WO2013087949A1 - Sistema híbrido de generación eléctrica a partir de energía solar y biomasa - Google Patents

Sistema híbrido de generación eléctrica a partir de energía solar y biomasa Download PDF

Info

Publication number
WO2013087949A1
WO2013087949A1 PCT/ES2011/070859 ES2011070859W WO2013087949A1 WO 2013087949 A1 WO2013087949 A1 WO 2013087949A1 ES 2011070859 W ES2011070859 W ES 2011070859W WO 2013087949 A1 WO2013087949 A1 WO 2013087949A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
steam
boiler
turbine
superheater
Prior art date
Application number
PCT/ES2011/070859
Other languages
English (en)
French (fr)
Inventor
Iñigo VICARIO UNANUE
Sergio LÓPEZ GARAY
Kristina APIÑÁNIZ SÁENZ DE MATURANA
Francisco Javier MARTÍN HERNANZ
Original Assignee
Ingeteam Power Technology, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingeteam Power Technology, S.A. filed Critical Ingeteam Power Technology, S.A.
Priority to PCT/ES2011/070859 priority Critical patent/WO2013087949A1/es
Publication of WO2013087949A1 publication Critical patent/WO2013087949A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • F03G6/005Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a hybrid type system or power plant, in particular of the type that uses solar energy and a biomass boiler as a source.
  • the present invention improves the performance of the system thanks to a plant arrangement with two turbine bodies and an intermediate solar steam reheating, thus providing a better use of the enthalpy of steam.
  • the hybrid power generation system of the invention comprises a solar thermal concentration system, a biomass boiler with a superheater subsystem, which can be two-stage convection-radiation, with two inputs, one for steam coming from the solar system and another for a contribution of feed liquid
  • the turbine comprises a high pressure body and a low pressure body and the system has a solar superheater adapted to reheat the outgoing steam of the high pressure body by exchange with the solar thermal system.
  • the system is provided with means to perform one or more steam extractions in either of the two turbines to heat the liquid feed water to the biomass boiler or to divert it to the solar system.
  • the thermal fluid may be one or a combination of biphenyl with diphenyl oxide, carbon dioxide, mixture of molten salts of potassium nitrate and sodium nitrate, atmospheric air or pressurized air and the boiler fuel a fossil fuel of the gas group natural, derived from petroleum, or coal.
  • the system preferably comprises a regulating valve for the output of the solar system located between it and the boiler and a regulating valve for the boiler feed water.
  • the solar generation train optionally comprises a boiler feed water preheater, a steam generator and a steam superheater located before the solar system outlet valve.
  • the working fluid of the turbine can be water or an organic fluid.
  • Figure 1 .- is a scheme of a hybrid plant according to the invention.
  • Figure 2.- shows details of the part that includes the boiler in figure 1.
  • the system of the invention has several essential elements (Figure 1), namely: the solar thermal concentration system (12), the biomass boiler (13), the high pressure steam turbine (14), the solar superheater (15) and low pressure steam turbine (16).
  • the biomass boiler is also provided with a superheated subsystem that is preferably two-stage, convection-radiation (figure 2).
  • the high steam turbine (14) is designed in such a way that it expands the reheated steam taking advantage of its enthalpy and returns a reheated steam very close to its saturation point. It can work with both water and an organic fluid. Whenever there is solar radiation, the steam at the exit of this turbine is reheated by the solar superheater (15) increasing its enthalpy, and allowing the low pressure steam turbine (16) to expand this steam to a maximum until it reaches a Vapor title close to 90%, thereby increasing the overall system performance.
  • the water tank with a degasser (23) can also be used as a means to perform an extraction in which, at the same time as it extracts the possible gases dissolved in the water (oxygen, carbon dioxide), it heats the supply water by means of a small part of that steam extracted.
  • the solar superheater (15) is an exchanger that allows an increase in steam temperature at the outlet of the high pressure turbine (14) from the heat provided by the fluid contained in the solar field receiver tubes.
  • the supply of feed water to the boiler, after the solar preheater (19), also allows to gain performance when there is solar radiation.
  • the water inlet (A) is behind the solar preheater (19)
  • an input of the boiler feed water (13) is achieved at a higher thermal level so that the heat, saved by the boiler for this heating at low temperatures, is contributed to higher temperatures, increasing the temperature of final superheated steam reached, and that it would not be possible to reach with the solar contribution due to the temperature limitation of the thermal fluid.
  • This rise in steam temperature Overheating allows this performance increase in the final turbine cycle.
  • the biomass solid fuel boiler has a single burner (5), and double fluid inlet, a liquid water inlet (A) for feeding to the boiler boiler (4), and another steam inlet coming from the solar field (B) after the convection superheater (1).
  • the special design with this convection superheater (1) placed next to the boiler reheats the steam obtained from the liquid inlet water.
  • the boiler radiation superheaters (figure 2 references 2,3) are placed next to one or several steam-generating solar trains (19, 20, 21) (figure 1), so that steam is allowed to enter from this system to the boiler if it is working, or its passage through the boiler is avoided by means of a valve (1 1) if it was stopped (maintenance, breakdown, etc.), while allowing the entry of liquid water from from the feed pumps (22) to the boiler (4) of the boiler, optionally through the high pressure preheater (19).
  • control valve (10) allows the regulation of the distribution of feed water to the steam generator (20) of the solar field, or to the biomass boiler (13), while the valve (1 1) allows to regulate the distribution of steam from the solar field to the boiler (13) or directly to the turbine inlet (14) if the boiler is stopped.
  • the set of these systems allows to work with different modes of operation of the plant depending on the solar radiation collected, and the desired electrical production: 1. Solar only operating mode:
  • the biomass boiler may be stopped.
  • the system of the present invention allows the operation of the plant with only solar energy input.
