La présente invention a pour objet un filtre à gaz combiné. Certaines opérations industrielles chargent l'air de particules en suspension genantes et dangereuses pour les personnes ainsi que pour la bienfacture du travail. L'air des locaux dans lesquelles se font ces opérations doit être purifié ou changé constamment.
Pour ce faire, il existe de nombreux filtres qui ont l'inconvénient de se colmater rapidement ou qui n'ont pas une efficacité optimum. Il existe également des installations de purification de l'air mais elles sont onéreuses et encombrantes.
L'invention decrite ci-dessous offre un filtre à gaz économique permettant le passage d'une quantité de gaz à filtrer considérable avant d'être colmaté, tout en ayant une efficacité remarquable.
Le filtre selon l'invention est conforme à la revendication 1. Les trois élements peuvent être liés entre eux le long de certains plis. Les deux premiers éléments faits d'un matériaux souple pouvant être travaillé, forment le préfiltre et l'ossature du filtre.
Le 3ème élément constitue la partie fine du filtre. Il peut être fait d'une natte de fibres ayant une texture assez lâche pour laisser passer le gaz sans créer de résistance tout en retenant les dernières particules que le préfiltre a laissé passer.
La description suivante se réfère au dessin annexé qui représente un exemple de réalisation d'un filtre à gaz selon l'invention sans aucun caractère limitatif.
La fig. 1 est une vue en élévation et éclatée d'un filtre selon l'invention.
La fig. 2 est une vue en coupe selon A-A de la fig. 1
La fig. 3 est une vue en coupe du filtre dans son état réduit pour le transport, la manutention ou le stockage.
La fig. 1 représente un filtre à gaz dans son étalement de travail. Il faut noter que le filtre peut s'utiliser dans toutes les positions, que le filtre peut être fabriqué avec des matériaux complétement ignifuge, par exemple les deux premières chicanes une et deux en aluminium, la troisième chicane en fibres de verre.
La première chicane est faite d'un matériau résistant mais pouvant être plié 1 fig. 3; elle présente des perforations 6 disposées en rangées parallèles.
Elle a des amorces de plis 8 passant par les rangées de perforations 6 et des amorces de plis 9 passant entre deux rangées de perforations. Une seconde chicane 2, faite d'un matériau ayant les mêmes propriétés que la première, présente egalement des perforations 7 disposées en rangées parallèles. Cette chicane 2 est pliée en zizag et présente des plis 10 passant par les rangées de perforations 7 et des plis 11 passant entre deux rangées de perforations. La chicane 2 développée est plus grande que la chicane 1; autrement dit, la distance entre deux plis consécutifs sur la chicane 2 est supérieure à la distance entre deux plis consécutifs sur la chicane 1. Les rangées de perforations 7 de la chicane 2 sont par conséquent aussi a plus grande distance les unes des autres que les rangées de perforations 6 de la chicane 1.
Il s'ensuit que lorsque les chicanes 1 et 2 sont réunies l'une à l'autre en mettant en contact les parties intérieures des plis 9 de la chicane 1 avec les parties extérieures des plis 10 de la chicane 2, des chambres 4 sont formées entre les deux chicanes, et les perforations d'une des chicane sont décalées par rapport aux perforations de l'autre chicane. Une troisième chicane 3 faite d'une natte de fibres naturelles ou synthétiques est liée aux plis 11 de la deuxième chicane.
Si l'on aspire du gaz chargé de particules en suspension au travers du filtre, le gaz vicié viendra se jeter contre la première chicane 1 et une partie des particules en suspension dans le gaz se déposera sur cette chicane 1. Ensuite, le gaz vicié pénètre par les perforations 6 dans les chambres 4 comme le montrent les flèches 14 et vient heurter la chicane 2 dans une zone non perforée. Ainsi, la majorité des particules se dépose sur cette zone. Après quoi, le gaz est refoulé le long des parois que forme la chicane 2 et s'échappe par les perforations 7 comme l'indiquent les flèches 16 et se projette sur la dernière chicane 3 qui, grace aux matériaux dont elle est constituée, nettoyera le gaz des dernières impuretés qu'il contient.
De nombreux essais pratiques nous montrent que de l'air souillé (par exemple un brouillard de peinture dans une installation de peinture au pistolet) après avoir traversé le filtre est pratiquement débarrasse de toutes impuretés et peut être rendu à l'air libre sans polluer l'environnement.
The present invention relates to a combined gas filter. Certain industrial operations charge the air with annoying suspended particles which are dangerous for people as well as for good working conditions. The air in the premises in which these operations are carried out must be constantly purified or changed.
To do this, there are many filters that have the disadvantage of clogging quickly or that do not have optimum efficiency. There are also air purification systems, but they are expensive and cumbersome.
The invention described below provides an economical gas filter allowing the passage of a considerable amount of gas to be filtered before being clogged, while having remarkable efficiency.
The filter according to the invention is in accordance with claim 1. The three elements can be linked together along certain folds. The first two elements made of a flexible material that can be worked, form the prefilter and the frame of the filter.
The third element constitutes the fine part of the filter. It can be made of a fiber mat having a texture loose enough to let the gas pass without creating resistance while retaining the last particles that the prefilter has let pass.
The following description refers to the appended drawing which represents an exemplary embodiment of a gas filter according to the invention without any limiting character.
Fig. 1 is an elevation and exploded view of a filter according to the invention.
Fig. 2 is a sectional view along A-A of FIG. 1
Fig. 3 is a sectional view of the filter in its reduced state for transport, handling or storage.
Fig. 1 shows a gas filter in its working spread. It should be noted that the filter can be used in all positions, that the filter can be made with completely fire-retardant materials, for example the first two baffles one and two in aluminum, the third baffle in glass fibers.
The first baffle is made of a resistant material but can be folded 1 fig. 3; it has perforations 6 arranged in parallel rows.
It has folds primers 8 passing through the rows of perforations 6 and folds primers 9 passing between two rows of perforations. A second baffle 2, made of a material having the same properties as the first, also has perforations 7 arranged in parallel rows. This baffle 2 is folded in a zizag and has folds 10 passing through the rows of perforations 7 and folds 11 passing between two rows of perforations. The developed baffle 2 is larger than the baffle 1; in other words, the distance between two consecutive folds on the baffle 2 is greater than the distance between two consecutive folds on the baffle 1. The rows of perforations 7 of the baffle 2 are therefore also at greater distance from each other than the rows of perforations 6 of the baffle 1.
It follows that when the baffles 1 and 2 are joined together by bringing the inner parts of the folds 9 of the baffle 1 into contact with the outer parts of the folds 10 of the baffle 2, chambers 4 are formed between the two baffles, and the perforations of one of the baffles are offset from the perforations of the other baffle. A third baffle 3 made of a mat of natural or synthetic fibers is linked to the folds 11 of the second baffle.
If gas charged with particles in suspension is sucked through the filter, the stale gas will come to be thrown against the first baffle 1 and a part of the particles in suspension in the gas will be deposited on this baffle 1. Then, the stale gas enters through the perforations 6 in the chambers 4 as shown by the arrows 14 and strikes the baffle 2 in an unperforated area. Thus, the majority of the particles are deposited on this area. After which, the gas is forced back along the walls formed by the baffle 2 and escapes through the perforations 7 as indicated by the arrows 16 and projects onto the last baffle 3 which, thanks to the materials of which it is made, will clean the gas of the last impurities it contains.
Numerous practical tests show us that contaminated air (for example a paint mist in a spray painting installation) after passing through the filter is practically free of all impurities and can be returned to the open air without polluting the air. 'environment.