CH710522A2 - Electromechanical apparatus comprising a device for capacitively detecting the angular position of a mobile, and method for detecting the angular position of a mobile. - Google Patents

Electromechanical apparatus comprising a device for capacitively detecting the angular position of a mobile, and method for detecting the angular position of a mobile. Download PDF

Info

Publication number
CH710522A2
CH710522A2 CH02020/14A CH20202014A CH710522A2 CH 710522 A2 CH710522 A2 CH 710522A2 CH 02020/14 A CH02020/14 A CH 02020/14A CH 20202014 A CH20202014 A CH 20202014A CH 710522 A2 CH710522 A2 CH 710522A2
Authority
CH
Switzerland
Prior art keywords
mobile
angular position
rotor
signal
electrodes
Prior art date
Application number
CH02020/14A
Other languages
French (fr)
Inventor
Klopfenstein François
Lagorgette Pascal
Schmutz Damien
Haenni Raphaël
Tardivon Matthieu
Original Assignee
Eta Sa Mft Horlogère Suisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eta Sa Mft Horlogère Suisse filed Critical Eta Sa Mft Horlogère Suisse
Priority to CH02020/14A priority Critical patent/CH710522A2/en
Publication of CH710522A2 publication Critical patent/CH710522A2/en

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/34Monitoring operation

Abstract

L’invention concerne un appareil électromécanique comportant un mobile et un organe indicateur analogique (14) solidaires en rotation, un moteur pas-à-pas, et un dispositif de détection capacitif de la position angulaire du mobile, comprenant un rotor (4; 10), un stator (18a, 18b, 20a, 20b, 24, 26a, 26b, 26c) et un circuit électronique de mesure, le stator comportant une première paire d’électrodes (18a, 18b) ayant une première capacité (C1) et une deuxième paire d’électrodes (20a, 20b) ayant une deuxième capacité (C2), le rotor étant conformé de manière à ce que les valeurs des deux capacités dépendent de la position angulaire du rotor, et un circuit électronique de mesure étant prévu pour générer un signal de sortie représentatif d’une différence entre les valeurs respectives de la première (C1) et de la deuxième (C2) capacité.The invention relates to an electromechanical apparatus comprising a mobile and an analog indicator member (14) integral in rotation, a stepper motor, and a device for capacitively detecting the angular position of the mobile, comprising a rotor (4; ), a stator (18a, 18b, 20a, 20b, 24, 26a, 26b, 26c) and an electronic measuring circuit, the stator having a first pair of electrodes (18a, 18b) having a first capacitance (C1) and a second pair of electrodes (20a, 20b) having a second capacitance (C2), the rotor being shaped so that the values of the two capacitors depend on the angular position of the rotor, and an electronic measuring circuit being provided for generating an output signal representative of a difference between the respective values of the first (C1) and the second (C2) capacitance.

Description

DOMAINE DE L’INVENTIONFIELD OF THE INVENTION

[0001] La présente invention concerne en premier lieu un appareil électromécanique comportant un mobile rotatif, un moteur pas-à-pas, un circuit électronique de gestion agencé pour commander le moteur pas-à-pas, une transmission reliant le moteur pas-à-pas au mobile, et un dispositif de détection capacitif, la transmission ayant un rapport tel que le moteur pas-à-pas fasse accomplir exactement un tour complet au mobile en un nombre entier déterminé de pas-moteur, de sorte que les pas subdivisent le tour complet du mobile en ledit nombre entier de positions angulaires équidistantes les unes des autres, et le dispositif de détection capacitif comprenant un rotor solidaire en rotation du mobile, un stator, et un circuit électronique de mesure, le stator comportant une paire d’électrodes ayant une capacité, le rotor étant conformé de manière à ce que la valeur de la capacité dépende de la position angulaire du rotor, et le circuit électronique de mesure étant prévu pour générer et pour fournir au circuit électronique de gestion un signal dépendant de la valeur de la capacité. La présente invention concerne en second lieu un procédé pour déterminer la position angulaire d’un mobile faisant partie d’un appareil électromécanique comportant un dispositif de détection capacitif et qui est conforme à la définition ci-dessus. The present invention relates firstly to an electromechanical device comprising a rotary mobile, a stepper motor, an electronic management circuit arranged to control the stepper motor, a transmission connecting the stepper motor -step to the mobile, and a capacitive detection device, the transmission having a ratio such that the stepper motor makes the mobile complete exactly one complete revolution in a determined integer number of motor steps, so that the steps subdivide the complete revolution of the mobile in said whole number of angular positions equidistant from one another, and the capacitive detection device comprising a rotor integral in rotation with the mobile, a stator, and an electronic measuring circuit, the stator comprising a pair of electrodes having a capacitance, the rotor being shaped so that the value of the capacitance depends on the angular position of the rotor, and the electronic measuring circuit being provided for generating and for supply the electronic management circuit with a signal depending on the value of the capacitor. The present invention relates secondly to a method for determining the angular position of a mobile part of an electromechanical device comprising a capacitive detection device and which complies with the definition above.

ART ANTERIEURPRIOR ART

[0002] On connaît des appareils électromécaniques qui correspondent à la définition ci-dessus. On trouve notamment des exemples de tels appareils électromécaniques parmi les pièces d’horlogerie électroniques à affichage analogique. Certaines de ces pièces d’horlogerie comportent en effet un garde-temps numérique interne en plus des aiguilles tournant au-dessus du cadran. Ce garde-temps interne est cadencé par les mêmes impulsions électriques qui commandent l’avance des aiguilles. Dans ces conditions, les aiguilles et le garde-temps avancent en principe de façon synchrone. Il est notamment connu d’utiliser un tel garde-temps interne dans des montres multifonctions où les mêmes aiguilles sont prévues pour indiquer alternativement l’heure ou une deuxième information, comme par exemple une heure de réveil. En effet, un garde-temps interne est nécessaire si l’on veut pouvoir continuer à compter le temps écoulé pendant que les aiguilles sont occupées par l’affichage de la deuxième information. Lorsque les aiguilles reviennent ensuite à leur fonction d’affichage de l’heure, les informations contenues dans le garde-temps interne leurs permettent de se remettre correctement à l’heure. [0002] Electromechanical devices are known which correspond to the definition above. Examples of such electromechanical devices are found in particular among electronic timepieces with analog displays. Some of these timepieces indeed have an internal digital timepiece in addition to the hands rotating above the dial. This internal timepiece is clocked by the same electrical pulses that control the advance of the hands. Under these conditions, the hands and the timepiece advance in principle synchronously. It is in particular known to use such an internal timepiece in multifunction watches where the same hands are provided to alternately indicate the time or a second item of information, such as for example an alarm time. Indeed, an internal timepiece is necessary if we want to be able to continue counting the elapsed time while the hands are occupied by the display of the second information. When the hands then return to their time display function, the information contained in the internal timepiece enables them to reset the time correctly.

[0003] Toutefois, si l’on veut qu’une application comme celle qui vient d’être mentionnée donne satisfaction, il faut être en mesure d’empêcher l’apparition d’un éventuel décalage entre l’heure affichée par les aiguilles de la montre et l’heure donnée par le garde-temps interne. Or, on sait qu’un tel décalage peut se produire par exemple si la montre subit un choc ou en raison d’une perturbation électromagnétique ou même mécanique (poussières dans le rouage par exemple). En raison de ces perturbations les moteurs de certaines pièces d’horlogerie perdent des pas. Toute pièce d’horlogerie analogique à quartz est donc susceptible de présenter un décalage entre le comptage des impulsions de commande et la position angulaire des aiguilles. Si ce décalage n’est pas corrigé à temps, il peut s’accroître au point de conduire à des indications totalement erronées. [0003] However, if we want an application like the one just mentioned to be satisfactory, we must be able to prevent the appearance of a possible offset between the time displayed by the hands of the watch and the time given by the internal timepiece. However, we know that such a shift can occur, for example, if the watch is subjected to a shock or due to an electromagnetic or even mechanical disturbance (dust in the cog, for example). As a result of these disturbances the motors of some timepieces lose steps. Any analog quartz timepiece is therefore likely to exhibit a lag between the counting of the control pulses and the angular position of the hands. If this lag is not corrected in time, it may increase to the point of leading to completely erroneous indications.

[0004] D’autre part, dans les pièces d’horlogerie multifonctions, les aiguilles doivent pouvoir se déplacer non seulement en avant, mais également en arrière, selon les variations de la grandeur à indiquer. De plus, les aiguilles d’une pièce d’horlogerie multifonction doivent être capables de changer rapidement de position vers l’avant, ou vers l’arrière, lors d’un changement de fonction. Pour répondre à ces contraintes, les aiguilles des pièces d’horlogerie multifonctions sont, en général, entraînées chacune par son propre moteur. En conséquence, au lieu de l’unique garde-temps interne décrit plus haut, les pièces d’horlogerie multifonctions comportent habituellement un circuit de comptage/décomptage des impulsions de commande du moteur de chaque aiguille. On comprendra d’autre part que les moteurs d’une pièce d’horlogerie multifonction doivent répondre à des sollicitations considérablement plus importantes. Dans ces conditions, le risque de décalage, ou autrement dit de désynchronisation des aiguilles, est également nettement plus élevé pour une pièce d’horlogerie multifonction que pour une autre. [0004] On the other hand, in multifunction timepieces, the hands must be able to move not only forward, but also backward, according to the variations of the size to be indicated. In addition, the hands of a multifunction timepiece must be able to quickly change position forwards, or backwards, when changing functions. To meet these constraints, the hands of multifunction timepieces are generally each driven by its own motor. As a result, instead of the single internal timepiece described above, multifunction timepieces usually have a counting / counting circuit for the motor control pulses of each hand. On the other hand, it will be understood that the motors of a multifunction timepiece must respond to considerably greater demands. Under these conditions, the risk of offset, or in other words of desynchronization of the hands, is also markedly higher for a multifunction timepiece than for another.