  • the mode of operation is to completely close the passage of water to the boiler, diverting it completely to the solar exchangers by means of the supply water regulation valve (10) and actuate the 3-way steam regulation valve.
  • outlet (1 1) closing the passage of steam to the boiler superheater, and opening the passage of the steam flow to the high pressure turbine inlet. Once the steam expansion in the high pressure turbine has occurred, the steam temperature in the solar superheater (15) is increased before being introduced into the low pressure turbine.
  • the supply water regulation valve (10) is responsible for controlling and distributing the water flow to the boiler and to the solar generation train according to the existing solar radiation, and the boiler load level. In this way you can take advantage of the thermal energy produced by low solar radiation, which in a conventional system would be lost by not giving the minimum required by the turbine for its operation.
  • the solar exchangers are responsible for producing the steam with the thermal energy coming from the solar field, which controlled by the valve (1 1) is mixed with the steam obtained in the biomass boiler, the resulting flow being reheated in the radiation superheaters of the biomass boiler itself (2, 3), then entering the high pressure turbine. Once expanded in this turbine, the steam is reheated again with the superheater (15) before entering the low pressure turbine. From This way, by actuating the valve (10), different degrees of regulation of the system are achieved depending on the existing radiation.
  • the system During periods of no solar radiation, such as at night, or high cloudiness, the system generates electrical energy only from the operation of the biomass boiler.
  • the feed water valve (10) is activated, closing the flow of the feed water flow to the solar exchangers and allowing it to the boiler, depending on the level of boiler load we want to achieve.
  • the superheated steam is introduced into the high pressure turbine.
  • the solar superheater At its exit, since there is no solar radiation, the solar superheater is avoided, and the steam is introduced directly into the low pressure turbine until it expands with steam titres close to 90%.
  • the elements of the solar thermal concentration system are known:
  • solar radiation is captured in the solar field by collectors that can be of different types parabolic trough collectors, fresnel ... where the radiation is reflected and concentrated on a receiver tube through which a fluid circulates inside It is heated. It could also work with a central receiver system and its corresponding heliostat field. In this case, the fluid would be concentrated in the central receptor, and it would be the heliostats, which are responsible for reflecting and concentrating the solar radiation on the central receiver.
  • the thermal fluid first reaches the superheater (21), continues through the generator (20), and finally reaches the preheater (19) before being pumped back into the solar field (12), while the feed water from the cycle
  • the turbine first arrives at the preheater (19), continues through the steam generator (20) and passes to the solar superheater (21), thus producing the thermal transfer of the fluid from the solar field to the water supply to the cycle itself.
  • the generation solar train would not be necessary since steam would be produced directly in the solar collectors.
  • the turbine cycle in addition to the steam generation train (19, 20, 21) / biomass boiler (13), solar superheater (15) and turbines (14, 16), as additional elements also includes the condenser (24) , condensate pumps (26), low pressure exchangers (18), feed-degasser water tank (23) and high pressure exchangers (17).
  • the steam is introduced into the radiation superheater (2, 3 fig. 2) of the boiler itself, or it goes directly to the high pressure steam turbine (14) if the boiler is not working. This regulation is achieved by a 3-way valve (1 1).
  • system of the invention also has:
  • Feed water system The purpose of this system is to degas, pressurize and preheat the water before entering the steam generation system. Basically this system consists of:
  • High (17) and low pressure (18) water preheaters Designed to approximate the water temperature to saturation using steam from turbine extractions.
  • the high pressure preheater supplies water to the solar preheater.
  • Feed-degasser water tank (23) it has a double function, on the one hand it stores water to feed the main pumps (22), on the other, it extracts the possible dissolved gases in the water (oxygen, carbon dioxide) and heats the contribution water. To do this, it uses a small part of steam that can be extracted from the high or low pressure turbine.
  • Main feed pumps (22) the pumps suck water from the feed tank (23) and maintain the pressure level in the steam generator.
  • the expanded steam in the low pressure turbine (16) is discharged into a condenser (24) cooled by a cooling system (27). Said condenser will have enough surface to condense all the steam coming from the turbine under any operating condition.
  • the condensate pumps (26) are responsible for extracting the condensate from the condenser and sending it to the feed water tank (23), previously passing through the low pressure exchangers (18).
  • Cooling system (27) it will be responsible for dissipating the heat of the condenser (24) and the auxiliary cooling system. They can be of several types: cooling towers, air coolers, air condensers, mixing systems like the previous ones, etc.
  • the raw water will receive a chemical treatment that allows its use for the water systems of contribution to the cooling system, demineralized water to provide water to the turbine cycle and cleaning of the mirrors of the solar field.
  • the superheated steam obtained with the solar exchangers is superheated to a greater degree before entering the high pressure turbine, in the boiler's radiation superheater. At the outlet of the high pressure turbine, this steam is reheated again in the solar superheater before entering the low pressure turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Sistema híbrido de generación de energía que comprende un sistema solar térmico de concentración, una turbina de vapor y una caldera de biomasa con un sobrecalentador de dos etapas de convección-radiación y dos entradas, una para el vapor proveniente del sistema solar y otra para un aporte de líquido de alimentación. La turbina comprende un cuerpo de alta presión y un cuerpo de baja presión y el sistema además está provisto de un recalentador solar adaptado para recalentar el vapor saliente del cuerpo de alta presión mediante intercambio con el sistema solar térmico. Gracias a esta configuración se mejora la entalpia del vapor y se consigue una mayor eficiencia.

