CH705667A2 - Thermally treating a micromechanical horological component e.g. cog wheel, by heating part of component to increase its hardness so that the heated part is affected by thermal treatment and the untreated part remains unchanged - Google Patents

Thermally treating a micromechanical horological component e.g. cog wheel, by heating part of component to increase its hardness so that the heated part is affected by thermal treatment and the untreated part remains unchanged Download PDF

Info

Publication number
CH705667A2
CH705667A2 CH17292011A CH17292011A CH705667A2 CH 705667 A2 CH705667 A2 CH 705667A2 CH 17292011 A CH17292011 A CH 17292011A CH 17292011 A CH17292011 A CH 17292011A CH 705667 A2 CH705667 A2 CH 705667A2
Authority
CH
Switzerland
Prior art keywords
component
micromechanical
hardness
locally
heated
Prior art date
Application number
CH17292011A
Other languages
French (fr)
Inventor
Christian Charbon
Alexandre Fussinger
Original Assignee
Nivarox Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivarox Sa filed Critical Nivarox Sa
Priority to CH17292011A priority Critical patent/CH705667A2/en
Priority to CH13642012A priority patent/CH705680A2/en
Publication of CH705667A2 publication Critical patent/CH705667A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • G04D3/0079Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components
    • G04D3/0082Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components for gear wheels or gears

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The method comprises heating a part of a micromechanical horological component at a temperature of 200[deg] C for a short period of time to modify its physical properties or to increase its hardness so that the heated part is affected by the thermal treatment and the untreated part remains unchanged. The process of increasing the hardness of the component is carried out by a laser beam, an induction heating system, or an element, which heats the component by direct contact with radiation. The component is placed on a fitting in which heat is introduced.

Description

[0001] La présente invention concerne un procédé de traitement thermique de pièces micromécaniques horlogères. Plus précisément, l’invention concerne un procédé de traitement thermique ayant pour but de modifier localement certaines propriétés physiques de pièces de micromécanique horlogère telles que des roues dentées. The present invention relates to a method of heat treatment of micromechanical watch parts. More specifically, the invention relates to a heat treatment process for the purpose of locally modifying certain physical properties of watch micromechanical parts such as toothed wheels.

[0002] On cherche parfois, pour répondre à des besoins spécifiques, à modifier localement les propriétés physiques telles que la dureté, le magnétisme ou bien encore la ductilité de pièces micromécaniques horlogères. Ceci est notamment le cas dans le cadre du procédé LIGA qui est un procédé de plus en plus couramment employé dans le domaine de la construction horlogère. Ce procédé permet en effet de fabriquer en série des pièces de micromécanique avec une précision tout à fait remarquable et avec une enveloppe de coût qui reste compatible avec les exigences de la fabrication industrielle. Cependant, comme on le verra en détail ci-après, les pièces de micromécanique horlogère obtenues au moyen du procédé LIGA présentent parfois des problèmes de résistance à l’usure que l’on cherche à corriger. It is sometimes sought, to meet specific needs, to change locally the physical properties such as hardness, magnetism or even the ductility of micromechanical watch parts. This is particularly the case in the context of the LIGA process which is a process increasingly used in the field of watchmaking. This process makes it possible to mass-produce micromechanical parts with remarkable precision and with a cost envelope that remains compatible with the requirements of industrial manufacturing. However, as will be seen in detail below, the watchmaking micromechanical parts obtained by means of the LIGA process sometimes have problems of wear resistance that we seek to correct.

[0003] L’acronyme «LIGA» provient de l’allemand. C’est une abréviation pour «Lithographie, Galvanoformung, Abformung» qui représentent les différentes étapes de ce procédé. Succinctement résumé, le procédé LIGA utilisé dans le domaine horloger consiste à insoler aux UV à travers un masque de photolithographie une résine photosensible déposée sur un substrat conducteur. Après développement de la résine, on procède à une étape de galvanisation par électrodéposition au cours de laquelle du métal est déposé dans les microstructures développées précédemment dans la couche de résine photosensible et dont les contours correspondent aux formes des pièces recherchées. La dernière étape consiste à éliminer la couche de résine photosensible restante et à individualiser les composants ainsi obtenus. The acronym "LIGA" comes from German. It is an abbreviation for "Lithography, Galvanoformung, Abformung" which represent the different stages of this process. Briefly summarized, the LIGA process used in the horological field consists of UV irradiating through a photolithography mask a photosensitive resin deposited on a conductive substrate. After development of the resin, an electroplating galvanization step is carried out during which metal is deposited in the microstructures previously developed in the photosensitive resin layer and whose contours correspond to the shapes of the desired parts. The last step is to remove the remaining photosensitive resin layer and to individualize the components thus obtained.

