CH699476A2 - Fabricating a watch component made of silicon, comprises forming the component by etching of silicon, and rounding the edges of the component by polishing the component in bulk, where one of the edges is defined by a surface of component - Google Patents

Fabricating a watch component made of silicon, comprises forming the component by etching of silicon, and rounding the edges of the component by polishing the component in bulk, where one of the edges is defined by a surface of component Download PDF

Info

Publication number
CH699476A2
CH699476A2 CH01382/08A CH13822008A CH699476A2 CH 699476 A2 CH699476 A2 CH 699476A2 CH 01382/08 A CH01382/08 A CH 01382/08A CH 13822008 A CH13822008 A CH 13822008A CH 699476 A2 CH699476 A2 CH 699476A2
Authority
CH
Switzerland
Prior art keywords
component
silicon
edges
forming
etching
Prior art date
Application number
CH01382/08A
Other languages
French (fr)
Other versions
CH699476B1 (en
Inventor
Anthony Kruettli
Frederic Maier
Original Assignee
Patek Philippe Sa Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe Sa Geneve filed Critical Patek Philippe Sa Geneve
Priority to CH01382/08A priority Critical patent/CH699476B1/en
Publication of CH699476A2 publication Critical patent/CH699476A2/en
Publication of CH699476B1 publication Critical patent/CH699476B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0095Aspects relating to the manufacture of substrate-free structures, not covered by groups B81C99/008 - B81C99/009
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0069Watchmakers' or watch-repairers' machines or tools for working materials for working with non-mechanical means, e.g. chemical, electrochemical, metallising, vapourising; with electron beams, laser beams
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The process comprises forming the component (4) by etching of silicon, and rounding edges (9) of the component by polishing the component in bulk. One of the edges is defined by a surface of the component forming a right angle between the edges. The step of forming the component by silicon etching is conducted using the method of deep reactive ion etching. Before and after rounding step, a step of surface treatment is carried out for forming a silicon dioxide layer (2) having a thickness of less than 0.5 micron on the surface of the component to improve its mechanical strength. The process comprises forming the component (4) by etching of silicon, and rounding edges (9) of the component by polishing the component in bulk. One of the edges is defined by a surface of the component forming a right angle between the edges. The step of forming the component by silicon etching is conducted using the method of deep reactive ion etching. Before and after rounding step, a step of surface treatment is carried out for forming a silicon dioxide layer (2) having a thickness of less than 0.5 micron on the surface of the component to improve its mechanical strength. The step of forming the component by etching of silicon is carried out in a silicon layer comprising a polished surface.

Description

       

  [0001]    La présente invention concerne la fabrication de composants horlogers en silicium.

  

[0002]    Du fait de ses nombreux avantages, en particulier sa faible densité, son élasticité et son amagnétisme, le silicium est de plus en plus utilisé pour fabriquer des composants horlogers, notamment des composants de mouvement horloger tels que des roues, des ressorts-spiraux ou des échappements. Son utilisation dans ce but a été décrite notamment dans les demandes de brevet EP 0 732 635, EP 1 422 436, EP 1 473 604, EP 1 850 193, EP 1 826 635 et WO 2007/000 271.

  

[0003]    Le silicium présente néanmoins l'inconvénient d'être fragile. Un composant en silicium peut facilement se rompre, s'ébrécher ou se fissurer sous l'effet d'un choc ou lorsqu'il est manipulé. La manipulation de tels composants lors de l'assemblage d'un mouvement est donc délicate. Des ruptures de composants en silicium peuvent aussi se produire pendant leur fonctionnement lorsque la montre subit des chocs.

  

[0004]    Pour augmenter la résistance mécanique d'un composant en silicium, il est proposé dans la demande de brevet WO 2007/000 271 de le revêtir d'une couche de dioxyde de silicium d'épaisseur au moins cinq fois supérieure à l'épaisseur du dioxyde de silicium natif. Si cette solution permet effectivement de rendre le composant en silicium moins fragile, les risques de rupture de celui-ci restent élevés.

  

[0005]    La présente invention vise à proposer une autre manière d'augmenter la résistance mécanique d'un composant horloger en silicium, pouvant se cumuler avec celle consistant à revêtir le composant de dioxyde de silicium.

  

[0006]    A cette fin est prévu un procédé de fabrication d'un composant horloger en silicium, comprenant les étapes consistant à:
former le composant par gravure de silicium,
arrondir les arêtes du composant.

