CH307960A - Process for carrying out exothermic gas reactions under high pressure. - Google Patents

Process for carrying out exothermic gas reactions under high pressure.

Info

Publication number
CH307960A
CH307960A CH307960DA CH307960A CH 307960 A CH307960 A CH 307960A CH 307960D A CH307960D A CH 307960DA CH 307960 A CH307960 A CH 307960A
Authority
CH
Switzerland
Prior art keywords
circuit
reaction
pressure
under high
carrying
Prior art date
Application number
Other languages
German (de)
Inventor
Montecatini Soc Gen Pe Chimica
Original Assignee
Montedison Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montedison Spa filed Critical Montedison Spa
Publication of CH307960A publication Critical patent/CH307960A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0005Catalytic processes under superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

  

  



  Verfahren zur Durchführung exothermer Gasreaktionen unter hohem Druck.



   Es ist bekannt, dass es, um eine hohe   Atis-       beute bei exothermen Hochdrucksynthesen zu    erzielen, notwendig ist, die durch die   Reak-    tion   Rebildete    Wärme sogleich abzuführen. derart, dass siell die Temperatur des   Kataly-    sators innerhalb bestimmter Grenzen hält.



  Wenn die Reaktionswärme nicht abgeführt wird, so erhöht sieh die Temperatur des   Gasgemisches    und die Ausbeute nimmt ab.



  Ferner bietet. bei einigen Reaktionen, wie z. B.



     I) ei der Methanolsynthese    aus Wasserstoff und   Kohlenoxyl,    ein zu starker Temperaturanstieg des Katalysators nicht nur den Naehteil, die Menge der im gewünsehten Sinne miteinander reagierenden Anteile der   Ausgangs-    stoffe gemäss den Gesetzen des chemischen   Gleichgewichtes herabzusetzen,    sondern   aneth    Nebenreaktionen zu begünstigen, wie die Bildung von Methan und Kohlendioxyd. Da diese Reaktionen stärker exotherm sind als diejenige, welche zur Bildung von Methanol führt, so folgt daraus eine gefährliche Tem  peraturerhöhung, welche    die Nebenreaktionen weiter   beschleunigt und    die Katalysatormasse sowie   aneth    den Katalyseofen   sehädigt.   



   Um bei exothermen Drueksynthesen die Reaktionswärme abzuführen, wurden bereits zahlreiche Arten von Wärmeaustausehern   vor-      gesehlagen,    die in der Katalysatormasse angeordnet sind und durch welche die kalten, zur Reaktion bestimmten Gase ziehen. Mit   solehen    Anordnungen   jedoeh    ist es schwierig, den er  wünschten Temperaturgradienten zu    erzielen ; ferner wird die   dureh    die Reaktion entwickelte Hitze ungenützt in die Kühler am Ausgang der   Syntheseofen abgeführt.   



   Eine rationelle Methode zum Abführen der Reaktionswärme unter Benutzung derselben zur Herstellung von Dampf besteht darin, dass die Katalysatormasse in   versehiedene    Sehiehten unterteilt wird und in die Zwisehenräume   Stahlrohrschlangen    eingesetzt werden, durel welche Wasser umläuft. Durch   sinngemässes    Regeln der   Wassereinspritz    in die versehiedenen Rohrsehlangen ist es   möglieh,    die Tem  peratur    in den erforderlichen Grenzen   Ztl    halten und damit einen hohen Umsetzungsgrad zti erzielen.

   Der Bau der Rohrschlangen, die bestimmt sind, im Innern von   Synthesekolon-    nen bei einem Druck von mehreren Hunderten Atmosphären und bei Temperaturen, die 600  C erreichen können, zu arbeiten, bietet grosse Schwierigkeiten. Bei diesen Temperaturen verringert sich die mechanische Festigkeit der Stähle beträchtlich, und selbst wenn man hoehlegiert.   e Chrom-Niekelstähle    verwendet, so muss man übertrieben dieke Rohre einsetzen ; daher wird der Bau solcher Appara  turen praktisch unmöglich,    wenn der Betriebsdruck 250-300   Atm.    übersteigt.



