CH307960A - Process for carrying out exothermic gas reactions under high pressure. - Google Patents
Process for carrying out exothermic gas reactions under high pressure.Info
- Publication number
- CH307960A CH307960A CH307960DA CH307960A CH 307960 A CH307960 A CH 307960A CH 307960D A CH307960D A CH 307960DA CH 307960 A CH307960 A CH 307960A
- Authority
- CH
- Switzerland
- Prior art keywords
- circuit
- reaction
- pressure
- under high
- carrying
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0005—Catalytic processes under superatmospheric pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0449—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
- B01J8/0453—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/152—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
- B01J2208/00141—Coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00203—Coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00256—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00477—Controlling the temperature by thermal insulation means
- B01J2208/00495—Controlling the temperature by thermal insulation means using insulating materials or refractories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00539—Pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
Verfahren zur Durchführung exothermer Gasreaktionen unter hohem Druck.
Es ist bekannt, dass es, um eine hohe Atis- beute bei exothermen Hochdrucksynthesen zu erzielen, notwendig ist, die durch die Reak- tion Rebildete Wärme sogleich abzuführen. derart, dass siell die Temperatur des Kataly- sators innerhalb bestimmter Grenzen hält.
Wenn die Reaktionswärme nicht abgeführt wird, so erhöht sieh die Temperatur des Gasgemisches und die Ausbeute nimmt ab.
Ferner bietet. bei einigen Reaktionen, wie z. B.
I) ei der Methanolsynthese aus Wasserstoff und Kohlenoxyl, ein zu starker Temperaturanstieg des Katalysators nicht nur den Naehteil, die Menge der im gewünsehten Sinne miteinander reagierenden Anteile der Ausgangs- stoffe gemäss den Gesetzen des chemischen Gleichgewichtes herabzusetzen, sondern aneth Nebenreaktionen zu begünstigen, wie die Bildung von Methan und Kohlendioxyd. Da diese Reaktionen stärker exotherm sind als diejenige, welche zur Bildung von Methanol führt, so folgt daraus eine gefährliche Tem peraturerhöhung, welche die Nebenreaktionen weiter beschleunigt und die Katalysatormasse sowie aneth den Katalyseofen sehädigt.
Um bei exothermen Drueksynthesen die Reaktionswärme abzuführen, wurden bereits zahlreiche Arten von Wärmeaustausehern vor- gesehlagen, die in der Katalysatormasse angeordnet sind und durch welche die kalten, zur Reaktion bestimmten Gase ziehen. Mit solehen Anordnungen jedoeh ist es schwierig, den er wünschten Temperaturgradienten zu erzielen ; ferner wird die dureh die Reaktion entwickelte Hitze ungenützt in die Kühler am Ausgang der Syntheseofen abgeführt.
Eine rationelle Methode zum Abführen der Reaktionswärme unter Benutzung derselben zur Herstellung von Dampf besteht darin, dass die Katalysatormasse in versehiedene Sehiehten unterteilt wird und in die Zwisehenräume Stahlrohrschlangen eingesetzt werden, durel welche Wasser umläuft. Durch sinngemässes Regeln der Wassereinspritz in die versehiedenen Rohrsehlangen ist es möglieh, die Tem peratur in den erforderlichen Grenzen Ztl halten und damit einen hohen Umsetzungsgrad zti erzielen.
Der Bau der Rohrschlangen, die bestimmt sind, im Innern von Synthesekolon- nen bei einem Druck von mehreren Hunderten Atmosphären und bei Temperaturen, die 600 C erreichen können, zu arbeiten, bietet grosse Schwierigkeiten. Bei diesen Temperaturen verringert sich die mechanische Festigkeit der Stähle beträchtlich, und selbst wenn man hoehlegiert. e Chrom-Niekelstähle verwendet, so muss man übertrieben dieke Rohre einsetzen ; daher wird der Bau solcher Appara turen praktisch unmöglich, wenn der Betriebsdruck 250-300 Atm. übersteigt.
Vorliegende Erfindung zeigt eine Lösung, um die oben erwähnten Schwierigkeiten zu überwinden, indem sie gestattet, die Wandstärke der Rohre, in denen das zur Abfuhr der Reaktionswärme bestimmte Wasser umläuft, auf ein Minimum herabzusetzen, selbst wenn das Verfahren bei Drticken über 1000 Atm. durchgeführt wird.