[0005] Pour remédier aux problèmes qui viennent d’être décrits, il est connu de compléter le simple comptage/décomptage des impulsions de commande des moteurs par une détection de la position réelle des aiguilles. Le document de brevet EP 0 952 426 notamment décrit une pièce d’horlogerie qui comprend un mouvement horloger pourvu d’un affichage analogique et comportant une roue solidaire en rotation d’une des aiguilles. Cette roue est constituée d’un plateau qui présente au moins une ouverture située dans la région intermédiaire entre l’axe de rotation et la circonférence. La pièce d’horlogerie comprend encore un dispositif de détection de la position angulaire de cette roue. Ce dispositif comprend un capteur inductif, ou capacitif, agencé de manière à ce qu’il se trouve directement au-dessous de l’ouverture dans le plateau lorsque la roue occupe une position angulaire de référence. Ce capteur est sensible à la variation de la quantité de métal se trouvant à proximité immédiate. La fréquence ou l’amplitude du signal détecté par le capteur, selon qu’il s’agit d’un capteur inductif ou capacitif, varie donc selon qu’il se trouve en regard d’un segment plein ou, au contraire, de l’ouverture dans le plateau de la roue, de sorte que la fréquence ou l’amplitude du signal détecté atteint une valeur extrême (qui peut être un maximum ou un minimum) lorsque l’ouverture dans le plateau passe directement en regard du capteur. Le dispositif comprend encore une mémoire pour enregistrer la fréquence ou l’amplitude du signal après chaque pas. La fig. 8 annexée, qui est labellisée comme «Art antérieur», correspond à la fig. 6 du document EP 0 952 426. Il s’agit d’un graphe de la fréquence du signal détecté par un capteur inductif au cours de l’avance pas-à-pas de la roue. Le document antérieur susmentionné enseigne que, pour déterminer la position angulaire de la roue à partir des informations figurant sur ce graphe, il faut se fixer une position angulaire de référence. Cette position de référence peut être la position dans laquelle l’ouverture du plateau se trouve directement en regard du capteur, de sorte que la position de référence corresponde à un pic sur le graphe. La pièce d’horlogerie comporte des moyens électroniques qui sont prévus pour identifier le point du graphe qui correspond à la position angulaire de référence, par exemple en calculant le point milieu à mi-hauteur du pic de la fig. 8 . Un écart angulaire δα spécifique entre les deux points à mi-hauteur déterminés doit permettre de discriminer un secteur angulaire particulier et déduire ainsi une position angulaire de référence. Une fois la position angulaire de référence identifiée sur le graphe, il est facile de connaître l’angle correspondant à chacun des autres points du graphe simplement en comptant le nombre de pas d’angle constant qui séparent le point du graphe en question de cette position angulaire de référence. [0005] To remedy the problems which have just been described, it is known to supplement the simple counting / counting of motor control pulses by detecting the actual position of the hands. Patent document EP 0 952 426 in particular describes a timepiece which comprises a watch movement provided with an analog display and comprising a wheel fixed in rotation to one of the hands. This wheel consists of a plate which has at least one opening located in the intermediate region between the axis of rotation and the circumference. The timepiece also includes a device for detecting the angular position of this wheel. This device comprises an inductive, or capacitive sensor, arranged so that it is located directly below the opening in the plate when the wheel occupies a reference angular position. This sensor is sensitive to the variation in the quantity of metal in the immediate vicinity. The frequency or amplitude of the signal detected by the sensor, depending on whether it is an inductive or capacitive sensor, therefore varies depending on whether it is opposite a solid segment or, on the contrary, the 'opening in the wheel plate, so that the frequency or amplitude of the detected signal reaches an extreme value (which may be a maximum or a minimum) when the opening in the plate passes directly in front of the sensor. The device also includes a memory to record the frequency or amplitude of the signal after each step. Fig. 8 attached, which is labeled as "Prior Art", corresponds to FIG. 6 of document EP 0 952 426. It is a graph of the frequency of the signal detected by an inductive sensor during the step-by-step advance of the wheel. The above-mentioned prior document teaches that, in order to determine the angular position of the wheel from the information appearing on this graph, it is necessary to set a reference angular position. This reference position can be the position in which the opening of the plate is directly opposite the sensor, so that the reference position corresponds to a peak on the graph. The timepiece comprises electronic means which are provided to identify the point on the graph which corresponds to the reference angular position, for example by calculating the midpoint at mid-height of the peak in FIG. 8. A specific angular difference δα between the two determined mid-height points must make it possible to discriminate a particular angular sector and thus deduce a reference angular position. Once the reference angular position has been identified on the graph, it is easy to know the angle corresponding to each of the other points of the graph simply by counting the number of constant angle steps which separate the point of the graph in question from this position. reference angle.

[0006] La solution antérieure qui vient d’être décrite présente certains défauts. En particulier, l’utilisation d’un capteur inductif peut s’avérer trop coûteuse en énergie. D’autre part, les capteurs capacitifs présentent l’inconvénient d’être particulièrement sensibles à l’environnement et aux perturbations engendrées par les tolérances de fabrication et de montage. D’autre part, comme on l’a vu, le procédé de détection de la position angulaire divulgué dans le document de brevet susmentionné est basé sur l’identification d’une position angulaire de référence associée à une valeur extrême d’un signal détecté, or un inconvénient des capteurs capacitifs est que l’ébat de hauteur de la roue dont on veut détecter la position angulaire peut parfois avoir un effet plus grand sur le signal que la variation provoquée par le passage de l’ouverture au-dessus du capteur. Dans ces conditions, le procédé de détection divulgué dans EP 0 952 426 risque de ne pas être fiable. Ainsi, dans le but de distinguer le véritable signal des perturbations, le document antérieur susmentionné propose encore de choisir comme position angulaire de référence une position de part et d’autre de laquelle la forme du signal, en l’absence de perturbation, obéit à certaines hypothèses de symétrie. On comprendra toutefois que de telles hypothèses concernant la forme du signal impliquent des contraintes strictes concernant la forme de l’ouverture dans le plateau de la roue et/ou la géométrie des électrodes du capteur. [0006] The earlier solution which has just been described has certain drawbacks. In particular, the use of an inductive sensor can be too expensive in energy. On the other hand, capacitive sensors have the disadvantage of being particularly sensitive to the environment and to disturbances caused by manufacturing and assembly tolerances. On the other hand, as seen, the angular position detection method disclosed in the above-mentioned patent document is based on the identification of a reference angular position associated with an extreme value of a detected signal. However, a drawback of capacitive sensors is that the height of the wheel whose angular position is to be detected can sometimes have a greater effect on the signal than the variation caused by the passage of the opening above the sensor . Under these conditions, the detection method disclosed in EP 0 952 426 risks not being reliable. Thus, in order to distinguish the true signal from the disturbances, the aforementioned prior document also proposes to choose as the reference angular position a position on either side of which the shape of the signal, in the absence of disturbance, obeys certain symmetry assumptions. It will be understood, however, that such assumptions regarding the shape of the signal imply strict constraints regarding the shape of the opening in the plate of the wheel and / or the geometry of the electrodes of the sensor.

BREF EXPOSE DE L’INVENTIONBRIEF PRESENTATION OF THE INVENTION

[0007] Un but de la présente invention est de remédier aux problèmes de l’art antérieur qui viennent d’être exposés. La présente invention atteint ce but en fournissant, d’une part, un appareil électromécanique conforme à la revendication 1 annexée, et d’autre part, un procédé de détection de la position angulaire d’un mobile du dit appareil électromécanique, qui est conforme à la revendication 12 annexée. [0007] An object of the present invention is to remedy the problems of the prior art which have just been exposed. The present invention achieves this aim by providing, on the one hand, an electromechanical device according to appended claim 1, and on the other hand, a method for detecting the angular position of a mobile of said electromechanical device, which conforms to to claim 12 appended hereto.

[0008] On comprendra que le terme «rotor» est utilisé ici pour désigner la partie en rotation d’un dispositif électromécanique (le dispositif de détection capacitif en l’occurrence) qui interagit électriquement ou magnétiquement avec une partie fixe du dispositif appelée le «stator». It will be understood that the term "rotor" is used here to denote the rotating part of an electromechanical device (the capacitive detection device in this case) which interacts electrically or magnetically with a fixed part of the device called the " stator ”.

[0009] Conformément à l’invention, le stator comporte une première paire d’électrodes ayant première capacité variable en fonction de la position angulaire du rotor et une deuxième paire d’électrodes ayant une deuxième capacité variable en fonction de la position angulaire du rotor. De plus, le signal fourni par le circuit électronique de mesure est représentatif d’une différence entre les valeurs respectives de la première et de la deuxième capacité. On comprendra donc que, grâce à l’utilisation d’une mesure différentielle, notamment pour des premières et deuxièmes capacités isométriques, c’est-à-dire de valeurs égales en norme pour une influence identique du rotor, le dispositif de détection capacitif est capable de neutraliser la plus grande partie des effets parasites liés à l’environnement et aux tolérances de fabrication et de montage. En particulier, la mesure différentielle permet de neutraliser presque totalement les perturbations liées à l’ébat en hauteur du rotor. According to the invention, the stator comprises a first pair of electrodes having a first variable capacity as a function of the angular position of the rotor and a second pair of electrodes having a second variable capacity as a function of the angular position of the rotor . In addition, the signal supplied by the electronic measuring circuit is representative of a difference between the respective values of the first and of the second capacitor. It will therefore be understood that, thanks to the use of a differential measurement, in particular for first and second isometric capacities, that is to say values equal in standard for an identical influence of the rotor, the capacitive detection device is capable of neutralizing most of the parasitic effects linked to the environment and to manufacturing and assembly tolerances. In particular, the differential measurement makes it possible to almost completely neutralize the disturbances linked to the height of the rotor.

[0010] Conformément à l’invention, la succession des pas du moteur pas-à-pas détermine un nombre entier de positions angulaires distinctes que peut occuper le mobile dont on cherche à connaître la position. La position angulaire du mobile peut donc être considérée comme un variable discrète. De plus, l’amplitude du signal généré est fourni en sortie par le circuit électronique de mesure peut être considérée comme une fonction de cette variable discrète. D’autre part, en raison de l’existence des effets parasites déjà mentionnés, l’amplitude du signal fourni par le circuit électronique de mesure lors de deux passages successifs du mobile par la même position angulaire peut changer. On comprendra donc que, bien que les positions angulaires occupées à chaque tour par le mobile soient toujours les mêmes, l’amplitude du signal qui est réellement fourni par le circuit électronique de mesure ne peut pas être considéré comme une fonction périodique de la position angulaire. [0010] According to the invention, the succession of steps of the stepping motor determines an integer of distinct angular positions that the mobile can occupy, the position of which is sought to be known. The angular position of the mobile can therefore be considered as a discrete variable. In addition, the amplitude of the signal generated is output by the electronic measurement circuit can be considered as a function of this discrete variable. On the other hand, due to the existence of the parasitic effects already mentioned, the amplitude of the signal supplied by the electronic measuring circuit during two successive passages of the mobile through the same angular position may change. It will therefore be understood that, although the angular positions occupied at each turn by the mobile are always the same, the amplitude of the signal which is actually supplied by the electronic measuring circuit cannot be considered as a periodic function of the angular position .

[0011] Selon l’invention, une table enregistrée dans le circuit électronique de gestion fait correspondre une pluralité de positions angulaires distinctes du mobile avec des valeurs de référence du signal de sortie. Ces valeurs du signal qui sont enregistrées sont dites de référence parce qu’il s’agit de valeurs déduites de mesures effectuées lors d’une opération de calibration initiale et que l’on considère comme étant des valeurs correspondant à l’amplitude du signal fourni par le circuit électronique de mesure en l’absence de tout effet parasite. Contrairement à l’amplitude réelle du signal, qui peut varier d’une mesure à l’autre, les valeurs de référence du signal définissent une fonction périodique, et on comprendra que la longueur de la période de la fonction est égale au nombre de pas-moteur nécessaires pour faire accomplir une révolution complète au mobile. De plus, la fonction étant périodique, chaque position angulaire différente que peut occuper le mobile est associée à une phase distincte de la fonction périodique. [0011] According to the invention, a table recorded in the electronic management circuit matches a plurality of distinct angular positions of the mobile with reference values of the output signal. These signal values which are recorded are said to be reference because they are values deduced from measurements carried out during an initial calibration operation and which are considered to be values corresponding to the amplitude of the signal supplied. by the electronic measuring circuit in the absence of any parasitic effect. Unlike the actual amplitude of the signal, which can vary from one measurement to another, the reference values of the signal define a periodic function, and it will be understood that the length of the period of the function is equal to the number of steps -motor necessary to achieve a complete revolution in the mobile. In addition, since the function is periodic, each different angular position that the mobile can occupy is associated with a distinct phase of the periodic function.