   Vorliegende Erfindung zeigt eine Lösung, um die oben erwähnten Schwierigkeiten zu überwinden, indem sie gestattet, die Wandstärke der Rohre, in denen das zur Abfuhr der Reaktionswärme bestimmte Wasser umläuft, auf ein Minimum herabzusetzen, selbst wenn das Verfahren bei   Drticken    über   1000 Atm. durchgeführt    wird.



   Die Erfindung betrifft ein Verfahren zur Durchführung exothermer   Gasreaktionen un-    ter hohem Druck und bei hoher Temperatur in Anwesenheit von Katalysatoren im Kreislauf, das dadurch gekennzeichnet ist, dass die entstehende Reaktionswärme durch einen Kühlmittelkreislauf abgeführt wird und dass der   Reaktionskreislauf    mit dem   Kühlmittel-    kreislauf derart verbunden wird, dass   prak-    tisch in beiden Kreisläufen derselbe Druck   herrseht.   



   Die Zeichnung zeigt ein   Ausführungsbei-    spiel einer zur Anwendung des   erfindungsge-    mässen Verfahrens auf die   Ammoniaksynthese    geeigneten Vorrichtung. Das von der Um  laufpumpe    G kommende Stickstoff-Wasser  stoff-Gemiseh    zieht durch den   Wärmeaustau-    scher D, der im Unterteil der   hochdruck-    festen   Säule A    angeordnet ist, folgt dann dem durch Pfeile angedeuteten Weg und dringt von oben in die   Katalysekammer    bei einer zum Einleiten der Reaktion hinreiehenden Temperatur, nämlich bei etwa   400     C. Die Katalysatormasse ist in verschiedene, von Rosten getragene Schichten unterteilt.

   Durch die Reaktion steigt die Temperatur schnell über   500     C. Beim Ausgang der ersten Kata  lysatorsehicht      Bt    kommt das Gas mit einer Kühlvorrichtung   Ci    in Berührung, die aus   Sonderstahlrohrschlangen    besteht, und wird dabei auf   450     C heruntergekühlt. Die Pumpe   0    sichert den   Wasserumlauf    in der Rohr  schlange Ci, und mittels    des Schiebers   Fi    wird die Durchflussmenge des Wassers der durch die Reaktion entwickelten Wärme angepasst.

   Sinngemäss wird die Temperatur des Gases in den nachfolgenden Schichten der Katalysatormasse geregelt, derart, dass derjenige thermische Gradient erzielt wird, der für eine hohe Ausbeute am günstigsten ist.



  Die katalysierten Gase werden, nachdem sie ihre Wärme im Austauscher D abgegeben haben, im Kühler E gekühlt ; das kondensierte Ammoniak scheidet   sieh    im Behälter aus und wird durch den Schieber   T    abgelassen, während die Gase, die nicht reagiert haben, mittels der Pumpe G in die   Synthesekolonne      A    zurückgeführt werden.



   Der in den Rohrschlangen Ci,   C2    und C   ;    unter Hochdruck erzeugte Dampf wird in den   Dampfumspanner I gesandt,    wo Dampf bei niedrigerem Druck erzeugt wird, und das Kondenswasser wird im geschlossenen   Kreis-    lauf benutzt, um Verkrustungen im Innern der Rohre zu vermeiden Die   Wasserumlauf-    pumpe O wird von einem   vertikalachsigen    Elektromotor N angetrieben, der im selben Behälter Y untergebracht ist, der das Kondenswasser sammelt. Auf diese Weise erübrigt sieh   eine Hochdruekstopfbüehsendiehtung.   



   Der Motor ist vom darunterbefindliehen Sammler   dureh    zwei wärmeisolierende Trennwände getrennt, und in dem   zwisehen    diesen befindlichen Raum ist ein Kühler P   angeord-    net. Dieser Raum steht durch das Rohr Q mit dem   Syntheseraum    in Verbindung.