  

[0007]    Du fait que les composants horlogers en silicium sont obtenus par des techniques de micro-fabrication, leurs arêtes sont généralement très vives, c'est-à-dire ont un petit rayon de courbure. Les pressions exercées sur ces dernières lors de contacts ou chocs peuvent donc être très élevées et dépasser la limite élastique du silicium. Les arêtes constituent dès lors des zones de faiblesse dans lesquelles se produisent des ébréchures ou s'amorcent des ruptures ou fissures pouvant se propager selon des plans cristallins. En arrondissant les arêtes, on augmente localement le rayon de courbure et on diminue ainsi les pressions de contact à la surface du composant. Une augmentation sensible de la résistance mécanique du composant peut alors être obtenue.

  

[0008]    Il est certes connu dans la technique horlogère de travailler les arêtes de certaines pièces à l'aide d'outils abrasifs tels que des limes. C'est ce que l'on appelle "l'anglage". Mais les pièces en question sont métalliques et le but recherché est d'éliminer les bavures. De plus, dans l'anglage, on n'arrondit pas les arêtes mais on les remplace par des chanfreins ou biseaux, généralement taillés à 45[deg.].

  

[0009]    De préférence, l'étape d'arrondissement des arêtes comprend l'application d'un traitement de polissage en vrac au composant.

  

[0010]    Lesdites arêtes comprennent typiquement au moins une arête définie par des surfaces du composant formant un angle sensiblement droit entre elles.

  

[0011]    L'étape de formation du composant par gravure de silicium est de préférence réalisée selon la méthode de gravure ionique réactive profonde DRIE.

  

[0012]    Le procédé peut en outre comprendre, avant ou après l'étape d'arrondissement des arêtes, une étape de traitement de surface consistant à former une couche à la surface du composant pour augmenter encore sa résistance mécanique. Cette couche est de préférence en dioxyde de silicium et a de préférence une épaisseur au moins égale à 0,5 micron.

  

[0013]    L'étape de formation du composant par gravure de silicium peut être réalisée dans une couche de silicium comportant déjà au moins une surface polie.

  

[0014]    D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels:
<tb>la fig. 1 <sep>montre schématiquement un procédé de fabrication d'un ou plusieurs composants horlogers en silicium selon un mode de réalisation préféré de l'invention;


  <tb>la fig. 2 <sep>est une vue en perspective partielle d'une ancre d'échappement réalisée par DRIE, montrant plus particulièrement une palette de cette ancre;


  <tb>la fig. 3 <sep>est une vue en perspective partielle de la même ancre après arrondissement des arêtes.

  

[0015]    La fig. 1 montre les différentes étapes du mode de réalisation préféré du procédé selon l'invention.

  

[0016]    A une première étape (fig. 1a), on prépare une plaque de silicium sur isolant (SOI: Silicon On Insulator), constituée d'un empilement d'une couche de support 1 en silicium (Si), d'une deuxième couche 2 en dioxyde de silicium (SiOa) et d'une troisième couche 3 en silicium (Si). La couche 2 sert d'adhésif liant les couches 1 et 3. Dans les plaques SOI de ce type que l'on trouve sur le marché, la surface 1a de la couche de support 1 en contact avec la couche de dioxyde de silicium 2 est polie, de même que la surface 3a de la troisième couche 3 en contact avec la couche de dioxyde de silicium 2 et la surface 3b de la troisième couche 3 opposée à la surface 3a.

  

[0017]    A une deuxième étape (fig. 1b), on forme un masque de gravure (non représenté) sur la surface 3b et on grave la troisième couche 3 à travers ce masque selon le procédé DRIE de manière à former le composant souhaité ou un ensemble de composants souhaités dans la couche 3.

  

[0018]    A une troisième étape (fig. 1c), on enlève le masque de gravure. On enlève aussi la couche de dioxyde de silicium 2 pour séparer la troisième couche 3 de la couche de support 1 et séparer les différents composants 4 formés dans la troisième couche 3.

  

[0019]    Une quatrième étape peut être prévue (fig. 1d) consistant à revêtir les composants 4 d'une couche de dioxyde de silicium 5 sur toute leur surface extérieure pour augmenter leur résistance mécanique. Cette étape est réalisée par un traitement de surface tel qu'un traitement d'oxydation thermique, un dépôt chimique en phase vapeur (CVD) ou un dépôt physique en phase vapeur (PVD), afin d'obtenir une couche de dioxyde de silicium d'épaisseur supérieure à la couche de dioxyde de silicium dit "natif" se formant naturellement en présence d'air. L'épaisseur de la couche de dioxyde de silicium 5 est de préférence au moins égale à 0,5 micron.

