CL2020002486A1 - Sistema y método para la generación de calor y energía utilizando múltiples loops que comprenden un lazo de transferencia de calor primario, un lazo de ciclo de energía y un lazo de transferencia de calor intermedio - Google Patents

Sistema y método para la generación de calor y energía utilizando múltiples loops que comprenden un lazo de transferencia de calor primario, un lazo de ciclo de energía y un lazo de transferencia de calor intermedio

Info

Publication number
CL2020002486A1
CL2020002486A1 CL2020002486A CL2020002486A CL2020002486A1 CL 2020002486 A1 CL2020002486 A1 CL 2020002486A1 CL 2020002486 A CL2020002486 A CL 2020002486A CL 2020002486 A CL2020002486 A CL 2020002486A CL 2020002486 A1 CL2020002486 A1 CL 2020002486A1
Authority
CL
Chile
Prior art keywords
heat
heat transfer
loop
power
loops
Prior art date
Application number
CL2020002486A
Other languages
English (en)
Inventor
Richard Alan Huntington
Frank F Mittricker
Loren K Starcher
Original Assignee
Xyz Energy Group Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xyz Energy Group Llc filed Critical Xyz Energy Group Llc
Publication of CL2020002486A1 publication Critical patent/CL2020002486A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

Métodos y sistema s para la generación de potencia (y, opcionalmente, calor) a partir de una fuente de calor de alto valor utilizando una pluralidad de bucles que comprenden un bucle de transferencia de calor primario, varios bucles de ciclo de potencia y un bucle de transferencia de calor intermedio circulante que transfiere calor desde el alto bucle de transferencia de calor de temperatura a varios bucles de ciclo de energía. El circuito intermedio de transferencia de calor está dispuesto para eliminar en la medida de lo posible los intercambiadores de calor de carcasa y tubo, especialmente aquellos intercambiadores de calor que tienen una diferencia de presión muy grande entre el lado del tubo y el lado de la carcasa, para eliminar la carcasa y el tubo, tipo de placa, tubería doble e intercambiadores de calor similares que transfieren calor directamente desde el circuito primario de transferencia de calor a varios ciclos de energía con presiones diferenciales muy altas y para maximizar el uso de bobinas de transferencia de calor de diseño similar al utilizado en un generador de vapor de recuperación de calor comúnmente utilizado para transferir calor desde gases de combustión de turbinas de gas hasta vapor u otros fluidos de ciclo de energía como parte de una planta de energía de ciclo combinado .
CL2020002486A 2018-03-29 2020-09-25 Sistema y método para la generación de calor y energía utilizando múltiples loops que comprenden un lazo de transferencia de calor primario, un lazo de ciclo de energía y un lazo de transferencia de calor intermedio CL2020002486A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862650150P 2018-03-29 2018-03-29
US201862729105P 2018-09-10 2018-09-10

Publications (1)

Publication Number Publication Date
CL2020002486A1 true CL2020002486A1 (es) 2020-12-18

Family

ID=68054828

Family Applications (1)

Application Number Title Priority Date Filing Date
CL2020002486A CL2020002486A1 (es) 2018-03-29 2020-09-25 Sistema y método para la generación de calor y energía utilizando múltiples loops que comprenden un lazo de transferencia de calor primario, un lazo de ciclo de energía y un lazo de transferencia de calor intermedio

Country Status (9)

Country Link
US (4) US10794228B2 (es)
EP (1) EP3775505B1 (es)
JP (1) JP6895024B2 (es)
KR (1) KR102288147B1 (es)
CN (1) CN112166241A (es)
AU (2) AU2019245407B2 (es)
CL (1) CL2020002486A1 (es)
MX (1) MX2020010043A (es)
WO (1) WO2019191671A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181041B2 (en) * 2017-02-02 2021-11-23 General Electric Company Heat recovery steam generator with electrical heater system and method
US11305979B2 (en) * 2019-09-20 2022-04-19 Permian Global, Inc. Automatic fueling system and method for hydraulic fracturing equipment
CN111241711B (zh) * 2020-02-19 2021-12-28 西安交通大学 一种光煤互补系统变工况的光电转换效率寻优控制方法
WO2022125454A1 (en) * 2020-12-07 2022-06-16 XYZ Energy Group, LLC Multiple loop power generation using super critical cycle fluid with split recuperator
CN115371461A (zh) * 2022-01-26 2022-11-22 昆明理工大学 一种多参数数字可视化的换热系统

