕西科技大学 | Preparation method of white emitting fluorescent powder for LED |
CN101892049B (en) * | 2010-07-30 | 2012-11-07 | 陕西科技大学 | Preparation method of single matrix white light fluorescent powder for white light LED |
CN102408890A (en) * | 2011-11-15 | 2012-04-11 | 杭州广陵科技开发有限公司 | Silicate green fluorescent powder and preparation method thereof |
CN104371723B (en) * | 2014-11-12 | 2016-09-14 | 河北利福化工科技有限公司 | A kind of white light LEDs preparation method of efficient class ball-type green emitting phosphor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920001783B1 (en) * | 1988-12-30 | 1992-03-02 | 삼성전관 주식회사 | Stabilization of alkaline earth emulsion phosphors |
JPH06251842A (en) * | 1993-02-22 | 1994-09-09 | Iwasaki Electric Co Ltd | Lamp socket |
US5639400A (en) * | 1996-05-31 | 1997-06-17 | Eastman Kodak Company | Stabilized storage phosphors and radiographic screens |
-
2005
- 2005-12-09 CN CNB2005101222537A patent/CN100339460C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920001783B1 (en) * | 1988-12-30 | 1992-03-02 | 삼성전관 주식회사 | Stabilization of alkaline earth emulsion phosphors |
JPH06251842A (en) * | 1993-02-22 | 1994-09-09 | Iwasaki Electric Co Ltd | Lamp socket |
US5639400A (en) * | 1996-05-31 | 1997-06-17 | Eastman Kodak Company | Stabilized storage phosphors and radiographic screens |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103013502A (en) * | 2012-12-03 | 2013-04-03 | 合肥工业大学 | Silicate-based fluorescent material and synthetic method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1786108A (en) | 2006-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101760196B (en) | Method for combining yellow fluorescent powder used for white light LED | |
CN1803974A (en) | Method for preparing oxide core shell structured spherical luminescent material | |
CN104804737B (en) | A kind of Gd2O3:Dy3+The synthetic method of nano particle | |
CN102965103A (en) | Superfine rare earth magnesium silicate strontium fluorescent powder and preparation technology thereof | |
CN101962547A (en) | Yellow fluorescent powder for white LED and preparation method thereof | |
CN100339460C (en) | Preparation method of silicate luminous body for converting blue light to white light | |
CN101899305B (en) | A kind of preparation method of rare earth ion doped CePO4 microsphere | |
CN101070474B (en) | Shell gradient green luminescent material for lamp and preparation method thereof | |
CN1948426A (en) | Preparation method of nanometer silicate long afterglow luminous material | |
CN102676164B (en) | Spherical calcium molybdate-base red phosphor and preparation method thereof | |
CN1974716A (en) | Red long-afterglow phosphor material and its prepn process | |
CN101831292A (en) | Strontium aluminate luminous material and controllable synthesis method thereof | |
CN106590657B (en) | A kind of lutetium aluminate green fluorescent powder and its preparation method and application | |
CN102031114A (en) | Preparation method of spherical fluorescent powder with nano structure | |
CN108034422A (en) | A kind of preparation method of rear-earth-doped alkaline-earth nitride fluorescent powder | |
CN101016458A (en) | Sol-gel method for fast synthesizing luminescent material | |
CN103436262B (en) | Silicate red nano fluorescent powder and preparation method thereof | |
CN100334182C (en) | Process for preparing silicon blue photoluminescent material | |
CN100345937C (en) | White-light diode silicate single-substrate fluorescent body and its preparing method | |
CN100412158C (en) | White light phosphor excited by blue light and its application, manufacturing process and manufacturing device | |
CN115322772A (en) | A kind of red phosphor for mini-LED display and preparation method thereof | |
CN1487050A (en) | Spherical rare earth phosphate green phosphor and preparation method thereof | |
CN114574203A (en) | Blue light excitated Pr3+、Eu3+Doped color-adjustable nano fluorescent powder and preparation method thereof | |
CN102703065A (en) | Silicate green emitting phosphor powder for near ultraviolet excited light emitting diode (LED) | |
CN107267148A (en) | A kind of terbium ion doping zirconic acid lanthanum fluorescent material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070926 Termination date: 20100111 |