CH348231A - Rotary lobe compressors - Google Patents

Rotary lobe compressors

Info

Publication number
CH348231A
CH348231A CH348231DA CH348231A CH 348231 A CH348231 A CH 348231A CH 348231D A CH348231D A CH 348231DA CH 348231 A CH348231 A CH 348231A
Authority
CH
Switzerland
Prior art keywords
slide
ellipse
sep
equal
axis
Prior art date
Application number
Other languages
German (de)
Inventor
Ryffel Hans
Original Assignee
Ryffel Hans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryffel Hans filed Critical Ryffel Hans
Publication of CH348231A publication Critical patent/CH348231A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3446Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/30Geometry of the stator
    • F04C2250/301Geometry of the stator compression chamber profile defined by a mathematical expression or by parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  

      Drehkolbenverdichter       Die Erfindung betrifft einen     Drehkolbenverdich-          ter    mit im Querschnitt innen elliptischem Gehäuse  und mindestens einem darin aussermittig umlaufenden  Schieber.  



  Der erfindungsgemässe Verdichter ist dadurch  gekennzeichnet, dass der Schieber eine konstante  Länge aufweist, die gleich der kleinen Achse der  durch den Gehäusequerschnitt gebildeten     Ellipse    ist,  wobei die grosse Achse dieser Ellipse höchstens       1,05mal    länger ist als die kleine Achse und wobei  der Schieber axial verschiebbar um einen Drehpunkt  umläuft, der sich auf der kleinen Achse der Ellipse  in einer Entfernung vom Mittelpunkt derselben be  findet, die  
EMI0001.0006     
    beträgt, wobei b gleich der kleinen Halbachse der  Ellipse und gleichzeitig gleich der halben Schieber  länge ist und a gleich der grossen Halbachse ist.  



  Der Erfindung zugrunde liegende Berechnungen  haben gezeigt, dass bei der erwähnten     Dimensionie-          rung    ein Schieber konstanter Länge in allen während  einer Umdrehung vorkommenden . Stellungen prak  tisch völlig ausreichend dichtet, indem die theore  tische     Schieberlänge    während einer Umdrehung die    effektive Länge nur um sehr kleine Beträge über  schreitet.  



  Auf der Zeichnung ist ein Ausführungsbeispiel  der Erfindung dargestellt. Es zeigen:       Fig.    1 eine Ellipse, 40       Fig.    2 einen     Drehkolbenverdichter    im Querschnitt  und       Fig.    3 einen Schnitt längs der Linie     III-III    in       Fig.    2.  



  In     Fig.    1 ist zwecks deutlicherer Darstellung der     4s     Unterschied zwischen der kleinen Achse 2b und der  grossen Achse 2a der Ellipse übertrieben dargestellt.  Die gezeichnete Ellipse weicht also stärker von der  Kreisform ab als der innere Gehäusequerschnitt des       Drehkolbenverdichters.    P ist der Drehpunkt des so  Schiebers, der auf der kleinen Achse liegt und dessen       Entfernung    vom Mittelpunkt der Ellipse  
EMI0001.0020     
  
    - <SEP> b <SEP> @/ <SEP> a <SEP> a-ga
<tb>  ist. <SEP> a       In folgender Tabelle ist die berechnete Differenz  zwischen der theoretischen und der effektiven     Schie-          berlänge    für drei beispielsweise Ellipsen angegeben.

    Unter der theoretischen     Schieberlänge    ist dabei die  maximale Entfernung der -Punkte verstanden, in  denen eine durch P gehende Linie die Ellipse schnei  det.  
EMI0001.0024     
  
    Ellipse <SEP> e <SEP> Max. <SEP> Fehler
<tb>  grosse <SEP> Achse <SEP> kleine <SEP> Achse <SEP> b
<tb>  58,3 <SEP> mm <SEP> 58,0 <SEP> mm <SEP> 2,8838 <SEP> mm <SEP> 0,00125 <SEP> 1,006
<tb>  58,6 <SEP> mm <SEP> 58,0 <SEP> mm <SEP> 3,99<B>1</B>7 <SEP> mm <SEP> 0,003 <SEP> 1,010
<tb>  59,5 <SEP> mm <SEP> 58,0 <SEP> mm <SEP> 6,2346 <SEP> mm <SEP> 0,0209 <SEP> 1,028       Dabei ist angenommen, dass die     Schieberenden     mit einem Radius von 2 mm abgerundet sind. Weiter-    hin ist der Abstand e und das Verhältnis     alb    der  grossen zur kleinen     Halbachse    angegeben.

