CH383733A - Method for soldering a diamond to a metal setting - Google Patents

Method for soldering a diamond to a metal setting

Info

Publication number
CH383733A
CH383733A CH8048359A CH8048359A CH383733A CH 383733 A CH383733 A CH 383733A CH 8048359 A CH8048359 A CH 8048359A CH 8048359 A CH8048359 A CH 8048359A CH 383733 A CH383733 A CH 383733A
Authority
CH
Switzerland
Prior art keywords
diamond
titanium
alloy
soldering
soldered
Prior art date
Application number
CH8048359A
Other languages
German (de)
Inventor
Joseph Lebans Leopold Lambert
Cornelis Helwig Antonius
Original Assignee
Philips Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Nv filed Critical Philips Nv
Publication of CH383733A publication Critical patent/CH383733A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P5/00Setting gems or the like on metal parts, e.g. diamonds on tools
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube

Description

  

  Verfahren zum Anlöten eines Diamanten an     eine        Metallfassung       Die Erfindung bezieht sich auf ein Verfahren zum  Anlöten eines Diamanten an eine Metallfassung. Mit  Metall gefasste     Diamanten    können zur Herstellung  von Werkzeugen, z. B. Bohrern und     Meisseln,    und  von Nadeln zur Abtastung von in einer Nut nieder  gelegten Aufzeichungen, insbesondere für Anwendung  bei     Plattenspielern,    verwendet werden.  



  Es kann an     Diamanten    nicht ohne weiteres     unter     Zuhilfenahme der üblichen Lötmetalle wie Kupfer,  Silber und Kupfer-Silberlegierungen gelötet werden,  da diese beim Löten den Diamanten nicht benetzen.  



  Titan und Zirkonium haben die Eigenschaft, den  Diamanten sehr gut zu benetzen. Daher wurde bereits  ein     Lötverfahren    vorgeschlagen, bei dem Titan- oder  Zirkoniumhydrid benutzt wird. Gemäss diesem be  kannten Verfahren wird eine Schicht des     Hydrids          mittels    einer     Suspension    desselben auf einem Diaman  ten angebracht, und in einer nicht oxydierenden At  mosphäre, insbesondere in reinem Wasserstoff oder  im Vakuum, wird oberhalb der Zersetzungstempera  tur des Hydrids unter Anwendung eines üblichen Lots  eine Verbindung hergestellt.  



  Bei einem anderen bekannten Verfahren wird  eine Verbindung an einem Diamanten mittels eines  Lötdrahts hergestellt, der aus einem üblichen Lot.,  z. B. einer Silber-Kupferlegierung, mit einem Kern  aus Titan oder Zirkonium besteht.  



  Bei     letzterem    Verfahren wird die Menge des Ti  tans oder Zirkoniums so gewählt, dass bezogen auf  das Lötmetall etwa 3 % vorhanden ist, damit die  gewünschte Benetzung des Diamanten erzielt werden       kann.    Grössere Mengen als etwa 15 % können den       Schmelzpunkt    des Lots in     nachteiligem    Masse erhö  hen und eine spröde Verbindung zur Folge haben.  



  Bei diesen     beiden        Verfahren        wird    die     direkte    An  wendung einer titanhaltigen Lötlegierung vermieden,    obgleich diese zur     einfachsten    Technik führt.     Ausser-          dem    wird bei Anwendung titanhaltiger Legierungen  eine homogene Verteilung des Titans in der     Lötver-          bindung        gesichert.    Dies ist besonders wichtig, da da  bei die Bildung spröder Stellen in der Verbindung  infolge hoher, örtlicher Titankonzentrationen vermie  den wird.

   Der Umstand, dass die meisten, als Tiegel  material zum Schmelzen der titanhaltigen Legierung  in Betracht     kommenden    Stoffe von einer solchen Le  gierung     stark        angegriffen    werden, scheint der An  wendung dieser Technik im Wege     gestanden    zu ha  ben. Tatsächlich können mit     verunreinigten    Legie  rungen, die z. B. in     Tiegeln    aus keramischem Mate  rial     geschmolzen    werden, keine gut     haftende        Lötver-          bindungen    an Diamanten erzielt werden.  