  

[0020]    A l'issue de ces trois ou quatre étapes, les composants 4 obtenus ont une surface supérieure 6, une surface inférieure 7 et des flancs 8 formant chacun un angle sensiblement droit avec chacune des surfaces supérieure et inférieure 6, 7. Le procédé DRIE permet l'obtention d'une bonne perpendicularité entre les flancs 8 et les surfaces 6, 7, plus précisément d'un angle entre les flancs 8 et les surfaces 6, 7 s'écartant d'au plus 2[deg.] de l'angle droit. Du fait que les surfaces 3a et 3b étaient polies, les surfaces 6, 7 sont elles aussi polies. Les arêtes 9 entre les flancs 8 et les surfaces 6, 7 sont vives. La fig. 2 montre un exemple de composant, en l'occurrence une ancre d'échappement, tel qu'obtenu à l'issue de la troisième ou quatrième étape, avec ses arêtes vives 9.

  

[0021]    Conformément à l'invention, pour augmenter leur résistance mécanique, on fait subir aux composants 4, après la troisième étape, entre les troisième et quatrième étapes ou après la quatrième étape, un traitement supplémentaire consistant à arrondir leurs arêtes (fig. 1e). Travailler les arêtes à l'aide d'outils abrasifs, comme cela se fait dans l'anglage des pièces métalliques, n'est pas envisageable ici en raison de la fragilité du silicium. Pour arrondir les arêtes, la présente invention propose d'appliquer un traitement de polissage en vrac aux composants.

   Par polissage en vrac on entend un traitement dans lequel les composants sont placés à l'intérieur d'un contenant (cuve, chambre, bol,...) dans lequel se trouvent des éléments abrasifs et dans lequel un mouvement est entretenu pour produire des frottements entre les composants et les éléments abrasifs. Les éléments abrasifs sont généralement sous forme de particules portées par des corps porteurs de plus grande taille et l'ensemble comprenant les composants à traiter et les corps porteurs avec les particules abrasives peut être baigné dans un liquide. Le mouvement entretenu peut être un mouvement vibratoire ou de va-et-vient appliqué au contenant.

  

[0022]    Un tel polissage en vrac polit toute la surface extérieure de chaque composant. Les présents inventeurs ont constaté que, de manière surprenante, un tel polissage de toute la surface extérieure, pour arrondir les arêtes 9, pouvait être effectué sans dégrader les surfaces déjà polies 6, 7. Une condition à respecter néanmoins est d'écarter suffisamment les composants les uns des autres et de la paroi du contenant et d'entourer chacun des composants de suffisamment de corps porteurs et de particules abrasives pour éviter les chocs.

  

[0023]    Le polissage en vrac des composants dure typiquement entre 8 heures et 16 heures selon le type de composants (roues, roues dentées, ancres et roues d'échappement, balanciers, autres pièces pivotées, ressorts-spiraux, ressorts de barillet, ressorts de sautoir, paliers, etc.) que l'on souhaite traiter. Plus la durée du traitement est longue, plus le rayon de courbure des arêtes sera grand. On veillera toutefois à ce que le traitement reste suffisamment court pour que les cotes des composants ne soient sensiblement pas modifiées. La fig. 3 montre à titre d'illustration l'ancre de la fig. 2après l'étape de polissage en vrac.

  

[0024]    Un revêtement peut être formé à la surface des composants, par exemple un revêtement de carbone cristallisé sous forme de diamant (DLC), pour améliorer leurs propriétés tribologiques. Un tel revêtement peut être déposé sur le silicium lui-même, si la quatrième étape n'est pas mise en oeuvre, ou sur la couche de dioxyde de silicium 5 dans le cas contraire.

  

[0025]    La couche de dioxyde de silicium 5 peut être remplacée par une couche d'un autre matériau ayant aussi pour effet d'augmenter la résistance mécanique des composants, par exemple une couche de nitrure ou de carbure de silicium ou de carbure ou de nitrure de titane, comme cela est proposé également dans le document WO 2007/000 016 271.



  The present invention relates to the manufacture of watch components in silicon.