   Bei dieser Anordnung bleibt der Druck des Wassers im Innern der   Rohrschlangen C'i,    C,   eS    praktisch gleich dem in der Katalysekammer   herrsehenden    Druek, so dass es möglich ist, eine   übermässige Beanspruehung der      Rohrwandungen    zu vermeiden,   aueh    wenn bei sehr hohen Synthesedriieken gearbeitet wird. Ferner gestattet die Möglichkeit,   dünn-      wandige    Rohre zu verwenden, den von den Rohrsehlangen in   Ansprueh    genommenen Raum zu verringern und damit beträchtliche Kosten für die   Katalysekammer zu sparen.   



  Der aus dem im Behälter Y enthaltenen   Heiss-    wasser sieh befreiende Dampf   verdiehtet    sieh in Berührung mit dem Kühler P und das Wasser kehrt   dureh    das Rohr   R    in den darunter befindlichen Sammler   zurüek.   



   Die Kühlung des Motors N kann   leieht       dadureh erfolgen, dass im Behälter y ein    Teil der zur Synthese bestimmten Gase in Umlauf gebracht wird, die über die   Abzwei-    gung S aus dem Rohr   11    kommen.



  



  Process for carrying out exothermic gas reactions under high pressure.



   It is known that in order to achieve a high yield in exothermic high-pressure syntheses, it is necessary to immediately dissipate the heat generated by the reaction. in such a way that the temperature of the catalyst is kept within certain limits.



  If the heat of reaction is not dissipated, the temperature of the gas mixture increases and the yield decreases.



  Also offers. in some reactions, such as B.



     I) In the synthesis of methanol from hydrogen and carbon oxyl, an excessive rise in the temperature of the catalyst not only reduces the amount of the proportions of the starting materials which react with one another in the desired sense in accordance with the laws of chemical equilibrium, but also promotes side reactions such as Formation of methane and carbon dioxide. Since these reactions are more exothermic than the one which leads to the formation of methanol, this results in a dangerous increase in temperature, which further accelerates the side reactions and damages the catalyst mass as well as the catalytic furnace.



   In order to dissipate the heat of reaction in exothermic pressure syntheses, numerous types of heat exchangers have already been proposed which are arranged in the catalyst mass and through which the cold gases intended for the reaction pass. With such arrangements, however, it is difficult to achieve the desired temperature gradient; Furthermore, the heat developed by the reaction is discharged unused into the cooler at the outlet of the synthesis furnace.



   A rational method of dissipating the heat of reaction using the same to produce steam consists in dividing the catalyst mass into different layers and inserting steel pipe coils into the spaces through which water circulates. By analogously regulating the water injection into the various lengths of pipe, it is possible to keep the temperature within the required limits and thus achieve a high degree of conversion.

   The construction of the coils, which are designed to work inside synthesis columns at a pressure of several hundreds of atmospheres and at temperatures that can reach 600 C, presents great difficulties. At these temperatures the mechanical strength of the steels is considerably reduced, even when high-alloying. e if chrome-nickel steels are used, the pipes must be used excessively; therefore the construction of such apparatus becomes practically impossible when the operating pressure is 250-300 atm. exceeds.



   The present invention shows a solution to overcome the above-mentioned difficulties by making it possible to reduce the wall thickness of the tubes in which the water intended to dissipate the heat of reaction circulates to a minimum, even when the process is carried out at pressures above 1000 atm. is carried out.



   The invention relates to a method for carrying out exothermic gas reactions under high pressure and at high temperature in the presence of catalysts in the circuit, which is characterized in that the heat of reaction is dissipated through a coolant circuit and that the reaction circuit is connected to the coolant circuit in this way becomes that there is practically the same pressure in both circuits.



