CH713537A2 - Energy storage system in a nickel matrix. - Google Patents
Energy storage system in a nickel matrix. Download PDFInfo
- Publication number
- CH713537A2 CH713537A2 CH00257/17A CH2572017A CH713537A2 CH 713537 A2 CH713537 A2 CH 713537A2 CH 00257/17 A CH00257/17 A CH 00257/17A CH 2572017 A CH2572017 A CH 2572017A CH 713537 A2 CH713537 A2 CH 713537A2
- Authority
- CH
- Switzerland
- Prior art keywords
- nickel
- point
- rect
- pid
- signal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/30—Nickel accumulators
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B5/00—Electrogenerative processes, i.e. processes for producing compounds in which electricity is generated simultaneously
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
- H01M4/0426—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Sistema di immagazzinamento energetico composto da un generatore elettrico una cella elettrochimica al cui interno è inserito un substrato isolante su cui è depositato una matrice di nichel la cui rugosità presenta un picco nell’intorno dei 5 nm.Energy storage system consisting of an electric generator an electrochemical cell inside which an insulating substrate is inserted on which a nickel matrix is deposited whose roughness has a peak around 5 nm.
Description
DescrizioneDescription
SETTORE DELLA TECNICA [0001] Sistema di accumulo in matrice metallica ad alta efficienza, utilizzabile in tutti i settori della tecnica che richiedono energia elettrica e/o idrogeno ad alto rendimento basso impatto ambientale.TECHNICAL FIELD [0001] High efficiency metal matrix storage system, usable in all technical sectors that require high efficiency low environmental impact electricity and / or hydrogen.
ARTE ANTERIORE [0002] Ad oggi esistono_disponibili sul mercato principalmente tre sistemi di accumulo energetico, questi sino di tipo chimico (idrogeno)elettrochimico(batterie)ed elettrico (supercondensatori). Le batterie si differenziano a secondo delle combinazioni chimiche impiegate, possono essere quindi al piombo, agli ioni di litio, nichel cadmio eco.FRONT ART [0002] To date, there are mainly three energy storage systems available on the market, these up to chemical (hydrogen), electrochemical (batteries) and electric (supercapacitors) types. The batteries differ according to the chemical combinations used, they can therefore be lead, lithium ion, nickel cadmium eco.
[0003] Tutte le batterie contengono più o meno elementi tossici per la salute umana e per 1 ' ambiente, la cui fabbricazione e il successivo smaltimento richiedono onerosi investimenti economici. I supercondensatori, sono composti da due lamine detti elettrodi, polarizzabili separati da un isolatore, e da un elettrolita. Questi sono caratterizzati per la grossa densità di potenza, per il grosso numero di cicli e da un lungo ciclo di vita, il loro svantaggio è legato alla quantità di carica accumulata e che dipende dalla superfice di interfaccia tra elettrolita e elettrodo. L’ idrogeno, rappresenta il sistema di accumulo chimico, esso viene accumulato in grossi serbatoi che possono essere appositamente costruiti o disponibili in natura come miniere di sale, pozzi di gas esausti, eco. il maggior problema è dato dal fatto che per separare 1 ' idrogeno dall’ acqua e per comprimerlo occorrono grosse quantità di energia elettrica.[0003] All batteries contain more or less toxic elements for human health and the environment, the manufacture and subsequent disposal of which require expensive financial investments. The supercapacitors are made up of two sheets called polarisable electrodes separated by an insulator and an electrolyte. These are characterized by the large power density, the large number of cycles and a long life cycle, their disadvantage is related to the amount of charge accumulated and which depends on the interface surface between the electrolyte and the electrode. Hydrogen represents the chemical accumulation system, it is accumulated in large tanks that can be specially built or available in nature such as salt mines, exhausted gas wells, eco. the biggest problem is the fact that to separate the hydrogen from the water and to compress it, large quantities of electricity are needed.