  

Due to its many advantages, in particular its low density, elasticity and non-magnetism, silicon is increasingly used to manufacture watch components, including watch movement components such as wheels, springs, and the like. spirals or exhausts. Its use for this purpose has been described in particular in patent applications EP 0 732 635, EP 1 422 436, EP 1 473 604, EP 1 850 193, EP 1 826 635 and WO 2007/000 271.

  

Silicon nevertheless has the disadvantage of being fragile. A silicon component can easily break, crack or crack under impact or when handled. The handling of such components during the assembly of a movement is therefore delicate. Breaks in silicon components may also occur during operation when the watch is shocked.

  

To increase the mechanical strength of a silicon component, it is proposed in the patent application WO 2007/000 271 to coat it with a silicon dioxide layer at least five times thicker than the thickness of the silicon component. thickness of native silicon dioxide. If this solution makes it possible to make the silicon component less fragile, the risks of breaking it remain high.

  

The present invention aims to provide another way to increase the mechanical strength of a silicon watch component, which can be combined with that of coating the silicon dioxide component.

  

For this purpose, there is provided a method for manufacturing a silicon watch component, comprising the steps of:
form the component by silicon etching,
round the edges of the component.

  

[0007] Because the silicon watch components are obtained by micro-fabrication techniques, their edges are generally very sharp, that is to say have a small radius of curvature. The pressures exerted on the latter during contact or impact can therefore be very high and exceed the elastic limit of silicon. The edges are therefore zones of weakness in which chipping occurs or breaks or cracks that can propagate in crystalline planes. By rounding the edges, the radius of curvature is increased locally and the contact pressures on the surface of the component are thus reduced. A substantial increase in the mechanical strength of the component can then be obtained.

  

It is certainly known in the art of horology to work the edges of some parts using abrasive tools such as files. This is called "champing". But the parts in question are metallic and the aim is to eliminate burrs. Moreover, in chamfering, the edges are not rounded off but are replaced by chamfers or bevels, usually cut to 45 [deg.].

  

[0009] Preferably, the edge-rounding step comprises applying a bulk polishing treatment to the component.

  

[0010] Said ridges typically comprise at least one edge defined by surfaces of the component forming a substantially straight angle between them.

  

The step of forming the component by silicon etching is preferably performed according to the method of deep reactive ion etching DRIE.

  

The method may further comprise, before or after the edge-rounding step, a surface treatment step of forming a layer on the surface of the component to further increase its mechanical strength. This layer is preferably made of silicon dioxide and preferably has a thickness of at least 0.5 micron.

  

The step of forming the component by silicon etching may be performed in a silicon layer already having at least one polished surface.

  

Other features and advantages of the present invention will appear on reading the following detailed description with reference to the accompanying drawings, in which:
<tb> fig. 1 <sep> schematically shows a method of manufacturing one or more silicon watch components according to a preferred embodiment of the invention;


  <tb> fig. 2 <sep> is a partial perspective view of an exhaust anchor made by DRIE, showing more particularly a pallet of this anchor;


  <tb> fig. 3 <sep> is a partial perspective view of the same anchor after rounding the edges.

  

FIG. 1 shows the different steps of the preferred embodiment of the method according to the invention.

  

In a first step (FIG 1a), a silicon on insulator (SOI: Silicon On Insulator) plate consisting of a stack of a support layer 1 made of silicon (Si), of a second layer 2 of silicon dioxide (SiOa) and a third layer 3 of silicon (Si). Layer 2 serves as an adhesive bonding layers 1 and 3. In SOI plates of this type found on the market, the surface 1a of the support layer 1 in contact with the layer of silicon dioxide 2 is polished, as well as the surface 3a of the third layer 3 in contact with the silicon dioxide layer 2 and the surface 3b of the third layer 3 opposite the surface 3a.

  

In a second step (FIG 1b), an etching mask (not shown) is formed on the surface 3b and the third layer 3 is etched through this mask according to the DRIE method so as to form the desired component or a set of desired components in layer 3.

  

In a third step (Figure 1c), the etching mask is removed. The silicon dioxide layer 2 is also removed to separate the third layer 3 from the support layer 1 and separate the various components 4 formed in the third layer 3.