   The drawing shows an exemplary embodiment of a device suitable for applying the method according to the invention to ammonia synthesis. The nitrogen-hydrogen mixture coming from the circulation pump G passes through the heat exchanger D, which is arranged in the lower part of the high-pressure-resistant column A, then follows the path indicated by arrows and penetrates from above into the catalytic chamber at one of the Initiation of the reaction at a sufficient temperature, namely at around 400 C. The catalyst mass is divided into various layers supported by grates.

   As a result of the reaction, the temperature quickly rises to over 500 C. When the first catalyst layer Bt exits, the gas comes into contact with a cooling device Ci, which consists of special steel coils, and is cooled down to 450 C. The pump 0 ensures the water circulation in the coil Ci, and by means of the slide Fi the flow rate of the water is adjusted to the heat developed by the reaction.

   Analogously, the temperature of the gas in the subsequent layers of the catalyst mass is regulated in such a way that that thermal gradient is achieved which is most favorable for a high yield.



  The catalyzed gases are cooled in the cooler E after they have given up their heat in the exchanger D; the condensed ammonia separates out in the container and is discharged through the valve T, while the gases that have not reacted are returned to the synthesis column A by means of the pump G.



   The one in the coils Ci, C2 and C; Steam generated under high pressure is sent to the steam converter I, where steam is generated at a lower pressure, and the condensed water is used in a closed circuit to avoid incrustations inside the pipes. The water circulation pump O is driven by a vertical-axis electric motor N which is housed in the same container Y that collects the condensed water. In this way there is no need for a high-pressure jig seal.



   The engine is separated from the collector below it by two heat-insulating partition walls, and a cooler P is arranged in the space between them. This space is connected to the synthesis space through the pipe Q.



   With this arrangement, the pressure of the water inside the pipe coils C'i, C, eS remains practically the same as the pressure prevailing in the catalytic chamber, so that it is possible to avoid excessive stress on the pipe walls, even when working with very high synthesis pressures . Furthermore, the possibility of using thin-walled tubes makes it possible to reduce the space taken up by the tube lengths and thus to save considerable costs for the catalytic chamber.



  The steam released from the hot water contained in the container Y condenses in contact with the cooler P and the water returns through the pipe R to the collector below.



   The motor N can be cooled by virtue of the fact that some of the gases intended for synthesis are circulated in the container y and come out of the pipe 11 via the branch S.

 

Claims (1)

PATENTANSPRÜCHE : I. Verfahren zur Durclifiihrung exother- mer Gasreaktionen unter hohem Druck und bei hoher Temperatur in Anwesenheit von Katalysatoren im Kreislauf, dadurch gekenn zeichnet, dass die entstehende Reaktionswärme durch einen Kühlmittelkreislauf abgeführt wird und dass der Reaktionskreislauf mit dem Kühlmittelkreislauf derart verbunden wird, dass praktiseh in beiden Kreisläufen derselbe Druck herrscht. PATENT CLAIMS: I. A method for performing exothermic gas reactions under high pressure and at high temperature in the presence of catalysts in the circuit, characterized in that the heat of reaction is dissipated through a coolant circuit and that the reaction circuit is connected to the coolant circuit in such a way that practically in the pressure is the same in both circuits. II. Vorriehtung zur Durchführung des Verfahrens nach Patentansprueh I mit einem liatalyseofen, dadureh gekennzeiehnet, dass dieser in versehiedenen Höhen angeordnete Wärmeaustauscher enthält und dass der Re aktionskreislauf derart mit dem Kühlmittel- kreislauf verbunden ist, dass praktisch in beiden Kreisläufen derselbe Druck herrscht. II. Provision for carrying out the method according to patent claim I with a liatalyseofen, dadureh gekennzeiehnet that this contains heat exchangers arranged at different heights and that the reaction circuit is connected to the coolant circuit in such a way that practically the same pressure prevails in both circuits. UNTERANSPRUCHE : 1. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, dass als Kühlmittel Wasser verwendet wird. SUBClaims: 1. The method according to claim I, characterized in that water is used as the coolant. 2. Verfahren nach Patentanspruch I und Unteranspruch l, dadurch gekennzeichnet, dass man den im Kühlmittelkreislauf erzeugten Dampf dazu verwendet, um Dampf von niedrigerem Druck zu erzeugen. 2. The method according to claim I and dependent claim l, characterized in that the steam generated in the coolant circuit is used to generate steam of lower pressure. 3. Vorrichtung nach Patentanspruch II, dadurch gekennzeichnet, dass der Kühlmittelkreislauf über einen gekühlten Sammelbehäl- ter mit dem Reaktionskreislauf in Verbindung steht. 3. Device according to claim II, characterized in that the coolant circuit is connected to the reaction circuit via a cooled collecting container.
CH307960D 1951-08-27 1952-08-12 Process for carrying out exothermic gas reactions under high pressure. CH307960A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT307960X 1951-08-27