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029197A (en) * 1956-09-11 1962-04-10 Untermyer Samuel Boiling reactors
FR2044000A5 (es) * 1969-05-14 1971-02-19 Alsthom
US3756023A (en) * 1971-12-01 1973-09-04 Westinghouse Electric Corp Heat recovery steam generator employing means for preventing economizer steaming
US4362149A (en) 1980-12-08 1982-12-07 Rockwell International Corporation Heat storage system and method
US4253300A (en) * 1979-08-03 1981-03-03 General Electric Company Supplementary fired combined cycle power plants
US4668494A (en) 1984-12-24 1987-05-26 Foster Wheeler Energy Corporation Method of using solar energy in a chemical synthesis process
US4768345A (en) 1986-10-03 1988-09-06 Institute Of Gas Technology Continuous thermal energy delivery from a periodically active energy source
US5242563A (en) 1992-03-12 1993-09-07 The United States Of America As Represented By The Secretary Of The Navy Molten salt reactor for potentiostatic electroplating
DE19512466C1 (de) * 1995-04-03 1996-08-22 Siemens Ag Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
US5862800A (en) 1996-09-27 1999-01-26 Boeing North American, Inc. Molten nitrate salt solar central receiver of low cycle fatigue 625 alloy
EP0918151B1 (de) * 1997-11-19 2004-01-07 ALSTOM (Switzerland) Ltd Verfahren und Vorrichtung zur Brennstoffvorwärmung einer Feuerungsanlage
JP2003343212A (ja) * 2002-05-24 2003-12-03 Toyota Motor Corp 高温蒸気タービン発電装置
US6701711B1 (en) 2002-11-11 2004-03-09 The Boeing Company Molten salt receiver cooling system
US7051529B2 (en) 2002-12-20 2006-05-30 United Technologies Corporation Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
KR100573744B1 (ko) * 2003-03-17 2006-04-25 한국원자력연구소 액체금속로용 증기발생기와 이의 전열방법
US20040251006A1 (en) * 2003-04-03 2004-12-16 Ovidiu Marin Heat exchanger system for cooling optical fibers
US6957536B2 (en) 2003-06-03 2005-10-25 The Boeing Company Systems and methods for generating electrical power from solar energy
FR2855984B1 (fr) * 2003-06-10 2005-07-22 Inst Francais Du Petrole Procede de traitement de fumees
US7296410B2 (en) 2003-12-10 2007-11-20 United Technologies Corporation Solar power system and method for power generation
US20060201148A1 (en) 2004-12-07 2006-09-14 Zabtcioglu Fikret M Hydraulic-compression power cogeneration system and method
JP4891318B2 (ja) * 2005-06-28 2012-03-07 ビーエスエスティー エルエルシー 中間ループを備えた熱電発電機
US8365529B2 (en) 2006-06-30 2013-02-05 United Technologies Corporation High temperature molten salt receiver
JP4322902B2 (ja) * 2006-08-10 2009-09-02 川崎重工業株式会社 太陽熱発電設備および熱媒体供給設備
US8245491B2 (en) * 2006-11-15 2012-08-21 Modine Manufacturing Company Heat recovery system and method
US7874162B2 (en) * 2007-10-04 2011-01-25 General Electric Company Supercritical steam combined cycle and method
RU2486612C1 (ru) 2009-05-08 2013-06-27 Академия Синика Двухфлюидный реактор на расплавленных солях
EP2281627A1 (en) * 2009-07-01 2011-02-09 Total Petrochemicals Research Feluy Process for producing steam using heat recovered from a polymerization reaction
DE102010025504A1 (de) * 2010-06-29 2011-12-29 Blz Geotechnik Gmbh Verfahren und Anordnung zur Erzeugung von Wärme und Kälte mit einer Kältemaschine
AT510279B1 (de) * 2011-02-22 2012-03-15 Klaus Dipl Ing Engelhart Verfahren zur umwandlung von energie
EP2525051A1 (en) 2011-05-20 2012-11-21 Alstom Technology Ltd Solar thermal power plant
US20130180520A1 (en) 2011-06-07 2013-07-18 Halotechnics, Inc. Thermal energy storage with molten salt
JP5862133B2 (ja) * 2011-09-09 2016-02-16 国立大学法人佐賀大学 蒸気動力サイクルシステム
ITFI20110262A1 (it) * 2011-12-06 2013-06-07 Nuovo Pignone Spa "heat recovery in carbon dioxide compression and compression and liquefaction systems"
JP5596715B2 (ja) * 2012-01-19 2014-09-24 株式会社日立製作所 太陽熱複合発電システム及び太陽熱複合発電方法
US20140033676A1 (en) * 2012-08-02 2014-02-06 Raymond Pang Unique method of solar integration in combined cycle power plant
KR101239773B1 (ko) 2012-10-17 2013-03-06 한국지질자원연구원 작동가스와 용융염의 열 교환을 이용한 지열 발전 시스템 및 방법
KR101403174B1 (ko) * 2012-11-26 2014-06-11 재단법인 포항산업과학연구원 열에너지를 전환하는 방법
EP2778406A1 (en) * 2013-03-14 2014-09-17 ABB Technology AG Thermal energy storage and generation system and method
WO2014174789A1 (ja) * 2013-04-22 2014-10-30 パナソニックIpマネジメント株式会社 熱電併給システム
US9368244B2 (en) 2013-09-16 2016-06-14 Robert Daniel Woolley Hybrid molten salt reactor with energetic neutron source
AU2014347767B2 (en) * 2013-11-07 2018-08-02 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
MX2016007000A (es) * 2013-12-02 2017-02-17 General Electric Technology Gmbh Sistema de ciclo combinado.
JP2015161284A (ja) * 2014-02-28 2015-09-07 株式会社東芝 制御システムおよび熱供給方法
EP4092253A1 (en) * 2014-06-04 2022-11-23 Pintail Power LLC Dispatchable solar hybrid power plant
KR102106676B1 (ko) * 2015-02-06 2020-05-04 미츠비시 쥬고교 가부시키가이샤 증기 터빈 플랜트, 이것을 구비하고 있는 복합 사이클 플랜트 및 증기 터빈 플랜트의 운전 방법
US10077682B2 (en) * 2016-12-21 2018-09-18 General Electric Company System and method for managing heat duty for a heat recovery system
KR101999811B1 (ko) * 2017-03-07 2019-07-12 한국기계연구원 초임계 랭킨 사이클 기반의 열기관 및 이 열기관의 동작방법