[0012] Une des étapes du procédé de l’invention inclut l’opération consistant à calculer autant de corrélations qu’il y a de positions angulaires possibles du mobile. Chaque corrélation étant calculée entre, d’une part, la succession des valeurs du signal de sortie réellement mesurées sur un tour, et d’autre part, la succession des valeurs de référence du signal sur un tour complet, le point de départ du dit tour étant différent pour chaque calcul de corrélation, et ce point de départ étant choisi parmi les positions angulaires possibles du mobile. On comprendra que, dans le cas où les positions angulaires possibles du mobile sont toutes des positions angulaires équidistantes les unes des autres définies par les pas-moteur, les successions de valeurs de référence du signal sur un tour complet sont constituées par toutes les permutations circulaires de la suite des valeurs référence à l’intérieur d’un intervalle long d’une période entière du signal. Une étape ultérieure du procédé de l’invention consiste à déterminer la position angulaire du rotor en identifiant, parmi l’ensemble des corrélations calculées, la corrélation dont la valeur absolue est la plus élevée. On comprendra de ce qui précède que le procédé de l’invention permet de détecter la position angulaire du rotor sans qu’il soit nécessaire d’identifier d’abord une position angulaire de référence de ce dernier. [0012] One of the steps of the method of the invention includes the operation of calculating as many correlations as there are possible angular positions of the mobile. Each correlation being calculated between, on the one hand, the succession of the output signal values actually measured over a revolution, and on the other hand, the succession of the reference values of the signal over a complete revolution, the starting point of said turn being different for each correlation calculation, and this starting point being chosen from among the possible angular positions of the mobile. It will be understood that, in the case where the possible angular positions of the mobile are all angular positions equidistant from each other defined by the motor steps, the successions of reference values of the signal over a complete revolution are formed by all the circular permutations of the sequence of reference values within an interval long of an entire period of the signal. A subsequent step of the method of the invention consists in determining the angular position of the rotor by identifying, among the set of calculated correlations, the correlation with the highest absolute value. It will be understood from the above that the method of the invention makes it possible to detect the angular position of the rotor without it being necessary to first identify a reference angular position of the latter.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

[0013] D’autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés dans lesquels: la fig. 1 est une vue partielle en plan de dessus montrant le dispositif de détection capacitif d’un appareil électromécanique conforme à un premier mode de réalisation particulier de l’invention, le dispositif de détection capacitif comprenant un rotor constitué par une roue dentée et un stator comprenant deux paires d’électrodes; la fig. 2 est une vue partielle en coupe de l’appareil électromécanique de la fig. 1 montrant le dispositif de détection capacitif; la fig. 3 est un schéma électronique d’un mode de réalisation particulier du circuit électronique de mesure du dispositif de détection capacitif de l’appareil électromécanique illustré dans les fig. 1 et 2 ; la fig. 4 est graphique montrant à titre d’exemple différentes valeurs qu’est susceptible de prendre le signal représentatif de la différence entre la première et la deuxième capacité, lorsque le mobile est entraîné par le moteur pas-à-pas de manière à effectuer un tour complet en occupant successivement une pluralité de positions angulaires mutuellement équidistantes les unes des autres; la fig. 5 est le graphe d’une fonction linéaire par morceaux qui correspond à une variante exemplaire de modèle paramétrique; la fig. 6 illustre graphiquement le modèle paramétrique de la fig. 5 après ajustement de l’ensemble des paramètres du modèle aux valeurs prises par les points de la courbe empirique de la fig. 4 ; la fig. 7A est une représentation schématique du stator d’un dispositif de détection capacitif selon un deuxième mode de réalisation de l’invention; la fig. 7B est une représentation schématique du rotor du dispositif de détection capacitif dont le stator est représenté dans la fig. 7A ; la fig. 7C contient 3 graphes servant à construire un courbe des valeurs de référence pour le dispositif de détection capacitif des fig. 7 A et 7B ; la fig. 8 est une copie de la fig. 6 du document de brevet EP 0 952 426 A1 de l’art antérieur.[0013] Other characteristics and advantages of the present invention will become apparent on reading the description which follows, given solely by way of non-limiting example, and made with reference to the accompanying drawings in which: FIG. 1 is a partial top plan view showing the capacitive detection device of an electromechanical device according to a first particular embodiment of the invention, the capacitive detection device comprising a rotor consisting of a toothed wheel and a stator comprising two pairs of electrodes; fig. 2 is a partial sectional view of the electromechanical device of FIG. 1 showing the capacitive detection device; fig. 3 is an electronic diagram of a particular embodiment of the electronic measuring circuit of the capacitive detection device of the electromechanical device illustrated in FIGS. 1 and 2 ; fig. 4 is a graph showing by way of example different values that the signal representative of the difference between the first and the second capacitor is likely to take, when the moving part is driven by the stepper motor so as to perform one revolution complete by successively occupying a plurality of angular positions mutually equidistant from each other; fig. 5 is the graph of a piecewise linear function which corresponds to an exemplary variant of a parametric model; fig. 6 graphically illustrates the parametric model of FIG. 5 after adjusting all the parameters of the model to the values taken by the points of the empirical curve of FIG. 4; fig. 7A is a schematic representation of the stator of a capacitive detection device according to a second embodiment of the invention; fig. 7B is a schematic representation of the rotor of the capacitive detection device, the stator of which is shown in FIG. 7A; fig. 7C contains 3 graphs used to construct a curve of the reference values for the capacitive detection device of fig. 7 A and 7B; fig. 8 is a copy of FIG. 6 of the patent document EP 0 952 426 A1 of the prior art.

DESCRIPTION DETAILLEE D’UN MODE DE REALISATIONDETAILED DESCRIPTION OF AN EMBODIMENT

[0014] Les fig. 1 et 2 sont des vues partielles, respectivement en plan de dessus et en coupe, d’un mouvement horloger à quartz correspondant à un mode de réalisation particulier de l’appareil électromécanique de l’invention. Conformément à l’invention, le mouvement horloger comporte un mobile rotatif, un moteur pas-à-pas, une transmission reliant le moteur pas-à-pas au mobile, un circuit électronique de gestion agencé pour commander le moteur pas-à-pas, et un dispositif de détection capacitif. Selon une variante avantageuse de l’invention, le circuit électronique de gestion comporte notamment un circuit de comptage des impulsions de commande du moteur pas-à-pas. [0014] Figs. 1 and 2 are partial views, respectively in top plan and in section, of a quartz watch movement corresponding to a particular embodiment of the electromechanical device of the invention. In accordance with the invention, the watch movement comprises a rotary mobile, a stepper motor, a transmission connecting the stepper motor to the mobile, an electronic management circuit arranged to control the stepper motor , and a capacitive detection device. According to an advantageous variant of the invention, the electronic management circuit comprises in particular a circuit for counting the control pulses of the stepping motor.

[0015] On comprendra que les fig. 1 et 2 qui sont des vues partielles illustrent plus particulièrement le dispositif de détection capacitif (globalement référencé 2) et le mobile rotatif qui est constitué par une roue 4 dentée, solidaire d’un arbre 10. En se référant plus particulièrement à la fig. 1 , on peut voir que la roue 4 dentée comporte une planche 8 et une denture 6 entourant la planche. On peut voir également que la planche 8 est percée d’une ouverture 16. La roue 4 est solidaire de l’arbre 10 qui en définit un axe géométrique 12 de rotation. Les figures montrent également un organe indicateur analogique 14, prenant ici la forme d’une aiguille, d’un affichage analogique associé au mobile rotatif. L’aiguille est montée fixement sur l’arbre 10. Dans l’exemple illustré, l’aiguille pourrait servir à indiquer l’heure, la minute, la seconde ou toute autre information susceptible d’être indiquée par une pièce d’horlogerie. On comprendra que l’aiguille peut présenter un décalage angulaire quelconque relativement à l’ouverture 16. Toutefois, contrairement à ce que montre la fig. 1 , l’aiguille pointe de préférence dans la direction du centre de l’ouverture 16 de façon à ce que le balourd engendré par la présence de l’ouverture permette de compenser au moins partiellement le couple provoqué par le poids de l’aiguille. Selon un mode de réalisation alternatif non illustré, l’organe indicateur analogique 14 pourrait consister en un autre élément d’affichage tournant, comme un disque pourvu d’un curseur se déplaçant dans une fenêtre de forme annulaire aménagée dans un cadran. It will be understood that FIGS. 1 and 2, which are partial views, illustrate more particularly the capacitive detection device (generally referenced 2) and the rotary mobile which is constituted by a toothed wheel 4, integral with a shaft 10. With particular reference to FIG. 1, it can be seen that the toothed wheel 4 comprises a board 8 and a toothing 6 surrounding the board. It can also be seen that the board 8 is pierced with an opening 16. The wheel 4 is integral with the shaft 10 which defines a geometric axis 12 of rotation. The figures also show an analog indicator member 14, here taking the form of a needle, an analog display associated with the rotary mobile. The hand is fixedly mounted on shaft 10. In the example illustrated, the hand could be used to indicate the hour, minute, second or any other information likely to be indicated by a timepiece. It will be understood that the needle can have any angular offset relative to the opening 16. However, contrary to what FIG. 1, the needle preferably points in the direction of the center of the opening 16 so that the unbalance caused by the presence of the opening makes it possible to at least partially compensate for the torque caused by the weight of the needle. According to an alternative embodiment not shown, the analog indicator member 14 could consist of another rotating display element, such as a disc provided with a cursor moving in a ring-shaped window provided in a dial.

[0016] Le moteur pas-à-pas (non représenté) peut être par exemple un moteur bipolaire du type «moteur Lavet». La transmission (non représentée) est de préférence constituée par un rouage réducteur qui relie le moteur à la roue 4 dentée. Finalement, le circuit électronique de gestion (non représenté) est de préférence un microcontrôleur pour application horlogère de type connu. Conformément à l’invention toujours, le dispositif de détection capacitif comprend un rotor solidaire en rotation du mobile, un stator, et un circuit électronique de mesure. Dans le présent exemple, la roue 4 est une roue en métal qui est reliée électriquement à la masse. Cette caractéristique permet à la roue 4 et à l’arbre 10 sur lequel elle est montée de remplir ensemble la fonction de rotor, c’est-à-dire la partie en rotation, pour le dispositif de détection capacitif. On comprendra donc que, dans le présent exemple, un seul et même mobile remplit simultanément les fonctions de mobile rotatif et de rotor du dispositif de détection. The step-by-step motor (not shown) may for example be a bipolar motor of the "Lavet motor" type. The transmission (not shown) is preferably constituted by a reduction gear which connects the motor to the toothed wheel 4. Finally, the electronic management circuit (not shown) is preferably a microcontroller for horological application of known type. Still in accordance with the invention, the capacitive detection device comprises a rotor integral in rotation with the mobile, a stator, and an electronic measuring circuit. In the present example, the wheel 4 is a metal wheel which is electrically connected to ground. This characteristic allows the wheel 4 and the shaft 10 on which it is mounted to together perform the function of the rotor, that is to say the rotating part, for the capacitive sensing device. It will therefore be understood that, in the present example, one and the same mobile simultaneously fulfills the functions of rotary mobile and of rotor of the detection device.