Description

SISTEMA HÍBRIDO DE GENERACIÓN ELÉCTRICA A PARTIR DE ENERGÍA
SOLAR Y BIOMASA
D E S C R I P C I Ó N
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un sistema o planta de energía de tipo híbrido, en particular del tipo que utiliza como fuente la energía solar y una caldera de biomasa.
ANTECEDENTES DE LA INVENCIÓN
Son conocidas en el estado de la técnica las plantas de generación de energía que combinan la energía de origen solar/térmico y la proveniente de combustibles fósiles o renovables. En el caso de combustibles renovables, la solicitud CN101876299 describe un sistema híbrido que incorpora una caldera de biomasa. En el sistema descrito, por el campo solar circula fluido térmico, y se dispone de un almacenamiento térmico en base a sales fundidas, en el caso en el que no se disponga de radiación solar. En los sistemas de concentración solar con fluido térmico basado en mezcla de bifenilo con óxido de difenilo en el campo solar, la máxima temperatura de trabajo está limitada en torno a 4005c, debido a la degradación del fluido a mayores temperaturas. Esta baja temperatura hace que el vapor conseguido en el ciclo solar sea un vapor de bajo nivel de recalentamiento, presentando por lo tanto el inconveniente de obtener valores bajos de rendimiento.
OBJETO DE LA INVENCIÓN
La presente invención mejora el rendimiento del sistema gracias a una disposición de planta con dos cuerpos de turbina y un recalentamiento solar intermedio del vapor, proporcionando de este modo un mejor aprovechamiento de la entalpia del vapor. El sistema híbrido de generación de energía de la invención comprende un sistema solar térmico de concentración, una caldera de biomasa con un subsistema sobrecalentador, que puede ser de dos etapas convección-radiación, con dos entradas, una para el vapor proveniente del sistema solar y otra para un aporte de líquido de alimentación. La turbina comprende un cuerpo de alta presión y un cuerpo de baja presión y el sistema dispone de un recalentador solar adaptado para recalentar el vapor saliente del cuerpo de alta presión mediante intercambio con el sistema solar térmico. De preferencia, el sistema está provisto de medios para realizar una o varias extracciones de vapor en cualquiera de las dos turbinas para calentar el agua líquida de alimentación a la caldera de biomasa o derivarlo hacia el sistema solar. El fluido térmico puede ser uno o una combinación de bifenilo con oxido de difenilo, dióxido de carbono, mezcla de sales fundidas de base nitrato potásico y nitrato sódico, aire atmosférico o aire a presión y el combustible de la caldera un combustible fósil del grupo gas natural, derivados del petróleo, o carbón.
El sistema comprende preferentemente una válvula de regulación del vapor de salida del sistema solar situada entre el mismo y la caldera y una válvula de regulación del agua de alimentación de la caldera. El tren de generación solar comprende, opcionalmente, un precalentador del agua de alimentación de la caldera, un generador de vapor y un sobrecalentador de vapor situado antes de la válvula de salida del sistema solar. El fluido de trabajo de la turbina puede ser agua o un fluido orgánico.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña la siguiente descripción de un juego de dibujos en donde con carácter ilustrativo se ha representado lo siguiente:
Figura 1 .- es un esquema de una planta híbrida de acuerdo con la invención.
Figura 2.- muestra detalles de la parte que incluye la caldera en la figura 1 .
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El sistema de la invención dispone de varios elementos esenciales (figura 1 ), a saber: el sistema solar térmico de concentración (12), la caldera de biomasa (13), la turbina de vapor de alta presión (14), el recalentador solar (15) y turbina de vapor de baja presión (16). La caldera de biomasa está provista a su vez de un subsistema sobrecalentados que de preferencia es de dos etapas, convección- radiación (figura 2).
La turbina de vapor de alta (14)está diseñada de forma que expande el vapor recalentado aprovechando su entalpia y devuelve un vapor recalentado muy cercano a su punto de saturación. Puede funcionar tanto con agua como con un fluido orgánico. Siempre que exista radiación solar, el vapor a la salida de esta turbina es recalentado por el recalentador solar (15) aumentando su entalpia, y permitiendo que la turbina de vapor de baja presión (16) pueda expandir al máximo este vapor hasta llegar a un título de vapor cercano al 90%, aumentando de esta forma el rendimiento global del sistema. Para permitir un aumento extra de rendimiento, también se contempla la utilización de parte del vapor de salida de la turbina de alta presión (14) en calentar el agua/líquido de alimentación y 1 o varías extracciones de vapor en la propia turbina de alta (14) y/o en la turbina de baja (16) con el mismo objetivo. Estos calentamientos se realizan con intercambiador de alta presión (17) y los intercambiadores de baja presión (18) respectivamente. También pueden utilizarse el tanque de agua con un desgasificador (23) como medio para realizar una extracción en, que a la vez que extrae los posibles gases disueltos en el agua (oxígeno, dióxido de carbono), calienta el agua de aportación mediante una pequeña parte de ese vapor extraído.
El recalentador solar (15), es un intercambiador que permite un aumento de la temperatura del vapor a la salida de la turbina de alta presión (14) a partir del calor aportado por el fluido contenido en los tubos receptores del campo solar.