[0004] Dans le domaine de l’horlogerie, cela fait maintenant plusieurs années que l’on s’intéresse au procédé LIGA. Cependant, comme on l’aura compris de ce qui précède, l’une des contraintes qui pèse sur le procédé LIGA est que le matériau utilisé doit pouvoir être déposé par électrolyse. Dans le domaine de l’horlogerie, le premier matériau utilisé a été le nickel. Ce matériau présente l’avantage de pouvoir être mis en œuvre dans le cadre du procédé LIGA. Il présente néanmoins l’inconvénient d’être magnétique à l’état amorphe, ce qui le rend difficilement utilisable pour des applications horlogères. In the field of watchmaking, it is now several years that we are interested in the LIGA process. However, as will be understood from the above, one of the constraints on the LIGA process is that the material used must be electrolessly deposited. In the field of watchmaking, the first material used was nickel. This material has the advantage of being able to be implemented in the context of the LIGA process. It nevertheless has the disadvantage of being magnetic in the amorphous state, which makes it difficult to use for horological applications.

[0005] La demanderesse s’intéresse actuellement à des pièces de micromécanique horlogère obtenues au moyen du procédé LIGA à l’aide d’un alliage de nickel et de phosphore contenant 12% en poids de phosphore et que l’on appellera par la suite alliage NiP12. Cet alliage NiP12 présente le grand intérêt d’être amagnétique à l’état amorphe. Par contre, la dureté des pièces réalisées en alliage NiP12 par le procédé LIGA est moyenne, de l’ordre de 590 Hv. Des problèmes d’usure directement liés à cette dureté relativement faible apparaissent dans certaines conditions sur de telles pièces de micromécanique horlogère. The Applicant is currently interested in watchmaking micromechanical parts obtained by means of the LIGA process using a nickel and phosphorus alloy containing 12% by weight of phosphorus and which will be called thereafter NiP12 alloy. This NiP12 alloy has the great advantage of being non-magnetic in the amorphous state. On the other hand, the hardness of the parts made of NiP12 alloy by the LIGA process is average, of the order of 590 Hv. Wear problems directly related to this relatively low hardness appear under certain conditions on such watch micromechanical parts.

[0006] Face à ce problème d’usure, la demanderesse a cherché à accroître la dureté des dents des engrenages obtenus par le procédé LIGA. Une technique connue dans le domaine de la fabrication de pièces mécaniques massives par exemple pour l’industrie aéronautique ou automobile consiste à chauffer localement les dents des engrenages. On sait néanmoins que si le chauffage localisé, par exemple au moyen d’un faisceau laser, de pièces massives a pour effet d’augmenter la dureté des zones chauffées, cet échauffement s’accompagne d’une fragilisation des zones ainsi traitées. Néanmoins, dans le domaine de la fabrication de pièces mécaniques massives, l’inertie thermique de ces pièces est telle que seules les surfaces directement chauffées subissent une transformation de phase, la phase de la majorité de la pièce conservant ses caractéristiques intrinsèques. Faced with this problem of wear, the plaintiff sought to increase the hardness of the teeth of the gears obtained by the LIGA process. A known technique in the field of the manufacture of massive mechanical parts for example for the aeronautic or automotive industry is to locally heat the teeth of the gears. However, it is known that if the localized heating, for example by means of a laser beam, of massive pieces has the effect of increasing the hardness of the heated zones, this heating is accompanied by a weakening of the zones thus treated. Nevertheless, in the field of manufacturing massive mechanical parts, the thermal inertia of these parts is such that only the directly heated surfaces undergo a phase transformation, the phase of the majority of the part retaining its intrinsic characteristics.

[0007] Il n’en va pas du tout de même dans le domaine de la construction horlogère où les pièces présentent couramment des épaisseurs de l’ordre de quelques dizaines à quelques centaines de microns et où les dimensions excèdent rarement le millimètre. It is not the same in the field of watchmaking where the pieces commonly have thicknesses of the order of a few tens to a few hundred microns and where the dimensions rarely exceed one millimeter.

[0008] La présente invention a donc pour but de pallier les inconvénients mentionnés ci-dessus en procurant un procédé de traitement thermique de pièces micromécaniques horlogères permettant de modifier localement les propriétés physiques de ces pièces sans pour autant affecter leur phase dans les parties non traitées. The present invention therefore aims to overcome the drawbacks mentioned above by providing a method of heat treatment micromechanical watch parts for locally changing the physical properties of these parts without affecting their phase in the untreated parts .

[0009] A cet effet, la présente invention concerne un procédé de traitement thermique d’un composant micromécanique horloger, ce procédé comprenant l’étape qui consiste à chauffer localement une zone du composant micromécanique horloger dont on souhaite modifier les propriétés physiques par modification locale de la phase, le composant étant chauffé durant un laps de temps suffisamment court pour que seule la zone chauffée localement soit affectée par le traitement thermique, la phase du composant restant inchangée dans sa partie non traitée. For this purpose, the present invention relates to a heat treatment method of a micromechanical watchmaker component, this method comprising the step of locally heating a zone of the micromechanical watchmaker component whose physical properties are to be modified by local modification. of the phase, the component being heated for a period of time sufficiently short that only the locally heated zone is affected by the heat treatment, the component phase remaining unchanged in its untreated portion.