[0017] La fig. 1 montre que le stator comporte deux paires d’électrodes respectivement référencées 18a, 18b et 20a, 20b. Ces électrodes sont dessinées sur une carte de circuit imprimé (PCB) 22 qui est solidaire de la platine du mouvement 2. Dans le présent exemple, chaque paire d’électrodes (18a, 18b et 20a, 20b) est constituée de deux rubans conducteurs rectilignes qui sont formés sur le PCB 22 parallèlement l’un à l’autre. On peut voir que les deux paires d’électrodes s’étendent radialement sous la planche de la roue 4, et qu’elles font entre elles un angle d’environ 60°. On peut d’ailleurs vérifier que dans le mode de réalisation illustré les deux paires d’électrodes sont isométriques l’une à l’autre, c’est-à-dire de valeurs égales en norme pour une influence identique du rotor, et qu’elles sont de plus superposables par une rotation autour de l’axe 12. Un avantage de cette caractéristique est, qu’en l’absence d’effets parasites, les moyennes des capacités C1 et C2 sur une révolution complète du rotor sont égales, et en l’absence d’influence du rotor sur chacune des capacités C1 et C2, leur différence C1–C2 est nulle. On peut voir encore sur la fig. 1 que le PCB porte une piste conductrice 24 qui relie les électrodes 18b et 20b entre elles, ainsi qu’à une borne de connexion 26c. Les électrodes 18a et 20a sont quant à elles reliées respectivement à des bornes de connexion 26a et 26b. Comme le montre la fig. 1 , les deux conducteurs formant les électrodes de chaque paire s’étendent parallèlement et à faible distance l’un de l’autre. En raison de la proximité entre les deux conducteurs, chaque paire d’électrodes se comporte comme un condensateur ayant une certaine capacité (la capacité de la première paire d’électrodes 18a, 18b est désignée par C1 et la capacité de la deuxième paire d’électrodes 20a, 20b est désignée par C2). En se référant simultanément aux fig. 1 et 2 , on peut remarquer encore que les paires d’électrodes 18a, 18, et 20a, 20b sont agencées relativement à la planche 8 de la roue 4 de manière à ce que l’entrefer qui sépare les électrodes de chacune des paires se trouve au moins partiellement au-dessous de l’ouverture 16 dans au moins une position angulaire de la roue 4. Qui plus est, les paires d’électrodes sont de préférence agencées de manière à ce que les deux électrodes d’une paire se trouvent simultanément au moins partiellement au-dessous de l’ouverture 16 dans au moins une position de la roue 4. On peut préciser de plus que la largeur d’entrefer d’une des paires d’électrodes est de préférence environ égale à la distance séparant en hauteur le PCB 22 de la planche 8 de la roue dentée. [0017] FIG. 1 shows that the stator comprises two pairs of electrodes respectively referenced 18a, 18b and 20a, 20b. These electrodes are drawn on a printed circuit board (PCB) 22 which is integral with the plate of the movement 2. In the present example, each pair of electrodes (18a, 18b and 20a, 20b) consists of two rectilinear conductive strips. which are formed on PCB 22 parallel to each other. It can be seen that the two pairs of electrodes extend radially under the plate of wheel 4, and that they make an angle of approximately 60 ° between them. It can also be verified that in the illustrated embodiment the two pairs of electrodes are isometric to each other, that is to say of equal values in norm for an identical influence of the rotor, and that 'they are moreover superimposable by a rotation around the axis 12. An advantage of this characteristic is that in the absence of parasitic effects, the means of the capacitors C1 and C2 over a complete revolution of the rotor are equal, and in the absence of influence of the rotor on each of the capacitors C1 and C2, their difference C1 – C2 is zero. It can still be seen in fig. 1 that the PCB carries a conductive track 24 which connects the electrodes 18b and 20b to each other, as well as to a connection terminal 26c. The electrodes 18a and 20a are for their part connected respectively to connection terminals 26a and 26b. As shown in fig. 1, the two conductors forming the electrodes of each pair extend parallel and at a short distance from each other. Due to the proximity between the two conductors, each pair of electrodes behaves like a capacitor having a certain capacitance (the capacitance of the first pair of electrodes 18a, 18b is denoted by C1 and the capacitance of the second pair of electrodes 20a, 20b is designated by C2). Referring simultaneously to Figs. 1 and 2, it can also be noted that the pairs of electrodes 18a, 18, and 20a, 20b are arranged relative to the plate 8 of the wheel 4 so that the air gap which separates the electrodes of each of the pairs is located at least partially below the opening 16 in at least one angular position of the wheel 4. What is more, the pairs of electrodes are preferably arranged so that the two electrodes of a pair are located simultaneously at least partially below the opening 16 in at least one position of the wheel 4. It can also be specified that the gap width of one of the pairs of electrodes is preferably approximately equal to the distance separating in height the PCB 22 of the board 8 of the toothed wheel.

[0018] Conformément à l’invention, le rotor du dispositif de détection capacitif 2 (autrement dit, la roue 4 ainsi que, à titre subsidiaire si cette pièce est également en métal, l’arbre 10) est conformé de manière à ce que la première capacité C1 et la deuxième capacité C2 dépendent toutes les deux de la position angulaire du rotor. Dans le mode de réalisation représenté, c’est la présence de l’ouverture 16 dans la planche 8 de la roue 4 qui rend les capacités C1 et C2 sensibles à la position angulaire du rotor. On comprendra que la capacité d’une paire d’électrodes est maximum quand l’ouverture 16 se trouve juste au-dessus de la paire d’électrodes, le transfert des charges de l’une à l’autre n’étant plus facilité par la présence d’un conducteur. On notera toutefois que le PCB 22 pourrait, de manière équivalente, être disposé au-dessus de la roue 4. On comprendra que dans une telle éventualité, les capacités atteindraient leur maximum lorsque l’ouverture 16 se trouve juste au-dessous d’une paire d’électrodes. According to the invention, the rotor of the capacitive detection device 2 (in other words, the wheel 4 as well as, in the alternative if this part is also made of metal, the shaft 10) is shaped so that the first capacitor C1 and the second capacitor C2 both depend on the angular position of the rotor. In the embodiment shown, it is the presence of the opening 16 in the plate 8 of the wheel 4 which makes the capacities C1 and C2 sensitive to the angular position of the rotor. It will be understood that the capacity of a pair of electrodes is maximum when the opening 16 is located just above the pair of electrodes, the transfer of charges from one to the other no longer being facilitated by the presence of a driver. However, it will be noted that the PCB 22 could, in an equivalent manner, be placed above the wheel 4. It will be understood that in such an eventuality, the capacities would reach their maximum when the opening 16 is located just below a pair of electrodes.

[0019] La fig. 3 est un schéma électronique d’un circuit électronique de mesure apte à être utilisé dans le dispositif de détection capacitif des fig. 1 et 2 . Le principe de fonctionnement du circuit électronique représenté est de mettre sous tension les électrodes 18a et 20a par l’intermédiaire des bornes de connexion 26a, 26b, et de mesurer la quantité de charge qui, en réponse à cette mise sous tension, vient s’accumuler dans les électrodes 18b et 20b qui sont mutuellement reliées à la borne 26c commune. [0019] FIG. 3 is an electronic diagram of an electronic measuring circuit suitable for use in the capacitive detection device of FIGS. 1 and 2 . The principle of operation of the electronic circuit shown is to energize the electrodes 18a and 20a via the connection terminals 26a, 26b, and to measure the quantity of charge which, in response to this energization, comes to s' accumulate in the electrodes 18b and 20b which are mutually connected to the common terminal 26c.

[0020] Le circuit électronique qui est désigné globalement par la référence 28 sur la fig. 3 est prévu pour se trouver dans deux modes de fonctionnement distincts. Un mode de fonctionnement assurant la mise à zéro (désigné par S0) et un mode de de fonctionnement correspondant à la mesure (désigné par S1). La commutation entre le deux modes de fonctionnement est commandée par le circuit électronique de gestion (non représenté) qui est agencé pour envoyer des signaux de commande à un certain nombre de commutateurs représentés par l’une des indications S0 ou S1 sur la fig. 3 . Les indications S0 ou S1 correspondent au mode de fonctionnement dans lequel les commutateurs sont fermés. Précisons que les commutateurs sont de préférence constitués par des transistors d’un circuit intégré dans lequel le circuit électronique de mesure est implémenté. The electronic circuit which is generally designated by the reference 28 in FIG. 3 is designed to be in two distinct operating modes. An operating mode ensuring zeroing (designated by S0) and an operating mode corresponding to the measurement (designated by S1). The switching between the two operating modes is controlled by the electronic management circuit (not shown) which is arranged to send control signals to a number of switches represented by one of the indications S0 or S1 in FIG. 3. The S0 or S1 indications correspond to the operating mode in which the switches are closed. It should be noted that the switches are preferably constituted by transistors of an integrated circuit in which the electronic measuring circuit is implemented.

[0021] En se référant toujours à la fig. 3 , on peut voir que dans le mode de fonctionnement SO toutes les électrodes 18a, 20a, 18b et 20b sont mises à la terre (VC). De plus, l’entrée non inverseuse (entrée +) de l’amplificateur 15 est également reliée à la terre, alors que la sortie de l’amplificateur 15 est court-circuitée avec son entrée inverseuse. Dans ces conditions, le courant et la tension sont partout nuls dans le circuit. Lorsque le circuit électronique est ensuite commuté dans le mode de fonctionnement S1, tous les commutateurs référencés SO sont ouverts et les trois commutateurs référencés S1 sont fermés. Dans ces conditions, les électrodes 18a et 20a sont mises sous tension et placées respectivement aux potentiels de référence VP et VN. Les deux électrodes couplées 18b, 20b quant à elles sont reliées ensemble à l’entrée inverseuse de l’amplificateur 15. On peut voir encore sur la fig. qu’il n’y a plus de court-circuit entre la sortie de l’amplificateur 15 et son entrée inverseuse. La sortie de l’amplificateur est maintenant reliée à l’entrée inverseuse par l’intermédiaire d’un condensateur référencé C13. On comprendra que, sous l’effet de la mise sous tension des électrodes 18a et 20a, les électrodes couplées 18b et 20b vont échanger des charges. De plus, dans le cas où les valeurs de C1 et C2 ne sont pas égales, le circuit électronique devra fournir aux électrodes couplées un solde de charges. Ce solde sera formé de charges négatives dans le cas où la capacité C1 est plus grande que la capacité C2, et de charges positives dans le cas où la capacité C1 est plus petite que la capacité C2. La tension qui est responsable du déplacement des charges de, ou vers, les deux électrodes couplées 18b 20b, va également produire une différence de potentiel entre les deux entrées de l’amplificateur 15. L’amplificateur 15 va donc émettre du courant tant que subsistera cette différence de potentiel. L’amplificateur va donc charger le condensateur C13 jusqu’à ce que la tension entre les deux entrées de l’amplificateur soit à nouveau nulle. A ce moment-là, la tension VM entre les bornes du condensateur C13 sera déterminée par la relation suivante: [0021] Still referring to FIG. 3, it can be seen that in the SO operating mode all the electrodes 18a, 20a, 18b and 20b are earthed (VC). In addition, the non-inverting input (+ input) of amplifier 15 is also grounded, while the output of amplifier 15 is short-circuited with its inverting input. Under these conditions, the current and the voltage are zero everywhere in the circuit. When the electronic circuit is then switched to the operating mode S1, all the switches referenced SO are open and the three switches referenced S1 are closed. Under these conditions, the electrodes 18a and 20a are energized and placed respectively at the reference potentials VP and VN. The two coupled electrodes 18b, 20b for their part are connected together to the inverting input of amplifier 15. It can still be seen in FIG. that there is no longer a short circuit between the output of amplifier 15 and its inverting input. The output of the amplifier is now connected to the inverting input via a capacitor referenced C13. It will be understood that under the effect of energizing electrodes 18a and 20a, coupled electrodes 18b and 20b will exchange charges. In addition, in the case where the values of C1 and C2 are not equal, the electronic circuit must provide the coupled electrodes with a balance of charges. This balance will be formed of negative charges in the case where the capacitor C1 is greater than the capacitor C2, and of positive charges in the case where the capacitor C1 is smaller than the capacitor C2. The voltage which is responsible for moving the charges from or towards the two coupled electrodes 18b 20b will also produce a potential difference between the two inputs of amplifier 15. Amplifier 15 will therefore emit current as long as it remains. this potential difference. The amplifier will therefore charge the capacitor C13 until the voltage between the two inputs of the amplifier is again zero. At this time, the voltage VM between the terminals of the capacitor C13 will be determined by the following relation:

[0022] On comprendra de plus que la tension entre les bornes du condensateur C13 est égale à l’amplitude du signal en sortie de l’amplificateur 15. Autrement dit, la tension VM correspond à la valeur du signal en sortie du circuit électronique de mesure. On peut noter en outre que, dans le cas où les moyennes des capacités C1 et C2 sur une révolution complète du rotor sont égales, la moyenne de la valeur du signal de sortie (VM) sur une révolution complète est égale à zéro. It will also be understood that the voltage between the terminals of the capacitor C13 is equal to the amplitude of the signal at the output of the amplifier 15. In other words, the voltage VM corresponds to the value of the signal at the output of the electronic circuit of measured. It can also be noted that, in the case where the means of the capacitors C1 and C2 over a complete revolution of the rotor are equal, the average of the value of the output signal (VM) over a complete revolution is equal to zero.