Publications (1)

Publication Number Publication Date
CH307960A true CH307960A (en) 1955-06-30

Family

ID=11232098

Family Applications (1)

Application Number Title Priority Date Filing Date
CH307960D CH307960A (en) 1951-08-27 1952-08-12 Process for carrying out exothermic gas reactions under high pressure.

Country Status (6)

Country Link
BE (1) BE513737A (en)
CH (1) CH307960A (en)
DE (1) DE946342C (en)
FR (1) FR1060747A (en)
GB (1) GB722948A (en)
NL (1) NL85287C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1029350B (en) * 1952-06-28 1958-05-08 Basf Ag Process for carrying out exothermic reactions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT381315A (en) *
US2446925A (en) * 1941-07-05 1948-08-10 Standard Oil Dev Co Cracking of hydrocarbons with suspended catalyst
US2539415A (en) * 1947-03-14 1951-01-30 Hydrocarbon Research Inc Process and apparatus for the synthesis of hydrocarbons

Also Published As

Publication number Publication date
NL85287C (en)
BE513737A (en)
FR1060747A (en) 1954-04-05
GB722948A (en) 1955-02-02
DE946342C (en) 1956-08-02

Similar Documents

Publication Publication Date Title
CH344043A (en) Process for carrying out exothermic gas reactions under high pressure and at high temperature
DE2250036C2 (en) Reactor for exothermic catalytic gas phase reactions
DE2529591A1 (en) METHANOL PRODUCTION METHOD
DE3028646C2 (en)
DE2224306A1 (en) Process for the production of ammonia
DE2420949C3 (en) Process and reactor for the production of ethylene oxide by catalytic oxidation of ethylene
DE3442053A1 (en) HEAT RELEASING DOUBLE TUBE REACTOR
DE69105986T2 (en) AMMONIA SYNTHESIS APPARATUS.
DE3420579A1 (en) High-efficiency methanation device
CH307960A (en) Process for carrying out exothermic gas reactions under high pressure.
US3307921A (en) Apparatus for controlling chemical reactor temperatures by means of superheated steam
DE1091095B (en) Process for the production of nitric acid
DE2200004C2 (en) Process for producing a methane-rich gas that is exchangeable with natural gas
DE2847103A1 (en) MIX FEED EVAPORATOR
DE389294C (en) Process for the execution of chemical reactions in compressors
DEM0014992MA (en)
DE1442749A1 (en) Method and device for regulating the operating temperatures of exothermic high-pressure reactions, in particular an ammonia synthesis
DE1567751A1 (en) Process and plant for the production of highly concentrated nitric acid
AT412871B (en) METHOD AND DEVICE FOR PREPARING FORMALDEHYDE
AT225722B (en) Process for conducting gas in catalytic high-pressure synthesis plants and device for carrying out the process
AT99672B (en) Method and device for temperature control in exothermic, catalytic gas reactions.
DE447646C (en) Process and installation for the treatment of gas containing carbon dioxide
AT273174B (en) Device for carrying out exothermic catalytic gas reactions, in particular ammonia synthesis
DE1542531C (en) Synthesis reactor with temperature control device for the catalyst layer
DE1442643A1 (en) Process and device for dissipating the heat of reaction of exothermic catalytic high-pressure syntheses of gases