[0010] Grâce à ces caractéristiques, le procédé selon l’invention permet de modifier de manière très localisée certaines des propriétés physiques de composants micromécaniques horlogers telles que la dureté, la ductilité ou le magnétisme par modification locale de la phase de la zone chauffée, sans que cette modification des propriétés physiques n’affecte la phase du composant dans sa partie non traitée. Thanks to these characteristics, the method according to the invention allows to modify very localized some of the physical properties of micromechanical components watchmakers such as hardness, ductility or magnetism by local modification of the phase of the heated zone, without this modification of the physical properties affecting the phase of the component in its untreated part.

[0011] Selon une caractéristique complémentaire de l’invention, le procédé consiste à chauffer localement la zone du composant micromécanique horloger pour en augmenter la dureté. According to a complementary feature of the invention, the method consists in locally heating the area of the micromechanical watch component to increase the hardness.

[0012] L’invention permet ainsi, par exemple, d’augmenter de manière très localisée la dureté d’un composant micromécanique horloger sans pour autant affecter la phase de ce composant dans sa partie non traitée. Ce point est très critique car l’on sait que si un traitement thermique a pour effet de durcir la zone chauffée du composant, le corolaire d’un tel traitement est de rendre la zone chauffée plus fragile. Il est par conséquent essentiel de ne chauffer que la zone du composant dont on souhaite augmenter la dureté afin de ne pas fragiliser le composant dans son ensemble. The invention thus makes it possible, for example, to increase in a very localized way the hardness of a micromechanical watchmaker component without affecting the phase of this component in its untreated part. This point is very critical because it is known that if a heat treatment has the effect of hardening the heated zone of the component, the corollary of such treatment is to make the heated zone more fragile. It is therefore essential to heat only the area of the component whose hardness is to be increased so as not to weaken the component as a whole.

[0013] S’étant assigné cet objectif, la demanderesse a soumis les dents d’un engrenage réalisé par électrodéposition de NiP12 selon le procédé LIGA à une source de chaleur ponctuelle par exemple du type laser. Having assigned this objective, the Applicant has subjected the teeth of a gear made by electroplating NiP12 according to the LIGA process to a point source of heat for example of the laser type.

[0014] A sa grande surprise, la demanderesse a constaté que sous réserve d’échauffer localement les dents de l’engrenage pendant un laps de temps court, il est possible d’accroître sensiblement la dureté de ces dents sans pour autant affecter la phase de l’engrenage dans sa partie non traitée. Ce résultat est d’autant plus remarquable que l’on comprend aisément que l’inertie thermique d’un tel engrenage est faible au regard de ses dimensions et des températures élevées atteintes par le faisceau laser. To his surprise, the Applicant has found that subject to locally heating the teeth of the gear for a short period of time, it is possible to substantially increase the hardness of these teeth without affecting the phase gearing in its untreated part. This result is all the more remarkable as it is easily understood that the thermal inertia of such a gear is low in view of its dimensions and the high temperatures reached by the laser beam.

[0015] Ce résultat est confirmé par une analyse cristallographique d’un engrenage qui permet d’observer la transformation de phase induite par le chauffage. En effet, dans les zones chauffées de l’engrenage qui est initialement à l’état amorphe, les composants nickel et phosphore subissent une séparation de phase et précipitent sous la forme de nickel et de Ni3P. De même, la dureté des zones chauffées de l’engrenage augmente de l’ordre de 50% par rapport à la dureté intrinsèque de l’alliage NiP12, tandis que la dureté de l’engrenage dans sa partie non traitée ne varie pratiquement pas. Enfin, on observe une légère magnétisation des zones chauffées de l’engrenage, sans que cela soit pour autant préjudiciable au bon fonctionnement du mécanisme horloger dans lequel l’engrenage est intégré. This result is confirmed by a crystallographic analysis of a gear that allows to observe the phase transformation induced by heating. Indeed, in the heated zones of the gear which is initially in the amorphous state, the nickel and phosphorus components undergo a phase separation and precipitate in the form of nickel and Ni3P. Likewise, the hardness of the heated zones of the gear increases by about 50% with respect to the intrinsic hardness of the NiP12 alloy, whereas the hardness of the gear in its untreated part hardly varies. Finally, there is a slight magnetization of the heated zones of the gear, without this being detrimental to the proper functioning of the clock mechanism in which the gear is integrated.

[0016] Selon une caractéristique complémentaire, le procédé selon l’invention s’applique à tout type de pièce micromécanique horlogère issue du procédé LIGA et réalisée en un matériau tel que les nickels et les alliages de nickel et de phosphore, de tungstène ou de fer, ainsi qu’à des pièces micromécaniques horlogères issues de procédés conventionnels et réalisées dans des matériaux pouvant subir un traitement de trempe comme les aciers au carbone ou les alliages à durcissement structural tels que les alliages cuivre/béryllium. According to a complementary feature, the method according to the invention is applicable to any type of micromechanical watchmaking part from the LIGA process and made of a material such as nickel and nickel alloys and phosphor, tungsten or nickel. iron, as well as micromechanical watch parts from conventional processes and made of quenching-processable materials such as carbon steels or structurally hardened alloys such as copper / beryllium alloys.