[0023] La fig. 4 est graphique montrant à titre d’exemple les valeurs prises par le signal en sortie de l’amplificateur 15 lors de 60 mesures successives espacées de 6° en 6° et correspondant à une rotation de 360° de la roue 4. On a vu plus haut que la capacité d’une paire d’électrodes donnée est maximum quand l’ouverture 16 se trouve juste au-dessus de cette paire d’électrodes. Comme on peut le vérifier sur la fig. 4 , ce phénomène rend compte de la forme générale de la courbe. En effet, lorsque l’ouverture 16 passe au-dessus des électrodes 18a, 18b, la capacité C1 atteint un maximum qui se traduit par un premier pic positif de la courbe, Ensuite, lorsque l’ouverture passe au-dessus des électrodes 20a, 20b on observe un pic négatif dû à l’augmentation de la capacité C2. On notera que l’allure de la courbe peut varier considérablement d’un mode de réalisation à l’autre. En particulier, la forme des deux pics dépend de la forme et des dimensions de l’ouverture 16. D’autre part, l’allure de la courbe, entre les deux pics notamment, dépend dans une large mesure de l’agencement des deux paires d’électrodes 18a, 18b, 20a, 20b sur le PCB, qui sont ici de préférence espacées, selon le mode de réalisation préférentiel de la fig. 1 , de 60 degrés, soit la valeur angulaire entre le maximum et le minimum de la courbe de la fig. 4 . On peut par ailleurs déduire de la fig. 4 que l’angle de référence «0» correspond à la position de l’aiguille sur la fig. 1 , à 9 heures selon la dénomination usuelle horlogère en rapport à la position des aiguilles sur un cadran. [0023] FIG. 4 is a graph showing, by way of example, the values taken by the signal at the output of amplifier 15 during 60 successive measurements spaced from 6 ° to 6 ° and corresponding to a 360 ° rotation of wheel 4. We have seen higher than the capacity of a given pair of electrodes is maximum when opening 16 is just above that pair of electrodes. As can be seen from fig. 4, this phenomenon accounts for the general shape of the curve. Indeed, when the opening 16 passes above the electrodes 18a, 18b, the capacitor C1 reaches a maximum which results in a first positive peak of the curve, Then, when the opening passes above the electrodes 20a, 20b, a negative peak is observed due to the increase in capacity C2. Note that the shape of the curve can vary considerably from one embodiment to another. In particular, the shape of the two peaks depends on the shape and dimensions of the opening 16. On the other hand, the shape of the curve, between the two peaks in particular, depends to a large extent on the arrangement of the two. pairs of electrodes 18a, 18b, 20a, 20b on the PCB, which are here preferably spaced apart, according to the preferred embodiment of FIG. 1, 60 degrees, ie the angular value between the maximum and the minimum of the curve of FIG. 4. It can also be deduced from FIG. 4 that the reference angle "0" corresponds to the position of the needle in FIG. 1, at 9 o'clock according to the usual horological denomination in relation to the position of the hands on a dial.

[0024] Conformément à l’invention, les moyens électroniques de gestion contiennent un enregistrement d’une table associant une partie au moins des positions angulaires équidistantes les unes des autres occupées successivement par le mobile à autant de valeurs de référence du signal. La mémoire dans laquelle sont enregistrés les couples de valeurs constituant la table est de préférence une mémoire non-volatile. On comprendra que, grâce à l’utilisation d’une mémoire non-volatile, il est possible de se dispenser de recalibrer la position angulaire du mobile lorsqu’on rétablit l’alimentation électrique après une interruption (due par exemple au remplacement des piles). Dans ces conditions, la détermination des valeurs de référence calibrées et l’enregistrement de celles-ci dans la table est de préférence réalisée une fois pour toute en usine. According to the invention, the electronic management means contain a record of a table associating at least part of the angular positions equidistant from each other successively occupied by the mobile with as many reference values of the signal. The memory in which the pairs of values constituting the table are recorded is preferably a non-volatile memory. It will be understood that, thanks to the use of a non-volatile memory, it is possible to dispense with recalibrating the angular position of the mobile when restoring the power supply after an interruption (due for example to the replacement of the batteries) . Under these conditions, the determination of the calibrated reference values and the recording of these in the table is preferably carried out once and for all in the factory.

[0025] La façon la plus simple de réaliser un enregistrement d’une table associant chacune des positions angulaires équidistantes les unes des autres occupées successivement par le mobile à autant de valeurs de référence du signal est de commencer par initialiser simultanément la position angulaire du mobile et le circuit de comptage des impulsions de commande du moteur pas-à-pas, puis de faire effectuer un tour complet au mobile. Après chaque pas moteur durant ce tour complet, le circuit de comptage des impulsions fournit la valeur de la nouvelle position angulaire du mobile, et le circuit électronique de mesure fournit simultanément la valeur correspondante du signal différentiel. Une fois enregistrées dans une table de correspondance, la suite des paires de valeurs obtenues à chaque pas-moteur constituent une modélisation particulièrement simple du signal. Contrairement aux valeurs du signal réel, les valeurs de référence du signal peuvent être considérées comme se répétant à l’identique à chaque tour du mobile. La suite des valeurs de référence du signal peut donc avantageusement correspondre à une fonction périodique, la longueur de la période de cette fonction étant égale au nombre de pas-moteur nécessaires pour faire accomplir une révolution complète au rotor. La table de correspondance enregistrée n’a donc pas besoin de contenir plus d’une valeur de référence pour chaque position angulaire distincte du rotor, et la table de correspondance peut avantageusement avoir une structure en boucle traduisant la périodicité des valeurs de référence du signal. On comprendra que la périodicité des valeurs de référence est le reflet du caractère cyclique de la succession des positions angulaires occupées par le rotor, et dont la résolution angulaire correspond à celle définie par le moteur pas-à-pas. The simplest way to record a table associating each of the angular positions equidistant from each other successively occupied by the mobile with as many reference values of the signal is to start by simultaneously initializing the angular position of the mobile and the circuit for counting the control pulses of the stepping motor, then making the moving part complete a revolution. After each motor step during this complete revolution, the pulse counting circuit supplies the value of the new angular position of the moving part, and the electronic measuring circuit simultaneously supplies the corresponding value of the differential signal. Once recorded in a correspondence table, the series of pairs of values obtained at each motor step constitute a particularly simple modeling of the signal. Unlike the actual signal values, the signal reference values can be considered to be repeated identically with each revolution of the rover. The sequence of reference values of the signal can therefore advantageously correspond to a periodic function, the length of the period of this function being equal to the number of motor steps necessary to make the rotor complete one revolution. The recorded correspondence table therefore does not need to contain more than one reference value for each distinct angular position of the rotor, and the correspondence table can advantageously have a loop structure reflecting the periodicity of the reference values of the signal. It will be understood that the periodicity of the reference values reflects the cyclical nature of the succession of angular positions occupied by the rotor, and the angular resolution of which corresponds to that defined by the stepping motor.

[0026] La fonction du dispositif de détection capacitif de l’appareil électromécanique de la présente invention est de permettre la détection la position angulaire du mobile rotatif (constitué dans le présent exemple par le rotor, formé par la roue 4 dentée et l’arbre 10). Selon l’invention, pour détecter la position du mobile, le circuit électronique de gestion met en œuvre un procédé consistant dans une première étape à commander le moteur pas-à-pas de manière à faire effectuer pas-à-pas une révolution complète au mobile, et à enregistrer les valeurs du signal fourni par le circuit électronique de mesure pour au moins une sur deux des dites positions angulaires mutuellement équidistantes les unes des autres du mobile. The function of the capacitive detection device of the electromechanical device of the present invention is to allow the detection of the angular position of the rotary mobile (constituted in this example by the rotor, formed by the toothed wheel 4 and the shaft 10). According to the invention, to detect the position of the mobile, the electronic management circuit implements a method consisting in a first step in controlling the stepper motor so as to make the step-by-step complete revolution. mobile, and in recording the values of the signal supplied by the electronic measuring circuit for at least one in two of said angular positions mutually equidistant from each other of the mobile.

[0027] Au cours d’une deuxième étape, le circuit électronique de gestion calcule la corrélation entre la succession des valeurs du signal enregistrées durant la première étape, et la succession des valeurs de référence tirées de la table, puis, mettant à profit la périodicité du signal de référence enregistré, le circuit électronique de gestion répète le calcul de corrélation en décalant chaque fois d’un pas supplémentaire le point de départ de la succession des valeurs de référence. Le circuit électronique de gestion effectue le calcul de corrélation autant de fois qu’il y a de position angulaire distincte pouvant constituer le point de départ d’une période de la fonction formée par les valeurs de référence. During a second step, the electronic management circuit calculates the correlation between the succession of signal values recorded during the first step, and the succession of reference values taken from the table, then, taking advantage of the periodicity of the recorded reference signal, the electronic management circuit repeats the correlation calculation, each time shifting by an additional step the starting point of the succession of reference values. The electronic management circuit performs the correlation calculation as many times as there is a distinct angular position that may constitute the starting point of a period of the function formed by the reference values.

[0028] Au cours d’une troisième étape, le circuit électronique de gestion détermine parmi les corrélations calculées au cours de la deuxième étape, celle dont la valeur est la plus élevée et identifie le point de départ de la période du signal de référence associée à cette corrélation. On comprendra que le point de départ ainsi identifié correspond à la position angulaire du mobile. En effet, le point de départ à partir duquel le tour complet est effectué durant la première étape doit être le même que le point de départ de la succession des valeurs de référence. During a third step, the electronic management circuit determines from among the correlations calculated during the second step, the one whose value is the highest and identifies the starting point of the period of the associated reference signal to this correlation. It will be understood that the starting point thus identified corresponds to the angular position of the mobile. Indeed, the starting point from which the full turn is made during the first stage must be the same as the starting point of the succession of reference values.

[0029] On a déjà exposé plus haut une manière particulièrement simple de réaliser une table de correspondance contenant des valeurs de référence calibrées du signal en sortie du circuit électronique de mesure. En se référant maintenant aux fig. 5 , et 6 , on va décrire à titre d’exemple une deuxième manière possible de fabriquer une table de correspondance qui contient des valeurs de référence pour le signal calibrées en fonction de la position angulaire de la roue 4. La fig. 5 et la table 1 ci-dessous représentent respectivement sous forme graphique et sous forme de formules un modèle linéaire par morceaux représentant le signal différentiel fourni par le circuit électronique de mesure en fonction d’un numéro de pas «/» correspondant à une position angulaire donnée du mobile, tandis que la table 2 ci-après explique les différents paramètres qui sont utilisés pour déterminer ces valeurs de référence. A particularly simple way of producing a correspondence table containing calibrated reference values of the signal at the output of the electronic measuring circuit has already been explained above. Referring now to Figs. 5, and 6, we will describe by way of example a second possible way of manufacturing a correspondence table which contains reference values for the signal calibrated as a function of the angular position of the wheel 4. FIG. 5 and Table 1 below represent respectively in graphical form and in the form of formulas a piecewise linear model representing the differential signal supplied by the electronic measuring circuit as a function of a step number “/” corresponding to an angular position mobile data, while Table 2 below explains the different parameters that are used to determine these reference values.