Die Erfindung betrifft ein Verfahren zur Durchführung exothermer Gasreaktionen un- ter hohem Druck und bei hoher Temperatur in Anwesenheit von Katalysatoren im Kreislauf, das dadurch gekennzeichnet ist, dass die entstehende Reaktionswärme durch einen Kühlmittelkreislauf abgeführt wird und dass der Reaktionskreislauf mit dem Kühlmittel- kreislauf derart verbunden wird, dass prak- tisch in beiden Kreisläufen derselbe Druck herrseht.
Die Zeichnung zeigt ein Ausführungsbei- spiel einer zur Anwendung des erfindungsge- mässen Verfahrens auf die Ammoniaksynthese geeigneten Vorrichtung. Das von der Um laufpumpe G kommende Stickstoff-Wasser stoff-Gemiseh zieht durch den Wärmeaustau- scher D, der im Unterteil der hochdruck- festen Säule A angeordnet ist, folgt dann dem durch Pfeile angedeuteten Weg und dringt von oben in die Katalysekammer bei einer zum Einleiten der Reaktion hinreiehenden Temperatur, nämlich bei etwa 400 C. Die Katalysatormasse ist in verschiedene, von Rosten getragene Schichten unterteilt.
Durch die Reaktion steigt die Temperatur schnell über 500 C. Beim Ausgang der ersten Kata lysatorsehicht Bt kommt das Gas mit einer Kühlvorrichtung Ci in Berührung, die aus Sonderstahlrohrschlangen besteht, und wird dabei auf 450 C heruntergekühlt. Die Pumpe 0 sichert den Wasserumlauf in der Rohr schlange Ci, und mittels des Schiebers Fi wird die Durchflussmenge des Wassers der durch die Reaktion entwickelten Wärme angepasst.
Sinngemäss wird die Temperatur des Gases in den nachfolgenden Schichten der Katalysatormasse geregelt, derart, dass derjenige thermische Gradient erzielt wird, der für eine hohe Ausbeute am günstigsten ist.
Die katalysierten Gase werden, nachdem sie ihre Wärme im Austauscher D abgegeben haben, im Kühler E gekühlt ; das kondensierte Ammoniak scheidet sieh im Behälter aus und wird durch den Schieber T abgelassen, während die Gase, die nicht reagiert haben, mittels der Pumpe G in die Synthesekolonne A zurückgeführt werden.
Der in den Rohrschlangen Ci, C2 und C ; unter Hochdruck erzeugte Dampf wird in den Dampfumspanner I gesandt, wo Dampf bei niedrigerem Druck erzeugt wird, und das Kondenswasser wird im geschlossenen Kreis- lauf benutzt, um Verkrustungen im Innern der Rohre zu vermeiden Die Wasserumlauf- pumpe O wird von einem vertikalachsigen Elektromotor N angetrieben, der im selben Behälter Y untergebracht ist, der das Kondenswasser sammelt. Auf diese Weise erübrigt sieh eine Hochdruekstopfbüehsendiehtung.
Der Motor ist vom darunterbefindliehen Sammler dureh zwei wärmeisolierende Trennwände getrennt, und in dem zwisehen diesen befindlichen Raum ist ein Kühler P angeord- net. Dieser Raum steht durch das Rohr Q mit dem Syntheseraum in Verbindung.
Bei dieser Anordnung bleibt der Druck des Wassers im Innern der Rohrschlangen C'i, C, eS praktisch gleich dem in der Katalysekammer herrsehenden Druek, so dass es möglich ist, eine übermässige Beanspruehung der Rohrwandungen zu vermeiden, aueh wenn bei sehr hohen Synthesedriieken gearbeitet wird. Ferner gestattet die Möglichkeit, dünn- wandige Rohre zu verwenden, den von den Rohrsehlangen in Ansprueh genommenen Raum zu verringern und damit beträchtliche Kosten für die Katalysekammer zu sparen.
Der aus dem im Behälter Y enthaltenen Heiss- wasser sieh befreiende Dampf verdiehtet sieh in Berührung mit dem Kühler P und das Wasser kehrt dureh das Rohr R in den darunter befindlichen Sammler zurüek.
Die Kühlung des Motors N kann leieht dadureh erfolgen, dass im Behälter y ein Teil der zur Synthese bestimmten Gase in Umlauf gebracht wird, die über die Abzwei- gung S aus dem Rohr 11 kommen.