  

A fourth step may be provided (FIG 1d) of coating the components 4 with a layer of silicon dioxide 5 over their entire outer surface to increase their mechanical strength. This step is carried out by a surface treatment such as a thermal oxidation treatment, a chemical vapor deposition (CVD) or a physical vapor deposition (PVD), in order to obtain a layer of silicon dioxide. greater thickness than the so-called "native" silicon dioxide layer forming naturally in the presence of air. The thickness of the silicon dioxide layer 5 is preferably at least 0.5 micron.

  

At the end of these three or four steps, the components 4 obtained have an upper surface 6, a lower surface 7 and sidewalls 8 each forming a substantially straight angle with each of the upper and lower surfaces 6, 7. DRIE method makes it possible to obtain a good perpendicularity between the flanks 8 and the surfaces 6, 7, more precisely of an angle between the flanks 8 and the surfaces 6, 7 diverging by at most 2 [deg.] from the right angle. Because the surfaces 3a and 3b were polished, the surfaces 6, 7 are also polished. The edges 9 between the flanks 8 and the surfaces 6, 7 are sharp. Fig. 2 shows an example of a component, in this case an escape anchor, as obtained at the end of the third or fourth step, with its sharp edges 9.

  

According to the invention, to increase their mechanical strength, is subjected to the components 4, after the third step, between the third and fourth steps or after the fourth step, an additional treatment of rounding their edges (Fig. 1e). Working the edges using abrasive tools, as is done in chamfering metal parts, is not feasible here because of the fragility of silicon. To round the edges, the present invention proposes to apply a bulk polishing treatment to the components.

   Bulk polishing means a treatment in which the components are placed inside a container (tank, chamber, bowl, etc.) in which abrasive elements are located and in which a movement is maintained to produce friction between components and abrasive elements. The abrasive elements are generally in the form of particles carried by carrying bodies of larger size and the assembly comprising the components to be treated and the carrier bodies with the abrasive particles may be bathed in a liquid. The maintained movement may be a vibratory movement or back and forth applied to the container.

  

Such polishing in bulk polishes the entire outer surface of each component. The present inventors have found that, surprisingly, such polishing of the entire outer surface, to round the ridges 9, could be performed without degrading the already polished surfaces 6, 7. A condition to be respected nevertheless is to separate sufficiently the components of each other and the container wall and surround each of the components with sufficient carrier bodies and abrasive particles to prevent shocks.

  

The bulk polishing of the components typically lasts between 8 hours and 16 hours depending on the type of components (wheels, gears, anchors and escape wheels, rockers, other pivoted parts, coil springs, barrel springs, springs jumper, bearings, etc.) that one wishes to treat. The longer the treatment time, the greater the radius of curvature of the edges. However, care should be taken that the processing remains short enough so that the component ratings are not substantially altered. Fig. 3 shows by way of illustration the anchor of FIG. 2 after the polishing step in bulk.

  

[0024] A coating may be formed on the surface of the components, for example a crystallized carbon diamond coating (DLC), to improve their tribological properties. Such a coating can be deposited on the silicon itself, if the fourth step is not implemented, or on the silicon dioxide layer 5 in the opposite case.

  

The silicon dioxide layer 5 may be replaced by a layer of another material also having the effect of increasing the mechanical strength of the components, for example a layer of nitride or silicon carbide or carbide or titanium nitride, as also proposed in WO 2007/000 016 271.


    

Claims (8)