[0017] Selon une autre caractéristique de l’invention, on utilise un faisceau laser, un système de chauffage par induction, un micro-chalumeau fonctionnant, par exemple, suivant le principe de l’hydrolyse et de la recombinaison des composants hydrogène et oxygène de l’eau ou tout autre système permettant d’appliquer très localement une haute densité d’énergie pour durcir localement le composant. A titre d’exemple, on peut également envisager de chauffer localement le composant soit par contact d’un petit élément tel qu’une tige préalablement chauffée avec la partie à traiter, soit par rayonnement en amenant un tel élément préalablement chauffé au voisinage de la zone à traiter. According to another characteristic of the invention, a laser beam is used, an induction heating system, a micro-torch functioning, for example, according to the principle of hydrolysis and recombination of the hydrogen and oxygen components. water or any other system that makes it possible to apply very high energy density locally to locally harden the component. By way of example, it is also possible to consider locally heating the component either by contact with a small element such as a previously heated rod with the part to be treated, or by radiation by bringing such a previously heated element to the vicinity of the area to be treated.

[0018] D’autres caractéristiques et avantages de la présente invention rassortiront plus clairement de la description détaillée qui suit d’un mode de mise en œuvre du procédé selon l’invention, cet exemple étant donné à titre purement illustratif et non limitatif seulement en liaison avec le dessin annexé sur lequel: <tb>- la fig. 1<sep>est une vue en perspective d’un composant horloger réalisé par électrodéposition de NiP12 selon le procédé LIGA, et <tb>- la fig. 2<sep>est une vue en perspective du composant horloger de la fig. 1 monté sur un posage pour la mise en œuvre du procédé de l’invention.Other features and advantages of the present invention will be more clearly described in the following detailed description of an embodiment of the method according to the invention, this example being given for purely illustrative and not limiting purposes only in connection with the appended drawing in which: <tb> - fig. 1 <sep> is a perspective view of a watch component made by electroplating NiP12 according to the LIGA method, and <tb> - fig. 2 <sep> is a perspective view of the watch component of FIG. 1 mounted on a setting for the implementation of the method of the invention.

[0019] La présente invention procède de l’idée générale inventive qui consiste à chauffer brièvement et de manière très localisée un composant micromécanique horloger afin de modifier les propriétés physiques telles que la dureté, la ductilité ou le magnétisme de la zone chauffée. Par composant micromécanique horloger, on entend tout type de pièce telle qu’engrenage, roue dentée ou autre utilisée dans un mouvement horloger et obtenue soit par des procédés conventionnels de mise en forme de matériaux pouvant subir un traitement de trempe, soit par le procédé LIGA. On s’est en effet rendu compte, lors de certains tests de vieillissement, que des composants en nickel/phosphore à 12% en poids de phosphore obtenus par le procédé LIGA présentaient une usure anormalement rapide. Pour résoudre ce problème, il a été envisagé de durcir ces composants tels que des engrenages dans les régions où ceux-ci sont en contact avec des composants adjacents. Néanmoins, la seule technique connue pour augmenter la dureté de composants mécaniques consiste à chauffer localement ces composants. Or, le chauffage de tels composants, s’il permet d’augmenter leur dureté, s’accompagne en même temps d’une fragilisation des zones chauffées. Cette technique est utilisée avec succès pour des pièces massives destinées par exemple à l’aéronautique ou à l’automobile. En effet, étant donné leurs dimensions, de telles pièces massives présentent une inertie thermique suffisamment élevée pour que seules les zones chauffées soient affectées par le traitement thermique, la phase de la pièce dans sa partie non traitée restant inchangée. Il n’en va par contre pas de même dans le domaine de l’horlogerie où les composants sont de très petites dimensions et présentent une inertie thermique très faible. Malgré tout, la demanderesse, allant à rencontre de ces préjugés, s’est rendu compte qu’en chauffant de manière très localisée et pendant un laps de temps très court des composants micromécaniques horlogers, il était possible d’augmenter la dureté des zones chauffées sans affecter la phase des composants horlogers dans leur partie non traitée et donc leur tenue mécanique. Dans le cas particulier d’une roue dentée réalisée en un alliage de nickel et de phosphore à 12% en poids de phosphore, la demanderesse s’est aperçue qu’un chauffage localisé en bout des dents de l’engrenage s’accompagnait d’une transformation de phases. En effet, l’alliage qui est initialement à l’état amorphe, subit une séparation de phase avec précipitation des composants nickel et phosphore sous la forme de nickel et de Ni3P. Parallèlement, cette transformation de phases s’accompagne d’une augmentation de la dureté des zones chauffées d’un facteur 2 environ. Cette dernière indication permet également de comprendre qu’il n’est pas envisageable que la dureté de l’engrenage augmente dans de telles proportions dans tout le volume de la pièce, faute de quoi de telles pièces ne pourraient plus être montées selon les techniques traditionnelles de chassage par risque de les casser. Enfin, on observe une légère magnétisation des zones fonctionnelles localement chauffées des composants, sans que cela atteigne pour autant des valeurs préjudiciables. The present invention proceeds from the general inventive idea of heating briefly and very localized micromechanical component clock to change the physical properties such as hardness, ductility or magnetism of the heated area. By micromechanical component watchmaker means any type of piece such as gear, gear or other used in a watch movement and obtained either by conventional methods of shaping materials that can undergo a quenching treatment, or by the LIGA process . It has indeed been found, in some aging tests, that nickel / phosphorus components with 12% by weight of phosphorus obtained by the LIGA process showed abnormally rapid wear. To solve this problem, it has been contemplated to cure such components as gears in regions where they are in contact with adjacent components. Nevertheless, the only known technique for increasing the hardness of mechanical components is to heat these components locally. However, the heating of such components, if it increases their hardness, is accompanied at the same time of embrittlement of the heated zones. This technique is used successfully for massive parts intended for example in the aeronautics or the automobile. Indeed, given their size, such massive parts have a sufficiently high thermal inertia so that only the heated zones are affected by the heat treatment, the phase of the part in its untreated portion remaining unchanged. However, this is not the case in the field of watchmaking where the components are very small and have a very low thermal inertia. Nevertheless, the plaintiff, going against these prejudices, realized that by heating in a very localized way and for a very short time micromechanical components watchmakers, it was possible to increase the hardness of the heated zones without affecting the phase of the watch components in their untreated part and therefore their mechanical strength. In the particular case of a gear wheel made of an alloy of nickel and phosphorus at 12% by weight of phosphorus, the Applicant has found that localized heating at the end of the teeth of the gear was accompanied by a phase transformation. Indeed, the alloy which is initially in the amorphous state undergoes a phase separation with precipitation of the nickel and phosphorus components in the form of nickel and Ni3P. At the same time, this phase transformation is accompanied by an increase in the hardness of the heated zones by a factor of about 2. This last indication also makes it possible to understand that it is not conceivable that the hardness of the gear increases in such proportions throughout the volume of the part, otherwise such parts could no longer be mounted according to traditional techniques. of hunting by risk of breaking them. Finally, there is a slight magnetization of the locally heated functional areas of the components, without this reaching damaging values.