[0030] Comme le montrent les formules de la table 1, le modèle du présent exemple est un modèle paramétrique dont les différents paramètres M, m, moy, α, Δ, s doivent être ajustés (fittés) de manière à ce que les valeurs de référence fournies par le modèle approximent le mieux possible les valeurs typiques d’une courbe empirique. Comme le montre la fig. 5 , qui montre l’amplitude du signal f(i) en fonction du nombre de pas «/» le modèle qui fait l’objet du présent exemple est constitué par un enchaînement de segments rectilignes. L’avantage principal d’avoir recours à un modèle linéaire par morceaux est que la caractéristique de linéarité simplifie les calculs nécessaires pour ajuster les paramètres. As shown by the formulas in Table 1, the model of this example is a parametric model whose various parameters M, m, avg, α, Δ, s must be adjusted (fittés) so that the values values provided by the model approximate the typical values of an empirical curve as closely as possible. As shown in fig. 5, which shows the amplitude of the signal f (i) as a function of the number of steps "/" The model which is the subject of the present example consists of a series of rectilinear segments. The main advantage of using a piecewise linear model is that the linearity characteristic simplifies the calculations required to fit the parameters.

[0031] Comme on peut encore le voir sur la fig. 5 , le modèle comprend 4 régions bien distinctes. Une première région comprenant les segments a, b, et c correspond à un pic positif associé au passage de l’ouverture 16 au-dessus de la paire d’électrodes 18a, 18b. Une deuxième région constituée par un segment horizontal d correspond au passage de l’ouverture au-dessus de la zone de la planche 8 qui s’étend entre les deux paires d’électrodes. Une troisième région comprenant les segments e, f et g correspond à un pic négatif associé au passage de l’ouverture au-dessus de la paire d’électrodes 20a, 20b, et enfin une quatrième région constituée par un long segment horizontal h correspond au passage de l’ouverture 16 de la roue 4 au-dessus du côté de la partie du PCB dépourvu d’électrodes. On comprendra que les valeurs prises par les différents paramètres du modèle déterminent la forme et la hauteur des pics, l’entendue des intervalles entre les pics, la valeur moyenne théorique, etc. As can still be seen in FIG. 5, the model includes 4 distinct regions. A first region comprising the segments a, b, and c corresponds to a positive peak associated with the passage of the opening 16 above the pair of electrodes 18a, 18b. A second region formed by a horizontal segment d corresponds to the passage of the opening above the area of the board 8 which extends between the two pairs of electrodes. A third region comprising the segments e, f and g corresponds to a negative peak associated with the passage of the opening above the pair of electrodes 20a, 20b, and finally a fourth region constituted by a long horizontal segment h corresponds to the passage of the opening 16 of the wheel 4 above the side of the part of the PCB without electrodes. It will be understood that the values taken by the various parameters of the model determine the shape and height of the peaks, the extent of the intervals between the peaks, the theoretical mean value, etc.

[0032] L’ajustement des différents paramètres du modèle peut se faire par exemple au moyen d’un calcul de régression multiple. Comme le modèle du présent exemple est linéaire, le calcul de régression peut consister en une simple régression multilinéaire. Le calcul de régression permettant de déterminer les valeurs des paramètres pour lesquelles l’écart vertical (en ordonnée) entre une courbe empirique fournie par le dispositif de détection capacitif et la courbe de référence issue du modèle paramétrique est minimum. [0032] The adjustment of the various parameters of the model can be done for example by means of a multiple regression calculation. Since the model in this example is linear, the regression calculation can consist of a simple multilinear regression. The regression calculation making it possible to determine the values of the parameters for which the vertical deviation (on the y-axis) between an empirical curve provided by the capacitive detection device and the reference curve resulting from the parametric model is minimum.

[0033] Conformément au présent exemple, une fois ajusté à la courbe empirique de la fig. 4 , le modèle paramétrique prend la forme de la courbe de référence représentée par la fig. 6 , qui montre similairement l’amplitude du signal f(i) en fonction du nombre de pas «i». En comparant la courbe de la fig. 6 à celle de la fig. 5 , on peut comprendre notamment que l’ajustement du modèle a conduit dans ce cas particulier à ce que le paramètre α=0 et que le paramètre Δ=2s. Une fois tous les paramètres ajustés, le circuit électronique de gestion enregistre les valeurs de la courbe de référence obtenues en mémoire sous la forme d’une table associant les différentes positions angulaires du mobile à la valeur de référence correspondante. According to the present example, once adjusted to the empirical curve of FIG. 4, the parametric model takes the form of the reference curve shown in FIG. 6, which similarly shows the amplitude of the signal f (i) as a function of the number of steps "i". By comparing the curve of fig. 6 to that of FIG. 5, it can be understood in particular that the adjustment of the model led in this particular case to the parameter α = 0 and that the parameter Δ = 2s. Once all the parameters have been adjusted, the electronic management circuit records the values of the reference curve obtained in memory in the form of a table associating the various angular positions of the mobile with the corresponding reference value.

[0034] On pourra noter que la plupart des algorithmes pour le calcul d’une corrélation sont en mesure de fournir un résultat même lorsqu’il manque une partie des données parmi l’ensemble des valeurs à corréler. Dès lors, même si l’opération de calibration initiale ne fournit pas de valeurs de référence pour l’intégralité des positions angulaires possibles, l’opération de corrélation pourra toujours être effectuée ultérieurement et déterminer efficacement la position angulaire du mobile. L’avantage d’utiliser un modèle paramétrique pour déterminer les valeurs de référence est néanmoins précisément d’extrapoler des valeurs éventuellement manquantes par approximation linéaire. On peut ensuite extraire un sous-ensemble prédéterminé de valeurs de référence pour effectuer le calcul de corrélation, par exemple la moitié en tenant compte de la polarité du rotor, comme expliqué plus loin, pour augmenter la vitesse de calcul. It may be noted that most of the algorithms for calculating a correlation are able to provide a result even when part of the data is missing among the set of values to be correlated. Therefore, even if the initial calibration operation does not provide reference values for all the possible angular positions, the correlation operation can still be performed later and effectively determine the angular position of the mobile. The advantage of using a parametric model to determine the reference values is, however, precisely to extrapolate any missing values by linear approximation. It is then possible to extract a predetermined subset of reference values to perform the correlation calculation, for example half taking into account the polarity of the rotor, as explained later, in order to increase the calculation speed.

[0035] On va maintenant décrire un deuxième mode de réalisation de l’invention en faisant référence aux fig. 7A , 7B et 7C . Le deuxième mode de réalisation se distingue du premier essentiellement par la forme et les dimensions de l’ouverture schématique 16 pratiquée dans la roue schématique 104 du rotor. Comme le montre la fig. 7B , l’ouverture schématique 116 a la forme d’un secteur d’anneau référencé Alpha_hole dont l’ouverture vaut approximativement un tiers de tour (120°). Le stator du deuxième mode de réalisation du dispositif de détection capacitif est tout à fait semblable à celui qui a déjà été décrit en relation avec le premier mode de réalisation. On peut voir en particulier sur la fig. 7A que les deux paires d’électrodes schématiques 118a, 118b, 120a, 120b sont dimensionnées de manière à pouvoir passer directement en regard de l’ouverture schématique 116, et qu’elles font entre elles un angle référencé Alpha_elec toujours d’environ 60°. A second embodiment of the invention will now be described with reference to FIGS. 7A, 7B and 7C. The second embodiment differs from the first essentially by the shape and dimensions of the schematic opening 16 made in the schematic wheel 104 of the rotor. As shown in fig. 7B, the schematic opening 116 has the shape of a ring sector referenced Alpha_hole whose opening is approximately one-third of a turn (120 °). The stator of the second embodiment of the capacitive detection device is quite similar to that which has already been described in relation to the first embodiment. It can be seen in particular in FIG. 7A that the two pairs of schematic electrodes 118a, 118b, 120a, 120b are dimensioned so as to be able to pass directly opposite the schematic opening 116, and that they form between them an angle referenced Alpha_elec always of about 60 ° .

[0036] Du fait que le secteur d’anneau qui délimite l’ouverture pratiquée dans le rotor s’étend sur un angle considérablement plus grand que l’angle séparant les deux paires d’électrodes – deux fois selon l’exemple illustré – l’ouverture schématique 116 peut se trouver simultanément en regard des deux paires d’électrodes (cf. fig. 7C ), ce qui n’est jamais le cas dans le mode de réalisation préférentiel de la fig. 1 où le secteur angulaire couvert par l’ouverture est beaucoup plus petit que l’écart angulaire entre les électrodes. On comprendra ainsi de ce qui précède que conformément à l’invention, l’angle définissant la largeur de l’ouverture dans le rotor peut être aussi bien plus grande que plus petite que l’angle qui sépare les deux paires d’électrodes. On précisera toutefois que même si l’ouverture est plus petite que la distance entre les deux paires d’électrodes, l’ouverture est toujours au moins aussi grande que la distance séparant les deux électrodes d’une même paire, matérialisée par la référence D_elec sur la fig. 7A , de telle sorte qu’on ait toujours la présence d’un pic marqué pour les maxima des valeurs de chaque capacité C1 et C2. Par ailleurs, on pourra noter que cette distance inter-électrodes D_Elec, qui peut être réglée assez finement par paramétrage laser, devra être de préférence configurée pour être systématiquement supérieure ou égale à l’ébat en hauteur entre le PCB et la roue du rotor, de telle sorte que l’influence de l’ouverture pratiquée dans le rotor soit la plus grande possible vis-à-vis des capacités mesurées. Due to the fact that the ring sector which delimits the opening made in the rotor extends over an angle considerably greater than the angle separating the two pairs of electrodes - twice according to the example illustrated - l The schematic opening 116 can be located simultaneously opposite the two pairs of electrodes (see FIG. 7C), which is never the case in the preferred embodiment of FIG. 1 where the angular sector covered by the opening is much smaller than the angular distance between the electrodes. It will thus be understood from the above that according to the invention, the angle defining the width of the opening in the rotor can be both larger and smaller than the angle which separates the two pairs of electrodes. However, it should be noted that even if the opening is smaller than the distance between the two pairs of electrodes, the opening is always at least as large as the distance separating the two electrodes of the same pair, materialized by the reference D_elec in fig. 7A, so that there is always the presence of a marked peak for the maxima of the values of each capacitor C1 and C2. Furthermore, it may be noted that this inter-electrode distance D_Elec, which can be adjusted quite finely by laser parameterization, should preferably be configured to be systematically greater than or equal to the height between the PCB and the rotor wheel, so that the influence of the opening made in the rotor is as great as possible with respect to the measured capacities.

[0037] L’avantage du mode de réalisation illustré par les fig. 7A , 7B et 7C est de fournir un gain massique de près de 30% de la roue du rotor, ce qui est avantageux en termes d’inertie et permet donc une mise en œuvre plus facile du moteur pas-à-pas, procurant ainsi des économies d’énergie. Dans ce cas, on pourra également par exemple augmenter parallèlement la taille – et par conséquent le volume! – d’une aiguille, disposée au milieu du secteur Alpha_hole pour des raisons de symétrie, sans préjudice d’un déséquilibrage du système tournant, tout en améliorant la lisibilité de l’affichage. [0037] The advantage of the embodiment illustrated by FIGS. 7A, 7B and 7C is to provide a mass gain of almost 30% of the rotor wheel, which is advantageous in terms of inertia and therefore allows easier operation of the stepper motor, thus providing energy savings. In this case, for example, the size can also be increased at the same time - and therefore the volume! - a needle, placed in the middle of the Alpha_hole sector for reasons of symmetry, without prejudice to an imbalance of the rotating system, while improving the readability of the display.