Also Published As

Publication number Publication date
US20210115816A1 (en) 2021-04-22
US10794228B2 (en) 2020-10-06
EP3775505A1 (en) 2021-02-17
KR102288147B1 (ko) 2021-08-10
WO2019191671A1 (en) 2019-10-03
JP6895024B2 (ja) 2021-06-30
US20240011416A1 (en) 2024-01-11
US11193394B2 (en) 2021-12-07
AU2021200447B2 (en) 2022-02-24
US20190301309A1 (en) 2019-10-03
US11719134B2 (en) 2023-08-08
CN112166241A (zh) 2021-01-01
AU2019245407A1 (en) 2020-11-12
EP3775505B1 (en) 2023-03-08
US20220112820A1 (en) 2022-04-14
EP3775505A4 (en) 2022-01-05
JP2021510802A (ja) 2021-04-30
MX2020010043A (es) 2021-01-08
KR20200128167A (ko) 2020-11-11
AU2021200447A1 (en) 2021-02-25
AU2019245407B2 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CL2020002486A1 (es) Sistema y método para la generación de calor y energía utilizando múltiples loops que comprenden un lazo de transferencia de calor primario, un lazo de ciclo de energía y un lazo de transferencia de calor intermedio
ES2607302T3 (es) Generador de vapor de agua para recuperación de calor y evaporador multitambor
AR046407A1 (es) Procedimiento para el arranque de un generador continuo de vapor y generador continuo de vapor para la realizacion del procedimiento
CY1124705T1 (el) Ηλιοθερμικο συστημα παραγωγης ηλεκτρικης ενεργειας
CL2016001870A1 (es) Sistema de tuberías para una planta de energía solar
WO2014117152A4 (en) Volumetric energy recovery system with three stage expansion
MX2020004382A (es) Condensador de carbamato de alta presión.
WO2013087949A1 (es) Sistema híbrido de generación eléctrica a partir de energía solar y biomasa
AR102874A1 (es) Sistema de evacuación pasiva del calor del reactor de agua a presión a través del generador de vapor
HRP20231260T1 (hr) Kogenerativni organski rankineov ciklusni sustav
ES2554282R1 (es) Sistema de captación de calor solar
CL2020001263A1 (es) Intercambiador de calor para un generador de vapor de sal fundida en una central de energía solar concentrada.
ES2365286B1 (es) Economizador en planta solar de torre y método de funcionamiento de dicha planta.
AR091656A1 (es) Generador de vapor de recuperacion de calor de arranque rapido
MX2013006582A (es) Central electrica con sistema de energia solar.
AR102986A1 (es) Generador de vapor horizontal de planta nuclear y método de montaje del mismo
CN110953028A (zh) 联合循环动力装置
WO2017101959A1 (ar) جهاز لامتصاص الحرارة من الوسط المحيط واستغلالها (كمولد)
ES2555531B1 (es) Planta termosolar con generador de vapor supercrítico combinado
RU2572679C1 (ru) Тепловая электрическая станция
Dostal et al. Study of the cooling systems with S-CO2 for the DEMO fusion power reactor
CL2018000294A1 (es) Método para ajustar la presión del generador de vapor en planta de energía solar
ES2526894T3 (es) Instalación para la producción de energía térmica solar y procedimiento para la producción de energía mediante una instalación para la producción de energía térmica solar
ES2403550B1 (es) Ciclo rankine orgánico regenerativo de condensación cuasi-crítica.
ES2436717A2 (es) Planta térmica de dos ciclos rankine en serie para instalaciones de regasificación de gas natural licuado