[0020] La fig. 1 est une vue de dessus d’un composant horloger réalisé par électrodéposition de NiP12 selon le procédé LIGA. Dans l’exemple illustré, le composant horloger est une roue. Désignée dans son ensemble par la référence numérique générale 1, cette roue comprend un moyeu 2 à partir duquel s’étend radialement une pluralité de dents 4 régulièrement espacées. Cette roue 1 comprend une face supérieure 6 et une face inférieure 8. FIG. 1 is a top view of a watch component made by electroplating NiP12 according to the LIGA method. In the illustrated example, the watch component is a wheel. Designated as a whole by the general numerical reference 1, this wheel comprises a hub 2 from which radially extends a plurality of teeth 4 regularly spaced. This wheel 1 comprises an upper face 6 and a lower face 8.

[0021] Le tableau ci-dessous résume les mesures de dureté Vickers effectuées en différents points de la roue 1 illustrée à la figure 1. Ces mesures de dureté ont été effectuées sur les faces supérieures 6 et inférieure 8 de deux pièces différentes mais de géométries identiques obtenues par électrodéposition de NiP12 selon le même procédé LIGA. <tb><sep>Pièce 1<sep><sep>Pièce 2<sep> <tb>Point de mesure<sep>Dessus<sep>Dessous<sep>Dessus<sep>Dessous <tb>Dent 4<sep>1020<sep>998<sep>996<sep>1010 <tb>Moyeu 2<sep>613<sep>607<sep>605<sep>607The table below summarizes the Vickers hardness measurements made at different points of the wheel 1 illustrated in FIG. 1. These hardness measurements were made on the upper faces 6 and lower 8 of two different pieces but of geometries. identical obtained by electrodeposition of NiP12 according to the same method LIGA. <tb> <sep> Room 1 <sep> <sep> Room 2 <sep> <tb> Measuring point <sep> Top <sep> Bottom <sep> Top <sep> Bottom <tb> Dent 4 <sep> 1020 <sep> 998 <sep> 996 <sep> 1010 <tb> Hub 2 <sep> 613 <sep> 607 <sep> 605 <sep> 607