        Der in     Fig.    2 und 3 dargestellte     Drehkolbenver-          dichter    weist ein Gehäuse 1 mit einer elliptischen  Bohrung 2 auf, in welche Ein- und Auslässe 3 und 4  führen. In der Bohrung ist ein Drehkolben 5 exzen  trisch gelagert. Dieser Kolben weist einen diametralen  Schlitz auf, in dem ein Schieber 6 in seiner Längs  richtung verschiebbar gelagert ist. Der Kolben wird  über eine Welle 7 von einem Elektromotor 8 ange  trieben. Dabei verschiebt sich der Schieber je nach  den Winkeln, die er jeweils mit den Achsen der       Querschnittsellipse    der Bohrung einschliesst, im       Schlitz    des Kolbens hin und her.

   Der zylindrische  Kolbenmantel schliesst oben zwischen den Ein- und  Auslässen 3 und 4 längs einer Mantellinie dicht     mit     der Wandung der elliptischen Bohrung ab. Die in  axialer Richtung verlaufenden Endflächen des Schie  bers sind     halbkreiszylinderförmig    abgerundet.  



  Die Wirkungsweise des     Drehkolbenverdichters     ist folgende: Die Berührungszone zwischen dem  Kolbenmantel und der Wandung der elliptischen  Bohrung sowie die     Schieberenden    teilen den Raum  zwischen der Wandung der elliptischen Bohrung und  dem Kolbenmantel im allgemeinen in drei Kammern  (wenn, wie in     Fig.    2 und 3, das eine     Schieberende     in der erwähnten Berührungszone     liegt,    verschwindet  die eine Kammer, das heisst, ihr Volumen wird Null).

    Wenn die Ellipse, die     Schieberlänge    und die Lage  der     Drehkolbenachse    den obigen     Dimensionierungs-          regeln    entsprechen, sind diese Kammern in allen       Schieberstellungen    hinreichend gegeneinander abge  dichtet.  



  Angenommen, der Kolben rotiert in     Fig.    2 im  Uhrzeigersinn. In diesem Falle ist 4 der Einlass und  3 der     Auslass.    Sobald das obere     Schieberende    am  Einlass 4 vorbeigegangen ist, entsteht zwischen die  sem     Schieberende    und der Berührungszone zwischen  Kolben und elliptischer Bohrung eine Kammer, deren  Volumen bei fortgesetzter Drehung zunimmt, so dass  der     Drehkolbenverdichter    Arbeitsmedium durch den       Eimass    4 in diese Kammer     ansaugt.    Dieser Saugvor  gang wird fortgesetzt,

   bis das nächste     Schieberende     über den     Einlass    gleitet und die vollgesaugte Kammer  durch beide     Schieberenden    abgeschlossen ist. Das  Medium wird nun um den Kolben herum weiter  transportiert, bis eines der     Schieberenden    über den       Auslass    3 und weiter über die erwähnte Berührungs  zone gleitet. Dabei ist nun die Kammer wieder durch  ein     Schieberende    und durch diese Berührungszone  begrenzt, mit dem     Auslass    3 in Verbindung, und es  nimmt das Volumen der Kammer im Verlaufe der  fortschreitenden Drehung ab.

   Das Arbeitsmedium  wird also durch den     Auslass    3 ausgestossen, bis das  betreffende     Schieberende    über die Öffnung des     Aus-          lasses    gleitet, in welcher Stellung die Kammer ent  leert ist. Dieser Vorgang wiederholt sich     dauernd;     wobei     immer    Arbeitsmedium in eine Kammer ange  saugt, in einer zweiten Kammer transportiert und  aus einer dritten Kammer ausgestossen wird.  