[0004] In generale la capacità di una batteria viene espressa in Ah (ampere/ora) e rappresenta la quantità massima di carica elettrica immagazzinata nella stessa. Tale capacità però non e fissa ma è un valore variabile dipendente da molti fattori, non per ultimo la temperatura cui la batteria deve lavorare. I limiti maggiori che oggi occorre superare sono la densità di carica, il life-time, ovvero il numero di cicli di carica e scarica che una batteria può sopportare, la corrente di scarica, che per effetto Joule sottopone e notevoli stress termici la batteria stessa, non per ultimo, quando una batteria raggiunge la sua vita utile deve seguire un costoso procedimento industriale di smaltimento. Un altro importante limite di tali sistemi dì accumulo risiede nel fatto che a determinate basse temperature il liquido che costituisce 1' elettrolita ( formato per la maggior parte di acqua) tende a congelare, rendendo inutilizzabile la batteria stessa poiché il processo elettrochimico non può avvenire, simile condizione si verifica nei casi in cui la temperatura è troppo elevato inducendo la vaporizzazione dell’ elettrolita e la conseguente concentrazione ne risulta compromessa, influendo negativamente sui rapporti stechiometrici esatti cui la reazione stessa può avvenire.[0004] In general, the capacity of a battery is expressed in Ah (amperes / hour) and represents the maximum amount of electric charge stored in it. However, this capacity is not fixed but is a variable value dependent on many factors, not least the temperature at which the battery must work. The major limits that must be overcome today are the charge density, the life-time, or the number of charge and discharge cycles that a battery can withstand, the discharge current, which by Joule effect subjects and considerable thermal stress to the battery itself Last but not least, when a battery reaches its useful life it must follow an expensive industrial disposal procedure. Another important limitation of these accumulation systems lies in the fact that at certain low temperatures the liquid that constitutes the electrolyte (formed for the most part of water) tends to freeze, making the battery itself unusable since the electrochemical process cannot take place, this condition occurs in cases where the temperature is too high inducing the vaporization of the electrolyte and the consequent concentration is compromised, negatively affecting the exact stoichiometric ratios to which the reaction itself can take place.
[0005] Di seguito si riporta una tabella riassuntiva di alcune caratteristiche tipiche di tali sistemi di accumulo.[0005] Below is a summary table of some typical characteristics of such storage systems.
CH 713 537 A2 [0006]CH 713 537 A2 [0006]
Tabella comparativaComparative table
DESCRIZIONE DELL’ INVENZIONE [0007] Il sistema e’ capace di immagazzinare energia nella matrice di Nichel depositato in maniera nanometrica su un supporto di allumina. La matrice di nichel depositata attraverso tecnica di sputtering ha uno spessore di 40nm ed una rugosità specifica così meglio definita. La 2DPSD, densità di potenza spettrale spaziale bidimensionale deve avere un picco nell’intorno dei 5nm, tale valore si ottiene in maniera sperimentale controllando i tempi di esposizione la temperatura del supporto del nichel grezzo, i livelli di vuoto e la corrente del generatore di plasma.DESCRIPTION OF THE INVENTION [0007] The system is capable of storing energy in the Nickel matrix deposited in a nanometric manner on an alumina support. The nickel matrix deposited through the sputtering technique has a thickness of 40nm and a specific roughness thus better defined. The 2DPSD, two-dimensional spatial spectral power density must have a peak around 5nm, this value is obtained experimentally by controlling the exposure times the temperature of the raw nickel support, the vacuum levels and the current of the plasma generator .
[0008] Il sistema di caricamento è a potenza costante con una funzione forzante fatta da una sinusoide traslata nel semipiano positivo sommata ad un segnale rettangolare secondo la seguente relazione: Pc=Pmax*(1+sen(w1*t))*(1+0,1*rect(w2,t)), dove Pc è la potenza forzante, w1 è la pulsazione angolare del segnale sinusoidale, rect (w2,t) è la funzione rettangolare con ampiezza 1 frequenza pari w2/2pi. Pmax dipende dalla superfice del nichel e dalla potenza del sistema di immagazzinamento tipicamente può avere valori fino a 10W/cm2.[0008] The loading system is at constant power with a forcing function made by a sinusoid translated into the positive half-plane added to a rectangular signal according to the following relationship: Pc = Pmax * (1 + sen (w1 * t)) * (1 + 0.1 * rect (w2, t)), where Pc is the forcing power, w1 is the angular pulsation of the sinusoidal signal, rect (w2, t) is the rectangular function with amplitude 1 frequency equal to w2 / 2pi. Pmax depends on the nickel surface and on the power of the storage system, typically it can have values up to 10W / cm 2 .