Process for carrying out exothermic gas reactions under high pressure.
It is known that in order to achieve a high yield in exothermic high-pressure syntheses, it is necessary to immediately dissipate the heat generated by the reaction. in such a way that the temperature of the catalyst is kept within certain limits.
If the heat of reaction is not dissipated, the temperature of the gas mixture increases and the yield decreases.
Also offers. in some reactions, such as B.
I) In the synthesis of methanol from hydrogen and carbon oxyl, an excessive rise in the temperature of the catalyst not only reduces the amount of the proportions of the starting materials which react with one another in the desired sense in accordance with the laws of chemical equilibrium, but also promotes side reactions such as Formation of methane and carbon dioxide. Since these reactions are more exothermic than the one which leads to the formation of methanol, this results in a dangerous increase in temperature, which further accelerates the side reactions and damages the catalyst mass as well as the catalytic furnace.
In order to dissipate the heat of reaction in exothermic pressure syntheses, numerous types of heat exchangers have already been proposed which are arranged in the catalyst mass and through which the cold gases intended for the reaction pass. With such arrangements, however, it is difficult to achieve the desired temperature gradient; Furthermore, the heat developed by the reaction is discharged unused into the cooler at the outlet of the synthesis furnace.
A rational method of dissipating the heat of reaction using the same to produce steam consists in dividing the catalyst mass into different layers and inserting steel pipe coils into the spaces through which water circulates. By analogously regulating the water injection into the various lengths of pipe, it is possible to keep the temperature within the required limits and thus achieve a high degree of conversion.
The construction of the coils, which are designed to work inside synthesis columns at a pressure of several hundreds of atmospheres and at temperatures that can reach 600 C, presents great difficulties. At these temperatures the mechanical strength of the steels is considerably reduced, even when high-alloying. e if chrome-nickel steels are used, the pipes must be used excessively; therefore the construction of such apparatus becomes practically impossible when the operating pressure is 250-300 atm. exceeds.
The present invention shows a solution to overcome the above-mentioned difficulties by making it possible to reduce the wall thickness of the tubes in which the water intended to dissipate the heat of reaction circulates to a minimum, even when the process is carried out at pressures above 1000 atm. is carried out.
The invention relates to a method for carrying out exothermic gas reactions under high pressure and at high temperature in the presence of catalysts in the circuit, which is characterized in that the heat of reaction is dissipated through a coolant circuit and that the reaction circuit is connected to the coolant circuit in this way becomes that there is practically the same pressure in both circuits.
The drawing shows an exemplary embodiment of a device suitable for applying the method according to the invention to ammonia synthesis. The nitrogen-hydrogen mixture coming from the circulation pump G passes through the heat exchanger D, which is arranged in the lower part of the high-pressure-resistant column A, then follows the path indicated by arrows and penetrates from above into the catalytic chamber at one of the Initiation of the reaction at a sufficient temperature, namely at around 400 C. The catalyst mass is divided into various layers supported by grates.
As a result of the reaction, the temperature quickly rises to over 500 C. When the first catalyst layer Bt exits, the gas comes into contact with a cooling device Ci, which consists of special steel coils, and is cooled down to 450 C. The pump 0 ensures the water circulation in the coil Ci, and by means of the slide Fi the flow rate of the water is adjusted to the heat developed by the reaction.
Analogously, the temperature of the gas in the subsequent layers of the catalyst mass is regulated in such a way that that thermal gradient is achieved which is most favorable for a high yield.
The catalyzed gases are cooled in the cooler E after they have given up their heat in the exchanger D; the condensed ammonia separates out in the container and is discharged through the valve T, while the gases that have not reacted are returned to the synthesis column A by means of the pump G.
The one in the coils Ci, C2 and C; Steam generated under high pressure is sent to the steam converter I, where steam is generated at a lower pressure, and the condensed water is used in a closed circuit to avoid incrustations inside the pipes. The water circulation pump O is driven by a vertical-axis electric motor N which is housed in the same container Y that collects the condensed water. In this way there is no need for a high-pressure jig seal.
The engine is separated from the collector below it by two heat-insulating partition walls, and a cooler P is arranged in the space between them. This space is connected to the synthesis space through the pipe Q.