  Die Enden des Schiebers können einen ellip  tischen Querschnitt aufweisen, wobei die grosse Achse    dieser     Querschnittsellipse    gleich der Dicke des  Schiebers ist.  



  Die Dicke des Schiebers beträgt beispielsweise  4 mm.  



  Weiterhin kann der beschriebene     Drehkolbenver-          dichter    auch mit mehreren, sternförmig angeordneten  Schiebern versehen sein.  



  Der Vorteil des beschriebenen     Drehkolbenver-          dichters    besteht darin, dass ein starrer Schieber in  allen     Stellungen    dicht mit der Wandung der Boh  rung abschliesst, während bei den bisher bekannten       Drehkolbenverdichtern    grundsätzlich elastische Mittel  erforderlich sind, beispielsweise Federn, die jedes       Schieberende    gegen die Wand der Bohrung drücken,  oder nachgiebige Packungen, die einen Spalt ver  änderlicher Grösse zwischen den     Schieberenden    und  der Bohrung abdichten.



      Rotary Lobe Compressor The invention relates to a rotary lobe compressor with a housing that is elliptical on the inside in cross section and at least one eccentrically rotating slide therein.



  The compressor according to the invention is characterized in that the slide has a constant length which is equal to the minor axis of the ellipse formed by the housing cross-section, the major axis of this ellipse being at most 1.05 times longer than the minor axis and the slide being axially displaceable revolves around a fulcrum which is on the minor axis of the ellipse at a distance from the center of the same be that
EMI0001.0006
    is, where b is equal to the small semi-axis of the ellipse and at the same time equal to half the slide length and a is equal to the major semi-axis.



  Calculations on which the invention is based have shown that, with the dimensioning mentioned, a slide of constant length occurs in all of the ones occurring during one revolution. Positions are practically completely adequately sealed by the theoretical slide length exceeding the effective length by only very small amounts during one revolution.



  An exemplary embodiment of the invention is shown in the drawing. 1 shows an ellipse, FIG. 2 shows a rotary piston compressor in cross section, and FIG. 3 shows a section along the line III-III in FIG. 2.



  In Fig. 1, the 4s difference between the minor axis 2b and the major axis 2a of the ellipse is exaggerated for the purpose of a clearer illustration. The drawn ellipse thus deviates more strongly from the circular shape than the inner housing cross section of the rotary piston compressor. P is the pivot point of the slide, which lies on the minor axis and its distance from the center of the ellipse
EMI0001.0020
  
    - <SEP> b <SEP> @ / <SEP> a <SEP> a-ga
<tb> is. <SEP> a The following table shows the calculated difference between the theoretical and the effective slide length for three ellipses, for example.

    The theoretical slide length is understood to mean the maximum distance between the points at which a line passing through P intersects the ellipse.
EMI0001.0024
  
    Ellipse <SEP> e <SEP> Max. <SEP> error
<tb> large <SEP> axis <SEP> small <SEP> axis <SEP> b
<tb> 58.3 <SEP> mm <SEP> 58.0 <SEP> mm <SEP> 2.8838 <SEP> mm <SEP> 0.00125 <SEP> 1.006
<tb> 58.6 <SEP> mm <SEP> 58.0 <SEP> mm <SEP> 3.99 <B> 1 </B> 7 <SEP> mm <SEP> 0.003 <SEP> 1.010
<tb> 59.5 <SEP> mm <SEP> 58.0 <SEP> mm <SEP> 6.2346 <SEP> mm <SEP> 0.0209 <SEP> 1.028 It is assumed that the slide ends have a radius rounded by 2 mm. The distance e and the ratio alb of the major and minor semi-axes are also given.