  Bei den zur Erfindung führenden Untersuchungen  hat es sich jedoch gezeigt, dass die Metalle     Molybdän     und     Wolfram    in hohem Masse     geschmolzenen,        titan-          haltigen    Legierungen     Widerstand    leisten     können    und  dass mit Legierungen, die in     Tiegeln    aus diesen Mate  rialien längere Zeit     geschmolzen    aufbewahrt werden,  obwohl diese Metalle sich zum Teil in der     Schmelze     lösen, trotzdem gut haftende Lötverbindungen an  Diamanten erzielt werden können.  



  Gemäss dem Verfahren der     Erfindung    ist das     An-          löten    eines Diamanten an eine metallische Fassung  dadurch gekennzeichnet, dass der Diamant, z. B.  durch Klemmen, mechanisch mit der Fassung ver  bunden wird, worauf das Ganze im Vakuum oder in  einer     inerten    Gasatmosphäre, z. B. Wasserstoff oder  Edelgas, in eine Legierung aus Kupfer und/oder Sil  ber mit höchstem 15 % Titan getaucht wird, die in  einem Gefäss aus     Molybdän    oder     Wolfram    geschmol  zen ist.  



  Die     Lötlegierung    kann durch Zusammenschmel  zen der Bestandteile im Vakuum oder in einem iner-      ten Gas, z. B. Wasserstoff oder einem Edelgas, her  gestellt werden. Es ist     vorteilhaft,    die Lötlegierung  durch Schmelzen in einem Tiegel aus Molybdän oder       Wolfram    herzustellen, da in diesem Falle keine schäd  lichen Verunreinigungen aufgenommen werden. Vor  zugsweise     wird    das Grundmetall der Legierung eine  gewisse Zeit lang in einer Wasserstoffatmosphäre  niedrigen Drucks, z. B. von einigen Zehntel mm Hg,       geschmolzen    gehalten, damit es weitgehend entgast  wird, worauf     eine    gewünschte Menge Titan, z.

   B. in  Form von Draht, Folie, der     Schmelze    zugesetzt wird.  Die Anwendung von Titan im pulverigen Zustand ist       weniger        gut,    da dieses häufig nicht frei von Oxyd ist.  



  Sehr gute Resultate können erhalten werden mit  Silber-Kupferlegierungen als Basismetall, insbeson  dere mit den eutektischen Legierungen, die 72 %  Silber und 28 % Kupfer enthalten und welchen Titan  zugesetzt wird.  



  Zum Erzielen einer ausreichenden Benetzung des  Diamanten beim Lötvorgang ist im allgemeinen ein  Titangehalt von mindestens 1 %, vorzugsweise etwa  4 %,     bezogen    auf das Basismetall, erforderlich. Ein  höherer Titangehalt als etwa 15 % ist nicht er  wünscht, da in diesem Falle der Schmelzpunkt der       Lötlegierung    zu hoch und die Lötverbindung spröde  wird.  



  Um eine     Verunreinigung    der     Lötlegierung,    wel  che die Haftung an Diamanten beeinträchtigen  könnte, möglichst     zu    vermeiden werden vorzugsweise  die Fassung, an welcher der Diamant befestigt wer  den     soll,    und etwaige weitere Teile, welche zur Her  stellung einer mechanischen Verbindung     zwischen    der  Fassung und dem Diamanten zeitweise erforderlich  sind, aus Molybdän oder Wolfram hergestellt.  



  Das Verfahren nach der     Erfindung        lässt    sich z. B.  wie folgt durchführen. Ein kleiner     Diamant    wird mit  Petroleumäther     entfettet    und darauf erforderlichen  falls durch kurzzeitige Erhitzung auf etwa     800     C in  einer sauerstoffhaltigen Atmosphäre oberflächlich  aufgerauht.