La disposición de entrada del agua de alimentación a la caldera, posterior al precalentador solar (19), también permite ganar rendimiento cuando existe radiación solar. Al estar la toma de agua (A) tras el precalentador solar (19) se consigue, siempre que haya radiación solar, una entrada del agua de alimentación a caldera (13) en un nivel térmico superior de forma que el calor, ahorrado por la caldera para este calentamiento a bajas temperaturas, es aportado a mayores temperaturas, aumentando la temperatura de vapor recalentado final alcanzada, y que no sería posible alcanzar con la aportación solar por la limitación de temperatura del fluido térmico. Este aumento de temperatura en el vapor recalentado permite este aumento de rendimiento en el ciclo final de turbina. Esta disposición, con el paso de agua de alimentación a través del precalentador (19) permite usar la caldera de biomasa (13) para evitar congelaciones del fluido térmico durante periodos nocturnos, al ser en este caso, el propio agua de alimentación el que caliente el fluido térmico en el precalentador sin necesidad de sistemas auxiliares complejos ya sean de almacenamiento o de combustión.
Como puede apreciarse en las figuras 2a y 2b, la caldera de combustible sólido de biomasa posee un único quemador (5), y doble entrada de fluido, una entrada de agua líquida (A) de alimentación al calderín (4) de caldera, y otra entrada de vapor proveniente de campo solar (B) posterior al sobrecalentador de convección (1 ). El diseño especial con este sobrecalentador de convección (1 ) colocado a continuación del calderín recalienta el vapor obtenido del agua líquida de entrada. El sobrecalentador de radiación (2, 3) colocado tras la entrada del vapor obtenido con el aporte térmico del campo solar, que sobrecalienta la suma de los vapores obtenidos del campo solar y de la propia caldera, permite la regulación de la caldera para poder trabajar con unas condiciones de funcionamiento y salida de vapor vivo (C) estables aun con bajas cargas de aporte térmico, tanto solar como biomasa, e incluso sin ningún tipo de aporte térmico por parte del campo solar.
Los sobrecalentadores de radiación de la caldera (figura 2 referencias 2,3) están colocados a continuación de uno o varios trenes solares de generación de vapor (19, 20, 21 ) (figura 1 ), de forma que se permite la entrada de vapor de este sistema a la caldera si la misma está funcionando, o se evita su paso por la caldera mediante una válvula (1 1 ) si estuviera parada (mantenimiento, avería, etc.), al mismo tiempo que permite la entrada de agua líquida proveniente de las bombas de alimentación (22) al calderín (4) de la caldera, opcionalmente a través del precalentador de alta presión (19). Para poder conseguir este funcionamiento, la válvula de control (10) permite la regulación del reparto de agua de alimentación al generador de vapor (20) del campo solar, o a la caldera de biomasa (13), mientras que la válvula (1 1 ) permite regular el reparto de vapor proveniente del campo solar a la caldera (13) o directamente a la entrada de turbina (14) si la caldera estuviera parada. El conjunto de estos sistemas permite trabajar con distintos modos de funcionamiento de la planta en función de la radiación solar captada, y la producción eléctrica deseada: 1 . Modo funcionamiento únicamente solar:
Durante periodos de mantenimiento de la caldera y/o exceso de producción eléctrica respecto a la demandada durante el día, la caldera de biomasa puede estar parada. El sistema de la presente invención permite el funcionamiento de la planta con aporte de solo energía solar. En este caso el modo de operación consiste en cerrar totalmente el paso del agua a la caldera, desviándolo en su totalidad hacia los intercambiadores solares mediante la válvula de regulación de agua de alimentación (10) y accionar la válvula de 3 vías de regulación de vapor de salida (1 1 ), cerrando el paso del vapor al sobrecalentador de caldera, y abriendo el paso del caudal de vapor a la entrada de turbina de alta presión. Una vez producida la expansión del vapor en la turbina de alta presión, se aumenta la temperatura del vapor en el recalentador solar (15) antes de ser introducido en la turbina de baja presión.
2. Modo funcionamiento Solar-Biomasa:
Durante los periodos normales de funcionamiento con radiación solar, el agua de alimentación pasa en su totalidad por el precalentador solar. A continuación la válvula de regulación de agua de alimentación (10) se encarga de controlar y distribuir el caudal de agua a caldera y al tren de generación solar en función de la radiación solar existente, y el nivel de carga de la caldera. De esta forma se puede aprovechar la energía térmica producida por bajas radiaciones solares, que en un sistema convencional se perdería al no dar el mínimo suficiente exigido por la turbina para su funcionamiento. Los intercambiadores solares se encargan de producir el vapor con la energía térmica proveniente del campo solar, que controlado por la válvula (1 1 ) es mezclado con el vapor obtenido en la caldera de biomasa, siendo el caudal resultante recalentado en los sobrecalentadores de radiación de la propia caldera de biomasa (2, 3), entrando a continuación en la turbina de alta presión. Una vez expandido en esta turbina, el vapor es recalentado de nuevo con el recalentador (15) antes de entrar en la turbina de baja presión. De esta forma, accionando la válvula (10), se consiguen, distintos grados de regulación del sistema en función de la radiación existente.
3. Modo funcionamiento únicamente biomasa:
Durante periodos de nula radiación solar, como por la noche, o alta nubosidad, el sistema genera energía eléctrica a partir únicamente del funcionamiento de la caldera de biomasa. En este modo, se acciona la válvula de agua de alimentación (10), cerrando el paso del caudal de agua de alimentación a los intercambiadores solares y permitiéndoselo a la caldera, en función del nivel de carga de caldera que queramos conseguir. De esta forma, no existe aporte de vapor por parte solar en los sobrecalentadores de radiación de la caldera, y el vapor sobrecalentado es introducido en la turbina de alta presión. A su salida, dado que no existe radiación solar, el recalentador solar es evitado, y el vapor se introduce directamente en la turbina de baja presión hasta expansionarse con títulos de vapor cercanos al 90%.