W2 è almeno pari a 10 volte w1.W2 is at least 10 times w1.
[0009] Il segnale rettangolare allarga lo spettro a riga del segnale sinusoidale in un suo intorno migliorando le performance di caricamento. In fase sperimentale si è osservato una riduzione dei tempi di caricamento pari ad oltre il 20%.[0009] The rectangular signal widens the line spectrum of the sinusoidal signal in its surroundings, improving the loading performance. During the experimental phase, a reduction in loading times of over 20% was observed.
[0010] W1 nelle fasi sperimentali ha ben funzionato se scelta tra 10.000 e 50.000 rad/sec.[0010] W1 in the experimental phases worked well if chosen between 10,000 and 50,000 rad / sec.
[0011] Frequenze più’ elevate portano ad emissioni in ambiente di segnali radio e di fatto non migliorano le prestazioni.[0011] Higher frequencies lead to emissions of radio signals into the environment and in fact do not improve performance.
CH 713 537 A2 [0012] II segnale e’ naturalmente unidirezionale e deve avere il negativo connesso al nichel.CH 713 537 A2 [0012] The signal is naturally unidirectional and must have the negative connected to the nickel.
[0013] La scarica avviene semplicemente disconnettendo il sistema di caricamento, quindi si produce una sovratensione il cui potenziale dipende dal soluto nell’elettrolita nonché rilascio di idrogeno in forma gassosa che viene raccolto.[0013] Discharging occurs simply by disconnecting the charging system, therefore an overvoltage is produced whose potential depends on the solute in the electrolyte as well as the release of hydrogen in gaseous form which is collected.
[0014] Un modo più’ efficace dì rilascio e’ l’uso di un segnale a potenziale invertito (positivo sul nichel) di intensità notevolmente inferiore (tipicamente di 100 volte) questa volta a corrente costante e proporzionale alla quantità di idrogeno che si desidera estrarre. In questo caso non essendo linearmente direttamente proporzionale alla magnitudo della corrente l’idrogeno estratto, si rende necessario retro azionare il sistema di scarica con un controllore ad esempio tipo PID.A more effective way of release is the use of an inverted potential signal (positive on nickel) of significantly lower intensity (typically 100 times) this time with constant current and proportional to the quantity of hydrogen desired to extract. In this case, the hydrogen extracted being not linearly directly proportional to the magnitude of the current, it is necessary to operate the discharge system with a controller such as PID for example.
[0015] La funzione di scarica pertanto sarà:[0015] The discharge function therefore will be:
ls= lmax*PID(H2)*(1+sen(w1*t))*(1+0,1*rect(w2,t) ), dove Is è la corrente al nichel, w1 è la pulsazione angolare del segnale sinusoidale, rect (w2,t) è la funzione rettangolare con ampiezza 1 frequenza pari w2/2pi, PID(H2) e’ il segnale di retroazione dal controllore pid in funzione della quantità di idrogeno richiesto ha un valore compreso tra 0 e 1. Imax ha valori fino a W/cm2.ls = lmax * PID (H2) * (1 + sen (w1 * t)) * (1 + 0.1 * rect (w2, t)), where Is is the nickel current, w1 is the angular pulsation of the signal sinusoidal, rect (w2, t) is the rectangular function with amplitude 1 frequency equal to w2 / 2pi, PID (H2) is the feedback signal from the pid controller as a function of the quantity of hydrogen required has a value between 0 and 1. Imax has values up to W / cm 2 .
[0016] Anche in questo caso W2 è almeno pari a 10 volte w1.Also in this case W2 is at least equal to 10 times w1.
[0017] II sistema è quindi immerso in un elettrolita liquido composto da acqua e litio o altro elemento metallico a bassa competitività elettrochimica con il nichel.The system is therefore immersed in a liquid electrolyte composed of water and lithium or other metal element with low electrochemical competitiveness with nickel.
[0018] L’elettrodo neutro sempre immerso nell’elettrolita può essere composto sempre da nichel o altro metallo nobile ad esempio platino.[0018] The neutral electrode always immersed in the electrolyte can always be composed of nickel or other noble metal, for example platinum.