[0022] La dureté du NiP12 amorphe après procédé LIGA mais avant traitement thermique est de 590 Hv +/- 30 Hv. On constate que la dureté du moyeu 2 de la roue 1 après traitement thermique selon l’invention est comprise entre 605 et 613 Hv selon la pièce considérée et selon que la mesure ait été effectuée sur la face supérieure ou sur la face inférieure de la pièce. On comprend donc, au vu des résultats qui précèdent, que la dureté du moyeu 2 de la roue 1 n’est nullement affectée par le traitement thermique auquel sont soumises les dents 4 de la roue 1. Par contre, la dureté d’une dent 4 après que son extrémité ait été traitée thermiquement au moyen d’un faisceau laser est comprise, selon la pièce considérée et selon que la mesure ait été effectuée sur la face supérieure ou la face inférieure de la dent 4, entre 996 et 1020 Hv, ce qui représente une augmentation de la dureté de l’extrémité de la dent de l’ordre de 50% par rapport à la dureté du matériau amorphe directement issu du procédé LIGA et non traité thermiquement. The hardness of the amorphous NiP12 after LIGA process but before heat treatment is 590 Hv +/- 30 Hv. It can be seen that the hardness of the hub 2 of the wheel 1 after heat treatment according to the invention is between 605 and 613 Hv depending on the part under consideration and according to whether the measurement has been made on the upper face or on the lower face of the part. . It is therefore clear from the foregoing results that the hardness of the hub 2 of the wheel 1 is not affected by the heat treatment to which the teeth 4 of the wheel 1 are subjected. On the other hand, the hardness of a tooth 4 after its end has been thermally treated by means of a laser beam is included, according to the room considered and according to whether the measurement was performed on the upper face or the lower face of the tooth 4, between 996 and 1020 Hv, which represents an increase in the hardness of the end of the tooth of the order of 50% relative to the hardness of the amorphous material directly from the LIGA process and not heat treated.

[0023] On constate donc, au vu de ce qui précède, que la dureté des zones traitées thermiquement augmente dans un rapport compris de l’ordre de 50% par rapport au matériau NiP12 en phase amorphe obtenu directement par le procédé LIGA. On notera que le changement de structure du matériau NiP12 d’un état amorphe après électrodéposition à un état dans lequel il subit une séparation de phase avec précipitation des composants nickel et phosphore sous la forme de nickel et de NI3P est observé dès 200 °C. It is thus seen, in view of the foregoing, that the hardness of the heat-treated areas increases in a ratio of the order of 50% with respect to the NiP12 material in amorphous phase obtained directly by the LIGA process. It will be noted that the change of structure of the NiP12 material from an amorphous state after electrodeposition to a state in which it undergoes a phase separation with precipitation of the nickel and phosphorus components in the form of nickel and NI3P is observed from 200 ° C.

[0024] Il va de soi que la présente invention n’est pas limitée au mode de mise en œuvre qui vient d’être décrit et que diverses modifications et variantes simples peuvent être envisagées par l’homme du métier sans sortir du cadre des revendications annexées à la présente demande de brevet. En particulier, on peut imaginer de chauffer les composants tels que des roues par induction. Dans ce cas, on utilise un anneau posé sur la roue et dont le diamètre correspond au diamètre extérieur de la roue, puis on fait circuler un courant alternatif dans l’anneau. It goes without saying that the present invention is not limited to the embodiment that has just been described and that various modifications and simple variants can be envisaged by the skilled person without departing from the scope of the claims. annexed to this patent application. In particular, one can imagine heating components such as induction wheels. In this case, use is made of a ring placed on the wheel and whose diameter corresponds to the outside diameter of the wheel, then an alternating current is circulated in the ring.

[0025] Le mérite inventif de la demanderesse est d’avoir été capable d’aller à rencontre des préjugés de l’état de la technique. En effet, il est connu que pour accroître la dureté des zones fonctionnelles de pièces massives, on peut chauffer ces zones. Néanmoins, le chauffage s’accompagne d’une fragilisation et d’une magnétisation des zones chauffées. Dans le cas de pièces massives, cela n’est toutefois pas problématique car la pièce dans son volume n’est pas affectée. Il en va tout autrement avec des composants micromécaniques horlogers dont les dimensions et la masse sont faibles et dont on pouvait donc penser qu’ils seraient affectés par le traitement thermique même dans leurs parties non traitées. Bien au contraire, la demanderesse a réussi à démontrer que non seulement un chauffage localisé des zones fonctionnelles d’un composant horloger tel qu’une roue était possible, mais encore qu’un tel chauffage s’accompagnait uniquement d’un durcissement des zones chauffées, tandis que le composant conservait sa phase primitive dans ses zones non traitées. Le résultat de l’invention est un composant horloger dont les zones fonctionnelles sont durcies et donc plus résistantes avec un moyeu qui reste ductile et qui peut donc être assemblé par chassage selon les techniques traditionnelles. The inventive merit of the plaintiff is to have been able to go against prejudices of the state of the art. Indeed, it is known that to increase the hardness of the functional areas of massive parts, these areas can be heated. Nevertheless, the heating is accompanied by embrittlement and magnetization of the heated areas. In the case of massive pieces, however, this is not problematic because the piece in its volume is not affected. It is quite different with micromechanical watchmaking components whose dimensions and mass are low and which one could think that they would be affected by the heat treatment even in their untreated parts. On the contrary, the applicant has succeeded in demonstrating that not only localized heating of the functional areas of a watch component such as a wheel was possible, but that such heating was accompanied only by hardening of the heated zones. while the component kept its primitive phase in its untreated zones. The result of the invention is a watch component whose functional areas are hardened and therefore more resistant with a hub which remains ductile and which can therefore be assembled by driving according to traditional techniques.