   Nach Einklemmen des Diamanten in das  Ende eines Molybdänrohrs wird er in einer Wasser  stoff-Atmosphäre von etwa 0,1 mm Hg Druck, in  eine     Legierung    aus 72 % Silber und 28 % Kupfer  mit einem Zusatz von 4 % Titan, auf Silber-Kupfer  bezogen, getaucht, welche     Legierung    in einem Tiegel  aus Molybdän oder Wolfram, auf die vorstehend ge-         schilderte.    Weise     geschmolzen    worden ist. Schliesslich  wird das überflüssige Lötmetall durch Schleifen ent  fernt und das frei werdende Ende des Diamanten  wird in die gewünschte Form geschliffen.



  Method of Soldering a Diamond to a Metal Setting The invention relates to a method of soldering a diamond to a metal setting. Metal-set diamonds can be used to make tools, e.g. B. drills and chisels, and needles for scanning of laid down in a groove records, especially for use in turntables, are used.



  It cannot easily be soldered to diamonds with the aid of the usual soldering metals such as copper, silver and copper-silver alloys, since these do not wet the diamond during soldering.



  Titanium and zirconium have the property of wetting the diamond very well. Therefore, a soldering method using titanium or zirconium hydride has already been proposed. According to this known method, a layer of the hydride is applied by means of a suspension of the same on a diamond, and in a non-oxidizing atmosphere, especially in pure hydrogen or in a vacuum, a compound is formed above the decomposition temperature of the hydride using a conventional solder manufactured.



  In another known method, a connection is made to a diamond by means of a solder wire made of a conventional solder. B. a silver-copper alloy, with a core made of titanium or zirconium.



  In the latter process, the amount of titanium or zirconium is chosen so that about 3% of the solder is present so that the desired wetting of the diamond can be achieved. Amounts greater than about 15% can disadvantageously raise the melting point of the solder and result in a brittle connection.



  With these two methods the direct use of a titanium-containing solder alloy is avoided, although this leads to the simplest technique. In addition, when alloys containing titanium are used, a homogeneous distribution of the titanium in the soldered joint is ensured. This is particularly important, since the formation of brittle areas in the connection as a result of high local titanium concentrations is avoided.

   The fact that most of the materials that can be used as crucible material for melting the titanium-containing alloy are strongly attacked by such an alloy seems to have stood in the way of the application of this technology. In fact, with contaminated alloys, the z. If, for example, they are melted in crucibles made of ceramic material, no well-adhering soldered connections can be achieved on diamonds.



  In the investigations leading to the invention it has been shown, however, that the metals molybdenum and tungsten can withstand high levels of molten, titanium-containing alloys and that with alloys that are stored in crucibles made of these materials for a longer period of time, although these Metals partially dissolve in the melt, although soldered joints that adhere well to diamonds can be achieved.



  According to the method of the invention, the soldering of a diamond to a metallic setting is characterized in that the diamond, e.g. B. by clamping, is mechanically connected to the socket, whereupon the whole thing in a vacuum or in an inert gas atmosphere, for. B. hydrogen or noble gas is immersed in an alloy of copper and / or silver with the highest 15% titanium, which is melted in a vessel made of molybdenum or tungsten.



  The soldering alloy can be produced by melting the components together in a vacuum or in an inert gas, e.g. B. hydrogen or a noble gas can be made forth. It is advantageous to produce the solder alloy by melting it in a molybdenum or tungsten crucible, since in this case no harmful impurities are absorbed. Preferably, the base metal of the alloy is placed in a low pressure hydrogen atmosphere, e.g. B. of a few tenths of a mm Hg, kept molten so that it is largely degassed, whereupon a desired amount of titanium, e.g.

   B. in the form of wire, foil, is added to the melt. The use of titanium in its powdery state is not as good as it is often not free from oxide.