        The rotary piston compressor shown in FIGS. 2 and 3 has a housing 1 with an elliptical bore 2 into which inlets and outlets 3 and 4 lead. In the bore a rotary piston 5 is eccentrically mounted. This piston has a diametrical slot in which a slide 6 is slidably mounted in its longitudinal direction. The piston is driven by an electric motor 8 via a shaft 7. The slide moves back and forth in the slot of the piston depending on the angles that it includes with the axes of the cross-sectional ellipse of the bore.

   The cylindrical piston skirt closes at the top between the inlets and outlets 3 and 4 along a surface line tightly with the wall of the elliptical bore. The axially extending end faces of the slider are rounded off in a semicircular cylinder shape.



  The operation of the rotary piston compressor is as follows: The contact zone between the piston skirt and the wall of the elliptical bore and the slide ends divide the space between the wall of the elliptical bore and the piston skirt generally into three chambers (if, as in Fig. 2 and 3, the one end of the slide is in the mentioned contact zone, one chamber disappears, i.e. its volume becomes zero).

    If the ellipse, the slide length and the position of the rotary piston axis correspond to the above dimensioning rules, these chambers are sufficiently sealed off from one another in all slide positions.



  Assume that the piston rotates clockwise in FIG. 2. In this case 4 is the inlet and 3 is the outlet. As soon as the upper end of the slide has passed the inlet 4, a chamber is created between this end of the slide and the contact zone between the piston and the elliptical bore, the volume of which increases with continued rotation, so that the rotary piston compressor sucks working medium through the dimension 4 into this chamber. This suction process is continued

   until the next slide end slides over the inlet and the fully sucked chamber is closed by both slide ends. The medium is now transported further around the piston until one of the slide ends slides over the outlet 3 and further over the mentioned contact zone. The chamber is now again bounded by a slide end and this contact zone, in connection with the outlet 3, and the volume of the chamber decreases in the course of the progressive rotation.

   The working medium is thus expelled through the outlet 3 until the relevant slide end slides over the opening of the outlet, in which position the chamber is emptied. This process repeats itself continuously; always working medium is sucked into a chamber, transported in a second chamber and expelled from a third chamber.



  The ends of the slide can have an elliptical cross-section, the major axis of this cross-sectional ellipse being equal to the thickness of the slide.



  The thickness of the slide is, for example, 4 mm.



  Furthermore, the rotary lobe compressor described can also be provided with several slides arranged in a star shape.



  The advantage of the rotary lobe compressor described is that a rigid slide closes tightly with the wall of the bore in all positions, while the rotary lobe compressors known so far generally require elastic means, for example springs that press each slide end against the wall of the bore , or flexible packings that seal a gap of variable size between the slide ends and the bore.

 

Claims (1)