With this arrangement, the pressure of the water inside the pipe coils C'i, C, eS remains practically the same as the pressure prevailing in the catalytic chamber, so that it is possible to avoid excessive stress on the pipe walls, even when working with very high synthesis pressures . Furthermore, the possibility of using thin-walled tubes makes it possible to reduce the space taken up by the tube lengths and thus to save considerable costs for the catalytic chamber.
The steam released from the hot water contained in the container Y condenses in contact with the cooler P and the water returns through the pipe R to the collector below.
The motor N can be cooled by virtue of the fact that some of the gases intended for synthesis are circulated in the container y and come out of the pipe 11 via the branch S.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT307960X | 1951-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
CH307960A true CH307960A (en) | 1955-06-30 |
Family
ID=11232098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH307960D CH307960A (en) | 1951-08-27 | 1952-08-12 | Process for carrying out exothermic gas reactions under high pressure. |
Country Status (6)
Country | Link |
---|---|
BE (1) | BE513737A (en) |
CH (1) | CH307960A (en) |
DE (1) | DE946342C (en) |
FR (1) | FR1060747A (en) |
GB (1) | GB722948A (en) |
NL (1) | NL85287C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1029350B (en) * | 1952-06-28 | 1958-05-08 | Basf Ag | Process for carrying out exothermic reactions |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT381315A (en) * | ||||
US2446925A (en) * | 1941-07-05 | 1948-08-10 | Standard Oil Dev Co | Cracking of hydrocarbons with suspended catalyst |
US2539415A (en) * | 1947-03-14 | 1951-01-30 | Hydrocarbon Research Inc | Process and apparatus for the synthesis of hydrocarbons |
-
0
- BE BE513737D patent/BE513737A/xx unknown
- NL NL85287D patent/NL85287C/xx active
-
1952
- 1952-08-02 DE DEM14992A patent/DE946342C/en not_active Expired
- 1952-08-04 FR FR1060747D patent/FR1060747A/en not_active Expired
- 1952-08-12 CH CH307960D patent/CH307960A/en unknown
- 1952-08-25 GB GB21321/52A patent/GB722948A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
NL85287C (en) | |
BE513737A (en) | |
FR1060747A (en) | 1954-04-05 |
GB722948A (en) | 1955-02-02 |
DE946342C (en) | 1956-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH344043A (en) | Process for carrying out exothermic gas reactions under high pressure and at high temperature | |
DE2250036C2 (en) | Reactor for exothermic catalytic gas phase reactions | |
DE2529591A1 (en) | METHANOL PRODUCTION METHOD | |
DE3028646C2 (en) | ||
DE2224306A1 (en) | Process for the production of ammonia | |
DE2420949C3 (en) | Process and reactor for the production of ethylene oxide by catalytic oxidation of ethylene | |
DE3442053A1 (en) | HEAT RELEASING DOUBLE TUBE REACTOR | |
DE69105986T2 (en) | AMMONIA SYNTHESIS APPARATUS. | |
DE3420579A1 (en) | High-efficiency methanation device | |
CH307960A (en) | Process for carrying out exothermic gas reactions under high pressure. | |
US3307921A (en) | Apparatus for controlling chemical reactor temperatures by means of superheated steam | |
DE1091095B (en) | Process for the production of nitric acid | |
DE2200004C2 (en) | Process for producing a methane-rich gas that is exchangeable with natural gas | |
DE2847103A1 (en) | MIX FEED EVAPORATOR | |
DE389294C (en) | Process for the execution of chemical reactions in compressors | |
DEM0014992MA (en) | ||
DE1442749A1 (en) | Method and device for regulating the operating temperatures of exothermic high-pressure reactions, in particular an ammonia synthesis | |
DE1567751A1 (en) | Process and plant for the production of highly concentrated nitric acid | |
AT412871B (en) | METHOD AND DEVICE FOR PREPARING FORMALDEHYDE | |
AT225722B (en) | Process for conducting gas in catalytic high-pressure synthesis plants and device for carrying out the process | |
AT99672B (en) | Method and device for temperature control in exothermic, catalytic gas reactions. | |
DE447646C (en) | Process and installation for the treatment of gas containing carbon dioxide | |
AT273174B (en) | Device for carrying out exothermic catalytic gas reactions, in particular ammonia synthesis | |
DE1542531C (en) | Synthesis reactor with temperature control device for the catalyst layer | |
DE1442643A1 (en) | Process and device for dissipating the heat of reaction of exothermic catalytic high-pressure syntheses of gases |