  Very good results can be obtained with silver-copper alloys as the base metal, in particular with the eutectic alloys which contain 72% silver and 28% copper and to which titanium is added.



  To achieve sufficient wetting of the diamond during the soldering process, a titanium content of at least 1%, preferably about 4%, based on the base metal, is generally required. A higher titanium content than about 15% is not desirable, since in this case the melting point of the solder alloy is too high and the soldered joint becomes brittle.



  In order to avoid contamination of the soldering alloy, which could affect the adhesion to diamonds, preferably the socket to which the diamond is to be attached and any other parts that are used to establish a mechanical connection between the socket and the diamond are required at times, made of molybdenum or tungsten.



  The method according to the invention can be, for. B. perform as follows. A small diamond is degreased with petroleum ether and the surface is roughened if necessary by briefly heating it to about 800 C in an oxygen-containing atmosphere.

   After clamping the diamond in the end of a molybdenum tube, it is in a hydrogen atmosphere of about 0.1 mm Hg pressure, in an alloy of 72% silver and 28% copper with an addition of 4% titanium, based on silver-copper , dipped which alloy in a crucible made of molybdenum or tungsten, onto the one described above. Way has been melted. Finally, the superfluous solder is removed by grinding and the freed end of the diamond is ground into the desired shape.

 

Claims (1)

PATENTANSPRÜCHE 1. Verfahren zum Anlöten eines Diamanten an eine Metallfassung, dadurch gekennzeichnet, dass der Diamant mechanisch mit der Fassung verbunden wird, worauf das Ganze im Vakuum oder in einer inerten Gasatmosphäre in eine Legierung aus Kupfer und/ oder Silber mit höchstens 15 % Titan getaucht wird, die in einem Gefäss aus Molybdän oder Wolfram ge schmolzen wird. II. An eine Metallfassung angelöteter Diamant, erhalten nach dem Verfahren gemäss Patentan spruch I. PATENT CLAIMS 1. A method for soldering a diamond to a metal mount, characterized in that the diamond is mechanically connected to the mount, whereupon the whole thing is immersed in an alloy of copper and / or silver with a maximum of 15% titanium in a vacuum or in an inert gas atmosphere which is melted in a vessel made of molybdenum or tungsten. II. Diamond soldered to a metal frame, obtained by the method according to patent claim I. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch 1, dadurch ge kennzeichnet, dass die Legierung durch Zusammen schmelzung der Bestandteile im Vakuum oder in einer inerten Gasatmosphäre in einem Gefäss aus Molyb- dän oder Wolfram hergestellt wird. 2. Verfahren nach Unteranspruch 1, dadurch ge kennzeichnet, dass die Lötlegierung dadurch herge stellt wird, dass vorerst das Basismetall geschmolzen und ihm das Titan zugesetzt wird. SUBClaims 1. Method according to claim 1, characterized in that the alloy is produced by melting the components together in a vacuum or in an inert gas atmosphere in a vessel made of molybdenum or tungsten. 2. The method according to dependent claim 1, characterized in that the solder alloy is Herge thereby that first the base metal is melted and the titanium is added to it. 3. Verfahren nach Unteranspruch 2, dadurch ge kennzeichnet, dass vor dem Zusatz des Titans das Basismetall entgast wird, indem es in Wasserstoff unter einem Druck von einigen Zehntel mm Hg Druck geschmolzen wird. 4. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass mit einer Legierung aus 72 % Sil ber und 28 % Kupfer, welcher Titan zugesetzt ist, gelötet wird. 3. The method according to dependent claim 2, characterized in that prior to the addition of the titanium, the base metal is degassed by melting it in hydrogen under a pressure of a few tenths of a mm Hg pressure. 4. The method according to claim I, characterized in that an alloy of 72% silver and 28% copper, which titanium is added, is soldered. 5. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass mit einer Legierung mit einem Ge halt von mindestens 1 % Titan gelötet wird. 6. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass der Diamant an Molybdän oder Wolfram gelötet wird. 5. The method according to claim I, characterized in that an alloy with a Ge content of at least 1% titanium is soldered. 6. The method according to claim I, characterized in that the diamond is soldered to molybdenum or tungsten.
CH8048359A 1958-11-13 1959-11-10 Method for soldering a diamond to a metal setting CH383733A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL233206 1958-11-13