[0038] Au vu des différents modes de réalisation décrits, on comprendra que différents types d’ouvertures sont possibles, non limités à des fentes. Des évidements de type «parts de gâteau» s’étendant jusqu’au centre du mobile sont également envisageables, permettant de diminuer encore plus la masse et donc l’inertie du rotor. In view of the different embodiments described, it will be understood that different types of openings are possible, not limited to slots. Recesses of the "piece of cake" type extending to the center of the mobile are also possible, making it possible to further reduce the mass and therefore the inertia of the rotor.

[0039] Selon un mode de réalisation avantageux de l’invention, le moteur pas-à-pas est un moteur bipolaire qui est prévu pour être alimenté par des impulsions de commande dont la polarité doit s’inverser à chaque pas pour faire fonctionner le moteur dans un sens déterminé. De tels moteurs bipolaires sont connus de l’homme du métier. Le document de brevet EP 0 341 582 notamment décrit un tel moteur bipolaire qui est prévu pour pouvoir tourner pas-à-pas dans les deux sens, et qui doit recevoir en alternance des impulsions de commande polarisées dans un sens puis dans l’autre pour conserver un sens donné de rotation. On comprendra donc que lorsqu’un tel moteur fait accomplir pas-à-pas un tour complet à la roue 4, les pas successifs peuvent être répartis en deux catégories. La première catégorie est constituée des pas impairs (le 1<er>pas, le 3<è><me>pas, le 5<è><me>pas, etc.), et la seconde catégorie est constituée des pas paires (le 2<è><me>pas, le 4<è><me>pas, etc.). Les pas impairs sont produits par une impulsion de commande polarisée dans un premier sens et les pas pairs sont produits par une impulsion de commande polarisée dans l’autre sens. According to an advantageous embodiment of the invention, the stepping motor is a bipolar motor which is intended to be supplied by control pulses, the polarity of which must be reversed at each step to operate the motor in a specific direction. Such bipolar motors are known to those skilled in the art. Patent document EP 0 341 582 in particular describes such a bipolar motor which is designed to be able to turn step by step in both directions, and which must alternately receive control pulses polarized in one direction and then in the other for keep a given direction of rotation. It will therefore be understood that when such a motor causes wheel 4 to complete a complete revolution step by step, the successive steps can be divided into two categories. The first category consists of odd steps (the 1 <er> step, the 3 <è> <me> step, the 5 <è> <me> step, etc.), and the second category consists of even steps ( the 2 <è> <me> step, the 4 <è> <me> step, etc.). Odd pitches are produced by a control pulse biased in one direction and even pitches are produced by a control pulse biased in the other direction.

[0040] La possibilité qui vient d’être mentionnée de distinguer les pas-moteur paires des pas-moteur impairs est avantageuse lorsque le nombre entier déterminé de pas-moteur nécessaires pour faire effectuer exactement un tour complet à la roue 4 est un nombre pair. En effet, dans ce cas, il est possible de distinguer parmi les positions angulaires qu’occupe successivement la roue 4 une moitié de positions angulaires atteintes suite à un pas-moteur pair et une autre moitié de positions angulaires atteintes suite à un pas-moteur impair. Selon une variante avantageuse, la table de correspondance qui est enregistrée dans le circuit électronique de gestion contient, en plus des valeurs de référence pour le signal en fonction de la position angulaire rotor, une indication de parité (paire ou impaire) pour chaque position angulaire du rotor selon qu’il faut un pas-moteur pair ou un pas-moteur impair pour atteindre la position angulaire en question. Grâce aux caractéristiques de la table de correspondance qui viennent d’être décrites, le procédé de détection de la position peut être simplifié. En effet, on comprendra que le nombre de corrélation à calculer peut être divisé par deux. The possibility which has just been mentioned of distinguishing the even motor steps from the odd motor steps is advantageous when the determined integer number of motor steps necessary to make the wheel 4 perform exactly one complete revolution is an even number . In fact, in this case, it is possible to distinguish among the angular positions which the wheel 4 successively occupies, one half of the angular positions reached following an even motor pitch and another half of the angular positions reached following a motor pitch. odd. According to an advantageous variant, the correspondence table which is recorded in the electronic management circuit contains, in addition to the reference values for the signal as a function of the angular position of the rotor, a parity indication (even or odd) for each angular position. of the rotor depending on whether an even or an odd stepper motor is needed to reach the angular position in question. Thanks to the characteristics of the correspondence table which have just been described, the method of detecting the position can be simplified. Indeed, it will be understood that the number of correlations to be calculated can be divided by two.

[0041] On comprendra en outre que diverses modifications et/ou améliorations évidentes pour un homme du métier peuvent être apportées aux modes de réalisation qui font l’objet de la présente description sans sortir du cadre de la présente invention définie par les revendications annexées. [0041] It will further be understood that various modifications and / or improvements obvious to a person skilled in the art can be made to the embodiments which are the subject of the present description without departing from the scope of the present invention defined by the appended claims.

Claims (14)