Los elementos del sistema solar térmico de concentración son conocidos:
-Colectores solares (12): la radiación solar es captada en el campo solar por colectores que pueden ser de distintos tipos colectores cilindro parabólicos, fresnel... donde la radiación es reflejada y concentrada sobre un tubo receptor por cuyo interior circula un fluido que es calentado. También podría funcionar con un sistema de receptor central y su campo correspondiente de heliostatos. En este caso, el fluido se concentraría en el receptor central, y serían los heliostatos, los encargados de reflejar y concentrar la radiación solar sobre el receptor central.
-Intercambiadores solares: Sistema de generación de vapor recalentado en tres etapas: precalentamiento del agua de alimentación (19), generación de vapor (20), y sobrecalentamiento (21 )
El fluido térmico llega primero al sobrecalentador (21 ), continua por el generador (20), y finalmente llega al precalentador (19) antes de volver a ser bombeado hacia el campo solar (12), mientras que el agua de alimentación del ciclo de turbina llega primero al precalentador (19), continúa por el generador de vapor (20) y pasa al sobrecalentador solar (21 ), produciéndose de esta forma el traspaso térmico del fluido del campo solar al propio agua de alimentación del ciclo. Lógicamente, si el fluido del campo solar fuera agua, no sería necesario el tren solar de generación ya que el vapor se produciría directamente en los colectores solares.
El ciclo de turbina, además del tren de generación de vapor (19, 20, 21 )/ caldera de biomasa (13), recalentador solar (15) y turbinas (14, 16), como elementos adicionales incluye también el condensador (24), bombas de condensado (26), intercambiadores de baja presión (18), tanque de agua de alimentación- desgasificador (23) e intercambiadores de alta presión (17).
El vapor es introducido en los sobrecalentadores de radiación (2, 3 fig. 2) de la propia caldera, o bien pasa directamente a la turbina de vapor de alta presión (14) si la caldera no está funcionando. Esta regulación se consigue mediante una válvula de 3 vías (1 1 ).
Además de los elementos esenciales descritos hasta ahora, el sistema de la invención también dispone de:
Sistema de agua de alimentación: El objetivo de este sistema es el desgasificar, presurizar y precalentar el agua antes de entrar en el sistema de generación de vapor. Básicamente este sistema consiste en :
Precalentadores de agua de alta (17) y baja presión (18): Diseñados para aproximar la temperatura del agua a la de saturación empleando el vapor de las extracciones de la turbina. El precalentador de alta presión suministra el agua al precalentador solar.
Tanque de agua de alimentación-desgasificador (23): tiene doble función, por un lado almacena agua para alimentar las bombas principales (22), por otro, extrae los posibles gases disueltos en el agua (oxígeno, dióxido de carbono) y calienta el agua de aportación. Para ello emplea una pequeña parte de vapor que puede ser extraído de la turbina de alta o baja presión.
Bombas de alimentación principales (22): las bombas aspiran el agua del tanque de alimentación (23) y mantienen el nivel de presión en el generador de vapor.
- Sistema de Condensación: el vapor expandido en la turbina de baja presión (16) se descarga en un condensador (24) refrigerado por un sistema de refrigeración (27). Dicho condensador tendrá suficiente superficie como para condensar todo el vapor procedente de la turbina bajo cualquier condición de funcionamiento. Las bombas de condensado (26) se encargan de extraer el condensado del condensador y enviarlo hacia el tanque de agua de alimentación (23), pasando previamente por los intercambiadores de baja presión (18).
- Generador eléctrico (25): es el equipo encargado de transformar la energía cinética de la turbina en energía eléctrica
- Sistema de refrigeración (27): se encargará de disipar el calor del condensador (24) y del sistema auxiliar de refrigeración. Podrán ser de varios tipos: torres de refrigeración, aerorefrigeradores, aerocondensadores, mezcla de sistemas como los anteriores, etc.
- Sistema de tratamiento de agua: el agua bruta recibirá un tratamiento químico que permita su utilización para los sistemas de agua de aporte a sistema de refrigeración, agua desmineralizada para aportar agua al ciclo de turbina y limpieza de los espejos del campo solar.
El vapor sobrecalentado obtenido con los intercambiadores solares es sobrecalentado a un mayor grado antes de su entrada en la turbina de alta presión, en el sobrecalentador de radiación de la caldera. A la salida de la turbina de alta presión, este vapor es recalentado de nuevo en el recalentador solar antes de su entrada en la turbina de baja presión. Estos dos aumentos de temperatura del vapor hacen aumentar el grado de entalpia del vapor de entrada en cada una de las turbinas, al mismo tiempo que permite que la expansión del vapor en la turbina, limitado a títulos de vapor cercanos a 90%, pueda llegar hasta grados importantes de vacío, consiguiendo de esta forma un máximo aprovechamiento de la energía del vapor.
Lista de referencias:
1 - Sobrecalentador de convección de caldera de biomasa.
2- Sobrecalentador de radiación 1 -, etapa de caldera de biomasa
3- Sobrelcalentador de radiación, 2- etapa de caldera de biomasa
4- Calderín de caldera de biomasa
5- Quemador de la caldera de biomasa
10- Válvula de regulación de agua de alimentación - Válvula de reparto vapor de campo solar.- Sistema solar térmico de concentración- Caldera de biomasa
- Turbina de vapor de alta presión
- Recalentador solar
- Turbina de vapor de baja presión.
- Intercambiador de alta presión.
- Intercambiadores de baja presión.
- Precalentador solar
- Generador de vapor solar
- Sobrecalentador solar
- Bombas de agua de alimentación