[0019] L’allumina è fondamentale ai fini della morfologia del substrato di nichel sputterato.[0019] Alumina is essential for the morphology of the spitted nickel substrate.
BREVE DESCRIZIONE DEI DISEGNI [0020] la fig. 1 raffigura la cella nel suo insiemeBRIEF DESCRIPTION OF THE DRAWINGS [0020] fig. 1 shows the cell as a whole
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00257/17A CH713537A2 (en) | 2017-03-02 | 2017-03-02 | Energy storage system in a nickel matrix. |
EP18713010.9A EP3590142A1 (en) | 2017-03-02 | 2018-03-01 | Nickel based energy storage system |
PCT/IB2018/051315 WO2018158725A1 (en) | 2017-03-02 | 2018-03-01 | Nickel based energy storage system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00257/17A CH713537A2 (en) | 2017-03-02 | 2017-03-02 | Energy storage system in a nickel matrix. |
Publications (1)
Publication Number | Publication Date |
---|---|
CH713537A2 true CH713537A2 (en) | 2018-09-14 |
Family
ID=61764058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH00257/17A CH713537A2 (en) | 2017-03-02 | 2017-03-02 | Energy storage system in a nickel matrix. |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3590142A1 (en) |
CH (1) | CH713537A2 (en) |
WO (1) | WO2018158725A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2756569C3 (en) * | 1977-12-19 | 1981-02-12 | Kernforschungsanlage Juelich Gmbh, 5170 Juelich | Process and electrolysis cell for the production of hydrogen and oxygen |
US7282295B2 (en) * | 2004-02-06 | 2007-10-16 | Polyplus Battery Company | Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture |
CN1854063A (en) * | 2005-04-28 | 2006-11-01 | 黄潮 | Electrochemical zinc-water hydrogen making and storing method |
-
2017
- 2017-03-02 CH CH00257/17A patent/CH713537A2/en not_active Application Discontinuation
-
2018
- 2018-03-01 EP EP18713010.9A patent/EP3590142A1/en not_active Withdrawn
- 2018-03-01 WO PCT/IB2018/051315 patent/WO2018158725A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2018158725A1 (en) | 2018-09-07 |
EP3590142A1 (en) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4928824B2 (en) | Method for manufacturing lithium ion storage element | |
CN108427077A (en) | A kind of experimental method for analysing lithium using reference electrode monitoring cathode | |
WO2019103470A3 (en) | All-solid-state secondary battery and method of charging the same | |
KR100931095B1 (en) | Asymmetric Hybrid Capacitor Applying Metal Oxide to Anode and Cathode | |
JP2008519399A5 (en) | ||
JP6797438B2 (en) | Battery charging method and battery charging device | |
Warneke et al. | Communication—Influence of carbonate-based electrolyte composition on cell performance of span-based lithium-sulfur-batteries | |
WO2016111987A1 (en) | Energy devices with ultra-capacitor structures and methods thereof | |
ITUB20152701A1 (en) | Semi-solid flow Li / O2 battery | |
WO2016102373A1 (en) | Molten salt electrochemical flow cell | |
CN107078278B (en) | Lithium ion battery | |
KR101599711B1 (en) | Electric double layer device | |
CH713537A2 (en) | Energy storage system in a nickel matrix. | |
TWI692786B (en) | Hybrid capacitor | |
CN110095727A (en) | A kind of lithium battery method for measuring charged | |
KR101852400B1 (en) | Aluminum-ion capacitor having molybdenum disulphide electrode | |
EP3076415A1 (en) | Electrical energy storage device comprising supercapacitors and pseudocapacitors | |
KR101274989B1 (en) | Electric double layer capacitor using doped carbon-based electrode | |
KR101705856B1 (en) | Aluminum-ion capacitor and uses thereof | |
KR102334441B1 (en) | Secondary battery for generating electricity from thermal energy | |
US10367230B2 (en) | Battery packet | |
CN110034468A (en) | A kind of lithium battery charging plug | |
CN104852033A (en) | Preparation method for three-dimensional composite lithium titanate negative material | |
CN103700877A (en) | Storage battery with adjustable voltage | |
CN203659997U (en) | Storage battery with adjustable voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AZW | Rejection (application) |