1. Appareil électromécanique comportant un mobile et un organe indicateur analogique (14) solidaires en rotation, un moteur pas-à-pas, un circuit électronique de gestion agencé pour commander le moteur pas-à-pas, une transmission reliant le moteur pas-à-pas au mobile et à l’organe indicateur analogique (14), et un dispositif de détection capacitif (2), la transmission ayant un rapport tel que le moteur pas-à-pas fasse accomplir exactement un tour complet au mobile en un nombre entier déterminé de pas-moteur, de sorte que les pas-moteurs subdivisent un tour complet du mobile en ledit nombre entier de positions angulaires mutuellement équidistantes les unes des autres, et le dispositif de détection capacitif (2) comprenant un rotor (4; 10) solidaire en rotation du mobile, un stator (18a, 18b, 20a, 20b, 22, 24, 26a, 26b, 26c), et un circuit électronique de mesure (28), le stator comportant une première paire d’électrodes (18a, 18b) ayant une première capacité (C1), le rotor (4;10) étant conformé de manière à ce que la valeur de la première capacité (C1) dépende de la position angulaire dudit rotor (4;10), et le circuit électronique de mesure (28) étant prévu pour générer et pour fournir au circuit électronique de gestion un signal dépendant de la valeur de la première capacité (C1); caractérisé en ce que le stator (18a; 18b; 20a; 20b; 22; 24; 26a; 26b; 26c) comporte une deuxième paire d’électrodes (20a, 20b) ayant une deuxième capacité (C2), la valeur de la deuxième capacité (C2) dépendant de la position angulaire dudit rotor (4;10), en ce que les paires d’électrodes (18a, 18b; 20a, 20b) et le circuit électronique de mesure (28) sont configurés de manière à ce que le signal soit représentatif d’une différence entre les valeurs respectives de la première (C1) et de la deuxième capacité (C2), et en ce que les moyens électroniques de gestion contiennent un enregistrement d’une table de correspondance qui contient des valeurs de référence pour le signal en fonction de la position angulaire du rotor (4; 10) pour lesdites positions angulaires mutuellement équidistantes les unes des autres du mobile.1. Electromechanical apparatus comprising a mobile and an analog indicator member (14) integral in rotation, a stepper motor, an electronic management circuit arranged to control the stepper motor, a transmission connecting the motor pas- with the mobile device and the analog indicating member (14), and a capacitive detection device (2), the transmission having a ratio such that the stepper motor causes the mobile to perform exactly one revolution in one step. a determined integer number of motor steps, such that the motor steps divide a complete revolution of the mobile into said integer number of angular positions mutually equidistant from each other, and the capacitive sensing device (2) comprising a rotor (4; 10) integral in rotation with the mobile, a stator (18a, 18b, 20a, 20b, 22, 24, 26a, 26b, 26c), and an electronic measuring circuit (28), the stator comprising a first pair of electrodes ( 18a, 18b) having a first capacitance (C1), the rotor (4; 10) being shaped so that the value of the first capacitance (C1) depends on the angular position of said rotor (4; 10), and the electronic measuring circuit (28) is provided for generating and for providing the electronic management circuit with a signal dependent on the value of the first capacitance (C1); characterized in that the stator (18a; 18b; 20a; 20b; 22; 24; 26a; 26b; 26c) has a second pair of electrodes (20a, 20b) having a second capacitance (C2), the value of the second capacitance (C2) depending on the angular position of said rotor (4; 10), in that the electrode pairs (18a, 18b; 20a, 20b) and the electronic measuring circuit (28) are configured in such a way that the signal is representative of a difference between the respective values of the first (C1) and the second capacitance (C2), and in that the electronic management means contain a record of a correspondence table which contains values of reference for the signal as a function of the angular position of the rotor (4; 10) for said angular positions mutually equidistant from each other of the mobile. 2. Appareil électromécanique selon la revendication 1, caractérisé en ce que le circuit électronique de gestion comprend un circuit de comptage des impulsions de commande du moteur pas-à-pas, de manière à compter les pas effectués par le moteur pas-à-pas.2. Electromechanical device according to claim 1, characterized in that the electronic management circuit comprises a circuit for counting the control pulses of the stepper motor, so as to count the steps taken by the stepper motor. . 3. Appareil électromécanique selon la revendication 2, caractérisé en ce que le moteur pas-à-pas est un moteur bipolaire prévu pour être alimenté par des impulsions de courant dont le sens de circulation doit s’inverser à chaque pas pour faire fonctionner le moteur dans un sens déterminé, et en ce que la table de correspondance qui est enregistrée dans le circuit électronique de gestion contient, en plus des valeurs de référence pour le signal en fonction de la position angulaire dudit rotor (4;10), une indication de parité (paire ou impaire) pour chaque position angulaire dudit rotor (4;10), selon qu’il faut un pas-moteur pair ou un pas-moteur impair pour atteindre la position angulaire en question.3. Electromechanical device according to claim 2, characterized in that the stepper motor is a bipolar motor designed to be powered by current pulses whose direction of flow must be reversed at each step to operate the motor. in a given direction, and in that the correspondence table which is stored in the electronic control circuit contains, in addition to reference values for the signal as a function of the angular position of said rotor (4; 10), an indication of parity (even or odd) for each angular position of said rotor (4; 10), depending on whether an even motor step or an odd pitch is required to reach the angular position in question. 4. Appareil électromécanique selon l’une des revendications précédentes, caractérisé en ce que le rotor (4;10) du dispositif de détection capacitif (2) comporte une roue (4) réalisée en un matériau conducteur et dont la planche (8) est percée d’une ouverture (16) de forme et de dimensions déterminées, le dispositif de détection capacitif étant agencé de manière à ce qu’une électrode de la première paire (18a, 18b) et une électrode de la deuxième paire (20a, 20b) soient au moins partiellement en regard de ladite ouverture (16) respectivement dans une première et une deuxième position angulaire dudit rotor (4;10).4. Electromechanical device according to one of the preceding claims, characterized in that the rotor (4; 10) of the capacitive sensing device (2) comprises a wheel (4) made of a conductive material and whose board (8) is pierced with an opening (16) of defined shape and size, the capacitive sensing device being arranged in such a way that an electrode of the first pair (18a, 18b) and an electrode of the second pair (20a, 20b ) are at least partially opposite said opening (16) respectively in a first and a second angular position of said rotor (4; 10). 5. Appareil électromécanique selon l’une des revendications précédente, caractérisé en ce que les électrodes (18a, 18b; 20a, 20b) de la première et la deuxième paire s’étendent dans un même plan perpendiculaire à l’axe (12) dudit rotor (4;10).5. Electromechanical device according to one of the preceding claims, characterized in that the electrodes (18a, 18b, 20a, 20b) of the first and the second pair extend in the same plane perpendicular to the axis (12) of said rotor (4; 10). 6. Appareil électromécanique selon la revendication 5, caractérisé en ce que les deux paires d’électrodes (18a, 18b; 20a, 20b) sont isométriques l’une à l’autre, et superposables par rotation d’une des deux paires autour de l’axe 12.Electromechanical apparatus according to claim 5, characterized in that the two pairs of electrodes (18a, 18b, 20a, 20b) are isometric to one another and rotatable by one of the two pairs around each other. the axis 12. 7. Appareil électromécanique selon l’une des revendications précédentes, caractérisé en ce que le stator (18a; 18b; 20a; 20b; 22; 24; 26a; 26b; 26c) du dispositif de détection capacitif (2) comprend un conducteur (24) qui relie une (18b) des électrodes de la première paire à une (20b) des électrodes de la deuxième paire.7. Electromechanical apparatus according to one of the preceding claims, characterized in that the stator (18a; 18b; 20a; 20b; 22; 24; 26a; 26b; 26c) of the capacitive sensing device (2) comprises a conductor (24). ) which connects one (18b) of the electrodes of the first pair to one (20b) of the electrodes of the second pair. 8. Appareil électromécanique selon l’une des revendications précédentes, caractérisé en ce quer l’organe indicateur analogique (14) est une aiguille.8. Electromechanical device according to one of the preceding claims, characterized in that the analog indicator member (14) is a needle. 9. Appareil électromécanique selon la revendication 8, caractérisé en ce que l’aiguille est solidaire du rotor (4;10), l’aiguille pointant en direction du centre de l’ouverture (16) de façon à ce que le balourd engendré par la présence de l’ouverture permette de compenser au moins partiellement le couple provoqué par le poids de l’aiguille.9. Electromechanical apparatus according to claim 8, characterized in that the needle is secured to the rotor (4; 10), the needle pointing towards the center of the opening (16) so that the unbalance generated by the presence of the opening at least partially compensates for the torque caused by the weight of the needle. 10. Appareil électromécanique selon l’une des revendications précédentes, caractérisé en ce que la table de correspondance qui contient les valeurs de référence pour le signal en fonction de la position angulaire dudit rotor (4;10) est enregistrée dans une mémoire non-volatile du circuit électronique de gestion.Electromechanical device according to one of the preceding claims, characterized in that the correspondence table which contains the reference values for the signal as a function of the angular position of said rotor (4; 10) is stored in a non-volatile memory. of the electronic management circuit. 11. Appareil électromécanique selon la revendication 9, caractérisé en ce que les valeurs de référence pour le signal définissent une fonction de la position angulaire dudit rotor (4;10), la fonction étant linéaire par morceau.An electromechanical apparatus according to claim 9, characterized in that the reference values for the signal define a function of the angular position of said rotor (4; 10), the function being linear per piece. 12. Procédé de détermination de la position angulaire d’un mobile solidaire en rotation d’un indicateur analogique (14) d’un appareil électromécanique conforme à l’une des revendications 1 à 11, le procédé comportant les étapes de: I. commander le moteur pas-à-pas de manière à faire effectuer pas-à-pas une révolution complète à un rotor (4;10) solidaire en rotation dudit mobile, et enregistrer les valeurs du signal fourni par le circuit électronique de mesure (28) pour au moins une sur deux des dites positions angulaires mutuellement équidistantes les unes des autres dudit mobile; II. tirer, de la table enregistrée faisant correspondre une partie au moins du nombre entier de positions angulaires équidistantes les unes des autres du mobile à autant de valeurs de référence du signal, une pluralité de suites de valeurs de référence correspondant respectivement aux différentes permutations circulaires possibles des dites au moins une position angulaire sur deux desdites positions angulaires équidistantes les unes des autres, et calculer une corrélation entre la succession des valeurs enregistrées du signal fourni et chacune des suites de valeurs de référence; III. déterminer la position angulaire dudit indicateur analogique (14) en identifiant parmi les corrélations calculées pour les différentes suites de valeurs de référence, la corrélation dont la valeur est maximale.12. A method for determining the angular position of a moving mobile in rotation of an analog indicator (14) of an electromechanical device according to one of claims 1 to 11, the method comprising the steps of: I. controlling the stepper motor in such a way as to make a complete revolution step by step to a rotor (4; 10) integral in rotation with said mobile, and to record the values of the signal supplied by the electronic measuring circuit (28) for at least one of two of said angular positions mutually equidistant from each other of said mobile; II. deriving, from the recorded table matching at least a part of the integer number of angular positions equidistant from each other of the mobile to as many reference values of the signal, a plurality of series of reference values respectively corresponding to the different possible circular permutations of the said at least one angular position on two of said angular positions equidistant from each other, and calculating a correlation between the succession of recorded values of the supplied signal and each of the series of reference values; III. determining the angular position of said analog indicator (14) by identifying among the correlations calculated for the different series of reference values, the correlation whose value is maximum. 13. Procédé de détermination de la position angulaire d’un mobile conforme à la revendication 12, caractérisée en ce qu’à l’étape (I), les valeurs du signal fourni par le circuit électronique de mesure (28) sont enregistrées pour toutes lesdites positions angulaires mutuellement équidistantes les unes des autres du mobile, et en ce que, à l’étape (II), le nombre de suites de valeurs de référence est égal au dit nombre déterminé, les suites correspondant respectivement aux différentes permutations circulaires de toutes lesdites positions angulaires équidistantes.13. A method of determining the angular position of a mobile device according to claim 12, characterized in that in step (I), the values of the signal supplied by the electronic measuring circuit (28) are recorded for all said angular positions mutually equidistant from each other of the mobile, and in that, in step (II), the number of series of reference values is equal to said determined number, the sequences respectively corresponding to the different circular permutations of all said equidistant angular positions. 14. Procédé de détermination de la position angulaire d’un mobile conforme à la revendication 12, dans lequel le moteur pas-à-pas de l’appareil électromécanique est un moteur bipolaire prévu pour être alimenté par des impulsions de courant dont le sens de circulation doit s’inverser à chaque pas pour faire fonctionner le moteur dans un sens déterminé, le procédé étant caractérisé en ce que le dit nombre déterminé est un nombre pair, en ce qu’à l’étape (I), les valeurs du signal fourni par le circuit électronique de mesure (28) sont enregistrées pour une sur deux des positions angulaires mutuellement équidistantes les unes des autres du mobile, et en ce que, à l’étape (II), le nombre de suites de valeurs de référence est égal à la moitié du dit nombre déterminé, les suites correspondant respectivement aux différentes permutations circulaires des dites une sur deux des positions angulaires mutuellement équidistantes les unes des autres.14. A method of determining the angular position of a mobile device according to claim 12, wherein the stepping motor of the electromechanical apparatus is a bipolar motor designed to be powered by current pulses whose direction of circulation must be reversed at each step to operate the motor in a given direction, the method being characterized in that the said determined number is an even number, in that in step (I), the values of the signal provided by the electronic measuring circuit (28) are recorded for one of two angular positions mutually equidistant from each other of the mobile, and that, in step (II), the number of series of reference values is equal to half of said determined number, the sequences respectively corresponding to the different circular permutations of said one of two angular positions mutually equidistant from each other.
CH02020/14A 2014-12-23 2014-12-23 Electromechanical apparatus comprising a device for capacitively detecting the angular position of a mobile, and method for detecting the angular position of a mobile. CH710522A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH02020/14A CH710522A2 (en) 2014-12-23 2014-12-23 Electromechanical apparatus comprising a device for capacitively detecting the angular position of a mobile, and method for detecting the angular position of a mobile.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH02020/14A CH710522A2 (en) 2014-12-23 2014-12-23 Electromechanical apparatus comprising a device for capacitively detecting the angular position of a mobile, and method for detecting the angular position of a mobile.

Publications (1)

Publication Number Publication Date
CH710522A2 true CH710522A2 (en) 2016-06-30

Family

ID=56293962

Family Applications (1)

Application Number Title Priority Date Filing Date
CH02020/14A CH710522A2 (en) 2014-12-23 2014-12-23 Electromechanical apparatus comprising a device for capacitively detecting the angular position of a mobile, and method for detecting the angular position of a mobile.

Country Status (1)

Country Link
CH (1) CH710522A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272390A (en) * 2017-08-16 2017-10-20 东莞知新贸易有限公司 A kind of pointer type timer and its pointer progressive method
EP3438764A1 (en) * 2017-08-04 2019-02-06 ETA SA Manufacture Horlogère Suisse Clock movement comprising a device for detecting an angular position of a wheel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438764A1 (en) * 2017-08-04 2019-02-06 ETA SA Manufacture Horlogère Suisse Clock movement comprising a device for detecting an angular position of a wheel
CN109388053A (en) * 2017-08-04 2019-02-26 Eta瑞士钟表制造股份有限公司 The watch and clock movement of detection device including the Angle Position for detection wheel
JP2019032309A (en) * 2017-08-04 2019-02-28 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Timepiece movement with device detecting angle location of wheel
US10989565B2 (en) 2017-08-04 2021-04-27 Eta Sa Manufacture Horlogere Suisse Timepiece movement comprising a device for detecting an angular position of a wheel
CN107272390A (en) * 2017-08-16 2017-10-20 东莞知新贸易有限公司 A kind of pointer type timer and its pointer progressive method

Similar Documents

Publication Publication Date Title
EP3037898B1 (en) Electromechanical apparatus comprising a device for capacitive detection of the angular position of a moving element, and method for detecting the angular position of a moving element
EP0960361B1 (en) Wheel work part comprising a capacitive sensing device
EP0785415B1 (en) Inductive displacement sensor
EP1295081B1 (en) Magnetoresistive electrode measuring device
EP0006482B1 (en) Detection circuit for the maxima and minima of a low frequency variable amplitude electric signal and the application of this circuit to apparatus for detecting the relative position and the direction of relative movement of two objects
EP0082821B1 (en) Electronic watch provided with detection means for the passage across a reference position
CH685214A5 (en) capacitive sensor position.
EP0952426B1 (en) Timepiece having an inductive or capacitive sensor for detecting at least one angular position of gear-wheel within the timepiece
WO2011004120A2 (en) Multi-periodic absolute position sensor
EP2171403A2 (en) Non-contact multi-turn absolute position magnetic sensor comprising a through-shaft
EP3242168B1 (en) Electromechanical clock movement comprising a device for detecting the angular position of a wheel
WO1997002473A1 (en) Pulse encoder for a liquid dispensing apparatus
CH710522A2 (en) Electromechanical apparatus comprising a device for capacitively detecting the angular position of a mobile, and method for detecting the angular position of a mobile.
FR2861922A1 (en) ELECTRONICALLY SWITCHED MOTOR (EC) AND METHOD FOR OPERATING SUCH A MOTOR
EP1207439A1 (en) Electronic watch with capacitive switches on its cover glass
EP0137093A2 (en) Method of measuring the voltage induced in the coil of a stepping motor by the rotation of its rotor
EP0759584B1 (en) Synchronisation device for an electronic timepiece
EP0270440B1 (en) Angular or linear high precision capacitive position sensors
EP0351355A1 (en) Coordinate input resistive tablet using several conductors
EP1550844B1 (en) Device for detecting the movement of a rotating element, such as the turbine in a water meter
EP3502797A1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP2360538B1 (en) Device for electromechanical watch making it possible to determine the moment and the direction in which a time indication must be corrected
FR2585901A3 (en) METHOD AND DEVICE FOR CONTROLLING A TWO-COIL MOTOR
CH712433A2 (en) Electromechanical watch movement comprising a device for detecting the angular position of a wheel.
CA2313383C (en) Bar-coding method for tape run readout unit

Legal Events

Date Code Title Description
AZW Rejection (application)