PATENTANSPRUCH Drehkolbenverdichter mit im Querschnitt innen elliptischem Gehäuse und mindestens einem darin aussermittig umlaufenden Schieber, dadurch gekenn zeichnet, dass der Schieber eine konstante Länge auf weist, die gleich der kleinen Achse der durch den Gehäusequerschnitt gebildeten Ellipse ist, wobei die grosse Achse dieser Ellipse höchstens 1,05mal länger ist als die kleine Achse und wobei der Schieber axial verschiebbar um einen Drehpunkt umläuft, der sich auf der kleinen Achse der Ellipse in einer Entfer nung vom Mittelpunkt derselben befindet, die EMI0002.0049 beträgt, wobei b gleich der kleinen Halbachse der Ellipse und gleichzeitig gleich der halben Schieber länge ist und a gleich der grossen Halbachse ist. PATENT CLAIM Rotary piston compressor with an elliptical housing in cross section and at least one eccentrically circumferential slide therein, characterized in that the slide has a constant length which is equal to the minor axis of the ellipse formed by the housing cross section, the major axis of this ellipse at most 1 , 05 times longer than the minor axis and wherein the slide rotates axially displaceably around a pivot point which is located on the minor axis of the ellipse at a distance from the center of the same, the EMI0002.0049 is, where b is equal to the small semi-axis of the ellipse and at the same time equal to half the slide length and a is equal to the major semi-axis. UNTERANSPRÜCHE 1. Drehkolbenverdichter nach Patentanspruch, dadurch gekennzeichnet, dass die mit der elliptischen Gehäusewandung zusammenwirkenden Enden des Schiebers im Querschnitt halbkreisförmig sind, wobei der Radius dieser Halbkreise gleich der halben Schieberdicke ist. 2. Drehkolbenverdichter nach Patentanspruch, dadurch gekennzeichnet, dass die mit der elliptischen Gehäusewandung zusammenwirkenden Enden des Schiebers im Querschnitt elliptisch sind, wobei die grosse Achse dieser Ellipse gleich der Schieber dicke ist. SUBClaims 1. Rotary piston compressor according to claim, characterized in that the ends of the slide cooperating with the elliptical housing wall are semicircular in cross-section, the radius of these semicircles being equal to half the slide thickness. 2. Rotary piston compressor according to claim, characterized in that the ends of the slide cooperating with the elliptical housing wall are elliptical in cross section, the major axis of this ellipse being equal to the slide thickness. 3. Drehkolbenverdichter nach Unteranspruch 1, dadurch gekennzeichnet, dass die grosse Achse der Ellipse l,Olmal länger ist als die kleine Achse und die Dicke des Schiebers 4 mm beträgt. 4. Drehkolbenverdichter nach Patentanspruch, dadurch gekennzeichnet, dass mehrere sternförmig angeordnete Schieber vorgesehen sind. 3. Rotary piston compressor according to dependent claim 1, characterized in that the major axis of the ellipse is l, ol times longer than the minor axis and the thickness of the slide is 4 mm. 4. Rotary piston compressor according to claim, characterized in that a plurality of slides arranged in a star shape are provided.
CH348231D 1956-03-14 1956-03-14 Rotary lobe compressors CH348231A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH348231T 1956-03-14

Publications (1)

Publication Number Publication Date
CH348231A true CH348231A (en) 1960-08-15

Family

ID=4508295

Family Applications (1)

Application Number Title Priority Date Filing Date
CH348231D CH348231A (en) 1956-03-14 1956-03-14 Rotary lobe compressors

Country Status (1)

Country Link
CH (1) CH348231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538977A (en) * 1978-08-12 1985-09-03 Robert Bosch Gmbh Roller vane pump with angular ranges of approximate concentric circular paths for the rollers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538977A (en) * 1978-08-12 1985-09-03 Robert Bosch Gmbh Roller vane pump with angular ranges of approximate concentric circular paths for the rollers

Similar Documents

Publication Publication Date Title
DE2223156A1 (en) FLOW CELL COMPRESSOR
DE2721233C2 (en) Side channel compressor consisting of several compressor stages
DE1503544C3 (en) Rotary piston vacuum pump
DE3319776C2 (en) SPIRAL COMPRESSOR
DE1653921C3 (en) Rotary piston pump
DE522299C (en) Rotary piston compressor, the piston cross-section of which is formed in the circumference from two arcs of a circle lying at their ends
DE2249591C3 (en) Rotary piston pump with adjustable delivery rate
DE1287729B (en)
CH348231A (en) Rotary lobe compressors
DE917744C (en) Two-stage rotating oil pump with nested pump rooms
DE2654991C3 (en) Rotary vane compressor
DE3824803C2 (en)
DE2012699A1 (en) Rotating compressor
DE2528019A1 (en) ROTARY VANE CIRCULATING COMPRESSOR
DE613381C (en) Rotary piston machine with hemispherical working space
DE938436C (en) Rotary piston machine
DE3634094A1 (en) Hydraulic or pneumatic engine and machine
AT217622B (en) Device for controlling a helical gear machine
DE824298C (en) Pump, compressor or motor
DE1403945C (en) Rotary piston pump
DE1127224B (en) Rotary piston machine
DE1813216A1 (en) Rotary fluid flow pump
AT218165B (en) Device for controlling a helical gear machine
AT82077B (en) Air pump with two eccentrically mounted, rotating drums. en, circling drums.
AT404159B (en) Rotary piston machine