1. Procédé de fabrication d'un composant horloger en silicium, comprenant les étapes consistant à: A method of manufacturing a silicon watch component, comprising the steps of: - former le composant par gravure de silicium, - forming the component by silicon etching, - arrondir les arêtes du composant. - round the edges of the component. 2. Procédé selon la revendication 1, caractérisé en ce que l'étape d'arrondissement des arêtes comprend l'application d'un traitement de polissage en vrac au composant. 2. Method according to claim 1, characterized in that the step of rounding the edges comprises the application of a polishing treatment in bulk to the component. 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que lesdites arêtes comprennent au moins une arête définie par des surfaces du composant formant un angle sensiblement droit entre elles. 3. Method according to claim 1 or 2, characterized in that said ridges comprise at least one edge defined by surfaces of the component forming a substantially straight angle between them. 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'étape de formation du composant par gravure de silicium est réalisée selon la méthode de gravure ionique réactive profonde. 4. Method according to any one of claims 1 to 3, characterized in that the step of forming the component by etching silicon is performed according to the method of deep reactive ion etching. 5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre, avant ou après l'étape d'arrondissement des arêtes, une étape de traitement de surface consistant à former une couche à la surface du composant pour améliorer sa résistance mécanique. 5. Method according to any one of claims 1 to 4, characterized in that it further comprises, before or after the step of rounding edges, a surface treatment step of forming a layer on the surface component to improve its mechanical strength. 6. Procédé selon la revendication 5, caractérisé en ce que l'étape de traitement de surface consiste à former une couche de dioxyde de silicium à la surface du composant. 6. The method of claim 5, characterized in that the surface treatment step comprises forming a layer of silicon dioxide on the surface of the component. 7. Procédé selon la revendication 6, caractérisé en ce que l'étape de traitement de surface consiste à former une couche de dioxyde de silicium d'épaisseur au moins égale à 0,5 micron à la surface du composant. 7. Method according to claim 6, characterized in that the surface treatment step consists in forming a layer of silicon dioxide having a thickness of at least 0.5 microns on the surface of the component. 8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'étape de formation du composant par gravure de silicium est réalisée dans une couche de silicium comportant déjà au moins une surface polie. 8. Method according to any one of claims 1 to 7, characterized in that the step of forming the component by etching silicon is performed in a silicon layer already having at least one polished surface.
CH01382/08A 2008-08-29 2008-08-29 A method of manufacturing a silicon timepiece component. CH699476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH01382/08A CH699476B1 (en) 2008-08-29 2008-08-29 A method of manufacturing a silicon timepiece component.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01382/08A CH699476B1 (en) 2008-08-29 2008-08-29 A method of manufacturing a silicon timepiece component.

Publications (2)

Publication Number Publication Date
CH699476A2 true CH699476A2 (en) 2010-03-15
CH699476B1 CH699476B1 (en) 2013-03-28

Family

ID=42005847

Family Applications (1)

Application Number Title Priority Date Filing Date
CH01382/08A CH699476B1 (en) 2008-08-29 2008-08-29 A method of manufacturing a silicon timepiece component.

Country Status (1)

Country Link
CH (1) CH699476B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2727880A1 (en) * 2012-11-05 2014-05-07 GFD Gesellschaft für Diamantprodukte mbH Three-dimensional, micromechanical component having chamfer and method for its production
EP2840059A1 (en) * 2013-08-20 2015-02-25 Sigatec SA Manufacturing process for a micro-mechanical component and component manufactured with this process
EP3109199A1 (en) * 2015-06-25 2016-12-28 Nivarox-FAR S.A. Silicon-based part with at least one chamfer and method for manufacturing same
EP3109200A1 (en) * 2015-06-25 2016-12-28 Nivarox-FAR S.A. Micromechanical part with reduced contact surface and method for manufacturing same
CN107533319A (en) * 2015-03-11 2018-01-02 西铁城时计株式会社 The manufacture method of the power conductor of clock and watch and the power conductor of clock and watch
EP3557333A1 (en) * 2018-04-16 2019-10-23 Patek Philippe SA Genève Method for manufacturing a timepiece mainspring

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2727880A1 (en) * 2012-11-05 2014-05-07 GFD Gesellschaft für Diamantprodukte mbH Three-dimensional, micromechanical component having chamfer and method for its production
EP2840059A1 (en) * 2013-08-20 2015-02-25 Sigatec SA Manufacturing process for a micro-mechanical component and component manufactured with this process
CH708453A1 (en) * 2013-08-20 2015-02-27 Sigatec Sa A method of manufacturing a micro-mechanical part and the part produced by using this method.
CN107533319A (en) * 2015-03-11 2018-01-02 西铁城时计株式会社 The manufacture method of the power conductor of clock and watch and the power conductor of clock and watch
CN107533319B (en) * 2015-03-11 2020-02-21 西铁城时计株式会社 Power conductor for timepiece and method of manufacturing power conductor for timepiece
US10303121B2 (en) 2015-03-11 2019-05-28 Citizen Watch Co., Ltd. Power transmission body of timepiece and method of manufacturing power transmission body of timepiece
US10197973B2 (en) 2015-06-25 2019-02-05 Nivarox-Far S.A. Silicon-based component with at least one chamfer and its fabrication method
US9731964B2 (en) 2015-06-25 2017-08-15 Nivarox-Far S.A. Micromechanical component with a reduced contact surface and its fabrication method
CN106276779A (en) * 2015-06-25 2017-01-04 尼瓦洛克斯-法尔股份有限公司 There is silica-based parts and the manufacture method thereof at least one inclined-plane
EP3109200A1 (en) * 2015-06-25 2016-12-28 Nivarox-FAR S.A. Micromechanical part with reduced contact surface and method for manufacturing same
RU2710522C1 (en) * 2015-06-25 2019-12-26 Ниварокс-Фар С.А. Silicon-based component having at least one chamfer and a method for production thereof
EP3109199A1 (en) * 2015-06-25 2016-12-28 Nivarox-FAR S.A. Silicon-based part with at least one chamfer and method for manufacturing same
TWI736533B (en) * 2015-06-25 2021-08-21 瑞士商尼瓦克斯 法爾公司 Silicon-based component with at least one chamfer and its fabrication method
EP3557333A1 (en) * 2018-04-16 2019-10-23 Patek Philippe SA Genève Method for manufacturing a timepiece mainspring
WO2019202378A1 (en) * 2018-04-16 2019-10-24 Patek Philippe Sa Geneve Method for manufacturing a silicon-based timepiece spring
CN111801627A (en) * 2018-04-16 2020-10-20 百达翡丽日内瓦公司 Method for manufacturing silicon-based clock spring
CN111801627B (en) * 2018-04-16 2021-12-28 百达翡丽日内瓦公司 Method for manufacturing silicon-based clock spring
US11796966B2 (en) 2018-04-16 2023-10-24 Patek Philippe Sa Geneve Method for producing a silicon-based timepiece spring