Publications (1)

Publication Number Publication Date
CH383733A true CH383733A (en) 1964-10-31

Family

ID=19751426

Family Applications (1)

Application Number Title Priority Date Filing Date
CH8048359A CH383733A (en) 1958-11-13 1959-11-10 Method for soldering a diamond to a metal setting

Country Status (3)

Country Link
CH (1) CH383733A (en)
FR (1) FR1240869A (en)
GB (1) GB932729A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7508730L (en) * 1974-08-02 1976-02-03 Inst Materialovedenia Akademii PROCEDURE FOR SOLDERING METALS WITH EXTREMELY HARD MATERIALS, PREFERABLY SYNTHETIC MATERIALS, AND SOLDERING MEASURES FOR PERFORMING THE PROCEDURE
ZA773813B (en) * 1977-06-24 1979-01-31 De Beers Ind Diamond Abrasive compacts
US4448605A (en) * 1982-12-02 1984-05-15 Gte Products Corporation Ductile brazing alloys containing reactive metals

Also Published As

Publication number Publication date
GB932729A (en) 1963-07-31
FR1240869A (en) 1960-09-09

Similar Documents

Publication Publication Date Title
DE965988C (en) Process for applying a vacuum-tight, solderable metal layer to ceramic bodies
DE2816201A1 (en) COMPOUND SUBSTRATE FOR A ROTATING ANODE OF A ROENTHINE PIPE
DE2357231A1 (en) PROCESS FOR CONNECTING MAGNETIC CERAMIC AND METALLIC COMPONENTS
DE2534777C2 (en) Method for soldering a polycrystalline body made of extremely hard material based on boron nitride and / or diamond with a metal part and solder for carrying out this method
CH383733A (en) Method for soldering a diamond to a metal setting
DE1172099B (en) Brazing alloy and method for soldering graphite with ??
DE1151666B (en) Process for producing a titanium-containing silver, copper or silver-copper alloy and using this alloy as a solder
EP0230853A1 (en) Process for the realization of a brazeable coating of an alloy on a preferably oxide-ceramic substrate
EP0098858B1 (en) Power supply conductor, essentially for vacuum apparatus, and manufacturing method thereof
AT214235B (en) Method for soldering a diamond to a metal setting
DE838167C (en)
DE2605874A1 (en) HIGH TEMPERATURE SOLDERING FORMS AND THEIR USE IN A DIFFUSION SOLDERING PROCESS
AT214236B (en) Method of soldering on diamonds
DE4308361A1 (en) Method for producing a connection between two ceramic parts or one metal and one ceramic part
DE907093C (en) Process for the production of highly heat-emitting coatings on components of electrical discharge vessels, in particular high-performance short-wave tubes
DE1210300B (en) Method for soldering diamonds
DE1925796A1 (en) Electrode for arc discharges and process for their manufacture
DE4143096A1 (en) Impregnated cathode prodn. - by sintering metal powder to form pellet, fixing in cathode ring and impregnating pellet
DE2849606A1 (en) BASE METAL PLATE MATERIAL FOR DIRECTLY HEATED OXIDE CATHODES
DE650446C (en) Vacuum-tight connection between quartz and metal
WO2003097287A1 (en) Method for joining a part to be joined to a counterpart using an alloy containing silver and copper constituents
DE2716975B2 (en) Method for joining cast iron parts or steel parts with cast iron parts
DE2248129C3 (en) Dispersion-strengthened sintered bodies and processes for their production
DE1013216B (en) Process for the vacuum-tight connection of a metal object with a ceramic body
DE2031915C3 (en) Alloy for soldering diamond