Claims

REIVINDICACIONES
1 . - Sistema híbrido de generación de energía que comprende un sistema solar térmico de concentración (12), una turbina de vapor y una caldera de biomasa (13) con un subsistema sobrecalentador y dos entradas, una para el vapor proveniente del sistema solar y otra para un aporte de líquido de alimentación, caracterizado porque la turbina comprende un cuerpo de alta presión (14) y un cuerpo de baja presión (16) y el sistema además está provisto de un recalentador solar (15) adaptado para recalentar el vapor saliente del cuerpo de alta presión mediante intercambio con el sistema solar térmico (12).
2. - Sistema según la reivindicación 1 caracterizado porque el fluido térmico del sistema solar térmico es uno o una combinación de bifenilo con oxido de difenilo, dióxido de carbono, mezcla de sales fundidas de base nitrato potásico y nitrato sódico, aire atmosférico o aire a presión.
3. - Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque el combustible de la caldera es un combustible fósil del grupo gas natural, derivados del petróleo, o carbón.
4. - Sistema según cualquiera de las reivindicaciones caracterizado porque está provisto de una válvula de regulación del vapor de salida del sistema solar (1 1 ) situada entre el mismo y la caldera (13) y una válvula de regulación del agua de alimentación de la caldera (10).
5. - Sistema según la reivindicación 4 caracterizado porque comprende al menos un tren solar de generación de vapor provisto de un generador de vapor (20), un sobrecalentador de vapor (21 ) situado antes de la válvula de salida del sistema solar (1 1 ) y un precalentador (19) del agua de alimentación de la caldera.
6. - Sistema según la reivindicación 5 caracterizado porque está provisto de medios para realizar 1 o varias extracciones de vapor en cualquiera de las dos turbinas (14) (16), para calentar el agua líquida de alimentación a la caldera de biomasa, o al tren de generación solar.
7.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque el fluido de trabajo de la turbina es un fluido orgánico.
8.- Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque el subsistema sobrecalentador de la caldera es de tipo convección-radiación
PCT/ES2011/070859 2011-12-13 2011-12-13 Sistema híbrido de generación eléctrica a partir de energía solar y biomasa WO2013087949A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070859 WO2013087949A1 (es) 2011-12-13 2011-12-13 Sistema híbrido de generación eléctrica a partir de energía solar y biomasa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070859 WO2013087949A1 (es) 2011-12-13 2011-12-13 Sistema híbrido de generación eléctrica a partir de energía solar y biomasa

Publications (1)

Publication Number Publication Date
WO2013087949A1 true WO2013087949A1 (es) 2013-06-20

Family

ID=45757456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070859 WO2013087949A1 (es) 2011-12-13 2011-12-13 Sistema híbrido de generación eléctrica a partir de energía solar y biomasa

Country Status (1)

Country Link
WO (1) WO2013087949A1 (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103953402A (zh) * 2014-04-11 2014-07-30 武汉凯迪工程技术研究总院有限公司 一种太阳能与生物质能联合发电的优化集成系统
EP2910781A1 (en) * 2014-02-24 2015-08-26 Alstom Technology Ltd Solar thermal power system
WO2015136163A1 (fr) 2014-03-13 2015-09-17 Mini Green Power Installation de production d'energie a partir de la biomasse et de l'energie solaire
WO2015143557A1 (en) * 2014-03-24 2015-10-01 Sigma Energy Storage Inc. Heat transfer fluids compositions
WO2016074092A1 (en) * 2014-11-11 2016-05-19 Sigma Energy Storage Inc. Heat transfer fluid comprising a molten salt and graphene