[0026] Bien évidemment, on comprendra qu’en fonction des besoins spécifiques, on peut chercher à modifier d’autres propriétés physiques des composants horlogers. C’est ainsi que l’on peut, par exemple, vouloir rendre un composant localement magnétique, ou bien modifier la ductilité d’un tel composant, soit dans le sens d’un accroissement, soit dans le sens d’une diminution. Il faut en effet bien comprendre que l’apport inventif de l’invention ne se résume pas simplement à une augmentation localisée de la dureté de composants micromécaniques horlogers, mais que cet apport concerne très généralement la modification localisée et contrôlée par traitement thermique des propriétés physiques de tels composants. Of course, it will be understood that depending on the specific needs, one can seek to modify other physical properties of the watch components. Thus it is possible, for example, to make a locally magnetic component, or to modify the ductility of such a component, either in the sense of an increase, or in the sense of a decrease. It must indeed be understood that the inventive contribution of the invention is not simply a localized increase in the hardness of micromechanical watch components, but that this contribution very generally relates to localized and controlled modification by heat treatment of physical properties. such components.

[0027] Pour la mise en œuvre du procédé selon l’invention, on peut avantageusement utiliser un posage 10 tel qu’illustré à la . 2. Ce posage 10 se présente sous la forme d’un cylindre étage avec une première portion 12 dont le diamètre extérieur correspond sensiblement au diamètre intérieur du moyeu 2 de la roue 1, et avec une seconde portion 14 dont le diamètre extérieur est supérieur à celui de la première portion 12 de façon que la roue 1 puisse prendre appui. De l’avis de la demanderesse, un tel posage 10 joue un rôle dans la réussite de la mise en œuvre du procédé selon l’invention. En effet, dans le cas de la roue dentée 1 illustrée à la fig. 2, les dimensions des dents 4 sont faibles par rapport à celles du moyeu 2 de la roue 1, de sorte que le moyeu 2 de la roue 1 joue le rôle de puits de chaleur et que cette chaleur diffuse dans le posage 10. Ainsi, la température du moyeu 2 de la roue 1 n’atteint jamais des valeurs qui provoqueraient une transformation de phase et une augmentation concomitante de sa dureté. For the implementation of the method according to the invention, it is advantageous to use a pose 10 as illustrated in FIG. 2. This setting 10 is in the form of a stage cylinder with a first portion 12 whose outer diameter substantially corresponds to the inner diameter of the hub 2 of the wheel 1, and with a second portion 14 whose outer diameter is greater than that of the first portion 12 so that the wheel 1 can bear. In the opinion of the applicant, such a pose plays a role in the successful implementation of the method according to the invention. Indeed, in the case of the toothed wheel 1 illustrated in FIG. 2, the dimensions of the teeth 4 are small relative to those of the hub 2 of the wheel 1, so that the hub 2 of the wheel 1 acts as a heat sink and this heat diffuses in the setting 10. Thus, the temperature of the hub 2 of the wheel 1 never reaches values which would cause a phase transformation and a concomitant increase in its hardness.

Claims (6)

1. Procédé de traitement thermique d’un composant micromécanique horloger, ce procédé comprenant l’étape qui consiste à chauffer localement une zone du composant micromécanique horloger dont on souhaite modifier les propriétés physiques par modification locale de la phase, le composant étant chauffé durant un laps de temps suffisamment court pour que seule la zone chauffée localement soit affectée par le traitement thermique, la phase du composant restant inchangée dans ses parties non traitées.1. A method of heat treatment of a micromechanical watchmaker component, this method comprising the step of locally heating a zone of the watchmaking micromechanical component whose physical properties are to be modified by local modification of the phase, the component being heated during a a period of time sufficiently short that only the locally heated zone is affected by the heat treatment, the component phase remaining unchanged in its untreated portions. 2. Procédé selon la revendication 1, caractérisé en ce que l’on chauffe localement la zone du composant micromécanique horloger pour en augmenter la dureté.2. Method according to claim 1, characterized in that the zone of the watchmaking micromechanical component is heated locally to increase the hardness thereof. 3. Procédé selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que, pour durcir localement le composant, on utilise un faisceau laser, un système de chauffage par induction, un micro-chalumeau ou bien un élément préalablement chauffé qui chauffe localement le composant soit par contact direct, soit par rayonnement.3. Method according to any one of claims 1 or 2, characterized in that, to locally harden the component, using a laser beam, an induction heating system, a micro-blowtorch or a preheated element that heats locally the component either by direct contact or by radiation. 4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que le procédé s’applique à tout type de pièce micromécanique horlogère issue du procédé LIGA et réalisée en un matériau tel que les nickels et les alliages de nickel et de phosphore, de tungstène ou de fer, ainsi qu’à des pièces micromécaniques horlogères issues de procédés conventionnels et réalisées dans des matériaux pouvant subir un traitement de trempe comme les aciers au carbone ou les alliages à durcissement structural tels que les alliages cuivre/béryllium.4. Method according to any one of claims 1 to 3, characterized in that the method is applicable to any type of micromechanical watchmaking part from the LIGA process and made of a material such as nickel and alloys of nickel and nickel. phosphor, tungsten or iron, as well as micromechanical watchmaking parts derived from conventional processes and made of tempering process materials such as carbon steels or structurally hardened alloys such as copper / beryllium alloys. 5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la zone du composant qui doit être chauffée localement est portée à une température d’au moins 200 °C.5. Method according to any one of claims 1 to 4, characterized in that the region of the component to be heated locally is brought to a temperature of at least 200 ° C. 6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que, pour la mise en œuvre du procédé, le composant micromécanique horloger est posé sur un posage (10) dans lequel la chaleur induite par le chauffage diffuse.6. Method according to any one of claims 1 to 5, characterized in that, for the implementation of the method, the watchmaking micromechanical component is placed on a setting (10) in which the heat induced by the diffuse heating.
CH17292011A 2011-10-27 2011-10-27 Thermally treating a micromechanical horological component e.g. cog wheel, by heating part of component to increase its hardness so that the heated part is affected by thermal treatment and the untreated part remains unchanged CH705667A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CH17292011A CH705667A2 (en) 2011-10-27 2011-10-27 Thermally treating a micromechanical horological component e.g. cog wheel, by heating part of component to increase its hardness so that the heated part is affected by thermal treatment and the untreated part remains unchanged
CH13642012A CH705680A2 (en) 2011-10-27 2012-08-15 Process of thermal treatment of pieces micromecaniques horlogères.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH17292011A CH705667A2 (en) 2011-10-27 2011-10-27 Thermally treating a micromechanical horological component e.g. cog wheel, by heating part of component to increase its hardness so that the heated part is affected by thermal treatment and the untreated part remains unchanged