Also Published As

Publication number Publication date
CH699476B1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
CH699476A2 (en) Fabricating a watch component made of silicon, comprises forming the component by etching of silicon, and rounding the edges of the component by polishing the component in bulk, where one of the edges is defined by a surface of component
FR2842650A1 (en) Fabrication of substrates for optics, electronics, or optoelectronics, by implanting atomic species beneath front face of ingot to create zone of weakness, bonding support, and directly detaching portion of top layer bonded to support
EP2363879A2 (en) Method for manufacturing a multilayer structure with trimming by thermomechanical effects
EP1324385A2 (en) Process for transfering semiconductor thin layers and process for forming a donor wafer for such a transfer process
EP3465784B1 (en) Hybrid structure for a surface acoustic wave device
FR2926748A1 (en) OBJECT PROVIDED WITH A GRAPHIC ELEMENT REPORTED ON A SUPPORT AND METHOD OF MAKING SUCH AN OBJECT.
FR2957189A1 (en) METHOD OF MAKING A MULTILAYER STRUCTURE WITH POST GRINDING.
FR2926674A1 (en) METHOD OF MANUFACTURING A COMPOSITE STRUCTURE WITH A STABLE BONDING OXIDE LAYER
CH702431A2 (en) Fabricating a micromechanical part for mechanical movement of watch, comprises etching the part in substrate, and annealing the part in a reducing atmosphere to cause migration of atoms of the material from sharp edges to make edges round
EP3781992B1 (en) Method for manufacturing a timepiece mainspring of silicium based material
EP0844539B1 (en) Decorative element particularly component of a timepiece
EP2676288B1 (en) Method for producing a substrate holder
EP2472340A1 (en) Timepiece component and method for manufacturing same
EP1861873A1 (en) Method of producing a hetero-structure comprising at least one thick layer of semiconductor material
FR2928031A1 (en) METHOD OF TRANSFERRING A THIN LAYER TO A SUPPORT SUBSTRATE.
CH703445B1 (en) Silicon micromechanical part e.g. toothed wheel, for movement of mechanical timepiece i.e. mechanical watch, has two secant surfaces connected with each other by junction, where junction is in form of round stop
WO2010063636A1 (en) Ingot formed from basic ingots, wafer made from said ingot, and associated method
CH708998B1 (en) Clock component and method for reducing the coefficient of friction of a watch component.
FR2959596A1 (en) DETOURING SLURRY
EP2889702A2 (en) Anchor pallet for escapement of watch movement, and adapted manufacturing method
CH708926A2 (en) diamond mechanical parts and method of manufacturing a mechanical part in diamond for watch movement.
WO2023222398A1 (en) Method for transferring a layer from a source substrate to a destination substrate
WO2021186332A1 (en) Method for manufacturing a silicon-based timepiece component
EP3907565A1 (en) Method for manufacturing a silicon timepiece component
FR2967295A1 (en) PROCESS FOR PROCESSING A MULTILAYER STRUCTURE