US9938896B2 (en) 2013-04-03 2018-04-10 Sigma Energy Storage Inc. Compressed air energy storage and recovery
WO2018228627A1 (de) * 2017-06-17 2018-12-20 EXCELLENCE Gesellschaft zur Obhutsverwaltung erlesener Liegenschaften und Vermögensanlagen mbH Verfahren für dezentrale mit biomasse betriebene blockheizkraftwerke im kleineren leistungsbereich
US20240077045A1 (en) * 2022-09-01 2024-03-07 Harry Schoell Biomass energy generator system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032238A2 (en) * 2008-09-17 2010-03-25 Siemens Concentrated Solar Power Ltd. Solar thermal power plant
CN101876299A (zh) 2010-05-24 2010-11-03 北京京仪仪器仪表研究总院有限公司 一种将太阳能热发电与生物质发电相结合的方法及系统
WO2011053863A2 (en) * 2009-10-30 2011-05-05 Areva Solar, Inc. Dual fluid circuit system for generating a vaporous working fluid using solar energy
US20110127773A1 (en) * 2009-12-01 2011-06-02 General Electric Company System for generation of power using solar energy
WO2011140021A1 (en) * 2010-05-03 2011-11-10 Brightsource Industries (Israel) Ltd. Systems, methods, and devices for operating a solar thermal electricity generating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032238A2 (en) * 2008-09-17 2010-03-25 Siemens Concentrated Solar Power Ltd. Solar thermal power plant
WO2011053863A2 (en) * 2009-10-30 2011-05-05 Areva Solar, Inc. Dual fluid circuit system for generating a vaporous working fluid using solar energy
US20110127773A1 (en) * 2009-12-01 2011-06-02 General Electric Company System for generation of power using solar energy
WO2011140021A1 (en) * 2010-05-03 2011-11-10 Brightsource Industries (Israel) Ltd. Systems, methods, and devices for operating a solar thermal electricity generating system
CN101876299A (zh) 2010-05-24 2010-11-03 北京京仪仪器仪表研究总院有限公司 一种将太阳能热发电与生物质发电相结合的方法及系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938896B2 (en) 2013-04-03 2018-04-10 Sigma Energy Storage Inc. Compressed air energy storage and recovery
US9995285B2 (en) 2014-02-24 2018-06-12 Alstom Technology Ltd. Method for operating a solar thermal power system with an economizer recirculation line
EP2910781A1 (en) * 2014-02-24 2015-08-26 Alstom Technology Ltd Solar thermal power system
WO2015136163A1 (fr) 2014-03-13 2015-09-17 Mini Green Power Installation de production d'energie a partir de la biomasse et de l'energie solaire
WO2015143557A1 (en) * 2014-03-24 2015-10-01 Sigma Energy Storage Inc. Heat transfer fluids compositions
US20170002246A1 (en) * 2014-03-24 2017-01-05 Sigma Energy Storage Inc. Heat transfer fluids compositions
EP3130770A4 (en) * 2014-04-11 2018-01-03 Wuhan Kaidi Engineering Technology Research Institute Co., Ltd. Optimized integrated system for solar-biomass hybrid electricity generation
CN103953402A (zh) * 2014-04-11 2014-07-30 武汉凯迪工程技术研究总院有限公司 一种太阳能与生物质能联合发电的优化集成系统
CN103953402B (zh) * 2014-04-11 2015-07-29 武汉凯迪工程技术研究总院有限公司 一种太阳能与生物质能联合发电的优化集成系统
AU2015245829B2 (en) * 2014-04-11 2018-08-02 Wuhan Kaidi Engineering Technology Research Institute Co., Ltd. Optimized integrated system for solar-biomass hybrid electricity generation
WO2016074092A1 (en) * 2014-11-11 2016-05-19 Sigma Energy Storage Inc. Heat transfer fluid comprising a molten salt and graphene
WO2018228627A1 (de) * 2017-06-17 2018-12-20 EXCELLENCE Gesellschaft zur Obhutsverwaltung erlesener Liegenschaften und Vermögensanlagen mbH Verfahren für dezentrale mit biomasse betriebene blockheizkraftwerke im kleineren leistungsbereich
US20240077045A1 (en) * 2022-09-01 2024-03-07 Harry Schoell Biomass energy generator system
US12065984B2 (en) * 2022-09-01 2024-08-20 Harry Schoell Biomass energy generator system