Publications (1)

Publication Number Publication Date
CH705667A2 true CH705667A2 (en) 2013-04-30

Family

ID=48144464

Family Applications (2)

Application Number Title Priority Date Filing Date
CH17292011A CH705667A2 (en) 2011-10-27 2011-10-27 Thermally treating a micromechanical horological component e.g. cog wheel, by heating part of component to increase its hardness so that the heated part is affected by thermal treatment and the untreated part remains unchanged
CH13642012A CH705680A2 (en) 2011-10-27 2012-08-15 Process of thermal treatment of pieces micromecaniques horlogères.

Family Applications After (1)

Application Number Title Priority Date Filing Date
CH13642012A CH705680A2 (en) 2011-10-27 2012-08-15 Process of thermal treatment of pieces micromecaniques horlogères.

Country Status (1)

Country Link
CH (2) CH705667A2 (en)

Also Published As

Publication number Publication date
CH705680A2 (en) 2013-04-30

Similar Documents

Publication Publication Date Title
EP2586880B1 (en) Verfahren zur thermischen Behandlung von mikromechanischen Bauteilen von Uhren
EP2757423B1 (en) Part for clockwork
CH707503A2 (en) Pivoting axle i.e. non-magnetic balance axle, for clockwork movement of timepiece, has pivot made of composite material having metal matrix charged with hard particles in order to limit sensitivity of axle to magnetic fields
CH707504A2 (en) Metal pivoting axle e.g. non-magnetic balance axle, for clockwork movement of watch, has pivot arranged at end, where axle is made of metal e.g. titanium and titanium alloy, in order to limit sensitivity of pivoting axle to magnetic fields
EP3273303A1 (en) Part for clock movement
EP3273306A1 (en) Part for clock movement
WO2019145434A1 (en) Pivoting pin of a regulator
FR3032723A1 (en) PROCESS FOR MANUFACTURING A PIECE OF LOW-ALLOY NITRIDE STEEL
EP2631721A1 (en) Diamond-covered titanium clock components
EP3273304B1 (en) Part for clock movement
CH712719A2 (en) Watchmaking component for watch movement.
CH705667A2 (en) Thermally treating a micromechanical horological component e.g. cog wheel, by heating part of component to increase its hardness so that the heated part is affected by thermal treatment and the untreated part remains unchanged
CH712718A2 (en) Pivot axis for watch movement.
EP3273305B1 (en) Part for clock movement
CH716669A1 (en) Method of manufacturing a pendulum pivot shaft.
EP3800511B1 (en) Pivoting shaft for a regulating organ
CH707505B1 (en) Metal pivot pin for watch movement and method of manufacturing such a pin.
WO2022223477A1 (en) Timepiece component and method for manufacturing such a timepiece component
CH706654A2 (en) Main spring for barrel of timepiece, has metal strip whose external surface is hardened with respect to rest of strip according to preset depth in order to harden strip on level of main stress zones while maintaining low elastic modulus
CH716664A2 (en) Non-magnetic and hard watch component, in particular the pivot axis of a regulating organ.
EP3339968A1 (en) Part for clock movement
CH712720A2 (en) Pivot axis for watch movement.
CH718550A2 (en) Watchmaking pivot pin and method of manufacturing such a watchmaking pivot pin.
WO2022223478A1 (en) Method for manufacturing a timepiece pivot pin and timepiece pivot pin obtained by said method
CH718549A2 (en) Watch component and method of manufacturing such a watch component.

Legal Events

Date Code Title Description
AZW Rejection (application)