Similar Documents

Publication Publication Date Title
ES2731134T3 (es) Central eléctrica de gas y vapor operada en forma híbrida solar
WO2013087949A1 (es) Sistema híbrido de generación eléctrica a partir de energía solar y biomasa
ES2608490T3 (es) Centrales termoeléctricas solares
ES2568211T3 (es) Central termoeléctrica con colectores solares
ES2544467T3 (es) Central térmica solar con evaporación indirecta y procedimiento para operar una tal central térmica solar
JP5596715B2 (ja) 太陽熱複合発電システム及び太陽熱複合発電方法
US9410535B2 (en) Binary power generation system
ES2445640T3 (es) Procedimiento y dispositivo para la elevación selectiva de la generación de energía eléctrica de una central térmica solar
ES2567754T3 (es) Central térmica solar y procedimiento para operar una central térmica solar
ES2581388T3 (es) Central térmica solar
US20080034757A1 (en) Method and system integrating solar heat into a regenerative rankine cycle
CN104420906B (zh) 蒸汽轮机设备
WO2011067773A1 (en) Thermal generation systems
ES2878624T3 (es) Sistema de energía termosolar
US20130139807A1 (en) Thermal energy generation system
JP2014514525A (ja) 工業プロセスで用いる蒸気を生成するための方法及び機器
ES2595552B1 (es) Planta solar de potencia de alta eficiencia y su procedimiento de funcionamiento
ES2449706T3 (es) Procedimiento para elevar la eficiencia de una instalación de central eléctrica equipada con una turbina de gas, y una instalación de central eléctrica para la realización del procedimiento
ES2531703T3 (es) Sistema de energía térmica solar
US9194377B2 (en) Auxiliary steam supply system in solar power plants
ES2605253T3 (es) Central térmica de vapor y procedimiento para operar una central térmica de vapor
ES2775004T3 (es) Una planta de energía solar térmica y un método para operar una planta de energía solar térmica
ES2387724B1 (es) Sistema de regeneración parcial en turbinas de gas de ciclos combinados con una o varias fuentes de calor.
ES2452290T3 (es) Planta de energía solar con turbina de gas integrada
ES2444340A1 (es) Método de operación de una planta solar termoeléctrica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11820861

Country of ref document: EP

Kind code of ref document: A1